八上期末模拟卷

合集下载

江苏省南通市海门区部分学校2023-2024学年八年级上学期期末模拟考试语文试卷(含答案)

江苏省南通市海门区部分学校2023-2024学年八年级上学期期末模拟考试语文试卷(含答案)

2023-2024学年八年级上学期期末模拟考试语文试卷一、基础知识综合二、综合性学习(2)图图同学撰写了一篇以“爱国,从小事做起”为主题的演讲稿。

你认为图图的演讲稿中,必须要明确的内容应该包括哪两项?(3)班级要进行爱国诗文诵读比赛,打算用下图图片作为ppt背景主图。

请你从这幅图的内容和寓意角度说说选此图是否合适?(4)在主题阅读交流环节中,同学们就名著中的“爱国情怀”相互援问质疑。

下面是图图就《傅雷家书》所提的一个问题及提问原因。

你也分享一下你阅读《钢铁是怎样炼成的》或《红星照耀中国》的质疑。

图图读的名著:《傅雷家书》,作者:傅雷他提出的问题:为什么傅雷在给儿子傅聪中,总是提醒他不忘家国,早日回到祖国?提问的原因:我发现,一方面傅雷以父亲、朋友的身份谆谆教导着儿子学会学习、学会说话,感受着满满的亲情;一方面却又在字里行间都透露着爱国神情,对儿子进行思想上的引导,有着隐隐的担忧。

你阅读的名著:①,作者:②你提出的问题:③提问的原因:④三、选择题3.下列句子没有使用夸张的修辞手法的一项是()A.我记得有这么一句话:“笑一笑,十年少。

”B.来个三十岁的人听相声,哈哈一乐,剩下二十了。

C.柏油路晒化了,甚至铺户门前的铜牌好像也要晒化。

D.秋天的枫叶,远远看上去好像一团火焰,近看又像一只只金黄的蝴蝶在树上翩翩起舞。

四、名句名篇默写五、诗歌鉴赏5.诗歌鉴赏。

谢亭送别许浑劳歌①一曲解行舟,红叶青山水急流。

日暮酒醒人已远,满天风雨下西楼。

【注】①劳歌:送别歌。

(1)诗歌第二句的写法有什么特点?请结合表达效果作简要分析。

(2)用自己的话概括诗歌最后两句所写景色的特点,并说说表达了诗人怎样的情感。

六、填空题6.解释加点词。

(1)念.无与为乐者( )(2)略无阙.处( )(3)一食或尽.粟一石( )(4)先帝不以臣卑鄙..( )七、现代文阅读①中国是一个有着五千年悠久历史的文明古国,在历史发展进程中,茶与中国传统文化表现出了密切的关系,儒释道是中国传统文化的主要的思想来源,中国茶学与儒释道的思想理念有着极深的渊源关系。

浙江省金华市2022-2023学年度上学期八年级期末考试模拟数学卷(含解析)

浙江省金华市2022-2023学年度上学期八年级期末考试模拟数学卷(含解析)

浙江省金华市2022年八年级数学(上)期末考试模拟卷一、选择题(共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3B.4,4,4C.6,6,8D.7,8,92.下列图形中,是轴对称图形的是()A.B.C.D.3.下列命题中,属于假命题的是()A.三角形三个内角的和等于180°B.全等三角形的对应角相等C.等腰三角形的两个底角相等D.相等的角是对顶角4.在数轴上表示不等式x-1<0的解集,正确的是()A.B.C.D.5.已知点A(2,7),AB//x轴,3AB ,则B点的坐标为()A.(5,7)B.(2,10)C.(2,10)或(2,4)D.(5,7)或(-1,7)6.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)7.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N MN长为半径画弧,两弧交点O,作射线AD,交BC于点E.己知CE=3,BE=5,则AC的长为为圆心,大于12()A.8B.7C.6D.58.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A .B .C .D .9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s (米)与爸爸出发时间t (分钟)之间的函数图象如图所示.则下列说法错误的是( )A .a =15B .小明的速度是150米/分钟C .爸爸从家到商店的速度为200米/分钟D .爸爸出发7分钟追上小明10.如图,已知长方形纸板的边长10DE =,11EF =,在纸板内部画Rt ABC △,并分别以三边为边长向外作正方形,当边HI 、LM 和点K 、J 都恰好在长方形纸板的边上时,则ABC 的面积为( )A .6B .112C .254D .二、填空题(共24分)11.若x 的2倍与y 的差小于3,用不等式可以表示为______.12.如图,点D 、E 分别在线段AB ,AC 上,AE =AD ,不添加新的线段和字母,要使△ABE 和△ACD 全等判定依据是AAS ,需添加的一个条件是 _____.13.己知点A (m +1,1)与点B (2,n +1)关于x 轴对称,则m +n 的值为 _____.14.△ABC 为等腰三角形,周长为7cm ,且各边长为整数,则该三角形最长边的长为______cm .15.如图,OP 平分△MON ,P A △ON 于点A ,点Q 是射线OM 上一个动点,若P A =3,则PQ 的最小值为_____.16.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边). (1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.三、解答题(共66分)17.(本题6分)解不等式组52331132x x x x -≤⎧⎪-+⎨<-⎪⎩,并将不等式组的解集表示在数轴上.18.(本题6分)如图,已知△ABC ,其中AB =AC .作AC 的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连结CE (尺规作图,不写作法,保留作图痕迹);在(1)所作的图中.若BC=7.AC=9.求△BCE的周长.19.(本题6分)如图,函数y=-2x和y=kx+3的图象相交于点A(m,2).(1)求m和k的值.(2)根据图象,直接写出不等式23-<+的解.x kx20.(本题8分)已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式;(2)在直角坐标系中,画出这个函数的图象;(3)求这个一次函数与坐标轴围成的三角形面积.21.(本题8分)已知,如图,延长ABC的各边,使得BF AC,,,得到DEF==,顺次连接D E F=,AE CD AB为等边三角形.≌;求证:(1)AEF CDE(2)ABC为等边三角形.22.(本题10分)某校为“防疫知识小竞赛”准备奖品,购进A,B两种文具共40件作为奖品,设购进A种文具x件,总费用为y元.已知A、B文具的费用与x的部分对应数据如下表.(1)将表格补充完整:a=;b=;(2)求y关于x的函数表达式;(3)当A种文具的费用不大于B种文具的费用时,求总费用y的最小值.23.(本题10分)以△ABC的AB,AC为边作△ABD和△ACE,且AD=AB,AE=AC,△DAB=△CAE=α.CD与BE 相交于O,连接AO,如图△所示.(1)求证:BE=CD;(2)判断△AOD与△AOE的大小,并说明理由.(3)在EB上取使F,使EF=OC,如图△,请直接写出△AFO与α的数量关系.24.(本题12分)在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,52)且平行于x轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使△BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使△ABD=90°,连结OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为直角边作等腰直角三角形ABP,当点P落在直线y=58x+52上时,求m的值.参考答案1.A【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【详解】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选:A.【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.2.A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.D【分析】根据三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义,逐项分析判断即可求解.【详解】解:A. 三角形三个内角的和等于180°,是真命题,故该选项不符合题意;B. 全等三角形的对应角相等,是真命题,故该选项不符合题意;C. 等腰三角形的两个底角相等,是真命题,故该选项不符合题意;D. 有公共的顶点,角的两边互为反向延长线是对顶角,是假命题,故该选项符合题意.故选:D.【点睛】本题考查了判断命题真假,掌握三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义是解题的关键.4.B【详解】x-1<0的解集为x<1,它在数轴上表示如图所示,故选B .5.D【详解】解:AB//x 轴,则B 点坐标对应y 值和A 点坐标对应y 值相等,所以y=7.因为AB=3,而点A 对应x=2,则B 对应x 值为(x+3)=5或(x -3)=-1.故选D考点:直角坐标系点评:本题难度较低,主要考查学生对直角坐标系上点的坐标知识点的掌握.分析与x 轴平行线上点的坐标的特点是解题关键.6.C【分析】根据一次函数解析式可得10,20k b =>=>,进而判断A ,B 选项,分别0,0x y ==即可求得与y 轴,x 轴的交点坐标,进而判断C ,D 选项,即可求解.【详解】解:由y =x +2,10,20k b =>=>,令0x =,得2y =,令0y =,得2x =-,A . y 随x 的增大而增大,故该选项不正确,不符合题意;B . 图像经过第一、二、三象限,故该选项不正确,不符合题意;C . 与y 轴交于(0,2),故该选项正确,符合题意;D . 与x 轴交于(-2,0)故该选项不正确,不符合题意.故选:C .【点睛】本题考查了一次函数的性质,一次函数与坐标轴的交点,掌握一次函数的性质是解题的关键.7.C【分析】直接利用基本作图方法得出AE 是△CAB 的平分线,进而结合全等三角形的判定与性质得出AC =AD ,再利用勾股定理得出AC 的长.【详解】解:过点E 作ED △AB 于点D ,由作图方法可得出AE 是△CAB 的平分线,△EC △AC ,ED △AB ,△EC =ED =3,在Rt △ACE 和Rt △ADE 中,AE AE EC ED =⎧⎨=⎩, △Rt △ACE △Rt △ADE (HL ),△AC =AD ,△在Rt △EDB 中,DE =3,BE =5,△BD =4,设AC =x ,则AB =4+x ,故在Rt △ACB 中,AC 2+BC 2=AB 2,即x 2+82=(x +4)2,解得:x =6,即AC 的长为:6.故选:C .【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD 的长是解题关键.8.D【分析】根据正比例函数y =kx 中,y 的值随着x 值的增大而减小,可得k <0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:△正比例函数y =kx 中,y 的值随着x 值的增大而减小,△k <0,△一次函数y =kx +k 与y 轴的交点在y 轴的负半轴,△一次函数y =kx +k 的图像经过第二、三、四象限,故选D .【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k <0.9.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程10x+5(x+60)=3300,解出可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程150(t+2)=200t ,求解可知D .【详解】解:A .a =10+5=15,故A 正确,不合题意;B .小明的速度为3300÷22=150米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,10x+5(x+60)=3300,解得x=200米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设t 分爸爸追上小明,150(t+2)=200t ,t=6,故爸爸出发7分钟追上小明不正确,故选择:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.10.A【分析】延长CA 与GF 交于点N ,延长CB 与EF 交于点P ,设AC =b ,BC =a ,则AB △ABC △△BJK △△JKF △△KAN ,再利用长方形DEFG 的面积=十个小图形的面积和进而求得ab =12,即可求解.【详解】解:延长CA 与GF 交于点N ,延长CB 与EF 交于点P ,设AC =b ,BC =a ,则AB△四边形ABJK 是正方形,四边形ACML 是正方形,四边形BCHI 是正方形,△AB =BJ ,△ABJ =90°,△△ABC +△PBJ =90°=△ABC +△BAC ,△△BAC =△JBP ,△△ACB =△BPJ =90°,△△ABC △△BJK (AAS ),同理△ABC △△BJK △△JKF △△KAN ,△AC =BP =JF =KN =NG =b ,BC =PJ =FK =AN =PE =a ,△DE =10,EF =11,△2b +a =10,2a +b =11,△a +b =7,△a 2+b 2=49-2ab ,△长方形DEFG 的面积=十个小图形的面积和,△10×11=3ab +12ab ×4+a 2+b 22, 整理得:5ab +2(a 2+b 2)=110,把a 2+b 2=49-2ab ,代入得:5ab +2(49-2ab )=110,△ab =12,△△ABC 的面积为12ab =6, 故选:A .