数字电路PPT课件

合集下载

数字电子技术基础全套ppt课件

数字电子技术基础全套ppt课件
输出方程
Y ( A Q ( 1 Q 2 ) ( A Q 1 Q 2 ) ) A Q 1 Q 2 A Q 1 Q 2
③计算、 列状态转
换表
Y 输A 入Q 1 Q 2 现A Q 态1 Q 2
A Q2 Q1

Q2*

Q1*
00 0
01
00 1
10
01 0
11
QQ102*1*AQ01 1 Q1
双向移位寄存器
2片74LS194A接成8位双向移位寄存器
用双向移位寄存器74LS194组成节日彩灯控制电路
1k
LED 发光 二极管
Q=0时 LED亮
+5V
RD Q0 DIR D0
Q1
Q2
Q3 S1
74LS194
S0
D1 D2 D3 DIL CLK +5V
RD Q0 DIR D0
Q1
Q2
Q3 S1
二.一般掌握的内容:
(1)同步、异步的概念,电路现态、次态、有效 状态、无效状态、有效循环、无效循环、自启动的 概念,寄存的概念;
(2)同步时序逻辑电路设计方法。
6.1 概述
一、组合电路与时序电路的区别
1. 组合电路: 电路的输出只与电路的输入有关, 与电路的前一时刻的状态无关。
2. 时序电路:
电路在某一给定时刻的输出
1 0 Q2
0 1
0 1
10 1
00
11 0
01
11 1
10
输出
Y
0 0 0 1 1 0 0 0
Q Q2*1*D D21A Q1 Q1 Q2
YA Q 1 Q 2A Q 1 Q 2
转换条件

《数字电路技术基础》课件

《数字电路技术基础》课件

1
复杂可编程逻辑器件是一种可编程逻辑器件,其 内部由多个逻辑门和触发器组成,可以编程实现 各种复杂的数字电路。
2
CPLD的规模比FPGA小,但其结构更加简单,易 于设计和实现。
3
CPLD广泛应用于低成本、低功耗的数字系统, 如消费电子、汽车电子等领域。
06 数字电路实验与实践
CHAPTER
数字电路实验箱介绍
译码器
将输入的二进制代码转换为另一种二进制代 码,常用于数据传输和存储。
多路选择器
根据选择信号选择一路输入信号输出,常用 于数据传输和存储。
比较器
比较两个二进制数的大小,输出比较结果, 常用于数据传输和存储。
04 时序逻辑电路
CHAPTER
时序逻辑电路概述
定义
时序逻辑电路是一种具有记忆功能的电路,其输出不仅取决于当 前的输入,还与之前的输入状态有关。
组成
时序逻辑电路由组合逻辑电路和存储元件(如触发器)组成。
工作原理
时序逻辑电路在时钟信号的驱动下,按照一定的时序进行状态转换 。
触发器
1 2
定义
触发器是一种双稳态的存储元件,能够在外部信 号的作用下,从一个稳态跳变到另一个稳态。
分类
根据结构和工作原理,触发器可以分为RS触发器 、D触发器、JK触发器和T触发器等。
通过实验掌握基本门电路的工作原理和特性。
02
实验内容
搭建基本门电路,如与门、或门、非门等,测量输入输出电压,分析逻
辑功能。
03
实验步骤
搭建基本门电路,连接电源和测量仪表,输入信号并观察输出结果,记
录数据并分析。
组合逻辑电路实验
实验目的
通过实验掌握组合逻辑电路的设计和实现方法 。

