5种经典开关电源拓扑结构
开关电源拓扑结构详解
开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck 拓扑型开关电源就是属于串联式的开关电源。
上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
开关电源拓扑结构概述
开关电源拓扑结构概述主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
1.2. 并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。
由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。
并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。
1.3.极性反转型变换器结构极性反转——输出电压与输入电压的极性相反。
电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。
开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。
常见的开关电源拓扑结构
常见的开关电源拓扑结构本文主要讲述了常见的开关电源拓扑结构特点和优缺点对比。
常见的拓扑结构,包括Buck降压、Boost升压、Buck-Boost降压-升压、Flyback反激、Forward正激、Two-Transistor Forward双晶体管正激等。
上图是常见的基本拓扑结构。
基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:常见的基本拓扑结构1 Buck降压•把输入降至一个较低的电压。
•可能是最简单的电路。
•电感/电容滤波器滤平开关后的方波。
•输出总是小于或等于输入。
•输入电流不连续(斩波)。
•输出电流平滑。
2 Boost升压•把输入升至一个较高的电压。
•与降压一样,但重新安排了电感、开关和二极管。
•输出总是比大于或等于输入(忽略二极管的正向压降)。
•输入电流平滑。
•输出电流不连续(斩波)。
3 Buck-Boost降压-升压•电感、开关和二极管的另一种安排方法。
•结合了降压和升压电路的缺点。
•输入电流不连续(斩波)。
•输出电流也不连续(斩波)。
•输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
•“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4 Flyback反激•如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
•输出可以为正或为负,由线圈和二极管的极性决定。
•输出电压可以大于或小于输入电压,由变压器的匝数比决定。
•这是隔离拓扑结构中最简单的。
•增加次级绕组和电路可以得到多个输出。
5 Forward正激•降压电路的变压器耦合形式。
•不连续的输入电流,平滑的输出电流。
•因为采用变压器,输出可以大于或小于输入,可以是任何极性。
•增加次级绕组和电路可以获得多个输出。
•在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
•在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
开关电源的基本拓扑结构
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。
常见正反激开关电源拓扑结构
常见反激式、正激式、桥式、推挽式DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。
表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。
PWM表示脉宽调制波形,U1为直流输入电压,UDS为功率丌关管S1(MOSFFT)的漏一源极电压。
ID1为S1的漏极电流。