【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,关键是构造全等三角形和直角三角形. 11.23x y -<【分析】根据x 的2倍与y 的差是2x y -,小于表示为:<,列出不等式即可求解.【详解】解:x 的2倍与y 的差小于3,用不等式可以表示为23x y -<.故答案为:23x y -<.【点睛】本题考查了由实际问题抽象一元一次不等式的知识,关键是将文字描述转化为数学语言.12.B C ∠=∠【分析】根据题目条件和图形可知,AE =AD ,公共角A A ∠=∠,不添加新的线段和字母,要使△ABE 和△ACD 全等判定依据是AAS ,添加的条件是B C ∠=∠即可得到结论.【详解】解:添加的条件是B C ∠=∠.理由如下:在△ABE 和△ACD 中,B C A A AE AD ∠∠⎧⎪∠∠⎨⎪⎩===,△△ABE △△ACD (AAS ),故答案为:B C ∠=∠.【点睛】本题考查全等三角形判定的应用,熟练掌握三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL 是解决问题的关键.13.﹣1【分析】利用关于x 轴对称点的性质得出m ,n 的值,进而求出即可.关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.【详解】解:△点A (m +1,1)与点B (2,n +1)关于x 轴对称,△m +1=2,n +1=﹣1,解得:m =1,n =﹣2,△m +n =1﹣2=﹣1.故答案为:﹣1.【点睛】此题主要考查了关于x 轴对称点的性质,利用横纵坐标关系得出m 和n 的值是解题关键.14.3【分析】设腰长为x ,则底边为10-2x ,根据三角形三边关系定理可得10-2x -x <x <10-2x +x ,解不等式组即可.【详解】解:设腰长为x ,则底边为7-2x .△7-2x -x <x <7-2x +x ,△1.75<x <3.5,△三边长均为整数,△x 可取的值为2或3,故各边的长为2,2,3或3,3,1.△该三角形最长边的长为3cm .故答案为:3.【点睛】本题主要考查等腰三角形的性质及三角形三边关系的综合运用,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.15.3【分析】由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小.【详解】解:由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小,根据角平分线的性质可知,此时P A =PQ =3.故答案为:3.【点睛】本题考查了角平分线的性质,垂线段最短,解题的关键是掌握垂线段距离最短.16. (95-44,); 6. 【分析】(1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】(1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,); (2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值. 即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.17.31x -<≤,见解析【分析】分别求出每一个不等式的解集,并在数轴上表示,即可确定不等式组的解集. 【详解】解:52331132x x x x -≤⎧⎪-+⎨<-⎪⎩①② 解不等式①,得:1x ≤,解不等式②,得:3x >-,则不等式组的解集为31-<≤x ,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”或根据数轴表示解集是解答此题的关键18.(1)作图见解析;(2)16.【分析】(1)利用线段垂直平分线的作法作图即可;(2)首先根据等腰三角形的性质,得到AB =AC =9,再根据垂直平分线的性质可得AE =CE ,进而可算出周长.【详解】解:(1)如图所示:直线DE 即为所求;(2)△AB =AC =9,△DE 垂直平分AB ,△AE =EC ,△△BCE 的周长=BC +BE +CE =BC +BE +AE =BC +AB =16.【点睛】本题主要考查了基本作图,以及线段垂直平分线的作法,等腰三角形的性质,关键是掌握线段垂直平分线的作法.19.(1)1,1m k =-=(2)1x >-【分析】(1)将点A (m ,2)代入2y x =-求得m 的值,进而求得()1,2A -,代入y =kx +3即可求解;(2)根据图象,求得直线y =kx +3在y =-2x 上方时x 的取值范围,即可求解.(1)将点A (m ,2)代入2y x =-,即22m =-,解得1m =-,∴()1,2A -,将点()1,2A -代入y =kx +3,得()213k =⨯-+,解得1k =,(2)△()1,2A -,根据图象可知, 23x kx -<+的解集为1x >-.【点睛】本题考查了一次函数的性质,待定系数法求解析式,根据两直线交点坐标求不等式的解集,数形结合是解题的关键.20.(1);(2)函数图像见详解;(3)8【分析】(1)由图象经过两点A (-4,0)、B (2,6)根据待定系数法即得结果;(2)根据两点法即可确定函数的图象;(3)求出图象与x 轴及y 轴的交点坐标,然后根据直角三角形的面积公式求解即可.【详解】(1)△一次函数y=kx+b 的图象经过两点A (-4,0)、B (2,6),解得,△函数解析式为:;(2)函数图像如图:(3)△一次函数与y轴的交点为C(0,4),△△AOC的面积=4×4÷2=8.【点睛】本题考查的是待定系数法求一次函数解析式,一次函数的图象,解答本题的关键是熟练掌握待定系数法求一次函数解析式,同时正确得到坐标与线段长度的转化.21.(1)见解析;(2)见解析.【分析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF△△CDE.(2)有(1)中的全等关系,可得出△AFE=△CED,再结合△DEF是等边三角形,可知△DEF=60°,从而得出△BAC=60°,同理可得△ACB=60°,那么△ABC=60°.因而△ABC是等边三角形.【详解】证明:(1)△BF=AC,AB=AE(已知)△FA=EC(等量加等量和相等).△△DEF是等边三角形(已知),△EF=DE(等边三角形的性质).又△AE=CD(已知),△△AEF△△CDE(SSS).(2)由△AEF△△CDE,得△FEA=△EDC(对应角相等),△△BCA=△EDC+△DEC=△FEA+△DEC=△DEF(等量代换),△DEF是等边三角形(已知),△△DEF=60°(等边三角形的性质),△△BCA=60°(等量代换),由△AEF△△CDE,得△EFA=△DEC,△△DEC+△FEC=60°,△△EFA+△FEC=60°,又△BAC是△AEF的外角,△△BAC=△EFA+△FEC=60°,△△ABC 中,AB=BC (等角对等边).△△ABC 是等边三角形(等边三角形的判定).22.(1)600;180;(2)5800y x =-+;(3)690.【分析】(1)A 文具的单价:120÷8=15元,B 文具的单价:640÷(40-32)=20元,计算b =12×15,a =(40-10)×20填入表格中即可,注意a ,b 的位置;(2)根据总费用=购进A 文具总费用+购进B 文具总费用列解析式并化简即可;(3)利用A 种文具的费用不大于B 种文具的费用列为不等式,后利用一次函数的增减性求最值即可.(1)解:△买卖8件A 文具时,A 种文具费用120元,B 种文具费用640元,△ A 文具的单价为:120÷8=15(元),B 文具的单价:640÷(40-8)=20(元) ,△20(4010)600a =⨯-=,1512180a =⨯=.填入表格如下:故答案为:600;180.(2)由 (1)得,A 种文具15元/件,B 种文具20元/件,设购进A 种文具x 件,则B 种文具数量为()40x -件,△()1520405800y x x x =+-=-+;(3)△A 种文具的费用不大于B 种文具的费用△()152040x x ≤-,△6227x ≤,△x 为正整数,△22x ≤.△5800y x =-+,50k =-<,△y 随着x 的增大而减小,△当22x =时,522800690min y =-⨯+=,答:总费用最少为690元.【点睛】本题考查了一次函数的应用,求一次函数的解析式,一次函数的增减性,不等式的构造与求解,熟练运用生活经验,把生活问题准确转化为函数模型求解是解题的关键.23.(1)见详解(2)△AOD =△AOE ,理由见详解(3)2△AFO =180°−α【分析】(1)证明△DAC △△BAE (SAS )即可;(2)过点A 作AM △CD 于点M ,作AN △BE 于点N ,证明△ADM △△ABN (AAS ),即有AM =AN ,即可证明AO 平分△AOE ,问题得解;(3)证明△AEF △△ACO (SAS ),即有△AFE =△AOC ,AF =AO ,结合(2)的结论有:△AFO =△AOF =△AOD ,即可的得解.(1)△△DAB =△CAE ,△△DAB +△BAC =△CAE +△BAC ,△△DAC =△BAE ,△AD =AB ,AC =AE ,△△DAC △△BAE (SAS ),△BE =CD ,得证;(2)△AOD =△AOE ,理由如下,过点A 作AM △CD 于点M ,作AN △BE 于点N ,如图,△AM△CD,AN△BE,△△AMD=△ANB=90°,△△DAC△△BAE,△△ABE=△ADC,又△AD=AB,△△ADM△△ABN(AAS),△AM=AN,△AM△OD,AN△OE,△AO平分△AOE,△△AOD=△AOE,得证;(3)△△DAC△△BAE,△△AEF=△ACO,AE=AC,又△EF=CO,△△AEF△△ACO(SAS),△△AFE=△AOC,AF=AO,△结合(2)的结论有:△AFO=△AOF=△AOD.△△ADC=△ABE,△DAB=α,△△DAB=△DOB=α,△2△AFO=2△AOF=△AOF+△AOD=180°-△DOB,△2△AFO=180°−α.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,掌握全等三角形的判定定理是本题的关键.24.(1)直线BC的解析式为11132y x=-+;(2)23S m=-( 1.5m≥);32S m=-(0 1.5m<<);213S m=-( 6.5m≥);132S m=-(0 6.5m<<);(3)m的值为132或11916.【分析】(1)作CN△x轴于N,BM△x轴于M,易证Rt△NCA≅Rt△MAB,可求得点C的坐标为(32,5),再利用待定系数法即可求解;(2)过B作直线EF△x轴于F,过D作DE△EF交直线EF于E,易证Rt△F AB≅Rt△EBD,可求得点D的坐标为(52m-,32m-),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分△△ABP=90°、△△BAP=90°两种情况讨论,即可求解.【详解】(1)作CN△x轴于N,BM△x轴于M,如图:△△BAC=90°,△△NAC+△NCA=△NAC+△MAB=90°,△△NCA=△MAB,△CA= AB,△Rt△NCA≅Rt△MAB,△NC= MA,NA= MB,△点B的横坐标为9m=,△点B的坐标为(9,52),△NC= MA= MO-OA=9-4=5,NA= MB=52,ON= OA-NA=32,△点C的坐标为(32,5),设直线BC的解析式为y kx b=+,则592352k bk b⎧+=⎪⎪⎨⎪+=⎪⎩,解得:13112kb⎧=-⎪⎪⎨⎪=⎪⎩,△直线BC的解析式为11132y x=-+;(2)过B作直线EF△x轴于F,过D1作D1E△EF交直线EF于E,过D2作D2E△EF交直线EF于M,如图:同理可证Rt △F AB △Rt △EBD 1△Rt △MBD 2,△AF = BE =MB ,FB = D 1E = D 2M ,△点B 的横坐标为m ,△AF = BE =MB =4m -,FB = D 1E = D 2M =52, △点D 1的坐标为(52m -,542m -+),即D 1(52m -,32m -),点D 2的坐标为(52m +,542m -+),即D 2(52m +,132m -), △1OAD 12D SOA y =⋅, 1342322S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭( 1.5m ≥);1343222S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭(0 1.5m <<); 2OAD 12D S OA y =⋅, 113421322S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭( 6.5m ≥);113413222S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭(0 6.5m <<); (3)△当△ABP =90°时,由(2)可知D 与P 重合,△点P 的坐标为(52m -,32m -), 由题意得,点P 在直线5582y x =+上, △35552822m m ⎛⎫-=-+ ⎪⎝⎭, 解得:132m =; △当△BAP =90°时,如图:同理可证明Rt△HAP≅Rt△GP A,△点B的坐标为(m,52),△PH=AG=4m-,AH=BG=52,△点P的坐标为(542-,4m-),即(32,4m-),点P在直线5582y x=+上,△5354822m-=⨯+,解得:11916m=;综上,m的值为132或11916.【点睛】本题考查了全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.。