数字逻辑电路 PPT课件

数字逻辑电路 PPT课件
TTL电路具有较快的开关速度,较强的抗 干扰能力以及足够大的输出摆幅,所以是目前 在各个领域包括医学电子设备中使用最广泛的 逻辑电路系统。实际的集成门电路比这里的要 复杂些,在输出端还有放大器和跟随器,用来 保证逻辑电平符合要求,增加负载能力。
在一个实际的数字系统中,往往需要能实现多种
多样逻辑功能的门电路,只有一种与非门作为基本单 元使用起来显然是不方便的。在TTL门电路的系列产 品中,常用的还有或非门、与或非门、与门、或门等 等。虽然门电路的种类很多,但它们或者是由与非门 稍加改动得到的,或者是由与非门中的若干部分组合 成的,有的就是与非门的一部分。如,与非门只有一 个输入端时成了非门;在与非门后再连一个非门成了 与门;在与非门前面对于每个输入端各接一个非门成 了或门。可以说与非门可以完成一切逻辑运算。因此, 只要掌握与非门典型电路的工作原理和分析方法,就 不难对其它形式的门电路进行分析了。
2. 或门电路 上图为简单的具有两个输入端的二极管或门电路、常用
逻辑符号、逻辑表达式及真值表。 其中A、B分别为两个输入端,F为输出端。这种电路之
所以能实现或运算,是因为输出端的电平被最高电平的输入 端钳位,只要输入端有一个高电平时,输出就是高电平。也 就是说输入有一个为1时,输出即为1。输入端全为0时,输 出才为0。
阐述逻辑控制、脉冲计数和数字显示的基本原 理,介绍常用的计数器和A/D、D/A转换器。
主要内容
第一节 基本逻辑电路 第二节 双稳态触发器 第三节 脉冲的计数和显示 第四节 数模和模数转换
第一节 基本逻辑电路
所谓逻辑是指“条件”与“结果”的 关系。逻辑电路(logic circuit)是用电路的 输入信号反映“条件”,用电路的输出信 号反映“结果”。电路的输出与输入之间 构成一定的逻辑关系。

数电PPT课件专题培训

数电PPT课件专题培训

【解】(1)列真值表:
设楼上开关为A 、
AB
Y
楼下开关为B,断
00
0
开时为0,闭合时
01
1
为1;设路灯为Y,
10
1
灯灭时为0,灯亮
11
0
时为1。
组合逻辑电路旳设计
【例】试设计一种在楼上、楼下均能开关路灯旳 控制逻辑电路,要求全用与非门实现。 【解】(2)写体现式:
AB 00 01 10 11
Y
Y AB AB
4 组合逻辑电路
4.1 组合逻辑电路旳分析
教学要求
1、了解逻辑电路旳分类及基本特点; 2、了解组合电路分析旳目旳; 3、掌握组合电路分析旳基本环节。
逻辑电路旳分类
组合 电路
特点:输出只取决于目前旳输入 构成:门电路(无记忆元件)
逻辑电路
时序 电路
目前旳输入 特点:输出取决于
原来旳状态 构成:组合电路 + 记忆元件
000
000 000
G BC AC
ABC00 01 11 10
01 0 0 1
11 0 0 0
BC
AC
课堂练习
2、由真值表填卡诺图,并化为最简与或式:
输入
ABC 000 100 010 001 011 101
110 111
输出
R GY 111 110 011 1 01 000
000
000 000
1 +1 10
本位 加数
C :进位
S:本位和
注意:二进制加法不同于逻辑加!
全加器
两个一位二进制数相加,除了本位旳两个 加数,还要考虑低位送来旳进位。
高位 进位
101 + 1、1、1 1 1 00

数电复习PPTppt课件

数电复习PPTppt课件
解:
F AC BC AD BD AB AC • BC • AD • BD • AB
第 22 页
例:将下列各函数用或非门实现
F m(0,2,8,10,14,15)
解:用圈0的方法
F BC BD AB
F (B C)(B D)( A B)
BCBD AB
第 23 页
例:用卡诺图将下列含有无关项的逻辑函数化简为最简 “与或”式和最简“或与”表达式。
1×20+1×2-1+1×2-2+1×2-3=(109.875)10 例:将十进制数225.246转换为二、八和十六进制数 解:(1)(225.246)10=(11100001.011)2
(2)(225.246)10=(341.175)8 (3)(225.246)10=(E1.3E)16
第 17 页
CMOS 4
输入
输出
位 双 向 移 位 寄
清 零
CR
L H H H
控制信 号
S1 S0
×× LL LH LH
串行输 右入左 移移 DS DS
×R ×L ×× L× H×
时 钟
CP
× × ↑ ↑
并行输入
DI0
DI1
DI2
DI3
Q0n1
Q1n1Q
2n1Q
n1 3

× × × × L L L L1
×
×
×
ABC BC AC D
A BC AC D
A BC
例:用公式法证明下列等式 A⊕B⊕C=A⊙B⊙C
解: A B C ( A B)C ( A B)C
( AB)C ( AB)C ABC
第 19 页
例:用公式法化简

