河南省焦作市2019-2020学年中考数学四模试卷含解析
河南省焦作市2019-2020学年中考数学模拟试题(1)含解析
河南省焦作市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+2.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A.12cm B.122cm C.24cm D.242cm3.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米4.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.245.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是() A .3y x =B .3y x=C .1y x=-D .2y x = 6.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40B .45C .51D .567.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .8.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点9.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形; ⑥在△ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形. A .3个 B .4个 C .5个 D .6个10.二次函数y =ax 2+c 的图象如图所示,正比例函数y =ax 与反比例函数y =cx在同一坐标系中的图象可能是( )A.B.C.D.11.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程2x3x m0-+=的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=312.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A.小明不是胜就是输,所以小明胜的概率为12B.小明胜的概率是13,所以输的概率是23C.两人出相同手势的概率为12D.小明胜的概率和小亮胜的概率一样二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.14.已知:正方形ABCD.求作:正方形ABCD 的外接圆.作法:如图,(1)分别连接AC,BD,交于点O;(2)以点 O 为圆心,OA 长为半径作⊙O ,⊙O 即为所求作的圆. 请回答:该作图的依据是__________________________________.15.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为_____.16.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).17.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm . 18.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图. 成绩分组组中值 频数 25≤x <3027.5 4 30≤x <3532.5 m 35≤x <4037.52440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?20.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.21.(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_______,图①中m 的值是_____ ; (2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h 的人数.22.(8分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).求该抛物线的解析式;求梯形COBD 的面积.23.(8分)如图1,点D 为正ABC ∆的BC 边上一点(D 不与点,B C 重合),点,E F 分别在边,AB AC 上,且EDF B ∠=∠.(1)求证:~BDE CFD ∆∆;(2)设,BD a CD b ==,BDE ∆的面积为1S ,CDF ∆的面积为2S ,求12S S ⋅(用含,a b 的式子表示); (3)如图2,若点D 为BC 边的中点,求证: 2DF EF FC =⋅.图1 图224.(10分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,(1)求证:BC=2AD;(2)若cosB=34,AB=10,求CD的长.25.(10分)先化简,再求值:22m35m23m6m m2-⎛⎫÷+-⎪--⎝⎭,其中m是方程2x3x10++=的根.26.(12分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.27.(12分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题分析:设骑车学生的速度为xkm/h ,则汽车的速度为2xkm/h ,由题意得,1010123x x =+.故选C . 考点:由实际问题抽象出分式方程. 2.D 【解析】 【分析】过A 作AD ⊥BF 于D,根据45°角的三角函数值可求出AB 的长度,根据含30°角的直角三角形的性质求出斜边AC 的长即可. 【详解】如图,过A 作AD ⊥BF 于D , ∵∠ABD=45°,AD=12, ∴sin 45ADAB ︒=2, 又∵Rt △ABC 中,∠C=30°, ∴2, 故选:D .【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.3.D【解析】【分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度=4206=70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.4.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236AD EF==⨯=,∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.5.B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.6.C【解析】【分析】【详解】解:根据定义,得x45<5110+≤+∴50x4<60≤+解得:46x<56≤.故选C.7.C【解析】【分析】【详解】从正面看到的图形如图所示:,故选C.8.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.9.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C,∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.10.C【解析】【分析】根据二次函数图像位置确定a<0,c>0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a<0,c>0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.11.B【解析】试题分析:∵二次函数2y x 3x m -+=(m 为常数)的图象与x 轴的一个交点为(1,0),∴213m 0m 2-+=⇒=.∴2212x 3x m 0x 3x 20x 1x 2-+=⇒-+=⇒==,.故选B . 12.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A 、错误.小明还有可能是平;B 、错误、小明胜的概率是 13,所以输的概率是也是13; C 、错误.两人出相同手势的概率为13; D 、正确.小明胜的概率和小亮胜的概率一样,概率都是13; 故选D .【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积=2245143602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.14.正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【解析】【分析】利用正方形的性质得到 OA=OB=OC=OD ,则以点O 为圆心,OA 长为半径作⊙O ,点B 、C 、D 都在⊙O 上,从而得到⊙O 为正方形的外接圆.【详解】∵四边形 ABCD 为正方形,∴OA=OB=OC=OD ,∴⊙O 为正方形的外接圆.故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A 的路线长是:90π42π180⨯=, 转动第二次的路线长是:90π55π1802⨯=, 转动第三次的路线长是:90π33π1802⨯=, 转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键. 16.甲.【解析】乙所得环数的平均数为:0159105++++=5,S2=1n[21x x(-)+22x x(-)+23x x(-)+…+2nx x(-)]=15[205(-)+215(-)+255(-)+295(-)+2105(-)]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.17.4【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.18.1.【解析】试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB=22+=13,△ACF与△BDF的周长之和512+=22AC BC=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析(2)2400【解析】【分析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)20.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元; 在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y ⨯--⨯=≈(元). y 能反映该公司员工的月工资实际水平.21.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h ;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m 值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h 的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人, m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h ), 众数为1.5h ,中位数为=1.5h ;(3)估计每天在校体育锻炼时间大于等于1.5h 的人数约为250000×=160000人. 【点睛】本题主要考查数据的收集、 处理以及统计图表.22.(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解析】【分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形. 23.(1)详见解析;(1)详见解析;(3)详见解析.【解析】【分析】(1)根据两角对应相等的两个三角形相似即可判断;(1)如图1中,分别过E ,F 作EG ⊥BC 于G ,FH ⊥BC 于H ,S 1=12•BD•EG=12•BD•EG=12•a•BE•sin60°=3•a•BE ,S 1=12•CD•FH=3•b•CF ,可得S 1•S 1=316ab•BE•CF ,由(1)得△BDE ∽△CFD ,BD FC BE CD=,即BE•FC=BD•CD=ab ,即可推出S 1•S 1=316a 1b 1; (3)想办法证明△DFE ∽△CFD ,推出EF DF DF FC =,即DF 1=EF•FC ; 【详解】(1)证明:如图1中,在△BDE 中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC ,∵∠EDF=∠B ,∴∠DEB=∠FDC ,又∠B=∠C ,∴△BDE ∽△CFD .(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=12•BD•EG=12•BD•EG=123,S1=123,∴S1•S1=316ab•BE•CF由(1)得△BDE∽△CFD,∴BD FCBE CD=,即BE•FC=BD•CD=ab,∴S1•S1=316a1b1.(3)由(1)得△BDE∽△CFD,∴BD FC BE CD=,又BD=CD,∴CD FC DE DF=,又∠EDF=∠C=60°,∴△DFE∽△CFD,∴F DFDF FC=,即DF1=EF•FC.【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.24.(1)证明见解析;(2)CD=7.【解析】【分析】(1)根据三角函数的概念可知tanA=CDAD,cos∠BCD=CDBC,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.【详解】(1)∵tanA=CDAD,cos∠BCD=CDBC,tanA=2cos∠BCD,∴CDAD=2·CDBC,∴BC =2AD.(2)∵cosB =BD BC =34,BC =2AD , ∴BD AD =32. ∵AB =10,∴AD =25×10=4,BD =10-4=6, ∴BC =8,∴CD =22BC BD -=27.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.25.原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可. 试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 考点:分式的化简求值;一元二次方程的解.26.(1)40;(2)72;(3)1.【解析】【分析】(1)用最想去A 景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D 景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A 景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=1,所以估计“最想去景点B“的学生人数为1人. 27.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人, 如图:(3)设需从甲组抽调x 名同学到丙组,根据题意得:3(11-x )=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图; (3)设需从甲组抽调x 名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解。
河南省焦作市2019-2020学年中考中招适应性测试卷数学试题(4)含解析
河南省焦作市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.132.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π3.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,224.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.35.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件6.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B 的度数是()A.30°B.45°C.50°D.60°7.下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖8.下列各式中计算正确的是()A.x3•x3=2x6B.(xy2)3=xy6C.(a3)2=a5D.t10÷t9=t9.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 1x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y310.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )A.254B.15 C.454D.911.计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.1812.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数2y x =-中,自变量x 的取值范围是_____.14.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.15.在数学课上,老师提出如下问题:尺规作图:确定图1中»CD 所在圆的圆心. 已知:»CD. 求作:»CD所在圆的圆心O . 曈曈的作法如下:如图2,(1)在»CD上任意取一点M ,分别连接CM ,DM ; (2)分别作弦CM ,DM 的垂直平分线,两条垂直平分线交于点O .点O 就是»CD所在圆的圆心. 老师说:“曈曈的作法正确.” 请你回答:曈曈的作图依据是_____.16.已知16x x +=,则221x x+=______ 17.函数2+1x x 的取值范围是___________. 18.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为 ▲ 辆.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,抛物线l 1:y=﹣x 2+bx+3交x 轴于点A 、B ,(点A 在点B 的左侧),交y 轴于点C ,其对称轴为x=1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),交y 轴于点D (0,﹣5). (1)求抛物线l 2的函数表达式;(2)P 为直线x=1上一动点,连接PA 、PC ,当PA=PC 时,求点P 的坐标;(3)M 为抛物线l 2上一动点,过点M 作直线MN ∥y 轴(如图2所示),交抛物线l 1于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.20.(6分)如图,已知▱ABCD.作∠B的平分线交AD于E点。
河南省焦作市2019-2020学年中考第四次大联考数学试卷含解析
河南省焦作市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.2.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.1 xa b <-3.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=24.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1085.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S 四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个7.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是( )A .120240420x x -=+B .240120420x x -=+C .120240420x x -=-D .240120420x x -=- 8.-3的相反数是( )A .13B .3C .13- D .-39.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°10.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .B .1C .D .11.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )A .8×107B .880×108C .8.8×109D .8.8×101012.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面积是A .2360cm πB .2720cm πC .21800cm πD .23600cm π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是_____. 14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.15.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=5x(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.16.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.17.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.18.已知16xx+=,则221xx+=______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?20.(6分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.21.(6分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由. 22.(8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE 是⊙O 的切线;当BC=4时,求劣弧AC 的长.23.(8分)如图,已知抛物线y=ax 2﹣2ax+b 与x 轴交于A 、B (3,0)两点,与y 轴交于点C ,且OC=3OA ,设抛物线的顶点为D .(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;(3)若平行于x 轴的直线与该抛物线交于M 、N 两点(其中点M 在点N 的右侧),在x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.24.(10分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x 2﹣4x+2=025.(10分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.26.