河北省石家庄市第四十中学2024届数学八上期末教学质量检测模拟试题含解析

河北省石家庄市第四十中学2024届数学八上期末教学质量检测模拟试题含解析

河北省石家庄市第四十中学2024届数学八上期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.若分式11=3x y-,则2x-14xy-2y x-2xy-y 的值为( ) A .1 B .2 C .3 D .42.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD3.若225x kx -+是完全平方式,则k 的值为( )A .10-B .10C .5D .10或10-4.在平面直角坐标系中,一只电子狗从原点O 出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A 2018的坐标为( )A .(337,1)B .(337,﹣1)C .(673,1)D .(673,﹣1)5.因式分解x ﹣4x 3的最后结果是( )A .x (1﹣2x )2B .x (2x ﹣1)(2x+1)C .x (1﹣2x )(2x+1)D .x (1﹣4x 2)6.在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关于y 轴对称,则m n +的值是( ) A .-1 B .1 C .5 D .-57.(3分)25的算术平方根是( )A .5B .﹣5C .±5D .8.正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数的y x k =-图象大致是( )A .B .C .D .9.-8的立方根是( )A .±2B .-2C .±4D .-410.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A .75°B .55°C .40°D .35°二、填空题(每小题3分,共24分)11.平行四边形ABCD 中,4AB =,对角线3AC =,另一条对角线BD 的取值范围是_____.12.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.13.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.14.当x =______时,分式127x x +-无意义. 15.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.16.如果一个正数的两个平方根分别为3m+4和2﹣m,则这个数是__.17.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.18.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,若点M在BC上,且BM=2,点N是AC上一动点,则BN+MN的最小值为___________.三、解答题(共66分)19.(10分)(1)计算:3202020200 1118(3) 233π--⎛⎫⎛⎫⎛⎫-⨯-⨯+÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)先化简22321124-+⎛⎫-÷⎪+-⎝⎭a aa a,然后从22a-≤≤的范围内选取一个合适的整数作为a的值带入求值.20.(6分)根据要求画图:(1)如图(1),是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.(2)如图(2),在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.作△ABC关于点O的中心对称图形△A1B1C1.21.(6分)(问题解决)一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=1.你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(类比探究)如图2,若点P 是正方形ABCD 外一点,PA=1,PB=1,PC=11,求∠APB 的度数.22.(8分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.23.(8分)(1)解不等式5234x x -<+,并把解表示在数轴上.(2)解不等式组()36324x x -≤-⎧⎨-<⎩. 24.(8分)阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x 的分式方程=1的解为正数,求a 的取值范围.经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x 的分式方程,得x=a+1.由题意可得a+1>0,所以a >﹣1,问题解决.小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.(1)请回答: 的说法是正确的,并简述正确的理由是 ;(2)参考对上述问题的讨论,解决下面的问题:若关于x 的方程的解为非负数,求m 的取值范围. 25.(10分)如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在边BC ,AC ,AB 上,且BD =CE ,DC =BF ,连结DE ,EF ,DF ,∠1=60°(1)求证:△BDF ≌△CED .(2)判断△ABC 的形状,并说明理由.26.(10分)解答下列各题(138182(332)-(2)解方程组244523m n m n -=-⎧⎨-=-⎩参考答案一、选择题(每小题3分,共30分)1、D【分析】首先将已知分式通分,得出3x y xy -=-,代入所求分式,即可得解. 【题目详解】∵11=3x y- ∴3x y xy-=- ∴3x y xy -=- ∴2x-14xy-2y x-2xy-y =()()2146142042325x y xy xy xy xy x y xy xy xy xy -----===----- 故选:D.【题目点拨】此题主要考查分式的求值,利用已知分式的值转换形式,即可解题.2、D【解题分析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意;C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意.故选D .3、D【分析】将225x kx -+写成225x kx -+,再利用完全平方式的特征对四个选项逐一进行判断即可得到k 的值.【题目详解】225x kx -+=225x kx -+∵225x kx -+是一个完全平方式,∴2510k -=±⨯=±∴10k =±故选:D【题目点拨】本题考查的知识点是完全平方公式的概念,理解并掌握一次项系数具有的两种情况是解题的关键.4、C【分析】先写出前9个点的坐标,可得点的坐标变化特征:每三个点为一组,循环,进而即可得到答案.【题目详解】观察点的坐标变化特征可知:A 1(0,1),A 2(1,1)A 3(1,0)A 4(1,﹣1)A 5(2,﹣1)A 6(2,0)A 7(2,1)A 8(3,1)A 9(3,0)…发现规律:每三个点为一组,循环,∵2018÷3=672…2,∴第2018个点是第673组的第二个点,∴A 2018的坐标为(673,1).故选:C .【题目点拨】本题主要考查点的坐标,找出点的坐标的变化规律,是解题的关键.5、C【分析】原式提取公因式,再利用平方差公式分解即可.【题目详解】原式=x (1﹣4x 2)=x (1+2x )(1﹣2x ).故选C .【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.6、D【分析】利用“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”求出m 、n 的值,然后代入代数式进行计算即可得解.【题目详解】解:∵A (2,m )和B (n ,-3)关于y 轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D .【题目点拨】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7、A 【解题分析】试题分析:∵,∴21的算术平方根是1.故选A .考点:算术平方根.8、A【分析】根据(0)y kx k =≠的函数值y 随x 的增大而减小,得到k <0,由此判定y x k =-所经过的象限为一、二、三象限.【题目详解】∵(0)y kx k =≠的函数值y 随x 的增大而减小,∴k <0,∴y x k =-经过一、二、三象限,A 选项符合.故选:A.【题目点拨】此题考查一次函数的性质,y=kx+b 中,k >0时图象过一三象限,k <0时图象过二四象限;b >0时图象交y 轴于正半轴,b <0时图象交y 轴于负半轴,掌握特点即可正确解答.9、B【分析】根据立方根的定义进行解答即可.【题目详解】∵()328-=-,∴-8的立方根是-1.故选B .【题目点拨】本题考查了立方根,熟练掌握概念是解题的关键.10、C【解题分析】试题分析:如图,根据平行线的性质可得∠1=∠4=75°,然后根据三角形的外角等于不相邻两内角的和,可知∠4=∠2+∠3,因此可求得∠3=75°-35°=40°.故选C考点:平行线的性质,三角形的外角性质二、填空题(每小题3分,共24分)11、511BD <<【分析】根据四边形和三角形的三边关系性质计算,即可得到答案.【题目详解】如图,平行四边形ABCD 对角线AC 和BD 交于点O∵平行四边形ABCD ,3AC = ∴1322AO AC == ABO 中AO BO AB AO BO AB +>⎧⎨-<⎩ 或AO BO AB BO AO AB +>⎧⎨-<⎩∴342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩ 或342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩∵342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩不成立,故舍去 ∴342342BO BO ⎧+>⎪⎪⎨⎪-<⎪⎩∴51122BO << ∵2BD BO =∴511BD <<.【题目点拨】本题考查了平行四边形、三角形的性质;解题的关键是熟练掌握平行四边形对角线、三角形三边关系的性质,从而完成求解.12、27【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【题目详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【题目点拨】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.13、0.1【分析】利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【题目详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13, ∴第1组到第4组的频率是:(5+7+11+13)64÷=0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1- 0.5625-0.1253⨯= 0.1故答案为: 0.1.【题目点拨】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.14、72【解题分析】由题意得:2x-7=0,解得:x=72, 故答案为72. 【题目点拨】本题考查的是分式无意义,解题的关键是明确分式无意义的条件是分母等于0. 15、42【题目详解】解:连接AO,可知AO 平分∠BAC ,由角平分线的性质可知点O 到AB 、AC 、BC 的距离相等,把求△ABC 的面积转化为求△AOB 、△AOC 、△BOC 的面积之和, 即1()422AB AC BC OD ++⋅=考点:角平分线的性质.16、1.【分析】根据正数的两个平方根互为相反数列方程求出m ,再求出3m+4,然后平方计算即可得解.【题目详解】解:根据题意知3m +4+2﹣m =0,解得:m =﹣3,所以这个数为(3m +4)2=(﹣5)2=1,故答案为1.【题目点拨】本题主要考查了平方根的定义.解题的关键是明确一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17、6【解题分析】根据三角形的中位线性质可得,26BC DE cm ==18、10【分析】过点B 作BO ⊥AC 于O ,延长BO 到B',使OB'=OB ,连接MB',交AC 于N ,此时MB'=MN+NB'=MN+BN 的值最小【题目详解】解:连接CB',∵BO ⊥AC ,AB=BC ,∠ABC=90°,∴∠CBO=12×90°=45°, ∵BO=OB',BO ⊥AC ,∴CB'=CB ,∴∠CB'B=∠OBC=45°,∴∠B'CB=90°,∴CB'⊥BC ,根据勾股定理可得MB′=1O ,MB'的长度就是BN+MN 的最小值.故答案为:10【题目点拨】本题考查轴对称-最短路线问题;勾股定理.确定动点E 何位置时,使BN+MN 的值最小是关键.三、解答题(共66分)19、(1)0;(2)21a a --, 32. 【分析】(1)根据负整指数幂、零指数幂以及同底数幂的乘法法则计算即可(2)根据分式的混合运算法则先化简,再代入a 的值即可【题目详解】(1)原式8181=-⨯+÷0=(2)原式21(2)(2)22(1)1a a a a a a a -+--=⨯=+--, ∵22a -≤≤的范围内的整数有:-2,-1,0,1,2.而2a ≠±,1a ≠,∴1a =-,0a =.(任取其一)当1a =-时,原式233122a a --===--;. 【题目点拨】本题考查了负整指数幂、零指数幂以及同底数幂的乘法、分式的化简求值等知识,熟练掌握相关的法则是解题的关键20、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的性质补画图形即可;(2)直接利用中心对称图形的性质得出对应位置,即可画出图形.【题目详解】(1)(四个答案中答对其中三个即可)(2)如图2,△A 1B 1C 1,即为所求.【题目点拨】本题考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解答的关键.21、(1)见解析;(2)见解析.【解题分析】分析:(1)先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=1,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;(2)同(1)的思路一的方法即可得出结论.详解:(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=1,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,22,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=12=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=115°;(2)如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=1,11, 在Rt △PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,22,∵AP=1,∴AP 2+PP'2=9+2=11,∵AP'2=11)2=11,∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°, ∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°. 点睛:此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.22、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a )m+30000;(3)①当10≤a <20时, W 随m 的增大而增大,②当a=20时,W 随m 的增大没变化;③当20≤a≤30时, W 随m 的增大而减小.【解题分析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【题目详解】解:(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,由题意,得()()450140%160%30x y y x +=⎧⎨---=⎩, 解得240210x y =⎧⎨=⎩, 甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m 吨原料到工厂,则从乙仓库云原料(300﹣m )吨到工厂,总运费W=(120﹣a )m+100(300﹣m )=(20﹣a )m+30000;(3)①当10≤a <20时,20﹣a >0,由一次函数的性质,得W 随m 的增大而增大,②当a=20是,20﹣a=0,W 随m 的增大没变化;③当20≤a≤30时,则20﹣a <0,W 随m 的增大而减小.【题目点拨】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.23、(1)3x <,图见解析;(2)1023x ≤<. 【分析】(1)先解出不等式的解集,再表示在数轴上即可;(2)分别解出各不等式的解集,再找到其公共解集.【题目详解】(1)5234x x -<+26x <3x <解集表示在数轴上如下:(2)解()36324x x -≤-⎧⎪⎨-<⎪⎩①② 解不等式①得x ≥2;解不等式②得103x <; ∴不等式组的解集为:1023x ≤<. 【题目点拨】 此题主要考查不等式和不等式组的求解,解题的关键是熟知不等式的求解方法.24、(1)小哲;分式的分母不为0;(2)m≥﹣6且m≠﹣2.【解题分析】(1)根据分式方程解为正数,且分母不为0判断即可;(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m 的范围即可.【题目详解】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x﹣6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠2,解得:m≥﹣6且m≠﹣2.【题目点拨】本题考查的知识点是解一元一次不等式及解分式方程,解题的关键是熟练的掌握解一元一次不等式及解分式方程. 25、(1)见解析;(2)△ABC是等边三角形,理由见解析【分析】(1)用SAS定理证明三角形全等;(2)由△BDF≌△CED得到∠BFD=∠CDE,然后利用三角形外角的性质求得∠B=∠1=60°,从而判定△ABC的形状.【题目详解】解:(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中BD CEB C BF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CED(SAS);(2)△ABC是等边三角形,理由如下:由(1)得:△BDF≌△CED,∴∠BFD=∠CDE,∵∠CDF=∠B+∠BFD=∠1+∠CDE,∴∠B=∠1=60°,∵AB=AC,∴△ABC是等边三角形;【题目点拨】本题考查全等三角形的判定和性质,等边三角形的判定,掌握判定定理正确推理论证是本题的解题关键.26、(1)6;(2)125 mn⎧=⎪⎨⎪=⎩【分析】(1)原式利用立方根和二次根式的运算法则计算即可求出值;(2)方程组利用加减消元法求出解即可.【题目详解】解:(1)原式=﹣﹣+8=6;(2)244523m nm n-=-⎧⎨-=-⎩①②,①×5﹣②得:6m=3,解得:m=12,把m=12代入①得:n=5,则方程组的解为125mn⎧=⎪⎨⎪=⎩.【题目点拨】此题考查了解二元一次方程组以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.。

2023-2024八年级物理期末模拟卷01(考试版A4)(人教版)

2023-2024八年级物理期末模拟卷01(考试版A4)(人教版)

2023-2024学年八年级物理上学期期末模拟考试卷01(人教版)(考试版A4)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答题时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版八年级上册。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题(12个小题,1-10题是单选题,每题2分。

11-12是多选题,每题3分,选对少选得2分,选错不得分。

共26分)1. 下列数据最接近实际情况的是()。

A. 适宜洗澡的水温约为60℃B. 一瓶矿泉水的质量约为50gC. 人心脏正常跳动一次的时间约为5sD. 初中生所坐凳子的高度约为40cm2.关于错误和误差,下列说法中正确的是()。

A.错误是不可避免的;B.通过多次测量取平均值可以减小误差;C.误差是由不规范的操作造成的;D.错误是由于测量工具不够精密造成的3.如图所示,用悬挂着的乒乓球接触正在发声的音叉,乒乓球会多次被弹开。

这个实验是探究()。

A.响度是否与振幅有关B.音调是否与频率有关C.声音的传播是否需要介质D.声音产生的原因4.关于声现象的描述,下列说法正确的是()。

A.禁鸣喇叭是在传播过程中减弱噪声;B.将发声的音叉触及面颊可以探究声音产生的原因;C.“闻其声而知其人”主要是根据声音的响度来判断的;D.超声波能粉碎人体内的“结石”说明声波可以传递信息5.下列各图所举的事例中,利用了相对运动原理的是()。

A.联合收割机和运输车 B.歼﹣10空中加油C.大飞机风洞实验 D.接力赛交接棒6.甲、乙两名同学进行百米赛跑,把他俩的运动近似看作匀速直线运动。

他俩同时从起跑线起跑,经过一段时间后,他们的位置如图所示。

则关于他俩在这段时间内运动的路程s、速度v和时间t,下列的关系图象中正确的是()。

2022-2023学年上学期八年级数学期末模拟测试卷(01)

2022-2023学年上学期八年级数学期末模拟测试卷(01)

2022-2023学年上学期八年级数学期末模拟测试卷(01)一、选择题(本大题共8小题,每小题2分,共16分。

在每小题所给出的四个选项中,只有一项是正确的)1.下列图形是轴对称图形的是()A.B.C.D.2.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣3,2)3.下列各数是无理数的是()A.0B.πC.D.4.如图,AB=AD,AC=AE,则能判定△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠B C.∠D=∠E D.BC=DE5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=b,∠C=45°C.∠A:∠B:∠C=1:2:3D.a=9,b=40,c=416.某一次函数的图象经过点(1,5),且函数值y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+3B.y=3x﹣8C.y=﹣3x+8D.y=﹣2x+57.如图,在△ABC中,AD是∠BAC的平分线,延长AD至E,使AD=DE,连接BE,若AB=4AC,△BDE的面积为12,则△ABC的面积是()A.6B.9C.12D.158.如图,函数y=kx+b的图象与y轴、x轴分别相交于点A(0,2)和点B(4,0),则关于x的不等式kx+b≥2的解集为()A.x≤0B.x≤4C.x≥0D.x≥4二、填空题(本大题共8小题,每小题2分,共16分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.﹣的立方根是.10.用四舍五入法,对0.12964精确到千分位得到的近似数为.11.已知点P在第三象限,且P点的横坐标与纵坐标的积是4,试写出一个符合条件的点:.12.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是.14.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是尺.15.如图,小明将长方形纸片ABCD对折后展开,折痕为EF,再将点C翻折到EF上的点G处,折痕为BH,则∠GBH=°.16.如图,在等腰直角三角形ABC中,∠A=90°,P是△ABC内一点,P A=1,PB=3,PC=,那么∠CP A=度.三、解答题(本大题共9小题,共88分。

浙教版2022-2023学年八年级上学期期末数学模拟卷(一)(解析版)

浙教版2022-2023学年八年级上学期期末数学模拟卷(一)(解析版)

浙教版2022-2023学年八年级上学期期末数学模拟卷(一)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A.B.C.D.【答案】C【解析】A、B、D中的图形不是轴对称图形,C中的图形是轴对称图形.故答案为:C.2.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm【答案】D【解析】当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选D.3.不等式3≥2x-1的解集在数轴上表示正确的为()A.B.C.D.【答案】C【解析】解不等式3≥2x-1得x≤2,在数轴上表示为:故答案为:C.4.点A(3,4)关于x轴对称的点B的坐标为().A.(6,4)B.(-3,5)C.(-3,-4)D.( 3,-4)【答案】D【解析】因为.点A(3,4)关于x轴对称,所以点B的坐标为(3,-4).故D项正确.5.下列关于一次函数y=﹣x+1的说法中,错误的是()A.其图象经过第一、二、四象限B.其图象与x轴的交点坐标为(﹣1,0)C.当x>0时,y<1D.y随x的增大而减小【答案】B【解析】一次函数y=﹣x+1A、k=-1<0,图象必过第二,四象限;b=1>0,图象必过第一,二象限,∴直线y=﹣x+1 经过第一,二,四象限,故A不符合题意;B、当y=0时-x+1=0解之:x=1∴其图象与x轴的交点坐标为(1,0),故B符合题意;C、∵x=1-y当x>0时1-y>0解之:y <1,故C 不符合题意;D 、当k <0时,y 随x 的增大而减小,故D 不符合题意; 故答案为:B.6.下图是一张直角三角形的纸片,两直角边AC=6cm ,BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则DE 的长为( )A .4cmB .5cmC .154cmD .254cm【答案】C【解析】在Rt△ABC 中,AB=√AC 2+BC 2=√62+82=10 由折叠可知:BD=AD ,AE=12AB=5∴CD=8-AD在Rt△ADC 中,AC 2+CD 2=AD 2,即62+(8-AD )2=AD 2 解得 AD=254同理可得 DE=154.故答案为:C7.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y (单位m )与他所用的时间t (单位min )之间的函数关系如图所示,下列说法正确有( )个.①小涛家离报亭的距离是1200m ;②小涛从家去报亭的平均速度是60m/min ;③小涛在报亭看报用了15min ;④从家到报亭行走的速度比报亭返回家的速度快;⑤小涛从家出发到返回到家的过程中的平均速度是48m/min.A .1B .2C .3D .4 【答案】D【解析】由纵坐标看出小涛家离报亭的距离是1200m ,所以①符合题意由纵坐标看出小涛家离报亭的距离是1200m ,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是1200÷15=80(m/min),故②不符合题意设小涛从报亭回家时,y 与t 的函数关系式为y=kt+b ,并由图象可知,经过两点(35,900),(50,0)则由题意可得, {900=35k +b 0=50k +b解得 {k =−60b =3000∴小涛返回时的解析式为y=-60x+3000 当y=1200时,-60t+3000=1200,解得t=30由横坐标看出返回时的时间是50-30=20min , 返回时的速度是1200÷30=40(m/min)∴小涛在报亭看报用了30-15=15min ,③符合题意∴从家到报亭行走的速度比报亭返回家的速度快80>40,④符合题意∴小涛从家出发到返回到家的过程中的平均速度是: 1200×250=48 m/min ,⑤符合题意.故答案为:D.8.如图,在△ABC 中,△ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为( )A .2B .2.6C .3D .4 【答案】D【解析】 ∵△ACB=90°, 得AB =√122+52=13 , AM+BN=AM+BM+MN=AB+MN ,即AC+BC=AB+MN,MN=AC+BC -AB=12+5-13=49.如图,在平面直角坐标系中,△OABC 的顶点A 在x 轴上,顶点B 的坐标为(6,4).若直线l 经过点(1,0),且将△OABC 分割成面积相等的两部分,则直线l 的函数解析式是( )A .y=x+1B .y=13x+1C .y=3x -3D .y=x -1【答案】D【解析】设D (1,0),∵线l 经过点D (1,0),且将△OABC 分割成面积相等的两部分, ∴OD=BE=1,∵顶点B 的坐标为(6,4). ∴E (5,4)设直线l 的函数解析式是y=kx+b , ∵图象过D (1,0),E (5,4),∴{k +b =05k +b =4, 解得:{k =1b =−1,∴直线l 的函数解析式是y=x -1.故选D .10.如图,锐角△ABC 中,BC >AB >AC ,求作一点P ,使得△BPC 与△A 互补,甲、乙两人作法分别如下:甲:以B 为圆心,AB 长为半径画弧交AC 于P 点,则P 即为所求.乙:作BC 的垂直平分线和△BAC 的平分线,两线交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列叙述正确的是( ) A .两人皆正确 B .甲正确,乙错误 C .甲错误,乙正确 D .两人皆错误【答案】A【解析】甲:如图1,∵AB =BP ,∴△BAP =△APB , ∵△BPC+△APB =180° ∴△BPC+△BAP =180°, ∴甲正确;乙:如图2,过P 作PG△AB 于G ,作PH△AC 于H ,∵AP 平分△BAC , ∴PG =PH ,∵PD 是BC 的垂直平分线, ∴PB =PC ,∴Rt△BPG△Rt△CPH (HL ), ∴△BPG =△CPH , ∴△BPC =△GPH ,∵△AGP =△AHP =90°, ∴△BAC+△GPH =180°, ∴△BAC+△BPC =180°, ∴乙正确; 故答案为:A 。