数字电子技术基础全套课件ppt

数字电子技术基础全套课件ppt
二进制 补码的 形式编 码
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
二、直接A/D转换器
并联比较型
0≤vi < VREF/15 时,7个比较 器输出全为0, CP 到来后,7 个触发器都置 0。经 编码器编码后 输出的二进制 代 码 为 d2d1d0 =000。
教学内容
§11.1 概述 §11.2 D/A转换器 §11.3 A/D转换器
教学要求
1、掌握DAC和ADC的定义及应用; 2、了解DAC的组成、倒T型电阻网络、集 成D/A转换器、转换精度及转换速度; 3、了解ADC组成、逐次逼近型A/D转换器、 积分型A/D转换器、转换精度及转换速度。
11.1 概述
取 1 8
取 2 15
最大量化误差为 △,即1/8V
最大量化误差为 1/2△,即1/15V
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
对双极性模拟电压的量化和编码
由于V-≈V+=0,所以开关S合到哪一边,都相当 于接到了“地”电位,流过每条电路的电流始终不 变。可等效为:
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
i2 Id34 Id28 Id11Id 60 取RF=R
CB7520电路原理图
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用

《数字电路技术》PPT课件

《数字电路技术》PPT课件

精选课件ppt
(1-2)
模拟信号: 正弦波信号 u
锯齿波信号
u
精选课件ppt
t t
(1-3)
研究模拟信号时,我们注重电路 输入、输出信号间的大小、相位关系。 相应的电子电路就是模拟电路,包括 交直流放大器、滤波器、信号发生器 等。
在模拟电路中,晶体管一般工作 在放大状态。
精选课件ppt
(1-4)
精选课件ppt
(1-11)
每四位2进 十六进制与二进制之间的转换: 制数对应
一位16进 制数
(0101 1001)B= [027+1 26+0 25+1 24
+1 23+0 22+0 21+1 20]D
= [(023+1 22+0 21+1 20) 161
+(1 23+0 22+0 21+1 20) 160]D =(59)H
(10011100101101001000)O=
(10 011 100 101 101 001 000)D =
( 2 3 4 5 5 1 0 )O
=(2345510)O
精选课件ppt
(1-14)
(4)十进制与二进制之间的转换:
(N)D Ki 2i i0
两边除二,余第0位K0
(N 2) Di 1Ki 2i1K 20
精选课件ppt
(1-19)
在BCD码中,用四位二进制数表示 0~9十个数码。四位二进制数最多可以 表示16个字符,因此0~9十个字符与这 16中组合之间可以有多种情况,不同的 对应便形成了一种编码。这里主要介绍:
8421码 5421码
2421码 余3码

数字电路卡诺图课件

数字电路卡诺图课件

沈阳航空工业学院电子信息工程学院
第9页/共28页
(二) 由卡诺图写出逻辑函数
例:卡诺图为:
BC A 00 01 11 10
00 0出原函数表达式为:(由1组成的项)
Y AB'C'AB'C ABC
反函数表达式为:(由0组成的项)
Y' A'B'C'A'B'C A'BC A'BC'ABC'
0

B'C(A'A) B'C
1
1
CD AB
00
01
11
10
00

01
11
10

CD AB
00
01
11
10
00
01
11 1

10
Y A'B'CD'AB'CD'
B'CD'(A'A) B'CD'
沈阳航空工业学院电子信息工程学院
第13页/共28页
Y ABC'D'ABCD' ABD'(C'C) ABD'
②先将函数变换为与或表达式(不必变换为 最小项之和的形式),然后在卡诺图上与每一个 乘积项所包含的那些最小项(该乘积项就是这些 最小项的公因子)相对应的方格内填入1,其余 的方格内填入0。
沈阳航空工业学院电子信息工程学院
第7页/共28页
③分项看: Y=A'BC'+C'D+BD
A'BC'项少D,则在A=0,B=1,
00 1 1

数字电路PPT课件

数字电路PPT课件

YAB
A
BY
0
01
0
10
1
00
1
10
真值表
A
≥1
Y
B
或非门的逻辑符号
28
L=A+B
3、异或运算:逻辑表达式为: YA BA BA B
A
BY
0
00
0
11
A
=1
Y
B
1
01
1
10
异或门的逻辑符号
真值表
L=A+B
4、 与或非运算:逻辑表达式为: YABCD
A
& ≥1
B
Y
C
D
与或非门的逻辑符号
A
&
B
≥1 Y
-2
=(135.0625)10
4、十六进制
各数位的权是8的幂
数码为:0~9、A~F;基数是16。 运算规律:逢十六进一,即:F+1=10。 十六进制数的权展开式: 如:(D8.A)2= 13×161 +8×160+10 ×16-1=(216.625)10
各数位的权是16的幂
11
结论
①一般地,N进制需要用到N个数码,基数是N;运算 规律为逢N进一。
12
几种进制数之间的对应关系
十进制数
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
二进制数
00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111
2、基 数:进位制的基数,就是在该进位制中可
能用到的数码个数。