(12分)已知:如图1,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),根据对称性△AMB 恒为等腰三角形,我们规定:当△AMB 为直角三角形时,就称△AMB 为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2y x =的“完美三角形”斜边AB 的长;②抛物线21y x +=与2y x =的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.27.(12分)关于x 的一元二次方程ax 2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 2.B【解析】∵关于x 的不等式ax <b 的解为x >-2,∴a<0,且2b a =-,即2b a =-, ∴(1)解不等式ax+2<-b+2可得:ax<-b ,2b x a >-=,即x>2; (2)解不等式–ax-1<b-1可得:-ax<b ,2b x a <-=,即x<2; (3)解不等式ax>b 可得:2b x a<=-,即x<-2; (4)解不等式1x a b <-可得:12a x b >-=,即12x >; ∴解集为x<2的是B 选项中的不等式.故选B.3.D【解析】【分析】由1122AE AD BC ==, 又AD ∥BC ,所以12AE AF BC FC ==, 故A 正确,不符合题意;过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故B 正确,不符合题意; 根据相似三角形的判定即可求解,故C 正确,不符合题意;由△BAE ∽△ADC ,得到CD 与AD 的大小关系,根据正切函数可求tan ∠CAD 的值,故D 错误,符合题意.【详解】A.∵AD ∥BC ,∴△AEF ∽△CBF ,∴12AE AF BC FC ==, ∵1122AE AD BC ==, ∴12AF FC =,故A 正确,不符合题意; B. 过D 作DM ∥BE 交AC 于N ,∵DE ∥BM,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴12BM DE BC ==, ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,∴∠DCF=∠DFC ,故B 正确,不符合题意;C. 图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意;D. 设AD=a,AB=b,由△BAE ∽△ADC,有2.ab a b= ∵tan ∠CAD CD b AD a === 故D 错误,符合题意. 故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键. 4.A【解析】【分析】设每次降价的百分率为x ,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x ),第二次后的价格是168(1-x )2,据此即可列方程求解.【详解】设每次降价的百分率为x ,根据题意得:168(1-x )2=1.故选A .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.5.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C .【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.6.C【解析】【分析】利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.7.A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:1202404 x x20-=+.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.8.B【解析】【分析】根据相反数的定义与方法解答.【详解】解:-3的相反数为()33--=.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.9.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.10.B【解析】【分析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出. 【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4,D是AB的中点,CD=AB=4=2.E,F分别为AC,AD的中点,EF是△ACD的中位线.EF=CD=2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=880 0000 0000=8.8×1010,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D【解析】圆锥的侧面积=12×80π×90=3600π(cm2) .故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥11 43【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】解:根据题意,得:311556x x--≥,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥11 43,故答案为x≥11 43.【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.14.【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.15.1.【解析】解:∵平移后解析式是y=x﹣b,代入y=5x得:x﹣b=5x,即x2﹣bx=5,y=x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=1,故答案为1.点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x 平移后的解析式是解答本题的关键. 16.1【解析】【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a 、b ,计算即可.【详解】a 2+b 2﹣8a ﹣4b+20=0,a 2﹣8a+16+b 2﹣4b+4=0,(a ﹣4)2+(b ﹣2)2=0a ﹣4=0,b ﹣2=0,a=4,b=2,则a 2﹣b 2=16﹣4=1,故答案为1.【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键. 17.﹣1.【解析】【分析】 根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】根据题意得121266,y y x x ==, 所以1212126636369.4y yx x x x =⋅===-- 故答案为:−1.【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.18.34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25, 90°;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a 的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°; (2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1 ∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.20.见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.21.(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】【详解】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人; (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.22.(1)60°;(2)证明略;(3)8 3π【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.23.(1)y=﹣x2+2x+1;(2)P(2,135+55-;(1)存在,且Q1(1,0),Q2(25,0),Q1(2+5,0),Q4(﹣5,0),Q5(5,0).【解析】【分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:x=∴y=;∴P2.综上所述,P(2,1.(1)存在,且Q1(1,0),Q2(20),Q1(0),Q4,0),Q5,0);①若Q是直角顶点,由对称性可直接得Q1(1,0);②若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN为等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(2-,0);由对称性可得Q10);③若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y为负,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=∴Q4(0);由对称性可得Q5,0).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.24.(1)-1;(2)x1=,x2=2【解析】【分析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1﹣﹣1+2×2=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=∴x1=,x2=2.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.25.(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.26.(1)AB=2;相等;(2)a=±12;(3)34m=-,83n=.【解析】【分析】(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn -4m -1=0,根据抛物线的完美三角形的斜边长为n 得出点B 的坐标,然后代入抛物线求出m 和n 的值.(3)根据225y mx x+n =+-的最大值为-1,得到()45414m n m --=-化简得mn-4m-1=0,抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,所以抛物线2y mx =2的“完美三角形”斜边长为n ,得出B 点坐标,代入可得mn 关系式,即可求出m 、n 的值.【详解】(1)①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,AB ∥x 轴,易证MN=BN ,设B 点坐标为(n ,-n ),代入抛物线2y x =,得2n n =,∴1n =,0n =(舍去),∴抛物线2y x =的“完美三角形”的斜边2AB =②相等;(2)∵抛物线2y ax =与抛物线24y ax =+的形状相同, ∴抛物线2y ax =与抛物线24y ax =+的“完美三角形”全等,∵抛物线24y ax +=的“完美三角形”斜边的长为4,∴抛物线2y ax =的“完美三角形”斜边的长为4, ∴B 点坐标为(2,2)或(2,-2),∴12a=±. (3)∵ 225y mx x+n =+-的最大值为-1,∴ ()45414m n m --=-,∴410mn m --= ,∵抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,∴抛物线2y mx =的“完美三角形”斜边长为n ,∴B 点坐标为,22nn ⎛⎫- ⎪⎝⎭, ∴代入抛物线2y mx =,得222n n m ⎛⎫⋅=- ⎪⎝⎭, ∴ mn 2=-(不合题意舍去), ∴34m =-, ∴83n = 27.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可. 详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.。
【附5套中考模拟试卷】河南省焦作市2019-2020学年中考数学第四次押题试卷含解析
河南省焦作市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =k x 的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣72.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18oB .36oC .41oD .58o3.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是4434.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG=12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCDS S ∆=矩形.A .1B .2C .3D .45.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A .304015x x =-B .304015x x =-C .304015x x =+D .304015x x=+ 6.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .67.等腰三角形一边长等于5,一边长等于10,它的周长是( )A .20B .25C .20或25D .158.如果k <0,b >0,那么一次函数y=kx+b 的图象经过( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限9.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10.下列各式计算正确的是( )A .633-=B .1236⨯=C .3535+=D .1025÷=11.下列图形中,是轴对称图形的是( )A .B .C .D .12.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图放置的正方形ABCD ,正方形11DCC D ,正方形1122D C C D ,…3的正方形,点A 在y 轴上,点12,,,B C C C ,…,都在直线33y x =上,则D 的坐标是__________,n D 的坐标是______.14.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.15.计算:12×(﹣2)=___________.16.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.17.已知实数a、b、c满足2a+b+c(2005)(6)a b++-+|10﹣2c|=0,则代数式ab+bc的值为__.18.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.20.(6分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.21.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.22.(8分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (1,1),B (4,0),C (4,4).按下列要求作图:①将△ABC 向左平移4个单位,得到△A 1B 1C 1;②将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 1B 1C 1.求点C 1在旋转过程中所经过的路径长.23.(8分)将一个等边三角形纸片AOB 放置在平面直角坐标系中,点O (0,0),点B (6,0).点C 、D 分别在OB 、AB 边上,DC ∥OA ,CB=23.(I )如图①,将△DCB 沿射线CB 方向平移,得到△D′C′B′.当点C 平移到OB 的中点时,求点D′的坐标;(II )如图②,若边D′C′与AB 的交点为M ,边D′B′与∠ABB′的角平分线交于点N ,当BB′多大时,四边形MBND′为菱形?并说明理由.(III )若将△DCB 绕点B 顺时针旋转,得到△D′C′B ,连接AD′,边D′C′的中点为P ,连接AP ,当AP 最大时,求点P 的坐标及AD′的值.(直接写出结果即可).24.(10分)计算:01113(π3)3tan30()2---+-o .25.(10分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本 等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C 90100X <≤ 574m D 8090X <≤171 2 ②根据上表绘制扇形统计图26.(12分)(1)观察猜想如图①点B 、A 、C 在同一条直线上,DB ⊥BC ,EC ⊥BC 且∠DAE=90°,AD=AE ,则BC 、BD 、CE 之间的数量关系为______;(2)问题解决如图②,在Rt △ABC 中,∠ABC=90°,CB=4,AB=2,以AC 为直角边向外作等腰Rt △DAC ,连结BD ,求BD 的长;(3)拓展延伸如图③,在四边形ABCD 中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA ,请直接写出BD 的长.27.(12分)(1)解方程:11122x x --+=0; (2)解不等式组32193(1)x x x ->⎧⎨+<+⎩,并把所得解集表示在数轴上.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴,故选B.点D的坐标为:(7,2),∴k142.C【解析】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.3.C【解析】【详解】解:中位数应该是15和17的平均数16,故C 选项错误,其他选择正确.故选C .【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.4.C【解析】∵EF ⊥AC ,点G 是AE 中点,∴OG=AG=GE=12AE , ∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,, ∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12=22,S ABCD 2,∴S△AOE=16S ABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C.【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.5.C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x千米/小时,则乙甲车的速度为15x+千米/小时∴甲车行驶30千米的时间为30x,乙车行驶40千米的时间为4015x+,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x=+.故选C.6.B【解析】【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.7.B【解析】【分析】题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而5510+=,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长5101025=++=故选B.8.D【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一、二、四象限.故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b >0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.10.B【解析】AB,∴本选项正确;C选项中,∵≠D2=2故选B.11.B【解析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.12.A【解析】【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3222⎛⎫+ ⎪ ⎪⎝⎭33,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭【解析】【分析】 先求出OA 的长度,然后利用含30°的直角三角形的性质得到点D 的坐标,探索规律,从而得到n D 的坐标即可.【详解】分别过点12,,D D D L 作y 轴的垂线交y 轴于点12,,E E E L ,∵点B 在33y x =上 设3(,)3B m tan 33AOB m∴∠== ∴60AOB ∠=︒3AB =Q32sin 6032AB OA ∴===︒ 90AOB OAB ∠+∠=︒Q30OAB ∴∠=︒90,90EAD OAB EAD EDA ∠+∠=︒∠+∠=︒Q30EDA OAB ∴∠=∠=︒同理,1122,n n AD E AD E AD E V V L V 都是含30°的直角三角形 ∵3322ED AD ==,1322AE AD == 32OE OA AE ∴=+=+∴33(,2)2D 同理,点n D 的横坐标为3331)3(1)2n n n x E D AD n n ===+=+g 纵坐标为11322(1)321)222n n AO AE AD n n +=+=++=++g故点n D 的坐标为3333,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭故答案为:33,222⎛⎫+ ⎪ ⎪⎝⎭;3333,22222n n ⎛⎫+++ ⎪ ⎪⎝⎭.【点睛】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.14.3或1【解析】【分析】分当点F 落在矩形内部时和当点F 落在AD 边上时两种情况求BE 得长即可.【详解】当△CEF 为直角三角形时,有两种情况:当点F 落在矩形内部时,如图1所示.连结AC ,在Rt △ABC 中,AB=1,BC=8,∴AC=22AB BC + =10,∵∠B 沿AE 折叠,使点B 落在点F 处,∴∠AFE=∠B=90°,当△CEF 为直角三角形时,只能得到∠EFC=90°,∴点A 、F 、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,如图,∴EB=EF ,AB=AF=1,∴CF=10﹣1=4,设BE=x ,则EF=x ,CE=8﹣x ,在Rt △CEF 中,∵EF 2+CF 2=CE 2,∴x 2+42=(8﹣x )2,解得x=3,∴BE=3;②当点F 落在AD 边上时,如图2所示.