2024长郡双语中学八年级期末模拟考试数学试卷二

2024长郡双语中学八年级期末模拟考试数学试卷二

八上期末模拟卷姓名_____________班级_________一.选择题(每小题3分,共30分)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2•a4=a8B.(a2)2=a4C.(2a)3=2a3D.a10÷a2=a53.下列等式从左边到右边的变形,属于因式分解的是()A.ax+ay+a=a(x+y)B.(x﹣2)(x+2)=x2﹣4C.m2﹣6m+9=(m﹣3)2D.x2﹣y2+1=(x+y)(x﹣y)+14.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>5.若分式有意义,则x的取值范围是()A.x<2B.x≠0C.x≠1且x≠2D.x≠26.若,则a+b的值为()A.1B.0C.﹣1D.27.下列二次根式中,最简二次根式是()A.B.C.D.8.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为()A.30°B.56°C.26°D.82°10.如图,等边△ABC中,D为AC中点,点P、Q分别为AB、AD上的点,且BP=AQ=4,QD=3,在BD上有一动点E,则PE+QE的最小值为()A.7B.8C.10D.12请把选择题答案填在下列表格中:题号12345678910答案二.填空题(每小题3分,共18分)11.已知a m =27,a n =3,则a n -m =.12.计算:﹣|﹣4|=.13.实数0.00000052用科学记数法可表示为.(第14题)14.如图,△ABC ≌△DEC ,点B 的对应点E 在线段AB 上,∠DCA =40°,则∠B 的度数是.15.如图,在△ABC 中,∠C =90°,AC =8,BC =6,D 为AC 上一点,若BD 是∠ABC 的角平分线,则CD =.16.若a 3+3a 2+a =0,求12242+-a a a =.三.解答题(共9题,共72分)(第15题)17.因式分解(每小题3分,共6分):(1)a 3b ﹣ab(2)3ax 2+6axy +3ay 218.计算(每小题4分,共8分):(1)(2)19.解分式方程(每小题4分,共8分)(1)(2)20.(6分)先化简,再求值:(﹣1)÷,其中a=﹣1.21.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.22.(8分)已知,如图,Rt△ABC中,∠B=90°,AB=6,BC=4,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足AD∥BC,并作腰上的高AE.(1)求证:AB=AE;(2)求等腰三角形的腰长CD.23.(8分)中国•哈尔滨冰雪大世界,始创于1999年,是由黑龙江省哈尔滨市政府为迎接千年庆典神州世纪游活动,凭借哈尔滨的冰雪时节优势,而推出的大型冰雪艺术精品工程,展示了北方名城哈尔滨冰雪文化和冰雪旅游魅力.2024年在准备冰雪大世界的建造时,需要取冰,现安排甲、乙两个采冰队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队取240立方米的冰比乙队取同样体积的冰少用2天.(1)甲、乙两个采冰队每天能采冰的体积分别是多少立方米?(2)如需40天采冰1840立方米.甲乙共同工作队若干天后,甲另有任务,剩下的由乙队独立完成,为了能在规定的时间内完成任务,至少安排甲队工作多少天?24.(3分+3分+4分)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am +an +bm +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ).(1)①分解因式:ab ﹣a ﹣b +1;②若a ,b (a >b )都是正整数且满足ab ﹣a ﹣b ﹣4=0,求a +b 的值;(2)若a ,b 为实数且满足ab ﹣a ﹣b ﹣4=0,s =a 2+3ab +b 2+3a ﹣b ,求s 的最小值.25.(3分+3分+4分)如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的一点,F 为AB 边上一点,连接CF ,交BE 于点D 且∠ACF =∠CBE ,CG 平分∠ACB 交BD 于点G ,(1)求证:CF =BG ;(2)延长CG 交AB 于H ,连接AG ,过点C 作CP ∥AG 交BE 的延长线于点P ,求证:PB =CP +CF ;(3)在(2)问的条件下,当∠GAC =2∠FCH 时,若S △AEG =3,BG =6,求AC 的长.。

浙教版2022-2023学年八年级上学期期末数学模拟测试卷(一)(解析版)

浙教版2022-2023学年八年级上学期期末数学模拟测试卷(一)(解析版)

浙教版2022-2023学年八年级上学期期末数学模拟测试卷(一)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列四个图形中,不是轴对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形的意义可知:A、B、D都是轴对称图形,而C不是轴对称图形;故答案为:C.2.如果a>b,那么下列不等式中正确的是()A.a−2>b+2B.a8<b8C.ac<bc D.−a+3<−b+3【答案】D【解析】∵a>b,又∵不等式两边乘(或除以)同一个负数,不等号的方向改变,∴﹣a<﹣b.又知不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以正确的是−a+3<−b+3.故答案为:D.3.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等【答案】D【解析】A.两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B.一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C.有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D.有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故答案为:D.4A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【答案】C【解析】∵在这个变化中,自变量是温度,因变量是声速,∴选项A符合题意;∵根据数据表,可得温度越高,声速越快,∴选项B符合题意;∵342×5=1710(m),∴当气温为20∘C时,声音5s可以传播1710m,∴选项C不符合题意;∵324−318=6(m/s),330−324=6(m/s),336−330=6(m/s),342−336=6(m/s),∴当温度每升高10∘C,声速增加6m/s,∴选项D符合题意.故答案为:C.5.在平面直角坐标系中,已知点A (﹣2,a )和点B (b ,﹣3)关于y 轴对称,则ab 的值( ) A .﹣1 B .1 C .6 D .﹣6 【答案】D【解析】∵点A (-2,a )和点B (b ,-3)关于y 轴对称,∴a=-3,b=2,∴ab=-3×2=-6. 故答案为:D.6.如图,函数y =2x 和y =ax +4的图象相交于点A(32,3),则不等式2x <ax +4的解集为( )A .x <32B .x <3C .x >32D .x >3【答案】A【解析】根据函数图象得,当x <32时,2x <ax +4.故答案为:A.7.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A .480°B .500oC .540oD .600o【答案】C【解析】如图,由四边形的内角和得,∠2+∠3+∠5+∠8=360°,∠6+∠7+∠9+∠10=360°, ∴∠2+∠3+∠5+∠8+∠6+∠7+∠9+∠10=720°, ∵∠8+∠9=180°,∠10=∠1+∠4,∴∠1+∠2+∠3+∠5+∠8+∠6+∠7=720°−180°=540°. 故答案为:C. 8.如图,在等腰 △OAB 中, ∠OAB =90° ,点 A 在 x 轴正半轴上,点 B 在第一象限,以 AB 为斜边向右侧作等腰 Rt △ABC ,则直线 OC 的函数表达式为( )A .y =12xB .y =13xC .y =14xD .y =15x【答案】B【解析】设 OA =a ,∵△OAB 是等腰三角形,且 ∠OAB =90°∴AB =OA =a在等腰 Rt △ABC 中, AC =BC,∠BAC =45° ,由勾股定理得 AC =√22a作 CD ⊥x 轴交于点D ,则 ∠CAD =180°−∠OAB −∠CAB =45°∴ΔACD 是等腰直角三角形∴AD =CD由勾股定理得 CD 2+AD 2=AC 2 ,即 2CD 2=AC 2=(√22a)2=12a 2 ,∴CD =AD =12a ∴OD =OA +AD =32a∴C(32a,12a)设直线 OC 的函数表达式为 y =kx ,将点C 坐标代入得 12a =k ·32a解得 k =13所以直线 OC 的函数表达式为 y =13x故答案为:B9.如图, Rt △AED 中,∠AED =90∘,AB =AC =AD ,EC =3,BE =11,则ED 的值为( )A .√33B .√34C .√35D .√37−1【答案】A【解析】如图:过A 作AF ⊥BC 垂足为F∵EC =3,BE =11∴BC =BE +EC =11+3=14 ∵AB =AC ,∴BF =CF =12BC =7∴EF =FC −EC =7−3=4在Rt △ADE 中,由勾股定理得,DE 2=AD 2−AE 2, 在Rt △AEF 中,由勾股定理得,AE 2=AF 2+EF 2 又∵AB =AD ,∴DE 2=AB 2−(AF 2+EF 2)在Rt △ABF 中,由勾股定理得:AB 2=AF 2+BF 2∴DE 2=AF 2+BF 2−(AF 2+EF 2)=BF 2−EF 2=72−42=33故答案为:A.10.如图,在△ABC中,AC=BC,AD平分∠BAC交BC于点E,过点D作DM⊥AB于点M,连接CD,下列结论正确的是()A.若∠ACB=90°,则AC+CE=ABB.若AB+AC=2AM,则∠ACD+∠ABC=180°C.若DE=DB,则∠ACB=90°D.过点C作CH⊥AD于点H,则DA−DB=2DH【答案】A【解析】A、如图1中,作EF⊥AB于F.∵∠ACB=90°,AC=CB,∴∠ABC=45°,∵EF⊥AB,∴∠FEB=∠EBF=45°,∴EF=BF,∵∠EAC=∠EAF,∠ACE=∠AFE,AE=AE,∴ΔAEC≅ΔAEF(AAS),∴AC=AF,EC=EF,∴AC+CE=AF+EF=AF+BF=AB,故A符合题意;B、如图2中,作DG⊥AC于G.同理可知ΔADG≅ΔADM(AAS),∴AM=AG,DG=DM,∵AC+AB=AG−CG+AM+BM=2AM,∴CG=BM,∵∠DGC=∠DMB=90°,∴ΔDGC≅ΔDMB(SAS),∴∠DCG=∠DBM,∵∠DCG+∠ACD=180°,∴∠ACD+∠ABD=180°,故B不符合题意.∴点D 在线段BE 的垂直平分线上,当∠ACB ≠90°时,也能找到这样的点D . 故C 不符合题意;D 、如图3中,在HA 上取一点N ,使得HN =DH ,欲证明DA −DB =2DH ,只要证明AN =BD ,只要证明ΔACN ≅ΔBCD 即可.由于缺少条件无法证明ΔACN ≅ΔBCD ,故D 不符合题意, 故答案为:A .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在直角坐标系中,点P (﹣2,3)向右平移3个单位长度后的坐标为 . 【答案】(1,3)【解析】平移后点P 的横坐标为﹣2+3=1,纵坐标不变为3; ∴点P (﹣2,3)向右平移3个单位长度后的坐标为(1,3). 故答案为:(1,3).12.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是 .【答案】ASA【解析】由图得:遮挡住的三角形中露出两个角及其夹边. 则能画出与此直角三角形全等的三角形,其全等的依据是ASA. 故答案为:ASA.13.满足不等式2(2x −4)>−3x +6的最小整数是 . 【答案】3【解析】不等式去括号得:4x −8>−3x +6, 移项得:4x+3x >6+8, 合并得:7x >14,把x 系数化为1得:x >2, 则不等式的最小整数为3. 故答案为: 3. 14.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m = ,n = . 【答案】-1;-52【解析】将点(1,-2)代入y =12x +n 得-2=12×1+n 解得n=-52将点(1,-2)代入y =mx -1得 -2=m×1-1 解得m=-1故答案为:-1;-52.15.如图,△ABC 中,AB =AC ,点D 为BC 的中点,∠BAD =24°,AD =AE ,∠EDC = 度.【答案】12【解析】∵AB =AC ,点D 为BC 的中点,∠BAD =24°, ∴∠CAD =∠BAD =24°,AD ⊥BC , ∵AD =AE ,∴∠ADE =∠AED =12×(180°−24°)=78°, ∴∠EDC =90°−∠ADE =12°, 故答案为:12. 16.如图,已知点A(2,2),点B 在y 轴的负半轴上,点C 在x 轴正半轴上,AB ⊥AC ,且AB =AC.则OC −OB 的值为 .【答案】4【解析】如图,过点A 作AD ⊥y 轴于D , AE ⊥x 轴于E , ∴AD =AE =2 , ∠ADO =∠AEO =90° , ∵∠DOE =90° ,∴∠ADO =∠AEO =∠DOE =90° , ∴ 四边形ADOE 为正方形,∴OD =OE =2 , ∠DAE =90° , ∵AB ⊥AC , ∴∠BAC =90° , ∴∠DAB =∠EAC , ∵AB =AC ,∴△ADB ≌△AEC (SAS ) , ∴BD =CE ,∴OC −OB =OE +CE −OB =OE +BD −OB =OE +OB +OD −OB =OE +OD =4 , 故答案为:4.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解下列不等式(组),并把解集在数轴上表示出来. (1)2+x 4≥2x−13;(2){2x −4<012(x +8)−2>0.【答案】(1)解:2+x 4≥2x−13去分母:3(2+x)≥4(2x −1),去括号得:6+3x ≥8x −4,3x −8x ≥−4−6 −5x ≥−10解得x ≤2在数轴上表示,如图,(2)解:{2x −4<0①12(x +8)−2>0② 解不等式①得:x <2 解不等式②得:x >−4 在数轴上表示,如图,∴不等式组的解集为:−4<x <218.如图,在△ABC 中,已知其周长为26㎝.(1)在△ABC 中,用直尺和圆规作边AB 的垂直平分线分别交AB 、AC 于点D ,E (不写作法,但须保留作图痕迹).(2)连接EB ,若AD 为4㎝,求△BCE 的周长. 【答案】(1)解:如图所示:D ,E 即为所求;(2)解:∵DE 垂直平分AB , ∴AD=BD=4cm ,AE=BE ,∴△BCE 的周长为:EC+BE+BC=AC+BC=26-AB=26-8=18(cm ).19.如图,在ΔABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG ⊥CE 于 G ,CD =AE .(1)求证:CG =EG ;(2)已知BD =6,CD =5, 求ΔCDG 面积. 【答案】(1)证明:连接DE ,如图所示,∵AD ⊥BC , ∴∠ADC =90°,∵CE 是AB 边上的中线, ∴点E 是AB 中点, ∴DE =AE =BE , ∵CD =AE , ∴DE =CD , ∵DG ⊥CE , ∴CG =EG .(2)解:∵CE 是AB 边上的中线, ∴AE =BE ,∵BD =6,CD =5∴AB =10,∴AD =√102−62=8,∴S ΔABC =12×11×8=44,S ΔABD =12×6×8=24, ∵CE 是AB 边上的中线,∴S ΔBEC =12S ΔABC =22, ∵DE 是AB 边上的中线,∴S ΔBDE =12S ΔABD =12,∴S ΔEDC =S ΔBEC −S ΔEDB =22−12=10, 又∵CG =EG ,∴S ΔCDG =12S ΔEDC =5. 故ΔCDG 面积为5.20.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D 、E ,CE 交AB 于点F .(1)求证:BE =CD .(2)若∠ECA =75°,求证:DE =12AB .【答案】(1)证明:∵∠ACB =90°,AD ⊥CE ,BE ⊥CE , ∴∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∠ADC =∠CEB =90°, ∴∠BCE =∠CAD ,在△ADC 和△CEB 中,{∠ADC =∠CEB∠CAD =∠BCE AC =BC,∴△ADC ≌△CEB (AAS ), ∴BE =CD ;(2)证明:∵∠ECA =75°,∴∠CAD =90°-75°=15°=∠BCE ,∵∠ACB =90°,AC =BC , ∴∠CBA =∠CAB =45°, ∴∠BFE =60°,∠DAF =30°,∴∠FBE =30°,DF =12AF ,∴EF =12BF ,∴DE =DF +EF =12(AF +BF )=12AB .21.已知点P(3a −15,2−a).(1)若点P 位于第四象限,它到x 轴的距离是4 , 试求出a 的值: (2)若点P 位于第三象限且横、纵坐标都是整数, 试求点P 的坐标. 【答案】(1)解:∵点P 位于第四象限,它到x 轴的距离是4 , ∴2−a =−4, 解得:a =6(2)解:∵点P 位于第三象限且横、纵坐标都是整数, ∴{3a −15<02−a <0,解得:2<a <5,∴a =3时,点P 的坐标为(−6,−1), 当a =4时,点P 的坐标为(−3,−2),综上,点P 的坐标为(−6,−1)或(−3,−2). 22.在一次课外兴趣活动中,有一半学生学数学. 四分之一学生学音乐, 七分之一学生学英语, 还有部分人在操场上踢球, 若参加这次课外兴趣活动共有学生m 人. (1)请用含m 的代数式表示在操场上踢球的人数.(2)若还剩下不到6名学生在操场上踢球,试问参加这次课外兴趣活动共有学生多少人? 【答案】(1)解:因为有一半学生学数学. 四分之一学生学音乐, 七分之一学生学英语,所以操场上踢球的人数为:m −12m −14m −17m =328m (人).(2)解:根据(1)得操场上踢球的人数为328m ,因为剩下不到6名学生在操场上踢球, 所以328m <6,解得m <56因为m 是2、4、7公倍数, 所以m =28,故这次课外兴趣活动共有28名学生.23.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x 时,所需费用为y 元,且y 与x 的函数关系如图所示.根据图中信息,解答下列问题.(1)分别求出选择这两种卡消费时,y 关于x 的函数表达式; (2)求出入园多少次时,两者花费一样?费用是多少? (3)洋洋爸准备了240元,请问选择哪种划算? 【答案】(1)解:设y 甲=k 1x根据题意得4k 1=80,解得k 1=20, ∴y 甲=20x ;设y 乙=k 2x +80,根据题意得:12k 2+80=200, 解得k 2=10,∴y 乙=10x +80; (2)解:解方程组{y =20x y =10x +80, 解得:{x =8y =160,∴E 点坐标(8,160);即出入园8次时,两者花费一样,费用为160元, (3)解:洋洋爸准备了240元,根据图象和(2)的结论可知:当y >160时,乙消费卡更合适.24.如图,在平面直角坐标系中,函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C(−2,m).(1)求m 和b 的值;(2)函数y =13x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 方向,以每秒2个单位长度匀速运动到点A (到A 停止运动).设点E 的运动时间为t 秒. ①当△ACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使△ACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由. 【答案】(1)解:∵点C(−2,m)在直线y =−x +2上, ∴m =−(−2)+2=4, ∴点C(−2,4),∵函数y =13x +b 的图象过点C(−2,4),∴4=13×(−2)+b ,解得b =143,即m 的值是4,b 的值是143;(2)解:①∵函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B , ∴点A(2,0),点B(0,2),∵函数y =13x +143的图象与x 轴交于点D ,∴点D 的坐标为(−14,0), ∴AD =16,∵△ACE 的面积为12, ∴(16−2t)×42=12,解得,t =5.即当△ACE 的面积为12时,t 的值是5;②存在,当t =4或t =6时,△ACE 是直角三角形,理由如下: 第一种情况:当∠CEA =90°时, ∵AC =4√2,∠CAE =45°, ∴AE =4,∵AE =16−2t , 即4=16−2t , 解得,t =6;第二种情况:当∠ACE=90°时,AC⊥CE,∵点A(2,0),点B(0,2),点C(−2,4),点D(−14,0),∴OA=OB,AC=4√2,∴∠BAO=45°,∴∠CAE=45°,∴∠CEA=45°,∴CA=CE=4√2,∴AE=8,∵AE=16−2t,即8=16−2t,解得:t=4;综上所述,当t=4或t=6时,△ACE是直角三角形。