数字电子技术基础ppt课件

数字电子技术基础ppt课件

R
vo K合------vo=0, 输出低电平
vi
K
只要能判
可用三极管 代替
断高低电 平即可
在数字电路中,一般用高电平代表1、低 电平代表0,即所谓的正逻辑系统。
2.2.2 二极管与门
VCC
A
D1
FY
B
D2
二极管与门
A
B
【 】 内容 回顾
AB Y 00 0 01 0 100 11 1
&
Y
2.2.2 二极管或门
一般TTL门的扇出系数为10。
三、输入端负载特性
输入端 “1”,“0”?
A
ui
RP
R1 b1
c1
T1
D1

R2

T2

R3
VCC

R4
T4 D2

Y
T5

简化电路
R1
VCC
ui
A ui
T1
be
RP
2
be 0
RP
5
RP较小时
ui
RP RP R1
(Vcc Von )
当RP<<R1时, ui ∝ RP

R4
T4 D2

Y
T5

TTL非门的内部结构

R1
R2
A
b1 c1
T1

T2
D1

R3
VCC

R4
T4 D2

Y
T5

前级输出为 高电平时

R2
R4
VCC
T4 D2

课件数字电路.ppt

课件数字电路.ppt

将开关接通记作1,断开记作0;灯亮记作1,灯 灭记作0。可以作出如下表格来描述与逻辑关系:
功能表
开关 A 开关 B 灯 Y
A
断开 断开

0
断开 闭合

0
1
闭合 断开

1
闭合 闭合 亮
BY
00 真 10 值
00 表
11
两个开关均接通时,灯才会 Y=A•B
亮。逻辑表达式为:
实现与逻辑的电路称为与门。
对偶定理:如果两个逻辑式相等,则它们的对偶 式也相等。
利用对偶规则,可以使要证明及要记忆的公 式数目减少一半。
逻辑函数及其表示方法
逻辑函数
如果以逻辑变量作为输入,以运算结果作为 输出,当输入变量的取值确定之后,输出的取值 便随之而定。输出与输入之间的函数关系称为逻 辑函数。Y=F(A,B,C,…)
反演定理 对于任何一个逻辑表达式Y,如果将表达式中
的所有“·”换成“+”,“+”换成“·”,“0” 换成“1”,“1”换成“0”,原变量换成反变量, 反变量换成原变量,那么所得到的表达式就是函 数Y的反函数Y′(或称补函数)。这个规则称为反 演定理。
对偶定理
对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0” 换成“1”,“1”换成“0”,而变量保持不变,则 可得到的一个新的函数表达式 YD, YD称为Y的对偶 式。
基本公式
0-1
律:
A A
0 A 1 A
A 1 1 A 0 0
互补律: A A 1 A A 0
分别令A=0及 A=1代入这些 公式,即可证 明它们的正确 性。
重叠律: A A A A A A

数字电路数字量输入输出课件

数字电路数字量输入输出课件
符号
形状
7段码 .gfedcba
符号
形状
7段码 .gfedcba
’0’
00111111
’8’
01111111
’1’
00000110
’9’
01100111
’2’
01011011
’A’
01110111
’3’
01001111
’B’
01111100
’4’
01100110
’C’
00111001
’5’
01101101
5.2.3 总线信号与接口的连接
数据信号的连接 地址信号的连接:译码信号 控制信号的连接
例1、简单的输入接口举例
常用芯片:74LS244 应用例子:开关接口
&
≥1
≥1
+5V
例2、 简单的输出接口举例
输出端口应具备锁存器功能. 常用芯片:74LS273 74LS374(具有三态输出的锁存器) 应用例子:发光二极管接口
a b c d e f g DP
7406
反相器
74LS273
Rx8
≥1
74LS138
D0~D7
IOW#
IOR#
Y0
Y1
F0H = 0000 0000 1111 0000 F1H = 0000 0000 1111 0001
&
≥1
A7~A4
A15~A8
A3
A2
A1
A0
D0
D1
D2
查询方式传送
适用于外设并不总是准备好,而且对传送速率、传送效率要求不高的场合。 CPU在与外设交换数据前必须询问外设状态—— “你准备好没有?” 对外设的要求:应提供设备状态信息 对接口的要求:需要提供状态端口 优点:软件比较简单 缺点:CPU效率低,数据传送的实时性差,速度较慢