此时ABEF 为正方形,∴BE=AB=1.综上所述,BE 的长为3或1.故答案为3或1.【点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论. 15.-1【解析】【分析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.【详解】()1212⨯-=-, 故答案为 1.-【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键. 16.y=﹣1x+1.【解析】【分析】由对称得到P′(1,﹣2),再代入解析式得到k 的值,再根据平移得到新解析式.【详解】∵点P (1,2)关于x 轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.17.-1【解析】试题分析:根据非负数的性质可得:()()202005b 601020a b c a c ++=⎧⎪+-=⎨⎪-=⎩,解得:1165a b c =-⎧⎪=⎨⎪=⎩,则ab+bc=(-11)×6+6×5=-66+30=-1.18.3 【解析】 解:如图,连接AC,∵四边形ABCD 为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC 和△ACD 为等边三角形,∴∠4=60°,AC=AB .在△ABE 和△ACF 中,∵∠1=∠3,AC=AC ,∠ABC=∠4,∴△ABE ≌△ACF (ASA ),∴S △ABE =S △ACF ,∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值,作AH ⊥BC 于H 点,则BH=2,∴S 四边形AECF =S △ABC =12BC•AH=12BC•22AB BH -=43,由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短,∴△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又∵S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大,∴S △CEF =S 四边形AECF ﹣S △AEF =43﹣12×23×22(23)(3)- =3. 故答案为:3.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE ≌△ACF ,得出四边形AECF 的面积是定值是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)14;(2)112. 【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.20.木竿PQ的长度为3.35米.【解析】【分析】过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN为矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴AB QD BC DN=,∴QD=AB DNBC⋅=2.25,∴PQ=QD+DP= 2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.21.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)①见解析;②见解析;(1)1π.【解析】【分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=9042 180ππ⨯=【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.23.(Ⅰ)D′(3+3,3);(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由见解析;(Ⅲ)P(1533,22-).【解析】【分析】(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;(Ⅱ)当BB'=3时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大. 【详解】(Ⅰ)如图①中,作DH⊥BC于H,∵△AOB是等边三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等边三角形,∵3DH⊥CB,∴3,DH=3,∴D(633),∵C′B=3,∴33,∴33,∴D′(33).(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由:如图②中,∵△ABC是等边三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分线,∴∠NBB′'=12∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四边形MBND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等边三角形,∴MC=CE',NC=CC',∵B'C'=23,∵四边形MBND'是菱形,∴BN=BM,∴BB'=12B'C'=3;(Ⅲ)如图连接BP,在△ABP中,由三角形三边关系得,AP<AB+BP,∴当点A,B,P三点共线时,AP最大,如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',3,∴CP=3,∴AP=6+3=9,在Rt △APD'中,由勾股定理得,此时P (152,﹣2). 【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A ,C ,P 三点共线时,AP 最大.24.4.【解析】【分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【详解】解:原式1132-+-=4 .故答案为4 .【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.25.(1)6;8;B ;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m 、n 的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D 等级的人数;(3)根据表格中的数据,可以计算出A 等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人), 2030%62043211m n =⨯==---=,,数学成绩的中位数所在的等级B ,故答案为:6,11,B ;(2)2120020⨯=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:102208435741711134⨯---=(分),即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)BC=BD+CE,(2);(3)【解析】【分析】(1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE 中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出,x y的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD=+=.【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.27.(1)x=13;(2)x>3;数轴见解析;【解析】【分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:1,3x =-检验:当13x =-时,(1﹣2x )(x+2)≠0,所以13x =-是原方程的解,所以原方程的解是13x =-; (2)()321931x x x ->⎧⎪⎨+<+⎪⎩①② ,∵解不等式①得:x >1,解不等式②得:x >3,∴不等式组的解集为x >3,在数轴上表示为:.【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
河南省焦作市2019-2020学年中考数学四模考试卷含解析
河南省焦作市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.81的算术平方根是( ) A .9 B .±9 C .±3 D .32.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=13.如果关于x 的方程x 2﹣k x+1=0有实数根,那么k 的取值范围是( )A .k >0B .k≥0C .k >4D .k≥44.下列四个图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个 6.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( ) A .m≤2 B .m≥2 C .m <2 D .m >27.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()22a b a b a b -=+- 8.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°9.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若»»»AB BCCD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π10.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 11.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3 B .2,1 C .24,3 D .4,312.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .254二、填空题:(本大题共6个小题,每小题4分,共24分.)13.比较大小:45_____54.(填“<“,“=“,“>“)14.若两个关于 x ,y 的二元一次方程组3136mx ny x y +=⎧⎨-=⎩与52428x ny n x y -=-⎧⎨+=⎩有相同的解, 则 mn 的值为_____.15.计算:()212273-=_____. 16.(﹣)﹣2﹣(3.14﹣π)0=_____.17.因式分解:212x x --= .18.分解因式:4x 2﹣36=___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)学校决定在学生中开设:A 、实心球;B 、立定跳远;C 、跳绳;D 、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)21.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△A B C;请画出△ABC关于原点对称的△A B C;在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.22.(8分)计算:(12)﹣2327(﹣2)0+|28|23.(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.24.(10分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为(填“真”或“假”)命题,并说明理由;(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.25.(10分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.26.(12分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.27.(12分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据算术平方根的定义求解.又∵(±1)2=9, ∴9的平方根是±1,∴9的算术平方根是1.1.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.2.B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .3.D【解析】【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】∵关于x 的方程x 2有实数根,∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1.故选D .【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B .【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!6.A【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】236x m x x <⎧⎨-<-⎩①②由①得,x <m ,由②得,x >1,此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.7.D【解析】【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【详解】阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.8.D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵AB BC CD ==u u u r u u u r u u u r ,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6360⨯ππ. 故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.10.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx ,根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A .11.D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x 1,x 2,x 3,x 4,x 5的平均数是2,∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是3×2-2=4;∵数据x 1,x 2,x 3,x 4,x 5的方差为13, ∴数据3x 1,3x 2,3x 3,3x 4,3x 5的方差是13×32=3, ∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的方差是3,本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.12.B【解析】【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x yx -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.<【解析】【分析】先比较它们的平方,进而可比较.【详解】(2=80,(2=100,∵80<100,∴故答案为:<.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.14.1【解析】【分析】联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.【详解】联立得:36428x yx y-⎧⎨+⎩=①=②,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:1-y=1,解得:y=0,则20 xy⎧⎨⎩==,将x=2、y=0代入3152mx nyx ny n==+⎧⎨--⎩,得:21102mn⎧⎨-⎩==,解得:1212 mn⎧⎪⎨⎪⎩==,则mn=1,故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】原式=故答案为【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型. 16.3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. 原式=4-1=3.考点:负整数指数幂;零指数幂.17.()()34x x +-;【解析】【分析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x 2﹣x ﹣12=(x ﹣4)(x+3).故答案为(x ﹣4)(x+3).18.4(x+3)(x ﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解.详解:原式=()()()2494x 3x 3x -=+-. 点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)150;(2)详见解析;(3)3 5 .【解析】【分析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.【详解】解:(1)15÷10%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率123. 205 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.AC= 6.0km,AB= 1.7km;【解析】【分析】在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
河南省焦作市2019-2020学年第四次中考模拟考试数学试卷含解析
河南省焦作市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,右侧立体图形的俯视图是( )A .B .C .D .2.滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目 里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟B .13分钟C .15分钟D .19分钟3.甲、乙两人分别以4m/s 和5m/s 的速度,同时从100m 直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t (s ),甲乙两人的距离为S (m ),则S 关于t 的函数图象为( )A .B .C .D .4.下列运算正确的是( )A .a 6÷a 2=a 3B .(2a+b )(2a ﹣b )=4a 2﹣b 2C .(﹣a )2•a 3=a 6D .5a+2b=7ab 5.计算a•a 2的结果是( ) A .a B .a 2 C .2a 2 D .a 36.若3x >﹣3y ,则下列不等式中一定成立的是 ( ) A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1. 其中合理的是( ) A .①B .②C .①②D .①③8.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .79.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( )A .1B .3C .14-D .7410.如图图形中,可以看作中心对称图形的是( )A .B .C .D .11.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次 C .至少能中奖一次D .中奖次数不能确定12.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,»BD的长为43π,则图中阴影部分的面积为( )A.4633π-B.8933π-C.33223π-D.8633π-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知|x|=3,y2=16,xy<0,则x﹣y=_____.14.已知同一个反比例函数图象上的两点()111P x,y、()222P x,y,若21x x2=+,且21111y y2=+,则这个反比例函数的解析式为______.15.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM 是等腰三角形时,M点的坐标为_____.16.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为_____.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒2cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.18.函数3y x =+的定义域是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD 绕点C 顺时针旋转90°后得到矩形CEFG ,连接DG 交EF 于H ,连接AF 交DG 于M ;(1)求证:AM=FM ; (2)若∠AMD=a .求证:DGAF=cosα.20.(6分)解不等式组:,并把解集在数轴上表示出来.21.(6分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数my x=的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.22.(8分)计算:3tan30°+|23﹣(3﹣π)0﹣(﹣1)2018. 23.(8分)已知,抛物线y =14x 2﹣x+34与x 轴分别交于A 、B 两点(A 点在B 点的左侧),交y 轴于点F .(1)A 点坐标为 ;B 点坐标为 ;F 点坐标为 ;(2)如图1,C 为第一象限抛物线上一点,连接AC ,BF 交于点M ,若BM =FM ,在直线AC 下方的抛物线上是否存在点P ,使S △ACP =4,若存在,请求出点P 的坐标,若不存在,请说明理由;(3)如图2,D 、E 是对称轴右侧第一象限抛物线上的两点,直线AD 、AE 分别交y 轴于M 、N 两点,若OM•ON=14,求证:直线DE必经过一定点.24.(10分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.25.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.26.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.(12分)在平面直角坐标系xOy中,函数ayx(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.2.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.3.B【解析】【分析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.4.