2022-2023学年上学期八年级数学期末模拟测试卷(02)

2022-2023学年上学期八年级数学期末模拟测试卷(02)

2022-2023学年上学期八年级数学期末模拟测试卷(02)一、选择题(本大题共6小题,每小题2分,共12分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.记者乘汽车赴360km外的农村采访,前一段路为高速公路,后一段路为乡村公路,汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(km)与时间x(h)间的关系如图所示,则该记者到达采访地的时间为()A.4小时B.4.5小时C.5小时D.5.5小时4.下列各组数中,不能作直角三角形三边长的是()A.4,5,6B.1,1,C.5,3,4D.1,,5.在平面直角坐标系中,将直线y=x+3沿y轴向下平移6个单位后,得到一条新的直线,该直线与x轴的交点坐标是()A.(0,3)B.(2,0)C.(4,0)D.(6,0)6.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°二、填空题(本大题共10小题,每小题2分,共20分。

请把答案填写在答题卡相应位置上)7.方程(x﹣1)3=﹣27的解为.8.用四舍五入法将0.0586精确到千分位,所得到的近似数为.9.已知直线y=2x﹣3经过点(2+m,1+k),其中m≠0,则的值为.10.如图,在△ABC中,∠EAB=∠EBA,△ABC与△BEC的周长分别是24和14,则AB=.11.如图,将五个边长为1的小正方形组成的十字形纸板剪开,重新拼成一个大正方形,则大正方形的边长为.12.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为米.13.一根弹簧长为20cm,最多可挂质量为20kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,如果挂上5kg物体后,弹簧长为22.5cm,那么弹簧总长度y(cm)与所挂重物x(kg)之间的函数表达式为(并写出自变量x取值范围).14.如图,直线y=﹣2x+b与x轴交于点(3,0),那么不等式﹣2x+b<0的解集为.15.如图,在△ABC中,S△ABC=21,∠BAC的角平分线AD交BC于点D,点E为AD的中点.连接BE,点F为BE上一点,且BF=2EF.若S△DEF=2,则AB:AC=.16.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有条.三、解答题(本大题共10小题,共88分。

浙江杭州市2022-2023学年八年级数学上学期期末模拟测试卷(一)含答案与解析

浙江杭州市2022-2023学年八年级数学上学期期末模拟测试卷(一)含答案与解析

杭州市2022~2023学年上学期期末模拟测试卷(一)八年级数学(时间:100分钟满分:120分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.若点A(m,n)在第三象限,那点B(﹣m+2,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知三角形的一边长为8,则它的另两边长分别可以是()A.4,4B.17,29C.3,12D.2,93.若a>b,则下列不等式不一定成立的是()A.a+3>b+3B.>C.>D.﹣3a<﹣3b4.如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110B.100C.55D.455.已知第二象限的点P(﹣4,1),那么点P到x轴的距离为()A.1B.4C.﹣3D.36.若一次函数y=2x+1的图象经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y27.已知两个一次函数y=kx+5和y=2x+1的图象交于A(m,3),则一次函数y=kx+5的图象所在的象限为()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限8.已知正比例函数y=kx(k≠0)的图象中,y随x的增大而减小,则一次函数y=kx﹣k的图象大致是()A.B.C.D.9.如果关于x的不等式ax<﹣a的解集为x>﹣1,那么a的取值范围是()A.a<0B.a>0C.a<1D.a>110.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=4,BD=6,则CD的长为()A.B.4C.D.二、填空题(本大题共6小题,每小题4分,共24分。