IF1为D1的工作电流,U0为输出电压,IL为负载电流。
T为周期,t为UO呈高电平(或低电平)的时问及开关导通时间,D为占空比,有关系式:D=t/T。
C1、C2均为输入端滤波电容,CO为输出端滤波电容,L1、L2为电感。
1、常见单管DC/DC电源变换器
2、常见反激式或正激式DC\DC电源变换器
3、常见桥式或推挽式DC\DC电源变换器。
电源常用拓扑结构特点及波形
电源常用拓扑结构特点及波形基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激■降压电路的变压器耦合形式■不连续的输入电流,平滑的■因为采用变压器,输出可以■增加次级绕组和电路可以获■在每个开关周期中必须对变绕组。
■在开关接通阶段存储在初级6、Two-Transistor Fo 特点■两个开关同时工作。
■开关断开时,存储在变压器■主要优点:■每个开关上的电压永远不会■无需对绕组磁道复位。
功率模块常见的拓扑结构
功率模块常见的拓扑结构功率模块是电子设备中常用的电源转换器,用于将输入电源的电压和电流转换为所需的输出电压和电流。
根据不同的应用需求,功率模块可以采用不同的拓扑结构,下面将介绍几种常见的拓扑结构。
一、Buck拓扑Buck拓扑是一种常见的功率模块拓扑结构,用于将高电压的输入电源转换为较低电压的输出电源。
其基本原理是利用开关管周期性地打开和关闭,通过电感储能和电容滤波实现电压降低。
Buck拓扑具有简单、高效的特点,广泛应用于电源适配器、DC-DC转换器等领域。
二、Boost拓扑Boost拓扑是一种将低电压的输入电源转换为高电压的输出电源的拓扑结构。
Boost拓扑通过周期性地打开和关闭开关管,利用电感储能和电容滤波实现电压升高。
Boost拓扑具有输入电流小、输出电流大的特点,常用于太阳能电池板、电动汽车、燃料电池等领域。
三、Buck-Boost拓扑Buck-Boost拓扑是一种能够实现输入电压降低和升高的拓扑结构。
其原理是通过周期性地打开和关闭开关管,利用电感储能和电容滤波实现电压的升高或降低。
Buck-Boost拓扑具有输入电压和输出电压可以反向的特点,常用于电动车充电桩、电池管理系统等领域。
四、Flyback拓扑Flyback拓扑是一种将输入电源的电能储存于磁场中,再通过变压器将电能传递到输出端的拓扑结构。
其原理是通过周期性地打开和关闭开关管,使得输入电能储存在变压器的磁场中,然后通过变压器的绝缘性实现电能传递。
Flyback拓扑具有输入电压和输出电压可以隔离的特点,常用于充电器、LED驱动器等领域。
五、Push-Pull拓扑Push-Pull拓扑是一种将输入电源的电能传递到输出端的拓扑结构。
其原理是通过两个开关管交替地打开和关闭,使得输入电能在变压器中形成交替的磁场,然后通过变压器将电能传递到输出端。
Push-Pull拓扑具有输入电压和输出电压可以隔离的特点,常用于电源适配器、电动工具等领域。
六、Half-Bridge拓扑Half-Bridge拓扑是一种将输入电源的电能传递到输出端的拓扑结构。
开关电源典型拓扑
开关电源典型拓扑
开关电源是一种常见的电源系统,其中典型的拓扑结构包括:1. 单端升压式(Boost)开关电源:该电路通过一个开关管切换电源电压,产生高于输入电压的输出电压。
一般将此电路用于需要减小内阻、提升整机效率的场合。
2. 单端降压式(Buck)开关电源:该电路同样通过一个开关管切换电源电压,但产生低于输入电压的输出电压。
此电路用于减小电压而提升电流,适用于很多操作。
3. 变换式(Flyback)开关电源:该电路通过开关闭合来储存能量,随后把储存的能量传送到输出绕组,通过电感、变压器实现电能转换的拓扑系统,一般适用于中等功率的场合。
4. 直流-直流(DC-DC)转换器:该电路通过开关闭合快速切换电源电压,将高电压转换为低电压,从而实现不同电压级别的环路控制的拓扑。
常见于移动设备、工业控制以及电子电源等领域。
开关电源的拓扑
开关电源的拓扑
开关电源的拓扑主要有以下几种:
1. 单端正激式(Buck)拓扑:投入电压大于输出电压时,将电源输入关断,输出电容释放能量给负载;
2. 升压式(Boost)拓扑:投入电压小于输出电压时,通过开关周期性充放电操作,将输出电压升高;