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B 选项:利用平方差公式,应先把2a 看成一个整体,应等于(2a )2-b 2而不是2a 2-b 2,故本选项错误;C 选项:先把(-a )2化为a 2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D 选项:两项不是同类项,故不能进行合并. 【详解】A 选项:a 6÷a 2=a 4,故本选项错误;B 选项:(2a+b )(2a-b )=4a 2-b 2,故本选项正确;C 选项:(-a )2•a 3=a 5,故本选项错误;D 选项:5a 与2b 不是同类项,不能合并,故本选项错误; 故选:B . 【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断. 5.D 【解析】 a·a 2= a 3. 故选D. 6.A 【解析】两边都除以3,得x >﹣y ,两边都加y ,得:x+y >0, 故选A . 7.B 【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误, 故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键. 8.B 【解析】 【分析】先利用已知证明BAC BDA :△△,从而得出BA BCBD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可. 【详解】//AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠Q BAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BCBD BA ∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B . 【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键. 9.D 【解析】 【分析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解.【详解】解:3,354,x y x y +=⎧⎨-=⎩①② +①②,得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 10.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.11.D【解析】【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.12.D【解析】【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵»BD的长为43π,∴604 1803Rππ=g g解得:R=4,∴AB=ADcos30°=3,∴BC=12AB=3∴AC3=6,∴S△ABC=12×BC×AC=12×236=63∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=26048 63633603ππ⨯=故选:D.【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.14.y=4x 【解析】 解:设这个反比例函数的表达式为y=k x .∵P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,∴x 1y 1=x 2y 2=k ,∴11y =121x ky ,=2211112x k y y =+Q .,∴21y ﹣11y =12,∴21x x k k -=12,∴21x x k -=12,∴k=2(x 2﹣x 1).∵x 2=x 1+2,∴x 2﹣x 1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=4x .故答案为y=4x. 点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形. 15.(4,6),(8﹣2,6),(2,6).【解析】【分析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M 的坐标.【详解】解:当M 为顶点时,AB 长为底=8,M 在DC 中点上,所以M 的坐标为(4, 6),当B 为顶点时,AB 长为腰=8,M 在靠近D 处,根据勾股定理可知ME==2所以M 的坐标为(8﹣2,6);当A 为顶点时,AB 长为腰=8,M 在靠近C 处,根据勾股定理可知MF==2 所以M 的坐标为(2,6);综上所述,M 的坐标为(4,6),(8﹣2,6),(2,6); 故答案为:(4,6),(8﹣2,6),(2,6).【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用. 16.1【解析】【分析】过A 作x 轴垂线,过B 作x 轴垂线,求出A (1,1),B (2,12),C (1,k ),D (2,2k ),将面积进行转换S △OAC =S △COM ﹣S △AOM ,S △ABD =S 梯形AMND ﹣S 梯形AAMNB 进而求解.【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴,∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OAC COM AOM k S S S k ∴=-=⨯-⨯⨯=-V V V , S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1,故答案为1.【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键. 17.1【解析】作PD ⊥BC 于D ,PE ⊥AC 于E ,如图,2t ,BQ=tcm ,(0≤t <6)∵∠C=90°,AC=BC=6cm ,∴△ABC为直角三角形,∴∠A=∠B=45°,∴△APE和△PBD为等腰直角三角形,∴PE=AE=22AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四边形PECD为矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四边形QPCP′为菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值为1.故答案为1.【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 . 18.x≥-1【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.详解:根据题意得:x+1≥0,解得:x≥﹣1.故答案为x≥﹣1.点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:(1)当函数表达式是整式时,定义域可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数非负.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=MNMF,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且∠DCG=90°,∴∠DGC=45°从而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋转可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足为N∵△ADM≌△MFH∴DM=MH,AM=MF=12AF∵FH=FG,FN⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=12DG∵cos∠FMG=MN MF∴cos∠AMD=2=2MN DG MF AF∴DG AF=cosα 【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形. 20.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x <1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.21.(1)y=6x -,y=-x+1;(2)C(0,2+1 )或C(0,2【解析】【分析】(1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数m y x=的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=32BC =,再根据1BO =,可得321CO =或321,即可得出点C 的坐标.【详解】 (1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入m y x=,解得:6m =-. ∴所求反比例函数表达式为:6y x =-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+.(2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=32BC =又∵1BO =,∴321CO =或321,∴(0C ,321)或(0C ,132-).【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.22.1.【解析】【分析】直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案.【详解】3tan31°+|2|﹣(3﹣π)1﹣(﹣1)21181﹣1=1﹣1=1.【点睛】本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.23.(1)(1,0),(3,0),(0,34);(2)在直线AC 下方的抛物线上不存在点P ,使S △ACP =4,见解析;(3)见解析【解析】【分析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC 下方轴x 上一点,使S △ACH =4,求出点H 坐标,再求出直线AC 的解析式,进而得出点H 坐标,最后用过点H 平行于直线AC 的直线与抛物线解析式联立求解,即可得出结论; (3)联立直线DE 的解析式与抛物线解析式联立,得出213(1)044x k x m -++-=,进而得出44a b k ++=,34ab m -=,再由DAG MAO ∆∆∽得出DG AG MO AO =,进而求出1(3)4OM a -=,同理可得1(3)4ON b -=,再根据111(3)(3)444OM ON a b ⋅-⋅-==,即可得出结论. 【详解】(1)针对于抛物线21344y x x =-+, 令x =0,则34y =, ∴3(0)4F ,,令y =0,则213044x x -+=, 解得,x =1或x =3,∴(10)(30)A B ,,,,综上所述:0(1)A ,,(30)B ,,3(0)4F ,; (2)由(1)知,(30)B ,,3(0)4F ,, ∵BM =FM ,∴33(,)28M , ∵0(1)A ,, ∴直线AC 的解析式为:33y x 44=-, 联立抛物线解析式得:233441344y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩, 解得:1110x y =⎧⎨=⎩或226154x y =⎧⎪⎨=⎪⎩, ∴15(6,)4C , 如图1,设H 是直线AC 下方轴x 上一点,AH =a 且S △ACH =4,∴115424a ⨯=, 解得:3215a =, ∴47(,0)15H , 过H 作l ∥AC ,∴直线l 的解析式为347420y x =-, 联立抛物线解析式,解得2535620x x -+=,∴4949.60.60∆--<==,即:在直线AC 下方的抛物线上不存在点P ,使4ACP S V =;(3)如图2,过D ,E 分别作x 轴的垂线,垂足分别为G ,H ,设213(,)44D a a a -+,213(,)44E b b b -+,直线DE 的解析式为y kx m +=, 联立直线DE 的解析式与抛物线解析式联立,得213(1)044x k x m -++-=, ∴44a b k ++=,34ab m -=,∵DG ⊥x 轴,∴DG ∥OM ,∴DAG MAO ∆∆∽,∴DG AG MO AO=, 即1(1)(3)141a a a OM ---=, ∴1(3)4OM a -=,同理可得1(3)4ON b -= ∴111(3)(3)444OM ON a b ⋅-⋅-==, ∴3()50ab a b -++=,即343(44)50m k --++=,∴31m k =--,∴直线DE 的解析式为31(3)1y kx k k x ----==, ∴直线DE 必经过一定点(3,1)-.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.24.证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB =90°,故可得出∠EDB =∠C .再由∠B =∠B ,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED ⊥AB ,∴∠EDB =90°.∵∠C =90°,∴∠EDB =∠C .∵∠B =∠B ,∴ABC V ∽EBD V .点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键. 25.(1)18;(2)12【解析】【分析】 (1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.26.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】【分析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w =(x -20)(-2x +80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y 与x 的函数关系式为y =kx +b.把(22,36)与(24,32)代入,得22362432.k b k b +=⎧⎨+=⎩解得280.k b =-⎧⎨=⎩∴y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得 (x -20)y =150,即(x -20)(-2x +80)=150.解得x 1=25,x 2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w =(x -20)(-2x +80)=-2(x -30)2+200.∵售价不低于20元且不高于28元,当x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元. 27.(1)a=3,b=-2;(2) m≥8或m≤-2【解析】【分析】(1)把A 点坐标代入反比例解析式确定出a 的值,确定出A 坐标,代入一次函数解析式求出b 的值;(2)分别求出直线l 1与x 轴交于点D ,再求出直线l 2与x 轴交于点B ,从而得出直线l 2与直线l 1交于点C 坐标,分两种情况进行讨论:①当S △ABC =S △BCD +S △ABD =6时,利用三角形的面积求出m 的值,②当S △ABC =S △BCD −S △AB D=6时,利用三角形的面积求出m 的值,从而得出m 的取值范围.【详解】(1)∵点A 在a y x =图象上 ∴23a a -=∴a =3∴A (3,1)∵点A 在y =x +b 图象上∴1=3+b∴b =-2∴解析式y =x -2(2)设直线y=x-2与x轴的交点为D∴D(2,0)①当点C在点A的上方如图(1)∵直线y=-x+m与x轴交点为B∴B(m,0)(m>3)∵直线y=-x+m与直线y=x-2相交于点C∴2 y xy x m=-⎧⎨=-+⎩解得:2222mxmy+⎧=⎪⎪⎨-⎪=⎪⎩∴C22,22m m+-⎛⎫⎪⎝⎭∵S△ABC=S△BCD-S△ABD≥6∴()() 1212216 222mm m-⨯-⨯--⨯≥∴m≥8②若点C在点A下方如图2∵S△ABC=S△BCD+S△ABD≥6∴()()1122126222m m m --⨯+-⨯≥ ∴m≤-2综上所述,m≥8或m≤-2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.。
河南省焦作市2019-2020学年中考数学仿真第四次备考试题含解析
河南省焦作市2019-2020学年中考数学仿真第四次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知A (,1y ),B (2,2y )两点在双曲线32m y x+=上,且12y y >,则m 的取 值范围是( ) A .m 0> B .m 0< C .3m 2>- D .3m 2<-2.下列博物院的标识中不是轴对称图形的是( )A .B .C .D .3.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )A .B .C .D .4.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1 B .2 C .3 D .45.已知关于x 的一元二次方程mx 2+2x -1=0有两个不相等的实数根,则m 的取值范围是( ). A .m >-1且m≠0 B .m <1且m≠0 C .m <-1 D .m >16.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A .圆柱B .正方体C .球D .直立圆锥7.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=22.其中正确的结论有()A.4个B.3个C.2个D.1个9.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A.810 年B.1620 年C.3240 年D.4860 年10.估计8-1的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间11.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.12.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.14.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S △BIC =1,据七巧板制作过程的认识,求出平行四边形EFGH_____.15.如图,四边形OABC 中,AB ∥OC ,边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,点B 在第一象限内,点D 为AB 的中点,CD 与OB 相交于点E ,若△BDE 、△OCE 的面积分别为1和9,反比例函数y=k x的图象经过点B ,则k=_______.16.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .17.如图,一束光线从点A(3,3)出发,经过y 轴上点C 反射后经过点B(1,0),则光线从点A 到点B 经过的路径长为_____.18.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 1分别通过A 、B 、C 三点,且l 1∥l 2∥l 1.若l 1与l 2的距离为5,l 2与l 1的距离为7,则Rt △ABC 的面积为___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.20.(6分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A :大雁塔 B :兵马俑 C :陕西历史博物馆 D :秦岭野生动物园 E :曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.21.(6分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .求证:BE=EC 填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.22.(8分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.23.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.24.(10分)解方程:(x﹣3)(x﹣2)﹣4=1.25.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.26.(12分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.27.(12分)(1)计算:(﹣2)28+2+1)2﹣4cos60°;(2)化简:2321x x x x-+-÷(1﹣1x )参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32m y x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32m y y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】请在此输入详解!2.A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A 、不是轴对称图形,符合题意;B 、是轴对称图形,不合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误3.D【解析】【分析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【详解】请在此输入详解!4.B【解析】【分析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.5.A【解析】【详解】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B .考点:简单几何体的三视图.7.B【解析】试题分析:①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化; ③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变; ④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB 的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线8.A【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出AE BC =AF CF ,由AE=12AD=12BC ,推出AF CF =12,即CF=2AF ;③正确.只要证明DM 垂直平分CF ,即可证明;④正确.设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有 b a =2a b,即a ,可得tan ∠CAD=CD AD =2b a =2. 【详解】 如图,过D 作DM ∥BE 交AC 于N .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∴∠EAC=∠ACB .∵BE ⊥AC 于点F ,∴∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,∴tan∠CAD=CDAD=2ba=2.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.9.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.10.B【解析】试题分析:∵283,∴18<2,8在1到2之间,故选B.考点:估算无理数的大小.11.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.12.B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.14.1【解析】【分析】根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得2,BC=1,在求得点G到EF2sin45°,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴12BI•IC=1,∴2,∴22BI IC+,∵EF=BC=1,2,∴点G到EF222,∴平行四边形EFGH的面积2 222×22=1.故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.15.16【解析】【分析】根据题意得S △BDE :S △OCE =1:9,故BD :OC=1:3,设D (a,b )则A(a,0),B(a,2b),得C(0,3b),由S △OCE =9得ab=8,故可得解.【详解】解:设D (a,b )则A(a,0),B(a,2b)∵S △BDE :S △OCE =1:9∴BD :OC=1:3∴C(0,3b)∴△COE 高是OA 的34, ∴S △OCE =3ba×3412⨯ =9 解得ab=8k=a×2b=2ab=2×8=16故答案为16.【点睛】此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.16.-2<k <12。