湖北省武汉市2023-2024学年八年级上学期期末数学模拟卷及答案解析

湖北省武汉市2023-2024学年八年级上学期期末数学模拟卷及答案解析

湖北省武汉市2023-2024学年八年级上学期期末数学模拟卷一.选择题(共10小题,满分30分,每小题3分)1.下列冰雪运动项目的图标中,是轴对称图形的是()2.下列运算正确的是()A.x3•x2=x6 B.3a3+2a2=5a5C.(m2n)3=m6n3D.x8÷x4=x23.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.某种颗粒物的直径约为0.0000018米,用科学记数法表示该颗粒物的直径为()A.0.18×10﹣5米 B.1.8×10﹣5米C.1.8×10﹣6米D.18×10﹣5米5.长度分别为3cm,5cm,7cm9cm的四根木棒,能搭成(首尾连接)三角形的个数为()A.1B.2C.3D.46.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)7.如图:已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFD B.△AFE≌△ADCC.△AEF≌△DFC D.△ABC≌△ADE8.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±249.如图,在平面直角坐标系中,△ABC的顶点均在边长为1个单位长度的正方形网格的格点上,已知点B (3,1),如果在x轴的下方存在一点D,使得△ABD与△ABC全等,那么点D的坐标为()A.(0,﹣1)B.(﹣1,3)C.(﹣1,﹣2)或(3,﹣1)D.(﹣1,﹣1)或(4,﹣1)10.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH∥BE;④S四边=2S△ABP;⑤S△APH=S△ADE,其中正确的结论的个数是()形ABDEA.5个B.4个C.3个D.2个二.填空题(共6小题,满分183分)11.因式分解:a3﹣16ab2=12.关于x的分式方程的解是正数,则a的取值范围是.13.若分式方程:无解,则k=.14.若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)11 “丰利数”(“是”或“不是”);(2)若p=4x2+mxy+2y2﹣10y+25(其中x>y>0)是“丰利数”,则m=.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠BNC=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)(π﹣3.14)0+()﹣1+|﹣4|﹣2﹣2;(2)÷;18.(8分)先化简,再求值:,其中a为不等式组的整数解.19.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请写出△ABC关于x轴对称的△A1B1C1的各顶点坐标;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)在x轴上求作一点P,使点P到A、B两点的距离和最小,请标出P点,并直接写出点P的坐标.21.(8分)在△ABC中,∠B=60°,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.22.(10分)某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)该中学决定再次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,那么该中学此次最多可购买多少个B品牌足球?23.(10分)阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线,∴BD=CD在△BDE和△CDA中,∴△BDE≌△CDA(依据一),∴BE=CA在△ABE中,AB+BE>AE(依据二),∴AB+AC>2AD.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:.(2)如图3,AB=6,AC=10,则AD的取值范围是;(3)如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE中,∠BAE=9 0°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.24.(12分)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE=;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:AD⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE之间的数量关系,并写出证明过程.参考答案与解析一.选择题(共10小题,满分30分,每小题3分)1.下列冰雪运动项目的图标中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【解答】解:选项A、B、C均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.2.下列运算正确的是()A.x3•x2=x6B.3a3+2a2=5a5C.(m2n)3=m6n3D.x8÷x4=x2【分析】根据同底数幂的乘法、合并同类项、幂的乘方和积的乘方、同底数幂的除法的运算法则分别求出每个式子的值,再判断即可.【解答】解:A、x3•x2=x5,原计算错误,故此选项不符合题意;B、3a3与2a2不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(m2n)3=m6n3,原计算正确,故此选项符合题意;D、x8÷x4=x4,原计算错误,故此选项不符合题意.故选:C.3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.4.某种颗粒物的直径约为0.0000018米,用科学记数法表示该颗粒物的直径为()A.0.18×10﹣5米B.1.8×10﹣5米C.1.8×10﹣6米D.18×10﹣5米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.0000018米=1.8×10﹣6米,故选:C.5.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连接)三角形的个数为()A.1B.2C.3D.4【分析】首先能够找到所有的情况,然后根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得3,5,7;3,7,9;5,7,9都能组成三角形.故有3个.故选:C.6.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).【解答】解:∵点P关于x轴对称点M的坐标为(4,﹣5),∴P(4,5),∴点P关于y轴对称点N的坐标为:(﹣4,5).故选:A.7.如图:已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有()A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE【分析】根据图形,猜想全等三角形,即△ABC≌△ADE,根据条件证明三角形全等.【解答】解:设AC与DE相交于点F,∵∠1=∠2=∠3,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,∵∠E=180°﹣∠2﹣∠AFE,∠C=180°﹣∠3﹣∠DFC,∠DFC=∠AFE(对顶角相等),∴∠E=∠C,∵AC=AE,∴△ABC≌△ADE.故选:D.8.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3x和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,进而得出答案.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±.故选:D.9.如图,在平面直角坐标系中,△ABC的顶点均在边长为1个单位长度的正方形网格的格点上,已知点B (3,1),如果在x轴的下方存在一点D,使得△ABD与△ABC全等,那么点D的坐标为()A.(0,﹣1)B.(﹣1,3)C.(﹣1,﹣2)或(3,﹣1)D.(﹣1,﹣1)或(4,﹣1)【分析】根据全等三角形的定义画出图形即可.【解答】解:如图,当△ABD≌△ABC时,由图得:D1(4,﹣1),当△BAD≌△ABC时,由图得:D2(﹣1,﹣1),∴在x轴的下方D的坐标为(﹣1,﹣1)或(4,﹣1),使得△ABD与△ABC全等;故选:D.10.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC 的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH∥BE;④S四边=2S△ABP;⑤S△APH=S△ADE,其中正确的结论的个数是()形ABDEA.5个B.4个C.3个D.2个【分析】由△ACB的角平分线AD,BE相交于点P,得∠PAB=∠PAC=∠CAB,∠PBA=∠PBC=∠CBA,则∠APE=∠PAB+∠PBA=(∠CAB+∠CBA)=45°,所以∠APB=180°﹣∠APE=13 5°,可判断①正确;由∠APF=∠FPD=90°,得∠FPE=∠APF﹣∠APE=45°,则∠FPB=∠APB=135°,即可证明△FBP≌△ABP,得PF=PA,再证明△PAH≌△PFD,得PH=PD,则AD=PA+PD=PF+PH,可判断②正确;因为∠PDH=∠PHD=45°,所以∠PDH=∠APE,则DH∥BE,可判断③正确;因为DH∥PE,所以S△PDE=S△PHE,则S△PAH=S△APE+S△PHE=S△APE+S△PDE=S△ADE,可判断⑤正确;因为S△ADE=S△PFD,所以S四边形ABDE=S△ABP+S△PBD+S△ADE=S△ABP+S△PBD+S△PFD=S△ABP+S△FBP=2S△ABP,可判断④正确,于是得到问题的答案.【解答】解:∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵△ACB的角平分线AD,BE相交于点P,∴∠PAB=∠PAC=∠CAB,∠PBA=∠PBC=∠CBA,∴∠APE=∠PAB+∠PBA=(∠CAB+∠CBA)=45°,∴∠APB=180°﹣∠APE=135°,故①正确;∵PF⊥AD交BC的延长线于点F,∴∠APF=∠FPD=90°,∴∠FPE=∠APF﹣∠APE=45°,∴∠FPB=180°﹣∠FPE=135°,∴∠FPB=∠APB,在△FBP和△ABP中,,∴△FBP≌△ABP(ASA),∴PF=PA,∵∠PAH+∠ADF=90°,∠F+∠ADF=90°,∴∠PAH=∠F,在△PAH和△PFD中,,∴△PAH≌△PFD(ASA),∴PH=PD,∴AD=PA+PD=PF+PH,故②正确;∵PH=PD,∠HPD=90°,∴∠PDH=∠PHD=45°,∴∠PDH=∠APE,∴DH∥BE,故③正确;∵DH∥PE,∴S△PDE=S△PHE,∴S△PAH=S△APE+S△PHE=S△APE+S△PDE=S△ADE,故⑤正确;∵S△PAH=S△PFD,∴S△ADE=S△PFD,∴S四边形ABDE=S△ABP+S△PBD+S△ADE=S△ABP+S△PBD+S△PFD=S△ABP+S△FBP,∵S△ABP=S△FBP,∴S四边形ABDE=2S△ABP,故④正确,故选:A.二.填空题(共6小题,满分18分,每小题3分)11.因式分解:a3﹣16ab2=a(a+4b)(a﹣4b)【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣16b2)=a(a+4b)(a﹣4b),故答案为:a(a+4b)(a﹣4b)12.关于x的分式方程的解是正数,则a的取值范围是a>﹣5且a≠3.【分析】解分式方程,用a表示,再根据关于x的分式方程的解是正数,列不等式组,解出即可.【解答】解:原分式方程可化为:+1=,x﹣3+x﹣2=﹣2x+a,解得x=,∵关于x的分式方程的解是正数,∴,解得:a>﹣5且a≠3.故答案为:a>﹣5且a≠3.13.若分式方程:无解,则k=1或2.【分析】,去分母,移项合并得, (2﹣k)x=2,根据分式方程无解得出①x﹣2=0,x=2,代入方程(2﹣k)x=2,求出k的值;②2-k=0,k=2【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,或2-k=0解得:x=2,或k=2把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.14.若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)11 不是“丰利数”(“是”或“不是”);(2)若p=4x2+mxy+2y2﹣10y+25(其中x>y>0)是“丰利数”,则m=±4.【分析】(1)根据定义判断即可;(2)将p分解因式即可求解.【解答】解:(1)11无法表示为a2+b2或(x+y)2+y2的形式,故11不是“丰利数”,故答案为:不是;(2)p=4x2+mxy+2y2﹣10y+25=(4x2+mxy+y2)+(y2﹣10y+25)=(4x2+mxy+y2)+(y﹣5)2.∵p=4x2+mxy+2y2﹣10y+25(其中x>y>0)是“丰利数”,∴m=±2×2×1=±4.故答案为:±4.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是25°或40°或10° .【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠B DC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°﹣∠ADB=180°﹣80°=100°,∠C=(180°﹣100°)=40°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣80°)=50°,∴∠BDC=180°﹣∠ADB=180°﹣50°=130°,∠C=(180°﹣130°)=25°,③AD=BD,此时,∠ADB=180°﹣2×80°=20°,∴∠BDC=180°﹣∠ADB=180°﹣20°=160°,∠C=(180°﹣160°)=10°,综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.16.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、B N,当BM+BN最小时,∠BNC=75° .【分析】如图1中,过点C作CH⊥BC,使得CH=BC,连接NH,BH.证明△ABM≌△CHN(SAS),推出BM=HN,由BN+HN≥BH,可知B,N,H共线时,BM+BN=NH+BN值最小,求出此时∠BNC 的度数即可解决问题.【解答】解:如图1中,过点C作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵BC=HC,∠BCH=90°,∴∠H=∠CBH=45°,∴∠BNC=∠H+∠HCN=75°∴当BM+BN的值最小时,∠BNC=75°,故答案为:75°.三.解答题(共8小题,满分72分)17.(8分)计算:(1)(π﹣3.14)0+()﹣1+|﹣4|﹣2﹣2;(2)a﹣2b2•(﹣2a2b﹣2)2÷(a﹣4b2);(3)÷;(4)=2﹣.【分析】(1)先根据零指数幂,负整数指数幂,绝对值进行计算,再算加减即可;(2)先根据幂的乘方与积的乘方进行计算,再根据单项式乘单项式和单项式除以单项式进行计算即可;(3)先根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算即可;(4)方程两边都乘x﹣3得出x﹣2=2(x﹣3)+1,求出方程的解,再进行检验即可.【解答】解:(1)(π﹣3.14)0+()﹣1+|﹣4|﹣2﹣2=6;(2)a﹣2b2•(﹣2a2b﹣2)2÷(a﹣4b2)=a﹣2b2•4a4b﹣4÷(a﹣4b2)=a﹣2+4﹣(﹣4)b2+(﹣4)﹣2=a6b﹣4=;(3)÷=•=1;(4)=2﹣,=2+,方程两边都乘x﹣3,得x﹣2=2(x﹣3)+1,解得:x=3,检验:当x=3时,x﹣3=0,所以x=3是增根,即原方程无实数根.18.(8分)先化简,再求值:,其中a为不等式组的整数解.【分析】先化简分式,然后将a的整数解代入求值.【解答】解:原式=•﹣=•﹣=;,解不等式组得:﹣3.5<a≤﹣1,∴不等式组的整数解为a=﹣1,﹣2,﹣3,当a=﹣1时,分式无意义.当a=﹣2时,原式=1,当a=﹣3时,分式无意义,19.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.20.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请写出△ABC关于x轴对称的△A1B1C1的各顶点坐标;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)在x轴上求作一点P,使点P到A、B两点的距离和最小,请标出P点,并直接写出点P的坐标(2,0).【分析】(1)关于x轴对称的点,横坐标不变,纵坐标互为相反数,由此可得答案.(2)根据轴对称的性质作图即可.(3)作点A关于x轴的对称点A1,连接A1B,与x轴交于点P,连接AP,此时点P到A、B两点的距离和最小,即可得出点P的坐标.【解答】解:(1)∵△ABC与△A1B1C1关于x轴对称,∴点A1(1,﹣1),B1(4,﹣2),C1(3,﹣4).(2)如图,△A2B2C2即为所求.(3)如图,点P即为所求,点P的坐标为(2,0).故答案为:(2,0).21.(8分)在△ABC中,∠B=60°,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.【分析】(1)证明△ABD≌△AEC(SAS),由全等三角形的性质得出AB=AE;(2)延长BC到E,使CE=BD,由(1)知,AB=AE,证得△ABE是等边三角形,同理,△DBF是等边三角形,则可得出结论;(3)在CP上取点E,使CE=BD,连接AE,证明△APE≌△PFD(AAS),得出PE=DF,则可得出结论.【解答】(1)证明:∵AC=AD,∴∠ADC=∠ACD,∴180°﹣∠ADC=180°﹣∠ACD,即∠ADB=∠ACE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS),∴AB=AE;(2)延长BC到E,使CE=BD,由(1)知,AB=AE,∴∠E=∠B=60°,∴∠EAB=180°﹣∠E﹣∠B=60°,∴△ABE是等边三角形,同理,△DBF是等边三角形,∴AB=BE.BF=BD=CE,∴AB﹣BF=BE﹣CE,即AF=BC;(3)猜想:PC=2BD,理由如下:在CP上取点E,使CE=BD,连接AE,由(1)可知:AB=AE,∴∠AEB=∠B=60°,∴∠AEP=180°﹣∠AEB=120°,∵DF=DB,∠DFB=∠B=60°,∴∠PDF=∠DFB+∠B=120°,∴∠AEP=∠PDF,又∵PA=PF,∴∠PAF=∠PFA,∵∠APE=180°﹣∠B﹣∠PAF=120°﹣∠PAF,∠PFD=180°﹣∠DFB﹣∠PFA=120°﹣∠PFA,∴∠APE=∠PFD,在△APE和△PFD中,,∴△APE≌△PFD(AAS),∴PE=DF,又∵DF=DB,∴PE=DB,又∵PC=PE+CE,∴PC=2BD.22.(10分)某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)该中学决定再次购进A、B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,那么该中学此次最多可购买多少个B品牌足球?【分析】(1)设购买一个A品牌的足球需要x元,则购买一个B品牌的足球需要(x+30)元,由题意:购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,列出分式方程,解方程即可;(2)设该中学此次可以购买m个B品牌足球,则可以购买(50﹣m)个A品牌足球,由题意:A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3060元,列出不等式,一元一次不等式,解之取其中的最小值即可.【解答】解:(1)设购买一个A品牌的足球需要x元,则购买一个B品牌的足球需要(x+30)元,依题意得:=2×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=80.答:购买一个A品牌的足球需要50元,购买一个B品牌的足球需要80元.(2)设该中学此次可以购买m个B品牌足球,则可以购买(50﹣m)个A品牌足球,依题意得:50×(1+8%)(50﹣m)+80×0.9m≤3060,解得:m≤20.答:该中学此次最多可购买20个B品牌足球.23.(10分)阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线∴BD=CD在△BDE和△CDA中,∴△BDE≌△CDA(依据一),∴BE=CA在△ABE中,AB+BE>AE(依据二),∴AB+AC>2AD.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:SAS;依据2:三角形任意两边之和大于第三边.(2)如图3,AB=6,AC=10,则AD的取值范围是;(3)如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE中,∠BAE=9 0°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.【分析】(1):根据SAS证明△BDE≌△CDA,得出BE=CA,由三角形三边关系得出答案;(2):延长AD至点E,使DE=AD,连接CE,证明△ABD≌△CDE(SAS),得出AB=EC=4,由三角形三边关系可得出答案;(3):延长AD至点M,使DM=AD,连接CM,证明△ABD≌△CDM(SAS),由全等三角形的性质得出AB=MC,∠ABD=∠DCM,证明△EAF≌△MCA(SAS),由全等三角形的性质得出AM=EF,则可得出答案.【解答】(1)证明:延长AD至E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=CA,在△ABE中,AB+BE>AE(三角形任意两边之和大于第三边),∴AB+AC>2AD.故答案为:SAS,三角形任意两边之和大于第三边.(2)解:如图1,延长AD至点E,使DE=AD,连接CE,∵AD是中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△CDE(SAS),∴AB=EC=4,在△ACE中,AC﹣CE<AE<AC+CE,∴4﹣3<2AD<4+3,∴1<2AD<7,∴.故答案为:.(3)EF与AD的数量关系为EF=2AD.理由如下:如图2,延长AD至点M,使DM=AD,连接CM,∵AD是中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△CDM(SAS),∴AB=MC,∠ABD=∠DCM,∴AE=CM,AB∥CM,∴∠BAC+∠ACM=180°,∵∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴∠EAF=∠ACM,又∵AF=AC,∴△EAF≌△MCA(SAS),∴AM=EF,∵AM=2AD,∴EF=2AD.24.(12分)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE=22.5° ;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:A D⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE之间的数量关系,并写出证明过程.【分析】(1)由等腰三角形的性质得出∠AED=∠ADE,证出∠ACE=∠DCF,由等腰直角三角形的性质可得出答案;(2)延长DF至Q,使FQ=DF,连接BQ,证明△DAC≌△EAB(SAS),由全等三角形的性质得出D C=BE,∠ADC=∠AEB,证明△DFC≌△QFB(SAS),由全等三角形的性质得出DC=QB,∠CDF=∠Q,证出∠ADC=90°,则可得出结论;(3)在BN上截取BH=CD,连接AH,证明△ABH≌△ACD(SAS),得出∠BAH=∠CAD,AD=A H,∠AHB=∠ADC,证明△AHN≌△DAN(SAS),由全等三角形的性质得出∠AHN=∠ADN,证出∠ADM=∠ADE,由等腰三角形的性质可得出结论.【解答】(1)解:∵AD=AE,∴∠AED=∠ADE,∵∠ADE=∠CDF,∴∠AED=∠CDF,∵∠BAC=90°,∴∠AEC+∠ACE=90°,∵AF⊥BC,∴∠DFC=90°,∴∠CDF+∠DCF=90°,∴∠ACE=∠DCF,∵AB=AC,∠BAC=90°,∴∠ACB=45°,∴∠ACE=∠ACB=22.5°,故答案为:22.5°;(2)证明:延长DF至Q,使FQ=DF,连接BQ,∵∠BAC=∠EAD,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△DAC≌△EAB(SAS),∴DC=BE,∠ADC=∠AEB,∵F为BC的中点,∴BF=CF,又∵DF=FQ,∠DFC=∠BFQ,∴△DFC≌△QFB(SAS),∴DC=QB,∠CDF=∠Q,∴QB=BE,∴∠Q=∠BEQ,∵AE=AD,∴∠AED=∠ADE,∴∠AEB=∠AED+∠BEQ=∠ADE+∠Q=∠ADE+∠CDF=∠ADC,∵∠ADE+∠CDF+∠ADC=180°,∴∠ADC=90°,∴AD⊥CD;(3)解:∠DAE+2∠ADM=180°.证明:在BN上截取BH=CD,连接AH,∵∠ABM+∠ACM=180°,∠ACM+∠ACD=180°,∴∠ABM=∠ACD,又∵AB=AC,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AD=AH,∠AHB=∠ADC,∴∠BAC=∠BAH+∠HAC=∠CAD+∠HAC=∠HAD,∵∠BAC=2∠NAD,∴∠HAN=∠NAD,又∵AN=AN,∴△AHN≌△DAN(SAS),∴∠AHN=∠ADN,∵∠AHN+∠AHB=180°,∠ADE+∠ADN=180°,∴∠AHB=∠ADE,∴∠ADM=∠ADE,∵AD=AE,∴∠ADE=∠AED,∴∠DAE+2∠ADE=180°,∴∠DAE+2∠ADM=180°.。