3. 反激式(Flyback)拓扑:通过磁共振,利用辅助绕组将输入电能转移到输出端,适用于输出电压变化较大的场景;
4. 无互感式(Push-Pull)拓扑:利用两个互补的开关管周期性地切换,通过变压器将输入电能传递到负载端;
5. 电桥式(Full-Bridge)拓扑:利用四个开关管,通过变压器传递电能,具有较高的输出功率能力。
不同的拓扑结构适用于不同的应用场景,可以根据需要选择最合适的拓扑。
电源基本拓扑结构
1、基本名词常见的基本拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥■SEPIC■C’uk基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:2、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
3、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
4、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
5、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
6、Forward正激特点■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
开关电源的基本拓扑结构
开关电源基本拓扑
10
电感电流临界连续(TM)
Io
1 2 iLf
max
iLf
max
Vin Vo Lf
DyTs
(1.14) (1.15)
若用IoG表示临界电流连续的负载电流, then
I oG
Io
1 2
I Lf
max
I oG
Vin Vout 2Lf fs
Dy
(1.16)
开关电源基本拓扑
11
Vin = constant (输入电压恒定)
Vout Lf
Ton
Vin
Vout Lf
Ts Dy
(1.10)
iLf
Vout Lf
Toff
Vout Lf
Ts D
where
D
T' off
Ts
(1 Dy )
Vout Dy Vin Dy D
Io
1 Ts
I Lf max 2
(Ton
T' off
)
1 2 I Lf max(Dy D)
(1.11) (1.12) (1.13)
开关电源基本拓扑
32
From (1.2 ) & (1.4)
Vout Vin
Dy
(1.6)
I0
I Lf
m in
I Lf 2
max
(1.7)
Q 1 iLf Ts 22 2
Vo
Q Cf
(1 Dy )Vo
8Lf C f
f
2 s
(1.8)
开关电源基本拓扑
8
Fig 1.3
开关电源基本拓扑
电流断续时的工作模式 (DCM)
各种开关电源拓扑结构总结
各种开关电源拓扑结构总结第一篇:各种开关电源拓扑结构总结各种结构拓扑结构的总结一.BUCK基本型降压电路,电路简洁,所需元件少,效率可以做到很高电路未实现隔离,大功率是对电路各种器件要求较高,稳定性不够高,灵活性不够。
二.BOOST基本升压电路,电路简洁,所需元件少,效率可以做到很高电路未实现隔离,大功率是对电路各种器件要求较高,如输出比较大的功率时开关管需要承受很大的脉冲电流,稳定性不够高,灵活性不够。
三.单端式a.单端正激,优点:该型是在BUCK型的基础上,加上一级隔离变压器,不仅做到了电路前后级之间的隔离,只要改变变压器的匝数,则可实现降压升压,外围元件较少。
缺点:开关关断时,变压器容易饱和,需要加磁复位绕组,对变压器绕制要求较高。
b.单端反击优点:电路结构相比于单端正激更加简单,变压器次级充当电感,元件更少。
缺点:当变压器存在漏感时会在原边形成很大的电流,对开关器件的损耗比较大,额外设计保护电路增加了设计负担,而且此种拓扑对变压器的设计上难度较大四.双端式a.半桥优点:可以减少原边开关元件的电压应力,半桥变换器是离线式开关电源的首选结构。
工作的两个半周期内充分利用了变压器原边绕组的PI和磁芯磁感应强度摆幅值,原边不需要能量回复绕组。
缺点:变压器磁芯容易出现阶梯形饱和问题,(可通过变压器中加入小气隙缓解,主要形成原因,正负脉冲时间不严格相等,整流二极管电压不严格相等。