河南省焦作市2019-2020学年中考数学模拟试题含解析
河南省焦作市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平行四边形ABCD 中,点A 在反比例函数y=k x (k≠0)的图象上,点D 在y 轴上,点B 、点C 在x 轴上.若平行四边形ABCD 的面积为10,则k 的值是( )A .﹣10B .﹣5C .5D .102.如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于( )A .90°B .120°C .60°D .30°3.下列四个式子中,正确的是( )A .81 =±9B .﹣()26- =6C .(23+)2=5D .1216=4 4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A .56B .58C .63D .725.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .y =(x -1)2+2 B .y =(x +1)2+2 C .y =(x -1)2-2 D .y =(x +1)2-26.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB =CDB .∠BCA =∠DCAC .∠BAC =∠DACD .∠B =∠D =90°7.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( )A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-28.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )A .B .C .D .9.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( ) A .485×105 B .48.5×106 C .4.85×107 D .0.485×10810.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <0 11.下列实数0,23,3,π,其中,无理数共有( ) A .1个 B .2个 C .3个 D .4个12.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.14.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,若弦CD=2,则图中阴影部分的面积为 .15.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S V ,则图中阴影部分面积是.16.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.17.如图,已知圆O 的半径为2,A 是圆上一定点,B 是OA 的中点,E 是圆上一动点,以BE 为边作正方形BEFG(B 、E 、F 、G 四点按逆时针顺序排列),当点E 绕⊙O 圆周旋转时,点F 的运动轨迹是_________图形18.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,Rt △ABC 的两直角边AC 边长为4,BC 边长为3,它的内切圆为⊙O ,⊙O 与边AB 、BC 、AC 分别相切于点D 、E 、F ,延长CO 交斜边AB 于点G .(1)求⊙O 的半径长;(2)求线段DG 的长.20.(6分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y (单位:m )与滑行时间x (单位:s )之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 23 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.21.(6分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s 的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.22.(8分)解下列不等式组:6152(43) {2112323x xxx++-≥->①②23.(8分)货车行驶25km与轿车行驶35km所用时间相同.已知轿车每小时比货车多行驶20km,求货车行驶的速度.24.(10分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.25.(10分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为32,求BC的长.26.(12分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.27.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A。
河南省焦作市2019-2020学年中考第四次大联考数学试卷含解析
河南省焦作市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.2.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.1 xa b <-3.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=24.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1085.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S 四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个7.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是( )A .120240420x x -=+B .240120420x x -=+C .120240420x x -=-D .240120420x x -=- 8.-3的相反数是( )A .13B .3C .13- D .-39.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°10.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .B .1C .D .11.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )A .8×107B .880×108C .8.8×109D .8.8×101012.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面积是A .2360cm πB .2720cm πC .21800cm πD .23600cm π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是_____. 14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.15.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=5x(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.16.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.17.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.18.已知16xx+=,则221xx+=______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?20.(6分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.21.(6分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由. 22.(8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE 是⊙O 的切线;当BC=4时,求劣弧AC 的长.23.(8分)如图,已知抛物线y=ax 2﹣2ax+b 与x 轴交于A 、B (3,0)两点,与y 轴交于点C ,且OC=3OA ,设抛物线的顶点为D .(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;(3)若平行于x 轴的直线与该抛物线交于M 、N 两点(其中点M 在点N 的右侧),在x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.24.(10分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x 2﹣4x+2=025.(10分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.26.(12分)已知:如图1,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),根据对称性△AMB 恒为等腰三角形,我们规定:当△AMB 为直角三角形时,就称△AMB 为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2y x =的“完美三角形”斜边AB 的长;②抛物线21y x +=与2y x =的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.27.(12分)关于x 的一元二次方程ax 2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 2.B【解析】∵关于x 的不等式ax <b 的解为x >-2,∴a<0,且2b a =-,即2b a =-, ∴(1)解不等式ax+2<-b+2可得:ax<-b ,2b x a >-=,即x>2; (2)解不等式–ax-1<b-1可得:-ax<b ,2b x a <-=,即x<2; (3)解不等式ax>b 可得:2b x a<=-,即x<-2; (4)解不等式1x a b <-可得:12a x b >-=,即12x >; ∴解集为x<2的是B 选项中的不等式.故选B.3.D【解析】【分析】由1122AE AD BC ==, 又AD ∥BC ,所以12AE AF BC FC ==, 故A 正确,不符合题意;过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故B 正确,不符合题意; 根据相似三角形的判定即可求解,故C 正确,不符合题意;由△BAE ∽△ADC ,得到CD 与AD 的大小关系,根据正切函数可求tan ∠CAD 的值,故D 错误,符合题意.【详解】A.∵AD ∥BC ,∴△AEF ∽△CBF ,∴12AE AF BC FC ==, ∵1122AE AD BC ==, ∴12AF FC =,故A 正确,不符合题意; B. 过D 作DM ∥BE 交AC 于N ,∵DE ∥BM,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴12BM DE BC ==, ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,∴∠DCF=∠DFC ,故B 正确,不符合题意;C. 图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意;D. 设AD=a,AB=b,由△BAE ∽△ADC,有2.ab a b= ∵tan ∠CAD CD b AD a === 故D 错误,符合题意. 故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键. 4.A【解析】【分析】设每次降价的百分率为x ,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x ),第二次后的价格是168(1-x )2,据此即可列方程求解.【详解】设每次降价的百分率为x ,根据题意得:168(1-x )2=1.故选A .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.5.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C .【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.6.C【解析】【分析】利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.7.A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:1202404 x x20-=+.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.8.B【解析】【分析】根据相反数的定义与方法解答.【详解】解:-3的相反数为()33--=.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.9.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.10.B【解析】【分析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出. 【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4,D是AB的中点,CD=AB=4=2.E,F分别为AC,AD的中点,EF是△ACD的中位线.EF=CD=2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=880 0000 0000=8.8×1010,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D【解析】圆锥的侧面积=12×80π×90=3600π(cm2) .故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥11 43【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】解:根据题意,得:311556x x--≥,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥11 43,故答案为x≥11 43.【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.14.【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.15.1.【解析】解:∵平移后解析式是y=x﹣b,代入y=5x得:x﹣b=5x,即x2﹣bx=5,y=x ﹣b 与x 轴交点B 的坐标是(b ,0),设A 的坐标是(x ,y ),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=1,故答案为1.点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x 平移后的解析式是解答本题的关键. 16.1【解析】【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a 、b ,计算即可.【详解】a 2+b 2﹣8a ﹣4b+20=0,a 2﹣8a+16+b 2﹣4b+4=0,(a ﹣4)2+(b ﹣2)2=0a ﹣4=0,b ﹣2=0,a=4,b=2,则a 2﹣b 2=16﹣4=1,故答案为1.【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键. 17.﹣1.【解析】【分析】 根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】根据题意得121266,y y x x ==, 所以1212126636369.4y yx x x x =⋅===-- 故答案为:−1.【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.18.34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25, 90°;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a 的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°; (2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1 ∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.20.见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.21.(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】【详解】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人; (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.22.(1)60°;(2)证明略;(3)8 3π【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.23.(1)y=﹣x2+2x+1;(2)P(2,135+55-;(1)存在,且Q1(1,0),Q2(25,0),Q1(2+5,0),Q4(﹣5,0),Q5(5,0).【解析】【分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:x=∴y=;∴P2.综上所述,P(2,1.(1)存在,且Q1(1,0),Q2(20),Q1(0),Q4,0),Q5,0);①若Q是直角顶点,由对称性可直接得Q1(1,0);②若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN为等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(2-,0);由对称性可得Q10);③若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y为负,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=∴Q4(0);由对称性可得Q5,0).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.24.(1)-1;(2)x1=,x2=2【解析】【分析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1﹣﹣1+2×2=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=∴x1=,x2=2.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.25.(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.26.(1)AB=2;相等;(2)a=±12;(3)34m=-,83n=.【解析】【分析】(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn -4m -1=0,根据抛物线的完美三角形的斜边长为n 得出点B 的坐标,然后代入抛物线求出m 和n 的值.(3)根据225y mx x+n =+-的最大值为-1,得到()45414m n m --=-化简得mn-4m-1=0,抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,所以抛物线2y mx =2的“完美三角形”斜边长为n ,得出B 点坐标,代入可得mn 关系式,即可求出m 、n 的值.【详解】(1)①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,AB ∥x 轴,易证MN=BN ,设B 点坐标为(n ,-n ),代入抛物线2y x =,得2n n =,∴1n =,0n =(舍去),∴抛物线2y x =的“完美三角形”的斜边2AB =②相等;(2)∵抛物线2y ax =与抛物线24y ax =+的形状相同, ∴抛物线2y ax =与抛物线24y ax =+的“完美三角形”全等,∵抛物线24y ax +=的“完美三角形”斜边的长为4,∴抛物线2y ax =的“完美三角形”斜边的长为4, ∴B 点坐标为(2,2)或(2,-2),∴12a=±. (3)∵ 225y mx x+n =+-的最大值为-1,∴ ()45414m n m --=-,∴410mn m --= ,∵抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,∴抛物线2y mx =的“完美三角形”斜边长为n ,∴B 点坐标为,22nn ⎛⎫- ⎪⎝⎭, ∴代入抛物线2y mx =,得222n n m ⎛⎫⋅=- ⎪⎝⎭, ∴ mn 2=-(不合题意舍去), ∴34m =-, ∴83n = 27.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可. 详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.。