四川省眉山市东坡区东坡中学2022-2023学年八年级上学期期末模拟测试语文试题

四川省眉山市东坡区东坡中学2022-2023学年八年级上学期期末模拟测试语文试题

眉山市东坡中学2022—2023年度八年级上期末模拟语文试卷及答案温馨提示:1.本卷共五大题,27小题,共4页,全卷满分150分。

考试时间150分钟。

2.答题前务必将自己的姓名、学校、考号填写在答题卡上规定的相应位置,答在本试卷上无效。

3.答选择题时请使用2B铅笔将答题卡上对应题目的答案标号涂黑,特别要注意所涂答案与题号一致;答非选择题时必须用0.5毫米黑色字迹签字笔书写,将答案书写在答题卡规定的位置,在答题卡以外的地方答题无效。

一、语言知识运用(15分,每小题3分)1.下列词语中,加点字的读音有错误的一项是()(3分)A、踌.躇(chóu)黏.土(nián)婆娑.(suō)长途跋涉.(shè)B、嶙.峋(lín)依傍.(bàng)遒劲.(jìng)摩肩接踵.(zhǒng)C、侵.略(qīn)摄.取(shè) 丘壑.(hè)自出心裁.(cái)D、牛犊.(dú)濒.临(bīng)纤.维(qiān)恹恹..欲睡(yān)2.下列词语中没有错别字的一项是()(3分)A、秀颀消逝遏制唯妙唯肖B、残损雕镂斟酌巧妙绝纶C、隧道车辙题跋无动于衷D、颓唐虬枝锁屑春寒料峭3.下列各句中,加点的成语使用不正确的一项是()(3分)A、网络热词在学生作业中出现的频率越来越高,针对这一现象,大家各执己见,争论激烈,一时间众说纷纭,莫衷一是....。

B、家风是一个家族代代沿袭,能够体现家族成员精神风貌、道德品质审美格调的家族文化。

美好家风的形成是漫长的,不可能一气呵成....。

C、一切气息都幻化成悄无声息的因子,在记忆的深处潜滋暗长....,一切就这样简单而诗意,和谐而亲切。

D、这时你会真心佩服昔人所造的两个字“麦浪”,若不是妙手偶得....,便确实经过锤炼的语言的精华。

4.下列各句中,没有语病的一句是()(3分)A、巴黎圣母院发生火灾,我国国家领导人第一时间向法国总统及法国人民致电慰问。

2024届山东省菏泽市牡丹区第二十二初级中学八上数学期末检测模拟试题含解析

2024届山东省菏泽市牡丹区第二十二初级中学八上数学期末检测模拟试题含解析

2024届山东省菏泽市牡丹区第二十二初级中学八上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.在直角坐标系中,点P (3,1)关于x 轴对称点的坐标是( )A .(3,1)B .(3,﹣1)C . (﹣3,1)D .(﹣3,﹣1)2.已知2221112222a b c ab bc ac ++=---,则a+b+c 的值是( )A .2B .4C .±4D .±23.把分式()22x y x y x y +≠-分子、分母中的x ,y 同时扩大为原来的2倍,那么该分式的值( )A .扩大为原来的2倍B .缩小为原来的2倍C .不变D .扩大为原来的4倍4.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .5.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2, 36.如图,已知△ABC 中,点O 是BC 、AC 的垂直平分线的交点,OB =5cm ,AB =8cm ,则△AOB 的周长是()A .21cmB .18cmC .15cmD .13cm7.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形8.如图,直线l 1、l 2的交点坐标可以看作方程组( )的解.A .x 2y 2 2x y 2-=-⎧⎨-=⎩B .y x 1 y 2x 2=-+⎧⎨=-⎩C .x 2y 1 2x y 2-=-⎧⎨-=-⎩D .y 2x 1 y 2x 2=+⎧⎨=-⎩ 9.在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的( )倍.A .7a mB .3a m -C .103m m -D .310m m- 10.下列各式计算正确的是( ).A .a 2•a 3=a 6B .(﹣a 3)2=a 6C .(2ab )4=8a 4b 4D .2a 2﹣3a 2=111.A ,B 两地相距80km ,甲、乙两人骑车分别从A ,B 两地同时相向而行,他们都保持匀速行驶.如图,l 1,l 2分别表示甲、乙两人离B 地的距离y (km )与骑车时间x (h )的函数关系.根据图象得出的下列结论,正确的个数是( ) ①甲骑车速度为30km/小时,乙的速度为20km/小时;②l 1的函数表达式为y=80﹣30x ;③l 2的函数表达式为y=20x ;④小时后两人相遇.A .1个B .2个C .3个D .4个12.81的平方根是( )A .9B .9或-9C .3D .3或-3二、填空题(每题4分,共24分)13.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.14.直线1y kx =+与21y x =-平行,则1y kx =+的图象不经过____________象限.15.如图,ABC △中,6AC =cm ,8AB =cm ,10BC =cm ,DE 是边AB 的垂直平分线,则ADC 的周长为______cm.16.如图,△ABC 中,BD 平分∠ABC ,DE 垂直平分AC ,若∠ABC =82°,则∠ADC =__________°.17.如图,在Rt ABC ∆中,90ACB ∠=︒,50A ∠=︒,点D 是AB 延长线上的一点,则CBD ∠的度数是______°.18.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.三、解答题(共78分)19.(8分)(1)解方程:33122x x x-+=--﹔ (2)已知3a b +=,2ab =,求代数式32232a b a b ab ++的值.20.(8分)在平面直角坐标系中,O 为原点,点A (2,0),点B (0,),把△ABO 绕点B 逆时针旋转,得△A′BO′,点A ,O 旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.21.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.(10分)计算:(1)(﹣2a )2•(a ﹣1)(2)42324164m m m m -⎛⎫⎛⎫-÷ ⎪ ⎪-+⎝⎭⎝⎭23.(10分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B 为多少度时,AP 平分CAB ∠.24.(10分)如图,直线l :y 1=﹣54x ﹣1与y 轴交于点A ,一次函数y 2=34x+3图象与y 轴交于点B ,与直线l 交于(1)画出一次函数y 2=34x+3的图象; (2)求点C 坐标;(3)如果y 1>y 2,那么x 的取值范围是______.25.(12分)如图,已知∠1=∠2,∠B=∠D ,求证:CB=CD .26.如图,一条直线分别与直线AF 、直线DF 、直线AE 、直线CE 相交于点B H G D ,,,,且12∠=∠,A D ∠=∠.求证:B C ∠=∠.参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意可设平面直角坐标系中任意一点P ,其坐标为(x ,y ),则点P 关于x 轴的对称点的坐标P′是(x ,【题目详解】解:点P (3,1)关于x 轴对称点的坐标是(3,﹣1).故选:B .【题目点拨】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.2、D【分析】先计算(a+b+c)2,再将2221112222a b c ab bc ac ++=---代入即可求解. 【题目详解】∵2221112222a b c ab bc ac ++=--- ∴2224222a b c ab bc ac ++=---∴22224222a ()222222c a b c a b c ab bc ac ab bc ab bc ac ++=+---++++++=+=4∴a+b+c=±2 故选:D【题目点拨】本题考查了代数式的求值,其中用到了2222()222a b c a b c ab bc ac ++=+++++.3、A 【分析】当分式()22x y x y x y +≠-中x 和y 同时扩大2倍,得到22(2)(2)22x y x y+-,根据分式的基本性质得到222222(2)(2)442222()x y x y x y x y x y x y+++==⨯---,则得到分式的值扩大为原来的2倍. 【题目详解】分式()22x y x y x y+≠-中x 和y 同时扩大2倍, 则原分式变形为222222(2)(2)442222()x y x y x y x y x y x y +++==⨯---, 故分式的值扩大为原来的2倍.故选A .【题目点拨】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.4、C【分析】根据函数图象判断a 、b 的符号,两个函数的图象符号相同即是正确,否则不正确.【题目详解】A 、若a>0,b<0,1y 符合,2y 不符合,故不符合题意;B 、若a>0,b>0,1y 符合,2y 不符合,故不符合题意;C 、若a>0,b<0,1y 符合,2y 符合,故符合题意;D 、若a<0,b>0,1y 符合,2y 不符合,故不符合题意;故选:C.【题目点拨】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b 中k 、b 的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y 轴正半轴相交,b<0时与y 轴负半轴相交. 5、B【解题分析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A 、42+52=41≠62,不可以构成直角三角形,故本选项错误;B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.6、B【分析】利用垂直平分线的性质定理,即垂直平分线上的点到线段两端的距离相等,通过等量代换可得. 【题目详解】解:连接OC ,∵点O 在线段BC 和AC 的垂直平分线上,∴OB=OC,OA=OC∴OA =OB =5cm ,∴AOB 的周长=OA +OB +AB =18(cm ),故选:B .【题目点拨】本题考查线段的垂直平分线性质,掌握垂直平分线的性质定理为本题的关键.7、C【解题分析】依据三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形.【题目详解】解:∵三角形的一个外角与它相邻的内角和为180°,而这个外角小于它相邻的内角,∴与它相邻的这个内角大于90°,∴这个三角形是钝角三角形.故选:C.【题目点拨】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.8、A【分析】首先利用待定系数法求出l1、l2的解析式,然后可得方程组.【题目详解】解:设l1的解析式为y=kx+b,∵图象经过的点(1,0),(0,-2),∴b20k b=-⎧⎨=+⎩,解得:b2 k2=-⎧⎨=⎩,∴l1的解析式为y=2x-2,可变形为2x-y=2,设l2的解析式为y=mx+n,∵图象经过的点(-2,0),(0,1),∴n102m n=⎧⎨=-+⎩,解得:n11m2=⎧⎪⎨=⎪⎩,∴l2的解析式为y=12x+1,可变形为x-2y=-2,∴直线l1、l2的交点坐标可以看作方程组x2y22x y2-=-⎧⎨-=⎩的解.故选:A.【题目点拨】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.9、C【分析】本题可利用工作总量作为相等关系,借助方程解题.【题目详解】解:设一台插秧机的工作效率为x,一个人工作效率为y.则10my=(m﹣3)x.∴103 x my m=-.故选:C.【题目点拨】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系,工程问题要有“工作效率”,“工作时间”,“工作总量”三个要素,数量关系为:工作效率×工作时间=工作总量.10、B【题目详解】解:A选项是同底数幂相乘,底数不变,指数相加,a2•a3=a5,故错误;B选项是利用积的乘方和幂的乘方法则把-1和a的三次方分别平方,(﹣a3)2=a6,正确;C选项利用积的乘方法则,把积里每一个因式分别乘方,(2ab)4=16a4b4,故错误;D选项把同类项进行合并时系数合并,字母及字母指数不变,2a2﹣3a2=﹣a2,错误;故选B.【题目点拨】本题考查同底数幂的乘法;幂的乘方与积的乘方;合并同类项.11、D【解题分析】根据速度=路程÷时间,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④正确.【题目详解】解:甲骑车速度为=30km/小时,乙的速度为=20km/小时,故①正确;设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:,解得,∴直线l 1的解析式为y=﹣30x+80,故②正确;设直线l 2的解析式为y=k′x ,把(3,60)代入得到k′=20,∴直线l 2的解析式为y=20x ,故③正确; 由,解得x=, ∴小时后两人相遇,故④正确;正确的个数是4个.故选:D .【题目点拨】本题考查一次函数的应用,速度、时间、路程之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、D【分析】根据算术平方根的定义和平方根的定义计算即可. 81813或-3故选D .【题目点拨】此题考查的是算术平方根和平方根的计算,掌握算术平方根的定义和平方根的定义是解决此题的关键.二、填空题(每题4分,共24分)13、22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【题目详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD,∠EAF =∠DAB,AC =AM,∴△EAC≌△DAM(SAS)∴CE=MD,∴当MD⊥BC时,CE的值最小,∵AC=BC=2,由勾股定理可得2222=+=,AB AC BC∴222BM,=-∵∠B=45°,∴△BDM为等腰直角三角形,∴DM=BD,由勾股定理可得222BD DM=BM+∴DM=BD=22-∴CE=DM=22-故答案为:22-【题目点拨】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE最小时的状态,化动为静.14、四【解题分析】根据两直线平行的问题得到k=2,然后根据一次函数与系数的关系判定y=2x+1所经过的象限,则可得到y=kx+1不经过的象限.解:∵直线y=kx+1与y=2x-1平行,∴k=2,∴直线y=kx+1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.15、16【解题分析】根据垂直平分线的性质得到AD=BD,AE=BE,再根据三角形的周长组成即可求解.【题目详解】∵DE 是边AB 的垂直平分线,∴AD=BD,AE=BE∴ADC 的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm ,故填16.【题目点拨】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.16、98【分析】由题意,作DM ⊥AB 于M ,DN ⊥BC 于N ,通过证明Rt ADM Rt CDN ∆≅∆,再由四边形的内角和定理进行计算即可得解.【题目详解】作DM ⊥AB 于M ,DN ⊥BC 于N ,如下图:则90DMB DNB ∠=∠=︒,∵BD 平分ABC ∠,∴DM =DN ,∵DE 垂直平分AC ,∴AD =CD ,在Rt ADM ∆和Rt CDN ∆中,AD CD DM DN =⎧⎨=⎩∴()Rt ADM Rt CDN HL ∆≅∆,∴ADM CDN ∠=∠,∴ADC MDN ∠=∠,在四边形BMDN 中,由四边形内角和定理得:180MDN ABC ∠+∠=︒,∴1808298MDN ∠=︒-︒=︒,∴98ADC ∠=︒,故答案为:98.【题目点拨】本题主要考查了三角形的全等及四边形的内角和定理,熟练掌握直角三角形的全等判定方法是解决本题的关键.17、1【分析】根据三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和,即可求出CBD ∠的度数.【题目详解】解:∵90ACB ∠=︒,50A ∠=︒,CBD ∠是△ABC 的外角∴CBD ∠=ACB ∠+∠A=1°故答案为:1.【题目点拨】此题考查是三角形外角的性质,掌握三角形的外角等于与它不相邻的两个内角之和是解决此题的关键.18、036【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【题目详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC, ∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠=01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠ = 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【题目点拨】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.三、解答题(共78分)19、(1)1x =;(2)18【分析】(1)根据分式方程的解法直接进行求解即可;(2)先对整式进行因式分解,然后整体代入求解即可.【题目详解】解:(1)33122x x x-+=-- 去分母得:323x x +-=-,整理解得:1x =;经检验1x =是原方程的解;(2)32232a b a b ab ++=()()2222ab a ab b ab a b ++=+, 把3a b +=,2ab =代入求解得:原式=223=18⨯.【题目点拨】本题主要考查分式方程及因式分解,熟练掌握各个运算方法是解题的关键.20、【解题分析】根据勾股定理得AB= ,由旋转性质可得∠A′BA=90°,A′B=AB=.继而得出AA′=. 【题目详解】∵点A (2,0),点B (0,), ∴OA=2,OB=.在Rt △ABO 中,由勾股定理得AB=. 根据题意,△A′BO′是△ABO 绕点B 逆时针旋转90°得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==. 【题目点拨】本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.21、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解题分析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得: x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==. 答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a 台,则购进电子白板(30-a )台,则0.5a 1.5(30a)28{0.5a 1.5(30a)30+-≥+-≤,解得:15a 17≤≤,即a=15,16,1. 故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为0.515 1.51530⨯+⨯=万元;方案二:购进电脑16台,电子白板14台.总费用为0.516 1.51429⨯+⨯=万元;方案三:购进电脑1台,电子白板13台.总费用为0.517 1.51328⨯+⨯=万元.∴方案三费用最低.(1)设电脑、电子白板的价格分别为x,y 元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可.(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解.设购进电脑x 台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答.22、(1)4a 3﹣4a 2;(2)3m【分析】(1)先算乘方、再用整式乘法运算法则计算即可;(2)先对各分式的分母因式分解,然后按照分式乘除运算法则计算即可.【题目详解】解:(1)原式=4a 2(a ﹣1)=4a 3﹣4a 2;(2)原式=312244 (4)(4)(4)(4)m m m m m m m⎡⎤++-⋅⎢⎥+-+-⎣⎦ =3124 (4)(4)m m m m m-+⋅+- =3(4)4 (4)(4)m m m m m-+⋅+- =3m. 【题目点拨】本题考查了整式的乘法和分式的四则混合运算,解答的关键在先算乘法和对分式的分母进行因式分解.23、(1)详见解析;(2)30°.【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【题目详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【题目点拨】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.24、 (1)画图见解析;(1)点C 坐标为(﹣1,32);(3)x <﹣1. 【解题分析】(1)分别求出一次函数y 1=34x +3与两坐标轴的交点,再过这两个交点画直线即可; (1)将两个一次函数的解析式联立得到方程组514334y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩,解方程组即可求出点C 坐标; (3)根据图象,找出y 1落在y 1上方的部分对应的自变量的取值范围即可.【题目详解】解:(1)∵y 1=34x+3,∴当y1=0时,34x+3=0,解得x=﹣4,当x=0时,y1=3,∴直线y1=34x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(1)解方程组514334y xy x⎧=--⎪⎪⎨⎪=+⎪⎩,得232xy=-⎧⎪⎨=⎪⎩,则点C坐标为(﹣1,32 );(3)如果y1>y1,那么x的取值范围是x<﹣1.故答案为(1)画图见解析;(1)点C坐标为(﹣1,32);(3)x<﹣1.【题目点拨】本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.25、证明见解析.【解题分析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC 与△ADC 中,B D ACB ACD AC AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△ADC(AAS ),∴CB=CD .点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.26、见解析【分析】由∠1=∠2利用“内错角相等,两直线平行”可得出AE ∥DF ,再利用“两直线平行,同位角相等”可得出∠AEC=∠D ,结合∠A=∠D 可得出∠AEC=∠A ,利用“内错角相等,两直线平行”可得出AB ∥CD ,再利用“两直线平行,内错角相等”可证出∠B=∠C .【题目详解】解:证明:∵∠1=∠2,∴AE ∥DF ,∴∠AEC=∠D .又∵∠A=∠D ,∴∠AEC=∠A ,∴AB ∥CD ,∴∠B=∠C .【题目点拨】本题考查了平行线的判定与性质,牢记各平行线的判定定理及性质定理是解题的关键.。