数电-数字逻辑基础幻灯片PPT

数电-数字逻辑基础幻灯片PPT

2.复合逻辑运算 在逻辑代数中,由基本的与、或、非逻辑运算可以实现多种复合逻辑运算。
A
B & Y1 A•B
A
A
B
Y1
B
Y1
A B
≥1
Y2 AB
A B
+ Y2
A B
Y2
A 1 Y3 A
A
Y3
A
Y3
(a)国际符号
(b)曾用符号 (c)美国符号
A B
&
Y4 A • B
A B
A B
≥ 1 Y5 A B
A
&
A
F
F
B
B
(a)
(b)
OC门逻辑符号
(a) 国际符号;
(b) 惯用符号
OC门除了可以“线与”连接外,还可以用来驱动感性负载或实现电平转换。 例如,在图的电路中,EC=10V时,F的输出高电平就从3.6V变成了10V。
+ EC
& A
F B
& C D
OC门的线与电路
(3)三态门
三态门也称TS门(Three State Gate), 是在TTL逻辑电路的基础上增加一个 使能端EN而得到的。当EN=0时,TTL与非门不受影响,仍然实现与非门功 能;当EN=1时,TTL与非门的V4、V5将同时截止,使逻辑门输出处于高阻 状态。因此,三态门除了具有普通逻辑门的高电平(逻辑1)和低电平( 逻辑0)两种状态之外,还有第三种状态——高阻抗状态,也称开路状态 或Z状态。三态门的逻辑符号和真值表分别如图1-6和表1-5所示。国际 符号中的倒三角形“▽”表示逻辑门是三态输出,EN为“使能”限定符 ,输入端的小圆圈表示低电平有效(有的三态门也可能没有小圆圈,说明 EN是高电平有效)。

数字电路完整课件讲解

数字电路完整课件讲解

2.1.4 MOS 管的开关特性 1、 MOS管的工作原理
③ NMOS、PMOS管的符号:
NMOS加正电源,uGS>0,uDS>0 PMOS加正电源,uGS<0,uDS<0
2.1.4 MOS 管的开关特性
2、NMOS管的几个主要参数
①开启电压VT:形成导电沟道所需的最小电压uGS
VTN=+2V,VTP=-2V ②跨导gm:gm表明MOS管的输入电压控制电流的能力。
• 栅极电容的电荷不易泄漏掉,容易由于外界静电感 应积累电荷,在栅极产生较高的电压,造成栅极氧 化层击穿,损坏MOS管。
2.1.4 MOS 管的开关特性
• 在数字集成电路中,一般都 在输入端加上保护电路。如图 在GS间加保护二极管DZ,当静 电压超过一定限度后,二极管 击穿导通,使静电荷泄放保护 氧化层不被击穿。
例2:与门:Y=AB 先画出与非,再非。
三、 CMOS 传输门、三态门和漏极开路门
(一)CMOS传输(TG 门 — Transmission Gate)
门1. 电路组成:
C TP
uI / uO
+VDD
uO / uI
uI / uO
C
TG
uO / uI
TN
C
VSS
2. 工作原理:
导关通断电电阻阻小大 C (几( ≥百1欧09姆))
• 输入端电压高于VDD+uDF或低于-uDF 输入电容。 时,保护二极管就会导通,TN、TP栅极 电位限制在-uDF~VDD+uDF之间。
(二)CMOS反相器的静态特
性1、输入特性:iI f (uI )
• 正常工作电压情况下,由于 MOS管输入电阻很高,iI≈0;