河南省焦作市2019-2020学年中考数学模拟试题(5)含解析
河南省焦作市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算结果为正数的是( )A .1+(–2)B .1–(–2)C .1×(–2)D .1÷(–2)2.如图是由四个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .3.﹣23的相反数是( )A .﹣8B .8C .﹣6D .64.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )A .12B .13C .23D .345.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()n n n nA .5B .5C .25D .126.如图,点A ,B 在反比例函数的图象上,点C ,D 在反比例函数的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为,则k 的值为( )A .4B .3C .2D .7.等腰三角形一边长等于5,一边长等于10,它的周长是( )A .20B .25C .20或25D .158.下列运算正确的是( )A .2510a a a ⋅=B .326(3)6a a =C .222()a b a b +=+D .2(2)(3)6a a a a +-=--9.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53cm10.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定 11.下列计算正确的是( )A .x 2+x 2=x 4B .x 8÷x 2=x 4C .x 2•x 3=x 6D .(-x )2-x 2=012.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是( )A .y =2x 2+3B .y =2x 2﹣3C .y =2(x+3)2D .y =2(x ﹣3)2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC 、BD ,若S 四边形ABCD =18,则BD 的最小值为_________.14.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.15.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.16.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.17.化简代数式(x+1+11x-)÷22xx-,正确的结果为_____.18.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.20.(6分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.21.(6分)如图,二次函数232(0) 2y ax x a=-+≠的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x 轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.22.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=5AB=1.求AF的长.23.(8分)如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点.求线段MN 的长.若C 为线段AB 上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN 的长度吗?并说明理由.若C 在线段AB 的延长线上,且满足AC-CB=b(cm),M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由. 24.(10分)我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.(10分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且DE=23BC .如果AC=6,求AE 的长;设AB a =u u u r r ,AC b =u u u r r ,求向量DE u u u r (用向量a r 、b r 表示).26.(12分)解不等式组11232x x --≤,并将它的解集在数轴上表示出来.27.(12分)计算:(﹣2018)0﹣4sin45°82﹣1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】分别根据有理数的加、减、乘、除运算法则计算可得.【详解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;B、1﹣(﹣2)=1+2=3,结果为正数;C、1×(﹣2)=﹣1×2=﹣2,结果为负数;D、1÷(﹣2)=﹣1÷2=﹣12,结果为负数;故选B.【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.2.A【解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.考点:简单组合体的三视图.3.B【解析】∵32-=﹣8,﹣8的相反数是8,∴32-的相反数是8,故选B.4.D【解析】【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34, 故选:D. 【点睛】 本题考查了随机事件的概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 5.A【解析】【分析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC =+=,55OC sinA OA ∴==. 故选:A .【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.B【解析】【分析】首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y 轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S △OAC =(k-1)×1,S △ABD = (-)×1,又∵△OAC 与△ABD 的面积之和为, ∴(k-1)×1+ (-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.7.B【解析】【分析】题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而5510+=,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长5101025=++=故选B.8.D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. 257a a a ⋅= ,故A 选项错误,不符合题意;B. ()2363a 9a =,故B 选项错误,不符合题意;C. ()222a b a 2ab b +=++ ,故C 选项错误,不符合题意;D. ()()2a 2a 3a a 6+-=--,正确,符合题意, 故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.9.B【解析】试题分析:∵从半径为9cm 的圆形纸片上剪去13圆周的一个扇形, ∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r=122ππ=6cm , ∴圆锥的高为2296-=35cm故选B.考点: 圆锥的计算.10.C【解析】【分析】因为R 不动,所以AR 不变.根据三角形中位线定理可得EF=12AR ,因此线段EF 的长不变. 【详解】如图,连接AR ,∵E 、F 分别是AP 、RP 的中点,∴EF 为△APR 的中位线,∴EF= 12AR ,为定值. ∴线段EF 的长不改变.故选:C .【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.11.D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.12.C【解析】【分析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN 为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S 四边形ABCD =S 四边形AMCN =12AC 2, ∴AC=6,∴BD ⊥AC 时BD 最小,且最小值为6. 故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键. 14.有两个不相等的实数根. 【解析】分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况. 详解:∵a=2,b=3,c=−2, ∴24916250b ac =-=+=>V , ∴一元二次方程有两个不相等的实数根. 故答案为有两个不相等的实数根.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根. 15.1.1 【解析】【分析】先判断出x ,y 中至少有一个是1,再用平均数求出x+y=11,即可得出结论. 【详解】∵一组数据4,x ,1,y ,7,9的众数为1,∴x ,y 中至少有一个是1,∵一组数据4,x ,1,y ,7,9的平均数为6, ∴16(4+x+1+y+7+9)=6, ∴x+y=11,∴x ,y 中一个是1,另一个是6,∴这组数为4,1,1,6,7,9,∴这组数据的中位数是12×(1+6)=1.1,故答案为:1.1.【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.16.1【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案为1.考点:一次函数图象与几何变换17.2x【解析】【分析】根据分式的运算法则计算即可求解.【详解】(x+1+11x-)÷22xx-=()()() 1111121 x x xx x x⎡⎤+-+÷⎢⎥---⎣⎦=() 2211xxx x-⋅-=2x.故答案为2x.【点睛】本题考查了分式的混合运算,熟知分式的混合运算顺序及运算法则是解答本题的关键.18.2 5【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率. 【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:25,故答案为2 5 .【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)详见解析;(2)62 【解析】 【分析】(1)连接CD ,证明90ODC ADC ∠+∠=︒即可得到结论;(2)设圆O 的半径为r ,在Rt △BDO 中,运用勾股定理即可求出结论. 【详解】(1)证明:连接CD,∵OD OC =∴ODC OCD ∠=∠ ∵AD AC =∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB ∠+∠=︒∴∠+∠=∴⊥Q .(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=,设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴. 【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高. 20.(1)AA′=CC′;(2)成立,证明见解析;(3)2213- 【解析】 【分析】(1)连接AC 、A′C′,根据题意得到点A 、A′、C′、C 在同一条直线上,根据矩形的性质得到OA=OC ,OA′=OC′,得到答案;(2)连接AC 、A′C′,证明△A′OA ≌△C′OC ,根据全等三角形的性质证明;(3)连接AC ,过C 作CE ⊥AB′,交AB′的延长线于E ,根据相似多边形的性质求出B′C′,根据勾股定理计算即可. 【详解】 (1)AA′=CC′,理由如下:连接AC 、A′C′,∵矩形ABCD ∽矩形A′B′C′D′,∠CAB=∠C′A′B′, ∵A′B′∥AB ,∴点A 、A′、C′、C 在同一条直线上, 由矩形的性质可知,OA=OC ,OA′=OC′, ∴AA′=CC′, 故答案为A A′=CC′;(2)(1)中的结论还成立,AA′=CC′,理由如下:连接AC 、A′C′,则AC 、A′C′都经过点O ,由旋转的性质可知,∠A′OA=∠C′OC , ∵四边形ABCD 和四边形A′B′C′D′都是矩形, ∴OA=OC ,OA′=OC′, 在△A′OA 和△C′OC 中,{OA OCA OA C OC OA OC =∠=∠'=''', ∴△A′OA ≌△C′OC , ∴AA′=CC′;(3)连接AC ,过C 作CE ⊥AB′,交AB′的延长线于E ,∵矩形ABCD ∽矩形A′B′C′D′,∴AB BC A B B C ='''',即683B C ='', 解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°, ∴四边形B′ECC′为矩形, ∴EC=B′C′=4,在Rt △ABC 中,=10,在Rt △AEC 中,∴﹣3,又AA′=CC′=B′E ,∴. 【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.21.(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(32-,﹣1)、(32-+,﹣1) 【解析】 【分析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标. 【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1, 解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1;∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==,∴直线AC 的函数解析式为:122y x =+; (1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点, ∴D (m ,﹣12m 1﹣32m+1),过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积, ∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ),化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等, ∴|y E |=|y C |=1, ∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得,x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1); 当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得,x 1,x 1, ∴点E的坐标为(32--,﹣1)或(32-+,﹣1); ②若AC 为平行四边形的一条对角线,则CE ∥AF , ∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E的坐标为(﹣3,1)、(3412--,﹣1)、(3412-+,﹣1).22.(1)25,25;213,27;(2)2a+2b=52c;(1)AF=2.【解析】试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH 和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考点:相似形综合题.23.(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=12a(cm);理由详见解析(3)12b(cm)【解析】【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∴MN=12AC+12BC=12( AC+BC)=12AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=12a cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC+CB=acm,∴MN=12AC+12BC=12(AC+BC)=12a cm.(3)解:如图,∵点M 、N 分别是AC 、BC 的中点, ∴MC =12AC ,CN =12BC , ∵AC -CB =bcm , ∴MN =12AC -12BC =12(AC -BC)=1b 2cm .考点:两点间的距离. 24.1. 【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算. 详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1, 所以二进制中的数101011等于十进制中的1.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n 个相同因数积的运算,叫做乘方.25.(1)1;(2)2()3DE b a =-uuu r r r.【解析】 【分析】(1)由平行线截线段成比例求得AE 的长度; (2)利用平面向量的三角形法则解答. 【详解】 (1)如图,∵DE ∥BC ,且DE=23BC , ∴23AE DE AC BC ==. 又AC=6, ∴AE=1.(2)∵AB a =u u u r r ,AC b =u u ur r ,∴BC AC AB b a =-=-uu u r uuu r uu u r r r .又DE ∥BC ,DE=23BC ,∴22()33DE BC b a ==-uuu r uu u r r r【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.26.x≤1,解集表示在数轴上见解析【解析】【分析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】去分母,得:3x﹣2(x﹣1)≤3,去括号,得:3x﹣2x+2≤3,移项,得:3x﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.27.1 2 .【解析】【分析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式=1﹣4×2+22﹣12=1﹣2+2﹣=1 2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.。
河南省焦作市2019-2020学年中考数学模拟试题(3)含解析