贵州省铜仁市2023-2024学年八年级上学期期末诊断模拟语文试卷

贵州省铜仁市2023-2024学年八年级上学期期末诊断模拟语文试卷

2023-2024学年贵州铜仁第一学期期末诊断模拟八年级语文注意事项:1.本试卷全卷满分100分,120分钟内完成,闭卷。

2. 答题前填写好自己的姓名、班级、考号等信息。

3.请将答案正确填写在答题卷上,答在本试卷内无效。

4.考试结束后,将答题卷交回。

第一部分阅读(60分)一、诗歌鉴赏(8分)阅读古诗,完成下面小题。

黄鹤楼崔颢昔人已乘黄鹤去,此地空余黄鹤楼。

黄鹤一去不复返,白云千载空悠悠。

晴川历历汉阳树,芳草萋萋鹦鹉洲。

日暮乡关何处是?烟波江上使人愁。

1.诗歌颔联、颈联用精当的词语写出了景物的特点:用“悠悠”形容白云的飘荡无定,用“① ”形容汉阳树的清晰可数,用“萋萋”形容① 。

(4分)2.《藤野先生》中有这样一段文字:“我就往仙台的医学专门学校去。

从东京出发,不久便到一处驿站,写道:日暮里。

不知怎地,我到现在还记得这名目。

”有人推测鲁迅“还记得这名目”与本诗尾联抒发的情感有关,你认为这种推测合理吗?请说明你的理由。

(4分)二、课外阅读(12分)阅读古文,完成下面小题。

【甲】元丰六年十月十二日夜,解衣欲睡,月色入户,欣然起行。

念无与为乐者,遂至承天寺寻张怀民。

怀民亦未寝,相与..步于中庭。

庭下如积水空明,水中藻、荇交横,盖竹柏影也。

何夜无月?何处无竹柏?但.少闲人如吾两人者耳。

(选自苏轼《记承天寺夜游》)【乙】苏子曰:“客亦知夫水与月乎?逝者如斯,而未尝往也;盈虚①者如彼,而卒莫消②长也。

盖将自其变者而观之,则天地曾不能以一瞬;自其不变者而观之,则物与我皆无尽也,而又何羡乎?且夫天地之间,物各有主,苟非吾之所有,虽一毫而莫取。

惟江上之.清风,与山间之明月,耳得之而为声,目遇之而成色,取之无禁,用之不竭,是造物者③之无尽藏也,而吾与子之所共适。

”(节选自苏轼《前赤壁赋》)【注释】①盈虚:盈,指月圆;虚,指月缺。

①消:消失。

①造物者:自然界,原意指“天”。

3.下列加点的词语解释有误的一项是()(2分)A.念.无与为乐者念:考虑,想到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------八年级上册数学期末模拟试卷一、选择题(每小题3分,共24分)1.下列计算正确的是 ( ).A.235x x x += B.236x x x =· C.235()xx = D.532x x x ÷=2.下面的多项式中,能因式分解的是 ( ). A.n m +2B.12+-m m C.n m -2D.122+-m m 3.分式21a +有意义,则a 的取值范围是 ( ). A.0a = B.1a = C.1a ≠- D.0a ≠4.下列长度的三条线段,不能..组成三角形的是 ( ). A .3,8,4 B .4,9,6 C .15,20,8 D .9,15,85.图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是 ( ).6.等腰三角形的顶角为80,则它的底角是 ( ). A.20° B.50° C.60° D.80°7.如图,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB的距离DE 是 ( ). A .5cm B.4cm C.3cm D.2cm8.如图,已知点A D C F 、、、在同一条直线上,AB DE =,BC EF =,要使ABC DEF △≌△,还需要添加一个条件是 ( ).A.BCA F ∠=∠B.B E ∠=∠C.BC EF ∥D.A EDF ∠=∠ 二、填空题(每小题3分,共24分) 9.计算:2325x x ·=____________.ABCDE7题图8题图班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------10.已知216x x k ++是完全平方式,则常数k 等于 .11.分式2293x x x-+的值为0,则x 的值是 .12.如图,在△ABC 中, 若∠A=42º, ∠B=62º,则以C 点为顶点的△AB C 的一个外角等于 度.13.如图,在ABC △中,AB AC =,6BC =,AD BC ⊥于D ,则BD =___ ___. 14.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 的长为 .15.如图,四边形ABCD 中,若去掉一个60°的角得到一个五边形,则12∠+∠=__________度.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有 种. 三、解答题(共25分) 17.(本题满分5分)因式分解:39m n mn -.18.(本题满分5分)化简:2221211x x x x x x--+÷+-.19.(本题满分5分)如图,ABC △中,60A ∠=°,15BC ∠∠=∶∶.求B ∠的度数.12题图 14题图13题图 16题图15题图班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------20.(本题满分5分)如图方格纸中每个小方格都是边长为1 个单位的正方形,在建立平面直角坐标系后,∆ABC 的顶点在格点上,点B 的坐标为(5,-4),请你作出A B C '''∆,使A B C '''∆与∆ABC 关于y 轴对称,并写出B '的坐标.21.(本题满分5分)如图,已知AC 平分∠BAD ,AB=AD .求证:△ABC ≌△ADC .四、解答题(共27分) 22. (本题满分6分)先化简,再求值:222()()()b a b a b a b ++---,其中3a =-,12b =.23. (本题满分7分)如图,P 是∠BAC 内的一点,PE AB PF AC ⊥⊥,,垂足分别为点E F ,,AF AE =. 求证:(1)PF PE =;(2)点P 在∠BAC 的角平分线上.ADCBFC EBAP班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------24. (本题满分7分)已知:如图,锐角ABC △的两条高BD CE 、相交于点O ,且OB OC .求证:ABC △是等腰三角形.25.(本题满分7分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?七、探究题:(本题满分5分)26.已知:四边形ABED 中,AD ⊥DE 、BE ⊥DE .(1) 如图1,点C 是边DE 的中点,且AB=2AD=2BE .判断△ABC 的形状: (不必说明理由);(2) 保持图1中△ABC 固定不变,将直线DE 绕点C 旋转到图2中所在的MN 的位置(垂线段AD 、BE 在直线MN 的同侧).试探究...线段AD 、BE 、DE 长度之间有什么关系?并给予证明; (3) 保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(垂线段AD 、BE 在直线MN 的异侧).⑵中结论是否依然成立,若成立请证明;若不成立,请写出新的结论,并给予证明.AEDOBC ABC D EABC DE MN MNABC D E 图1 图2图3八年级上数学期末模拟试卷参考答案及评分意见一、选择题(每小题3分,共24分)1.D2.D3.C4.A5.C6.B7.C8.B 二、填空题(每空3分,共24分)9、10x 5 10、64 11、3 12=76º 13、3 14、6 15、240° 16、4 三、解答题(共50分)17.(本题满分5分) 解:39m n mn -=mn(m 2-9) ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 2分 =mn(m+3)(m-3). ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分 18.(本题满分5分)解; 2221211x x x x x x--+÷+-.)1()1(1)1)(1(2x x x x x x x =--⨯+-+=┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分19.(本题满分5分)解:∵∠A+∠B+∠C=1800,60A ∠=°, 18060120B C ∴∠+∠=-=°°°, ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 2分 ∵∠B :∠C=1:5,5120B B ∴∠+∠=°, ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分20B ∴∠=°. ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分20. (本题满分5分)解:作图正确得3分.点B '的坐标为(5,4). ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分 21.(本题满分5分) 证明:∵AC 平分∠BAD , ∴∠BAC=∠DAC. ┅┅┅┅┅┅┅┅┅┅┅┅┅ 2分又∵AB=AD,AC=AC,∴△ABC ≌△ADC . ┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分 四、解答题(共27分) 22.(本题满分6分) 解:222()()()ba b a b a b ++---2+a 2-b 2-a 2+2ab-b 2┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 2分┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分 当3a =-,12b =时, ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分AD CB班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------原式=2×(-3)×21 =-3. ┅┅┅┅┅┅┅┅┅ 6分23(本题满分7分)证明:(1)如图,连结AP , ∵PE ⊥AB,PF ⊥AC, ∴∠AEP=∠AFP=900. ┅ ┅┅┅┅┅┅┅┅┅ 1分又∵AE=AF ,AP=AP ,∴Rt △AEP ≌Rt △AFP , ┅┅┅┅┅┅┅┅┅ 3分∴PE=PF .┅ ┅┅┅┅┅┅┅┅┅ 4分(2)∵Rt △AEP ≌Rt △AFP , ∴∠EAP=∠FAP ,┅┅┅┅┅┅┅┅┅ 5分∴AP 是∠BAC 的角平分线, ┅┅┅┅┅┅┅┅┅ 6分 故点P 在∠BAC 的角平分线上 ┅┅┅┅┅┅┅┅┅ 7分 24.(本题满分7分)证明:∵BD 、CE 是ABC △的高,90BEC CDB ∴∠=∠=°. ┅┅┅┅┅┅┅┅┅ 1分∵OB=OC ,∴∠OBC=∠OCB , ┅┅┅┅┅┅┅┅┅ 2分 又∵BC 是公共边,()BEC CDB AAS ∴△≌△. ┅┅┅┅┅┅┅┅┅ 4分ABC ACB ∴∠=∠. ┅┅┅┅┅┅┅┅┅ 5分 AB AC ∴=, ┅┅┅┅┅┅┅┅┅6分即ABC △是等腰三角形. ┅┅┅┅┅┅┅┅┅ 7分 25.(本题满分7分)解:设乙每小时加工x 个零件,则甲每小时加工(x+10)个零件, ┅┅┅┅┅┅┅┅┅ 1分 根据题意,得.12010150xx =+ ┅┅┅┅┅┅┅┅┅ 3分解得,x=40. ┅┅┅┅┅┅┅┅┅ 5分 经检验x=40是原方程的解, ┅┅┅┅┅┅┅┅┅ 6分 答:甲每小时加工40个机器零件. ┅┅┅┅┅┅┅┅┅ 7分26.解(1) 等腰直角三角形 ………………………………………………1分A EDOBC1ABC DE2M N AB CDE 12ABC EN1 2班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------(2) DE =AD +BE ;………………………………………………2分 证明:如图2,在Rt △ADC 和Rt △CEB 中,∵∠1+∠CAD =90︒,∠1+∠2=90︒,∴∠CAD =∠2又∵AC =CB ,∠ADC =∠CEB =90︒, ∴Rt △ADC ≅Rt △CEB∴DC =BE ,CE =AD ,∴DC +CE =BE +AD , ………………………………………3分即DE =AD +BE(3) DE =BE -AD …………………………………………………4分 如图3,Rt △ADC 和Rt △CEB 中,∵∠1+∠CAD =90︒,∠1+∠2=90︒,∴∠CAD =∠2,又∵∠ADC =∠CEB =90︒,AC =CB ,∴Rt △ADC ≅Rt △CEB ,∴DC =BE ,CE =AD ,∴DC -CE =BE -AD , ……………………………………………5分即DE =BE -AD.。

相关文档
最新文档