《数电第一章》课件

《数电第一章》课件

设计工具:状态机、卡诺 图、逻辑门等。
06 数电第一章复习 题
选择题
选择题1
二进制数10101010转换为十进制 数是____。
答案
A. 106
选择题2
逻辑或运算的运算规则是____。
答案
B. 0 OR 0 = 0, 0 OR 1 = 1, 1 OR 0 = 1, 1 OR 1 = 1
选择题3
在数字电路中,通常使用____来表示 逻辑关系。
数字电路的基本概念
数字信号、数字电路等。
逻辑门电路
与门、或门、非门等。
逻辑代数
基本逻辑运算、逻辑函数等。
组合逻辑电路
加法器、比较器、多路选择器 等。
学习方法
理论学习
通过阅读教材和课件, 掌握数字电路的基本概
念和原理。
实验操作
通过实验,加深对数字 电路的理解,提高实际
操作能力。
习题练习
通过练习习题,巩固所 学知识,提高解题能力
02
或门
当至少一个输入端为高电平时,输出 端就为高电平;否则输出端为低电平 。
01
或非门
当至少一个输入端为高电平时,输出 端为低电平;否则输出端为高电平。
05
03
非门
输入端与输出端的电平状态相反,即 输入高电平时输出低电平,输入低电 平时输出高电平。
04
与非门
当所有输入端都为高电平时,输出端 为低电平;否则输出端为高电平。

小组讨论
通过小组讨论,互相交 流学习心得,提高学习
效果。
02 数字电路基础
数字电路概述
01
02
03
数字电路的定义
数字电路是处理离散信号 的电路,其输入和输出信 号通常为二进制形式(0 和1)。

数字电子技术-逻辑门电路PPT课件

数字电子技术-逻辑门电路PPT课件
在电路中的应用。
或非门(NOR Gate)
逻辑符号与真值表
描述或非门的逻辑符号,列出其对应的真值表, 解释不同输入下的输出结果。
逻辑表达式
给出或非门的逻辑表达式,解释其含义和运算规 则。
逻辑功能
阐述或非门实现逻辑或操作后再进行逻辑非的功 能,举例说明其在电路中的应用。
异或门(XOR Gate)
逻辑符号与真值表
01
02
03
Байду номын сангаас
04
1. 根据实验要求搭建逻辑门 电路实验板,并连接好电源和
地。
2. 使用示波器或逻辑分析仪 对输入信号进行测试,记录输
入信号的波形和参数。
3. 将输入信号接入逻辑门电 路的输入端,观察并记录输出
信号的波形和参数。
4. 改变输入信号的参数(如频 率、幅度等),重复步骤3, 观察并记录输出信号的变化情
THANKS
感谢观看
低功耗设计有助于提高电路效率和延长设 备使用寿命,而良好的噪声容限则可以提 高电路的抗干扰能力和稳定性。
扇入扇出系数
扇入系数
指门电路允许同时输入的最多 信号数。
扇出系数
指一个门电路的输出端最多可 以驱动的同类型门电路的输入 端数目。
影响因素
门电路的输入/输出电阻、驱动 能力等。
重要性
扇入扇出系数反映了门电路的驱动 能力和带负载能力,对于复杂数字 系统的设计和分析具有重要意义。
实际应用
举例说明非门在数字电路中的应用, 如反相器、振荡器等。
03
复合逻辑门电路
与非门(NAND Gate)
逻辑符号与真值表
描述与非门的逻辑符号,列出其 对应的真值表,解释不同输入下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
退出
6
基础知识
• 计数体制
– 用数码表示数量的多少称为计数
计数 计数
7
一、几个概念
1.2.1 数制
1、进位制:表示数时,仅用一位数码往往不够用,必
须用进位计数的方法组成多位数码。多位数码每一位的 构成以及从低位到高位的进位规则称为进位计数制,简 称进位制。
2、基 数:进位制的基数,就是在该进位制中可
能用到的数码个数。
3、 位 权(位的权数):在某一进位制的数中,
每一位的大小都对应着该位上的数码乘上一个固
定的数,这个固定的数就是这一位的权数。权数
是一个幂。
8
二、常用数制
1、十进制 数码为:0~9;基数是10。运算规律:逢十进一,即:9+1=10。 十进制数的权展开式:
5×103=5000 5×102= 500
2、二进制 数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2
-2 =(5.25)10
各数位的权是2的幂
二进制数只有0和1两个数码,它的每一位都可以用电子元 件来实现,且运算规则简单,相应的运算电路也容易实现。
二进制数转换为十六进制数,按照每4位二进制数对应于
一位十六进制数进行转换。(四位聚一位) 0 0 0 1 1 1 0 1 0 1 0 0 . 0 1 1 0 = (1E8.6)16
5×101= 50
5×100=