河南省焦作市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法中正确的是( )A .检测一批灯泡的使用寿命适宜用普查.B .抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上. C .“367人中有两人是同月同日生”为必然事件.D .“多边形内角和与外角和相等”是不可能事件.2.已知5a b =r r ,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r方向相同 C .//a b r r D .||5||a b =r r3.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上,Rt △ABC 经过变化得到Rt △EDO ,若点B 的坐标为(0,1),OD =2,则这种变化可以是( )A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度4.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙5.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A.B.C.D.6.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC 绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是()A.(3,1)B.(2,2)C.(1,3)D.(3,0)7.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1658.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.249.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33,则鱼竿转过的角度是()A .60°B .45°C .15°D .90°10.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= ) ①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯② 2525⋅=③ ④若12390∠∠∠++=o ,则它们互余 A .4 B .14C .3-D .13 11.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( ) A .513 B .512 C .1213 D .125 12.已知抛物线y=(x ﹣1a )(x ﹣11a +)(a 为正整数)与x 轴交于M a 、N a 两点,以M a N a 表示这两点间的距离,则M 1N 1+M 2N 2+…+M 2018N 2018的值是( ) A .20162017 B .20172018 C .20182019 D .20192020 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:a 3-a=______.14.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________15.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +. 16.函数y=13x -1x -x 的取值范围是_____. 17.如图,已知直线l :3x ,过点(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,……;按此做法继续下去,则点M 2000的坐标为______________.18.将直尺和直角三角尺按如图方式摆放.若145∠=︒,235∠=︒,则3∠=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD ⊥CD 于点D ,且AC 平分∠DAB ,求证: (1)直线DC 是⊙O 的切线;(2)AC 2=2AD•AO .20.(6分)如图,在▱ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.21.(6分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.(I )根据题意,填写下表:月用水量(吨/户)4 10 16 …… 应收水费(元/户) 40 ……(II )设一户居民的月用水量为x 吨,应收水费y 元,写出y 关于x 的函数关系式;(III )已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨? 22.(8分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了12m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了5m8%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.23.(8分)先化简,再求值:2213242xxx x--⎛⎫÷--⎪--⎝⎭,其中x是满足不等式﹣12(x﹣1)≥12的非负整数解.24.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.25.(10分)先化简222211(1)11x x xxx x-+-÷-+--,然后从﹣5<x<3的范围内选取一个合适的整数作为x的值代入求值.26.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.27.(12分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.2.A【解析】【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=r rr ,故该选项说法错误 B 、因为5a b =r r ,所以a r 与b r 的方向相同,故该选项说法正确,C 、因为5a b =r r ,所以//a b r r,故该选项说法正确, D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.3.C【解析】【分析】Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化4.B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.A【解析】【分析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.B【解析】【分析】作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.【详解】解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).故选:B.【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.7.A【解析】【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM-= 2253-=4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC= 125.故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.8.B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.9.C【解析】试题解析:∵sin∠CAB=322 BCAC==∴∠CAB=45°. ∵333B C sin C AB AC '''∠===', ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.10.D【解析】【分析】首先判断出四个结论的错误个数和正确个数,进而可得m 、n 的值,再计算出m n -即可.【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确;2525⋅=③,错误;④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=,m 1n 3-=, 故选D .【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m 、n 的值.11.B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则,5 =,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.12.C【解析】【分析】代入y=0求出x的值,进而可得出M a N a=1a-1a+1,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.【详解】解:当y=0时,有(x-1a)(x-1a+1)=0,解得:x1=1a+1,x2=1a,∴M a N a=1a-1a+1,∴M1N1+M2N2+…+M2018N2018=1-12+12-13+…+12018-12019=1-12019=20182019.故选C.【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a的值是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a(a-1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).14.75°【解析】【分析】先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC ∥DF ,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.15.1【解析】解:原式=222()xy x y x y x y ++⋅++=xy+2x+2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.17. (24001,0)【解析】分析:根据直线l 的解析式求出60MON ∠=︒,从而得到130MNO OM N ,∠=∠=︒根据直角三角形30°角所对的直角边等于斜边的一半求出212OM OM =⋅, 然后表示出n OM 与OM 的关系,再根据点n M 在x轴上,即可求出点M 2000的坐标详解:∵直线l:3y x =,∴60MON ∠=︒,∵NM ⊥x 轴,M1N ⊥直线l ,∴1906030MNO OM N ,∠=∠=︒-︒=︒∴212,242ON OM OM ON OM OM ====⋅,同理,222212(2)OM OM OM =⋅=⋅, …,22221(2)222n n n OM OM +=⋅=⋅=,所以,点n M 的坐标为21(2,0).n +点M 2000的坐标为(24001,0).故答案为:(24001,0).点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.18.80°.【解析】【分析】由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果.【详解】解:如图所示,依题意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案为80°.【点睛】本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴AC ADAB AC,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.20.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键. 21.(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨【解析】【分析】(Ⅰ)根据题意计算即可;(Ⅱ)根据分段函数解答即可;(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.【详解】解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;当月用水量为16吨时,应收水费=15×4+1×6=66元;故答案为16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=15×4+(x﹣15)×6=6x﹣30;(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126X=18,∴居民甲上月用水量为18吨,居民乙用水12吨.【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.22.(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m 的值为49.1.【解析】【详解】(1)设11月份红桔的进价为每千克x 元,香橙的进价为每千克y 元,依题意有4006001520024x y y x +=⎧⎨=+⎩, 解得820x y =⎧⎨=⎩, 答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣12m%)×400(1+58m%)+20(1﹣m%)×100(1+2m%)=15200, 解得m 1=0(舍去),m 2=49.1,故m 的值为49.1.23.-12【解析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x 的值代入化简后的结果进行计算即可.【详解】原式=()()()()()()112232222x x x x x x x x ⎡⎤+-+--÷-⎢⎥+---⎣⎦, =()()()()()()112·2211x x x x x x x +--+-+-, =21+-x , ∵﹣12(x ﹣1)≥12, ∴x ﹣1≤﹣1,∴x≤0,非负整数解为0,∴x=0,当x=0时,原式=-12. 【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.24.(1)y =-12(x -3)2+5(2)5 【解析】【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-, ∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.25.12【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣5<x <3的范围内选取一个使得原分式有意义的整数作为x 的值代入即可解答本题.【详解】解:÷(﹣x+1)====, 当x=﹣2时,原式=1122-=- . 【点睛】 本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法. 26.(1)详见解析;(2)3sin OPC ∠=;(3)915m ≤≤【分析】(1)连接OC ,根据等腰三角形的性质得到∠A=∠OCA ,由平行线的性质得到∠A=∠BOP ,∠ACO=∠COP ,等量代换得到∠COP=∠BOP ,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O 作OD ⊥AC 于D ,根据相似三角形的性质得到CD•OP=OC 2,根据已知条件得到3OC OP =,由三角函数的定义即可得到结论;(3)连接BC ,根据勾股定理得到BC=2?2AB AC -=12,当M 与A 重合时,得到d+f=12,当M 与B重合时,得到d+f=9,于是得到结论.【详解】(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP ,∴∠COP=∠BOP ,∵PB 是⊙O 的切线,AB 是⊙O 的直径,∴∠OBP=90°,在△POC 与△POB 中,OC OB COP BOP OP OP ⎧⎪∠∠⎨⎪⎩===,∴△COP ≌△BOP ,∴∠OCP=∠OBP=90°,∴PC 是⊙O 的切线;(2)过O 作OD ⊥AC 于D ,∴∠ODC=∠OCP=90°,CD=12 AC,∵∠DCO=∠COP,∴△ODC∽△PCO,∴CD OC OC PO=,∴CD•OP=OC2,∵OP=32 AC,∴AC=23 OP,∴CD=13 OP,∴13OP•OP=OC2∴OC OP=∴sin∠CPO=OC OP=(3)连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=1,∴,当CM⊥AB时,d=AM,f=BM,∴d+f=AM+BM=1,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤1.【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.27.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.。
河南省焦作市2019-2020学年中考数学第四次调研试卷含解析
河南省焦作市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1082.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、B C,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为()A.13πB.14πC.16πD.112π3.下列各图中,∠1与∠2互为邻补角的是( )A.B.C.D.4.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.55.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=146.单项式2a3b的次数是()A.2 B.3 C.4 D.57.下列图形中,属于中心对称图形的是()A.B.C.D.8.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB9.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为()A .100︒B .110︒C .130︒D .140︒10.把不等式组2010x x -⎧⎨+<⎩…的解集表示在数轴上,正确的是( )A .B .C .D .11.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为6,∠ADC=60°,则劣弧AC 的长为( )A .2πB .4πC .5πD .6π12.数轴上分别有A 、B 、C 三个点,对应的实数分别为a 、b 、c 且满足,|a|>|c|,b•c <0,则原点的位置( )A .点A 的左侧B .点A 点B 之间C .点B 点C 之间D .点C 的右侧二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos ∠C=45,那么GE=_______.14..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.15.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为_____.16.关于x 的分式方程211x a ax x++--=2的解为正实数,则实数a 的取值范围为_____. 17.123=⨯________.18.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(1)计算:2(2)(3)12sin 60π︒-+-+-;(2)化简:2121()a a a a a--÷-.20.(6分)已知,在菱形ABCD 中,∠ADC=60°,点H 为CD 上任意一点(不与C 、D 重合),过点H 作CD 的垂线,交BD 于点E ,连接AE .(1)如图1,线段EH 、CH 、AE 之间的数量关系是 ;(2)如图2,将△DHE 绕点D 顺时针旋转,当点E 、H 、C 在一条直线上时,求证:AE+EH=CH .21.(6分)(10分)如图,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,交⊙O 于点E ,连结CE 、AE 、CD ,若∠AEC=∠ODC .(1)求证:直线CD 为⊙O 的切线; (2)若AB=5,BC=4,求线段CD 的长.22.(8分)已知:如图,点A ,F ,C ,D 在同一直线上,AF=DC ,AB ∥DE ,AB=DE ,连接BC ,BF ,CE .求证:四边形BCEF 是平行四边形.23.(8分)小张同学尝试运用课堂上学到的方法,自主研究函数y=21x的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=21x 自变量的取值范围是 ; (2)下表列出了y 与x 的几组对应值:x…﹣2﹣32 m﹣34﹣1212 34132 2 …y …14491 1694416914914…表中m 的值是 ;(3)如图,在平面直角坐标系xOy 中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=21x 的图象,写出这个函数的性质: .(只需写一个)24.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m =________,n =________; (2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.25.(10分)已知:在△ABC 中,AC=BC ,D ,E ,F 分别是AB ,AC ,CB 的中点. 求证:四边形DECF 是菱形.26.(12分)如图,一根电线杆PQ 直立在山坡上,从地面的点A 看,测得杆顶端点P 的仰角为45°,向前走6m 到达点B ,又测得杆顶端点P 和杆底端点Q 的仰角分别为60°和30°,求电线杆PQ 的高度.(结果保留根号).27.(12分)如图,在ABC △中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE BC ⊥于点E ,且BDE A ∠=∠.(1)判断DE 与⊙O 的位置关系并说明理由; (2)若16AC =,3tan 4A =,求⊙O 的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.5×1.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.A【解析】【分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧AB的长.【详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°, ∴∠O=60°, ∴劣弧AB 的长=60?•111803ππ=.故选:A . 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式. 3.D 【解析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是. 故选D . 4.C 【解析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦L 即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a , 则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦L =3, 则()()()()22222123122222222n S x a x a x a x a n L ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L=4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L=4×3 =12, 故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.5.C 【解析】 x 2-8x=2, x 2-8x+16=1, (x-4)2=1. 故选C .【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.6.C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.7.B【解析】【分析】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.故选B.【点睛】本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系. 9.B【解析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.10.B【解析】【分析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.11.B【解析】【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n rl π= . 12.C 【解析】 分析:根据题中所给条件结合A 、B 、C 三点的相对位置进行分析判断即可. 详解:A 选项中,若原点在点A 的左侧,则a c <,这与已知不符,故不能选A ;B 选项中,若原点在A 、B 之间,则b>0,c>0,这与b·c<0不符,故不能选B ;C 选项中,若原点在B 、C 之间,则a c >且b·c<0,与已知条件一致,故可以选C ;D 选项中,若原点在点C 右侧,则b<0,c<0,这与b·c<0不符,故不能选D. 故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.172【解析】 【分析】过点E 作EF ⊥BC 交BC 于点F ,分别求得AD=3,BD=CD=4,EF=32,DF=2,BF=6,再结合△BGD ∽△BEF 即可. 【详解】过点E 作EF ⊥BC 交BC 于点F.∵AB=AC , AD 为BC 的中线 ∴AD ⊥BC ∴EF 为△ADC 的中位线.