稳态工作条件下,问题不大,但在瞬间负载变化的情况下,可能会导致严重问题如开关器件的损坏。
)b.推挽电路特点:对称结构,高频变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断优点:高频变压器磁利用率高,输出功率大,电源电压利用率高缺点:电流不平衡,容易出现变压器饱和的问题,对开关管的耐压值要求比较高。
五.四管隔离式全桥该结构使用的变压器绕组相对较少,对开关管耐压值要求相对于推挽较低。
但由于使用较多的开关管,损耗较大,驱动电路较复杂,该电路通常使用在1kw以上的超大功率电源上。
中大功率开关电源常用变换拓扑结构形式
中大功率开关电源常用变换拓扑结构形式一、前言中大功率开关电源是一种将交流电转换为直流电的电源设备,广泛应用于各个领域,如工业控制、通信设备、医疗仪器等。
常用的变换拓扑结构有:单端正激变换器、单端反激变换器、双端正激变换器、双端反激变换器和桥式变换器。
二、单端正激变换器单端正激变换器是中大功率开关电源中最常见的一种拓扑结构。
它由交流输入端、变压器、开关管、输出电感、输出滤波电容和负载组成。
当交流电输入时,开关管周期性地打开和关闭,通过变压器将输入电压转换为所需的输出电压。
这种结构简单、成本低廉,但效率较低。
三、单端反激变换器单端反激变换器是在单端正激变换器的基础上进行改进的一种结构。
它通过在变压器的次级侧串联一个电感,使得变压器在每个开关周期内都能正常工作。
这种结构能够实现零电流开关和零电压开关,提高了效率和稳定性。
四、双端正激变换器双端正激变换器是一种将输入电压转换为输出电压的常用拓扑结构。
它由两个开关管、两个变压器和输出电感组成。
当交流电输入时,两个开关管交替工作,通过变压器将输入电压转换为所需的输出电压。
这种结构能够实现双端开关,提高了效率和稳定性。
五、双端反激变换器双端反激变换器是在双端正激变换器的基础上进行改进的一种结构。
它通过在两个变压器的次级侧串联一个电感,使得变压器在每个开关周期内都能正常工作。
这种结构能够实现零电流开关和零电压开关,提高了效率和稳定性。
六、桥式变换器桥式变换器是一种将交流电转换为直流电的常用拓扑结构。
它由四个开关管和变压器组成。
当交流电输入时,四个开关管交替工作,通过变压器将输入电压转换为所需的输出电压。
这种结构能够实现全桥开关,提高了效率和稳定性。
七、总结中大功率开关电源常用的变换拓扑结构包括:单端正激变换器、单端反激变换器、双端正激变换器、双端反激变换器和桥式变换器。
每种拓扑结构都有其优点和特点,应根据具体需求选择适合的结构。
在设计中,还需要考虑电路的效率、稳定性和成本等因素,以确保电源的正常工作。
开关电源拓扑结构概述(降压,升压,反激、正激)
开关电源拓扑结构概述(降压,升压,反激、正激)开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R 继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间T on限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间T off把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
τ =L/RTs
电压增益比M分析
电路的工作模式是由 τ=L/RTs同D1代数关系式 0.5D1(1-D1)(1-D1)相对大 小决定的,两者的关系见 右上图。 由图形关系可以看出,当 τ>0.074时,无论D1如何 变化都工作在连续区域。 当τ<0.074时,D1在某一 区间内不连续状态,除此 为连续状态 CCM和DCM模式下的增益 比M同D1的关系见右下图
隔离式电路的类型
隔离——输入端与输出端电气不相通,通过脉冲变压器的磁偶 合方式传递能量,输入输出完全电气隔离 单端——通过一只开关器件单向驱动脉冲变压器; 隔离式电路主要分为正激式和反激式两种 正激式:就是只有在开关管导通的时候,能量才通过变压器或 电感向负载释放,当开关关闭的时候,就停止向负载释放能量。 目前属于这种模式的开关电源有:串联式开关电源,buck拓扑 结构开关电源,激式变压器开关电源、推挽式、半桥式、全桥 式都属于正激式模式。 反激式:就是在开关管导通的时候存储能量,只有在开关管关 断的时候释放才向负载释放能量。属于这种模式的开关电源有: 并联式开关电源、boost、极性反转型变换器、反激式变压器开 关电源。