5555
同样的数码在不同的数 位上代表的数值不同。
=555 5
103、102、101、100称 为十进制的权。各数 位的权是10的幂。
任意一个十进制数都 可以表示为各个数位 上的数码与其对应的 权的乘积之和,称权 展开式。
即:(5555)10=5×103 +5×102+5×101+5×100 又如:(209.04)10= 2×102 +0×101+9×100+0×10-1+4 ×10-9 2
12
几种进制数之间的对应关系
十进制数
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
二进制数
00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111
为双极型(TTL型)和单极型(MOS型)两类。
3、按照电路的结构和工作原理的不同:数字电路
可分为组合逻辑电路和时序逻辑电路两类。组合逻辑
电路没有记忆功能,其输出信号只与当时的输入信号 有关,而与电路以前的状态无关。时序逻辑电路具有 记忆功能,其输出信号不仅和当时的输入信号有关, 而且与电路以前的状态有关。
八进制数
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制数
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
13
1.2.2 不同数制间的转换
将N进制数按权展开,即可以转换为十进制数。
1、二进制数与八进制数的相互转换
(1)二进制数转换为八进制数: 将二进制数由小数点开始, 整数部分向左,小数部分向右,每3位分成一组,不够3位补
第四章 基础知识
1
1.1.1 数字信号和数字电路
• 数字信号与数字电路
– 正逻辑
• 高电平为逻辑1,低电平为逻辑0
– 负逻辑
• 高电平为逻辑0,低电平为逻辑1
逻辑1
逻辑1
正逻 辑
逻辑0
逻辑0
逻辑0
2
1.1.2 数字电路的分类
1、按电路结构的不同:数字电路可分为分立 元件电路和集成电路两大类型。
2、按所用器件制作工艺的不同:数字电路可分
运算 加法规则:0+0=0,0+1=1,1+0=1,1+1=10 规则 乘法规则:0·0=0, 0·1=0 ,1·0=0,1·1=1
10
3、八进制
数码为:0~7;基数是8。
运算规律:逢八进一,即:7+1=10。
八进制数的权展开式:
如:(207.04)10= 2×82 +0×81+7×80+0×8-1+4 ×8
-2
=(135.0625)10
4、十六进制
各数位的权是8的幂
数码为:0~9、A~F;基数是16。 运算规律:逢十六进一,即:F+1=10。 十六进制数的权展开式: 如:(D8.A)2= 13×161 +8×160+10 ×16-1=(216.625)10
各数位的权是16的幂
11
结论
①一般地,N进制需要用到N个数码,基数是N;运算 规律为逢N进一。
4
1.1.3 数字电路的优点
与模拟电路相比,数字电路主要有以下优点: (1)便于高度集成化。 (2)工作可靠性高、抗干扰能力 (3)数字信息便于长期保存。 (4)数字集成电路产品系列多、通2 数制与编码
1.2.1 数制 1.2.2 不同数制间的转换 1.2.3 二进制代码
100~1 000门/片,或 100~100 000个元件/ 片
逻辑部件 包括:计数器、寄存器、译码 器、编码器、数据选择器、加法 器、比较器等
数字逻辑系统
包括:中央控制器、存储器、各 种接口电路等
超大规模集成电路 大于1 000门/片,或
VLSI
大于10万个元件/片
高集成度的数字逻辑系统 包括:各种型号的单片机等
零,则每组二进制数便是一位八进制数。(三位聚一位)
0 0 1 1 0 1 0 1 0 . 0 1 0 = (152.2)8
(2)八进制数转换为二进制数:将每位八进制数用3位二进
制数表示。(一位变三位)
(374.26)8 = 011 111 100 . 010 110
14
2、二进制数与十六进制数的相互转换
②如果一个N进制数M包含n位整数和m位小数,即 (an-1 an-2 … a1 a0 ·a-1 a-2 … a-m)2
则该数的权展开式为: (M)2 = an-1×Nn-1 + an-2 ×Nn-2 + … +a1×N1+ a0
×N0+a-1 ×N-1+a-2 ×N-2+… +a-m×N-m
③由权展开式很容易将一个N进制数转换为十进制数。
3
4、按集成度分: SSI→MSI→LSI→VLSI
表1.1.1 数字集成电路分类
集成电路分类
集成度
电路规模与范围
小规模集成电路 1~10门/片,或
SSI
10~100个元件/片
逻辑单元电路 包括:逻辑门电路、集成触发器等
中规模集成电路 MSI
大规模集成电路 LSI
10~100门/片,或 100~1 000个元件/片
相关文档
最新文档