又∵cos ∠C=45,AB=AC=5,∴AD=3,BD=CD=4,EF=32,DF=2 ∴BF=6∴在Rt △BEF 中2, 又∵△BGD ∽△BEF∴BG BD =BE BF,即GE=BE-BG=2. 【点睛】 本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.14.【解析】【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为 r ,∵AC=6,∠ACB=120°, ∴1206180l π⨯⨯==2πr , ∴r=2,即:OA=2,在 Rt △AOC 中,OA=2,AC=6,根据勾股定理得,,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA 的长是解本题的关键. 15.60°【解析】解:∵BD 是⊙O 的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°16.a<2且a≠1【解析】【分析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解为正实数,∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案为:a<2且a≠1.【点睛】分式方程的解.17.1【解析】【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可.【详解】解:原式=1.故答案为1.【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.18.1.【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(2)11a a +-. 【解析】【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())022π12sin60︒-+-+-=4+1+|1﹣=4+1+|11(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭=()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.20. (1) EH 2+CH 2=AE 2;(2)见解析.【解析】分析:(1)如图1,过E 作EM ⊥AD 于M ,由四边形ABCD 是菱形,得到AD=CD ,∠ADE=∠CDE ,通过△DME ≌△DHE ,根据全等三角形的性质得到EM=EH ,DM=DH ,等量代换得到AM=CH ,根据勾股定理即可得到结论;(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC ,在CH 上截取HG ,使HG=EH ,推出△DEG 是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE ≌△DCG ,根据全等三角形的性质即可得到结论.详解:(1)EH 2+CH 2=AE 2,如图1,过E 作EM ⊥AD 于M ,∵四边形ABCD 是菱形,∴AD=CD ,∠ADE=∠CDE ,∵EH ⊥CD ,∴∠DME=∠DHE=90°,在△DME 与△DHE 中,DME DHE MDE HDE DE DE ===∠∠⎧⎪∠∠⎨⎪⎩,∴△DME ≌△DHE ,∴EM=EH ,DM=DH ,∴AM=CH ,在Rt △AME 中,AE 2=AM 2+EM 2,∴AE 2=EH 2+CH 2;故答案为:EH 2+CH 2=AE 2;(2)如图2,∵菱形ABCD ,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC ,∵EH ⊥CD ,∴∠DEH=60°,在CH 上截取HG ,使HG=EH ,∵DH ⊥EG ,∴ED=DG ,又∵∠DEG=60°,∴△DEG 是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG ﹣∠ADG=∠ADC ﹣∠ADG ,∴∠ADE=∠CDG ,在△DAE 与△DCG 中,DA DC ADE CDG DE DG ⎧⎪∠∠⎨⎪⎩=== ,∴△DAE ≌△DCG ,∴AE=G C,∵CH=CG+GH,∴CH=AE+EH.点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.21.(1)证明见试题解析;(2)103.【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD 为⊙O的切线;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴CO CDAC BC=,即2.534CD=,解得;DC=103.考点:切线的判定.22.证明见解析【解析】【分析】首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.【详解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC 和△DEF 中,,∴△ABC ≌△DEF ,∴BC=EF ,∠ACB=∠DFE ,∴BC ∥EF ,∴四边形BCEF 是平行四边形.【点睛】本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.23.(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y 轴对称.【解析】【分析】(1)由分母不等于零可得答案;(2)求出y=1时x 的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得.【详解】(1)函数y=21x的定义域是x≠0, 故答案为x≠0; (2)当y=1时,21x =1, 解得:x=1或x=﹣1,∴m=﹣1,故答案为﹣1;(3)如图所示:(4)图象关于y 轴对称,故答案为图象关于y 轴对称.【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.24.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.25.见解析【解析】【详解】证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形26.(6+23)米【解析】【分析】根据已知的边和角,设CQ=x,BC=3QC=3x,PC=3BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC 中,33,∴在Rt△PBC中3,∵在Rt△PAC中,∠PAC=45°,则PC=AC,3∴PQ=PC-CQ=3x-x=2x=6+23则电线杆PQ高为(6+3∴,3,解得33米.【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.27.(1)DE与⊙O相切,详见解析;(2)5【解析】【分析】(1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE =90°,说明相切的位置关系。
河南省焦作市2019-2020学年中考数学教学质量调研试卷含解析
河南省焦作市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.- 14的绝对值是()A.-4 B.14C.4 D.0.42.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x3.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直4.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°5.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=14S△ABC D.DE∥AB6.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为()A .35B .31313C .23D .213137.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 8.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )A .42,41B .41,42C .41,41D .42,459.已知x a =2,x b =3,则x 3a ﹣2b 等于( )A .89B .﹣1C .17D .7210.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( )A .216000米B .0.00216米C .0.000216米D .0.0000216米11.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .12.在Rt △ABC 中,∠C=90°,如果sinA=12,那么sinB 的值是( ) A .3 B .12 C .2 D .2 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC 、BD ,若S 四边形ABCD =18,则BD 的最小值为_________.14.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.15.已知 x(x+1)=x+1,则x =________.16.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______17.写出一个大于3且小于4的无理数:___________.18.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶6千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C .小明发现古镇C 恰好在A 地的正北方向,则B 、C 两地的距离是_____千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.20.(6分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x 元时(x 为正整数),月销售利润为y 元.求y 与x 的函数关系式并直接写出自变量x 的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?21.(6分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 22.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.23.(8分)一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.25.(10分)如图,点是线段的中点,,.求证:.26.(12分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.27.(12分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.2.C【解析】【分析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.3.B【解析】【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故选:B.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.4.B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定5.A【解析】【分析】根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.6.D【解析】【分析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:13∴cos∠ECB=CBCE=1313,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.7.C【解析】【分析】设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得. 【详解】解:设房价比定价180元增加x元,根据题意,得(180+x﹣20)(50﹣x10)=1.故选:C.【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.8.C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】从小到大排列此数据为:40,1,1,1,42,44,45,数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.【点睛】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.A【解析】∵x a=2,x b=3,∴x3a−2b=(x a)3÷(x b)2=8÷9= 89,故选A.10.B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】2.16×10﹣3米=0.00216米.故选B.【点睛】考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形12.A【解析】【分析】【详解】∵Rt△ABC中,∠C=90°,sinA=12,∴=,∴∠A+∠B=90°,∴故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省焦作市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣12.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差3.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =4.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )A .B .C .D .5.下列美丽的图案中,不是轴对称图形的是( )A .B .C .D .6.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( ) A .42,41B .41,42C .41,41D .42,457.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴的正半轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC .有下列结论:①abc <0;②3b+4c <0;③c >﹣1;④关于x 的方程ax 2+bx+c=0有一个根为﹣1a,其中正确的结论个数是( )A .1B .2C .3D .48.如图,已知△ABC 中,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .90°B .135°C .270°D .315°9.对于一组统计数据:1,6,2,3,3,下列说法错误的是( ) A .平均数是3B .中位数是3C .众数是3D .方差是2.510.已知二次函数2()1y x h =-+(h 为常数),当13x ≤≤时,函数的最小值为5,则h 的值为( ) A .-1或5B .-1或3C .1或5D .1或311.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×108 12.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x +的值为_____. 14.在数轴上与表示的点距离最近的整数点所表示的数为_____.15.如图,点E 在正方形ABCD 的外部,∠DCE=∠DEC ,连接AE 交CD 于点F ,∠CDE 的平分线交EF 于点G ,AE=2DG .若BC=8,则AF=_____.16.在Rt△ABC中,∠C=90∘,若AB=4,sinA =35,则斜边AB边上的高CD的长为________.17.已知关于x的方程有两个不相等的实数根,则m的最大整数值是.18.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知正比例函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=kx(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.20.(6分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当MN n与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.21.(6分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0). (1)将△ABC 绕点O 逆时针旋转90°得到△DEF ,画出△DEF ;(2)以O 为位似中心,将△ABC 放大为原来的2倍,在网格内画出放大后的△A 1B 1C 1,若P(x ,y)为△ABC 中的任意一点,这次变换后的对应点P 1的坐标为 .22.(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.23.(8分)已知Rt △ABC 中,∠ACB =90°,CA =CB =4,另有一块等腰直角三角板的直角顶点放在C 处,CP =CQ =2,将三角板CPQ 绕点C 旋转(保持点P 在△ABC 内部),连接AP 、BP 、BQ .如图1求证:AP =BQ ;如图2当三角板CPQ 绕点C 旋转到点A 、P 、Q 在同一直线时,求AP 的长;设射线AP与射线BQ 相交于点E ,连接EC ,写出旋转过程中EP 、EQ 、EC 之间的数量关系.24.(10分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC=60°,∠ABE=25°.求∠DAC 的度数.25.(10分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧. (1)求证:AB 为⊙C 的切线. (2)求图中阴影部分的面积.26.(12分)已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ;(2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sinE =35,AK =10,求CN 的长.27.(12分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求AC 和AB 的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【详解】0.056用科学记数法表示为:0.056=-25.610⨯,故选B. 2.B 【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数. 故选:C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 3.B 【解析】 【分析】根据幂的运算法则及整式的加减运算即可判断. 【详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.4.D【解析】【分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.5.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】从小到大排列此数据为:40,1,1,1,42,44,45,数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.所以本题这组数据的中位数是 1,众数是 1. 故选C . 【点睛】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 7.B 【解析】 【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由对称轴2b a -=2可知a=14b -,由图象可知当x=1时,y >0,可判断②;由OA=OC ,且OA <1,可判断③;把-1a代入方程整理可得ac 2-bc+c=0,结合③可判断④;从而可得出答案. 【详解】解:∵图象开口向下,∴a <0, ∵对称轴为直线x=2,∴2ba->0,∴b >0, ∵与y 轴的交点在x 轴的下方,∴c <0, ∴abc >0,故①错误. ∵对称轴为直线x=2,∴2b a -=2,∴a=14b -, ∵由图象可知当x=1时,y >0,∴a+b+c >0,∴4a+4b+4c>0,∴4⨯(14b -)+4b+4c>0, ∴3b+4c>0,故②错误.∵由图象可知OA <1,且OA=OC , ∴OC <1,即-c <1, ∴c >-1,故③正确. ∵假设方程的一个根为x=-1a ,把x=-1a 代入方程可得1ba a-+c=0, 整理可得ac-b+1=0,两边同时乘c 可得ac 2-bc+c=0, ∴方程有一个根为x=-c ,由③可知-c=OA ,而当x=OA 是方程的根, ∴x=-c 是方程的根,即假设成立,故④正确. 综上可知正确的结论有三个:③④.故选B.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.8.C【解析】【分析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.9.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.10.A【解析】【分析】由解析式可知该函数在x=h 时取得最小值1,x>h 时,y 随x 的增大而增大;当x<h 时,y 随x 的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y 取得最小值5;②若h>3,可得当x=3时,y 取得最小值5,分别列出关于h 的方程求解即可. 【详解】解:∵x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小, ∴①若h<1,当13x ≤≤时,y 随x 的增大而增大, ∴当x=1时,y 取得最小值5, 可得:2(151)-+=h , 解得:h=−1或h=3(舍), ∴h=−1;②若h>3,当13x ≤≤时,y 随x 的增大而减小, 当x=3时,y 取得最小值5, 可得:2(153)-+=h , 解得:h=5或h=1(舍), ∴h=5,③若1≤h≤3时,当x=h 时,y 取得最小值为1,不是5, ∴此种情况不符合题意,舍去. 综上所述,h 的值为−1或5, 故选:A . 【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键. 11.B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1. 【详解】5570000=5.57×101所以B 正确 12.D 【解析】 【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;。