DCM模式下的电压增益比
τ <0.5D1(1-D1)(1-D1)时,IL不连续,同样利用IL的 上升部分同下降部分相等可以得到电压增益M= (D1+D2)/D2 此时D1+D2<1,又有IL在Ts内的平均值是 Is,Is=Vs(D1+D2)D1Ts/2L=MIo. 从以上两式可以得到
M 1 D1 1 2 D 12 / 0 .5 2 2
CCM模式下的电压增益
τ>0.5D1(1-D1)(1-D1)时,IL连续,IL的上升部分为 ΔIL1=ViD1Ts/L,IL的下降部分为ΔIL2=-(Vo-Vi)D2Ts/L, D1是K闭合,D导通的时间Ton占总周期Ts的比例,D2是K 关断,D截止的时间Toff占总周期Ts的比例 由以上两式相等可以得到电压增益M=Vo/Vi=1/(1-D1),此时 D1+D2=1 由此处可知BOOST电路是一种升压电路,输入小于输出
上图是BUCK-BOOST拓扑的精简模型 输出电压的产生: 当K接通的时候,Ui开始对L加电,流过L的电流开始增 加,同时电流在L中也要产生磁场; 当K由接通转为关断的时候,L会产生反电动势,使电流 继续流动,并通过整流二极管D进行整流,再经C储能滤 波,然后向负载R提供电流输出。 控制开关K不断地反复接通和关断过程,在负载R上就可 以得到一个负极性的电压输出。 BUCK-BOOST输出的是一个反极性的电压
BUCK电路的效率问题
一般而言,BUCK电路的损耗可以分为导通状态下的直流损 耗和导通过程中的交流损耗。 其中直流损耗主要是指晶体管T和二极管D在直流导通情况 下,自身压降同流过电流 的压降 交流损耗则主要集中在开关管T上(不考虑二极管因为其通 断时间很短)。通常在开断过程中,T上的电流电压升降是 需要时间的,若电流电压同时上升下降并同时结束则交流损 耗最小,若电流变化结束电压才开始变化,则整个开断时间 最长损耗最大,效率也最低。 经过计算可得:E=1/(Po+Pdc+Pac)=Vo/(Vo+1+ K VsIoTn/Ts), K是个变值
CCM模式下的供能
在CCM模式下,情况则比 较复杂,若Io小于IL的最小 值,则K断开之后,L始终 是向C和R同时供电,即处 于CISM状态下 若Io大于IL的最小值,即与 IL有交点,则当IL下降到Io 以下,C开始放电,L和C 同时向R供能。 核心在于IL和Io大小关系
BUCK-BOOST拓扑
工作过程分析
工作过程: 1、当K导通时→IL线性 增加,D截止此时C向负 载供电 2、当K关断时→Ul和Ui 串联,以高于Uo的电压 向C充电同时向负载供 电,此时D导通,IL逐渐 减小 若IL减小到0,则D截 止,只有C向负载供电
CCM和DCM模式下的各点电压
由上可知BOOST电路也会出现电感电流断续的情况,即 也有CCM 和DCM两种模式,各点电压分别如左右所示 在DCM模式下若IL值逐渐减小到Io,则C和L同时向负载放 电, 若IL值继续减小直至0,则D关断,只有C向负载放电,直 到下次周期开始
电压增益比M(CCM)
电流连续时τ>L/RTs ,
il1
t1
0
Vi Vo Vi Vo Vi Vo dt t1 D1Ts (1式) L L L
t2
il 2
t1
Vo Vo Vo dt ( t 2 t 1) D 2 Ts ( 2 式 ) L L L
(通常定义D1为K导通D关断的时段0到T1占Ts的比例,D2为K关断D导通 的时段T1到T2占Ts的比例) 此时D1+D2=1。 1式2式相等,可以得到M=Vo/Vs=D1, 由此处可知BUCK电路是一种降压电路,输出小于输入
非隔离式拓扑举例
BUCK拓扑 BOOST拓扑 BUCK-BOOST拓扑
BUCK降压电路
上图是BUCK电路的经典模型。晶体管,二极管,电感, 电容和负载构成了主回路,下方的控制回路一般采用 PWM芯片控制占空比决定晶体管的通断。 BUCK电路的功能:把直流电压Ui转换成直流电压Uo,实 现降压的目的
开关电源电路拓 扑结构
目录
开关电源拓扑结构综述 开关电源分类 非隔离式拓扑举例 BUCK BOOST BUCK-BOOST
隔离式拓扑举例 正激式 反激式
开关电源拓扑结构综述
开关电源主要包括主回路和控制回路两大部分 主回路是指开关电源中功率电流流经的通路。主回路一般包含 了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、 输出整流器、等所有功率器件,以及供电输入端和负载端。 控制回路一般采用PWM控制方式,通过输出信号和基准的比较 来控制主回路中的开关器件
开关电源分类
开关电源主回路可以分为隔离式与非隔离式两大类型。 非隔离——输入端与输出端电气相通,没有隔离。 1、串联式结构是指在主回路中,相对于输入端而言,开 关器件与输出端负载成并联连接的关系。例如buck拓扑型 开关电源就是属于串联式的开关电源 2、并联式结构是指在主回路中,相对于输入端而言,开 关器件与输出端负载成并联连接的关系。例如boost拓扑 型开关电源就是属于並联式的开关电源 3、极性反转结构是指输出电压与输入电压的极性相反。 电路的基本结构特征是:在主回路中,相对于输入端而 言,电感器L与负载成并联。Buck-boost拓扑就是反极性 开关电源
电感电流连续的临界条件
同BUCK电路相似,也可以从 电压图形中分析出BOOST电路 临界(BCM)的条件,即当IL 的平均值就是输出电流Is, ΔIL 为IL在本周期内的最大变化值。 观察上图的波形可以发现,当 电流刚好处在临界状态时,0.5 ΔIL=Io,分析化简之后可以等 效为,τ=0.5D1(1-D1)(1-D1) τ=L/RTs τ>0.5D1(1-D1)(1-D1)时,Io 处在连续的状态。 Τ<0.5D1(1-D1)(1-D1) 时,Io 则会出现断流的情况。
电压增益比M(DCM)
Τ<L/RTs,同CCM模式相似,同样可以由1式2式相 等,得到M=Vo/Vs=D1/(D1+D2),此时D1+D2<1。 又有Io是IL在Ts内的平均值,即IL等腰三角形面积 在Ts时间内的平均值,并且等于Vo/R.固有 Io=[0.5(D1+D2)Ts(Vs-Vo)D1Ts/L]/Ts=Vo/R,两式联 合可以解得 , Vo 2
CCM,DCM
由工作过程分析可以得 知,IL可能会出现断流的 情况。 通常我们把电流连续的模 式称为CCM模式,电流断 续的模式称为DCM模式。 当然也有两者之间的临界 情况BCM模式 下面就将按照以上三种模 式对电路做具体的分析。 注意:Uo,Io作为输出电压 电流,均认为是稳定的直 流量。
BUCK拓扑的精简模型
上图是简化之后的BUCK电路主回路。下面分析输出电压的产生 1、K闭合后,D关断,电流流经L,L是储能滤波电感,它的作用是在 K接通Ton期间限制大电流通过,防止输入电压Ui直接加到负载R上, 对R进行电压冲击,同时把电感电流IL转化成磁能进行能量存储;与R 并联的C是储能滤波电容,如此R两端的电压在Ton期间是稳定的直流 电压 2、在K关断期间Toff,L将产生反电动势,流过电流IL由反电动势eL 的正极流出,通过负载R,再经过续流二极管D,最后回到反电动势 eL的负极。由于C的储能稳压,Toff阶段的输出电压Uo也是稳定的直 流电压 K闭合时,L两端有压降,意味着Uo<Ui, BUCK电路一定是降压电路
供能模式问题
下面谈一谈BOOST电路的供 能模式问题,当K闭合的时 候,是由C向负载供电的,而 当K打开时,情况就比较复杂 了,可以分为CISM完全电感 供能模式和IISM不完全电感供 能模式 当电路在DCM下,K打开一定 不是完全由电感供能,即IISM. 当IL小于Io时,L和C同时向R 供电,当IL断流为0时,更是 只由C向R供电
M Vs 1 1 8 D1 2
L RTs
临界情况下,M的计算用以上两种 模式下任一种都可以,这里就 不做分析了。 电流连续与否是由0.5 ΔIL和Io的 大小关系决定的,调节占空比D1 或负载,有可能使工作模式 CCM和DCM模式之间发生转换。 CCM模式下,电压增益M就是占 空比D1, DCM模式下,电压增益M和占空 比D1则呈现非线性关系。 总体上来看,随着D1的增大M值 会增加。