质点运动学

合集下载

大学物理第1章质点运动学

大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。

一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。

质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。

二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。

1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。

匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。

2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。

非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。

三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。

主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。

我们可以通过坐标系建立一个参照系,来描述质点的位置。

2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。

位移的大小可以用位移公式Δr=r2-r1来计算。

3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。

速度的大小可以用速度公式v=Δr/Δt来计算。

4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。

加速度的大小可以用加速度公式a=Δv/Δt来计算。

四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。

曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。

1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。

弧长的大小可以用弧长公式s=rθ来计算。

2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。

曲率半径可以根据曲线的形状计算得出。

3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。

第1章-质点运动学

第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率

大学物理——第1章-质点运动学

大学物理——第1章-质点运动学
沿逆时针方向转动角位移取正, 沿顺时针方向转动角位移取负.
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C

第一章 质点运动学

第一章 质点运动学
16
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学

y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j

第二章 质点运动学

第二章 质点运动学

第二章 质点运动学运动学的任务是描述随时间的推移物体位置变化(运动)的规律,不涉及物体间相互作用与运动的关系。

§2.1 质点的运动学方程一、质点的位置矢量和运动学方程 要描述某质点在空间的位置,可以在参考系上先建立一个空间直角坐标系xyz o -,从坐标原点向该质点引一条有向线段,用r表示。

1、 位置矢量定义:自参考点(原点o )引向质点P 所在位置的矢量。

质点位矢在直角坐标系中的表示:k z j y i x r++=ˆˆk j i,ˆ,ˆ分别为沿x 轴,y 轴,z 轴正方向的单位矢量,z y x ,,称为质点的位置坐标,质点的一组位置坐标就对应于一个位置矢量,也就对应质点一空间位置。

位矢的大小: 222z y x r r ++==位矢的方向(用方向余弦表示):rzr y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα γβα,,分别为位矢与x 轴,y 轴,z 轴正方向的夹角。

2、质点的运动学方程由于质点的运动的不同时刻,位矢不同,则有:)(t r r= 即为质点的运动学方程,它给出了任意时刻质点的位置。

方程在直角坐标系中的正交分解式:k t z j t y i t x t r)()()()(++=质点运动学方程的标量形式为: )(),(),(t z z t y y t x x === 3、质点的运动轨迹质点运动时位矢端点描出的曲线,称质点运动轨迹。

由运动学方程消去t 得: 0),,(=z y x f[例] 一质点的运动学方程为:j t r i t R rsin cos +=,求其轨迹。

解:由已知,tR y t R x sin cos == ,则轨迹方程:222R y x =+,圆心在原点。

二、质点的位移和路程1、位移:描述质点在一定时间间隔内位置变动的物理量,用r∆表示。

)()(t r t t r r-∆+=∆位移在直角坐标中的正交分解式: k t z j t y i t x t r t t r r)()()()()(∆+∆+∆=-∆+=∆注意:质点的位移是矢量,其大小 12r r r r -=∆≠∆2、路程:描述质点在一定时间间隔内在其轨迹上经过路径的长度,用l ∆表示。

质点运动学

质点运动学

质点运动学简介质点运动学是研究物体运动的一门学科,它研究的对象是不考虑物体内部结构和力的作用下,描述物体运动状态的一系列物理量。

质点运动学主要研究质点的位置、速度和加速度等与运动有关的基本概念和关系,为进一步研究物体的力学性质和运动规律提供了基础。

质点质点是运动学中研究的基本对象之一。

它是一个理想化的模型,将物体的体积和形状等因素抽象化,仅考虑物体的质量和位置。

质点可以被描述为一个在空间中具有一定质量的点,在研究物体的运动时,可以用质点来近似地代替物体。

质点的位置通常用坐标来表示,如在二维空间中,可以用水平方向的x坐标和竖直方向的y坐标来描述质点的位置。

在三维空间中,需要使用x、y和z三个坐标来表示质点的位置。

位置、速度和加速度质点运动学关注物体的位置、速度和加速度等运动状态。

下面分别介绍这些概念:位置位置是物体在空间中相对于参考点的位置。

我们通常使用坐标系来描述质点的位置,如直角坐标系、极坐标系等。

在直角坐标系中,质点的位置可以用一组坐标来表示。

例如,一个位于原点的质点,其位置可以表示为(0, 0)。

速度速度是物体在单位时间内位移的大小与方向的矢量量。

它描述了质点在单位时间内改变位置的快慢和方向。

速度可以分为瞬时速度和平均速度。

瞬时速度是在某一时刻的瞬时位置与前一时刻的瞬时位置之间的位移与时间间隔的比值。

平均速度是在一段时间内的位移与时间间隔的比值。

加速度加速度是物体在单位时间内速度变化的大小与方向的矢量量。

它描述了质点在单位时间内改变速度的快慢和方向。

加速度可以分为瞬时加速度和平均加速度。

瞬时加速度是在某一时刻的瞬时速度与前一时刻的瞬时速度之间的速度变化与时间间隔的比值。

平均加速度是在一段时间内的速度变化与时间间隔的比值。

运动方程运动方程是质点运动学中描述质点运动规律的方程。

在一维运动中,质点只在一个方向上运动,可以用以下方程描述:•位移公式:s = vt•速度公式:v = v0 + at•加速度公式:a = (v - v0) / t在二维运动中,质点在平面上运动,可以用两个方向的运动方程来描述。

质点运动学

质点运动学

质点运动学1.描述质点的运动的物理量:位矢、位移、速度和加速度。

(1)位矢:从坐标原点引向质点所在位置的有向线段,记为r。

在直角坐标系中r=x i+y j+z k。

(2)运动方程:质点的位置随时间变化的关系:r=r(t)称为运动方程。

在直角坐标系中的矢量表示式:r(t)=x(t)i+y(t)j+z(t)k。

在自然坐标中:s=s(t)(3)位移:由质点初始位置指向末位置的矢量,△r=r(t+△t)-r(t).在直角坐标系中:△r=△x i+△y j+△z k。

(4)路程:物体运动时沿轨迹实际通过的路径长度称为路程,用s 表示。

一般情况下,|△r|≠△s。

(5)速度:质点位置对时间的一阶倒数称为速度v=d r/d t.在直角坐标系中:v=v x i+v y j+v z k=(dx/dt)i+(dy/dt)j+(dz/dt)k在自然坐标系中:v=(ds/dt)e t速度大小称为速率,速率是标量。

v=|v|=|d r/dt|=ds/dt(6)加速度:质点速度对时间的一阶求导a=d v/dt=d2r/dt2 在直角坐标系中:a=a x i+a y j+a z k=(dv x/dt)i+(dv y/dt)j+(dv z/dt)k=(d2x/dt2)i+(d2y/dt2)j+(d2z/dt2)k 在自然坐标系中:a=a t e t+a n e n=(dv/dt)e t+(v2/ρ)e n2.常见的几种运动形式(1)匀速直线运动:v=v0+atx=x0v0t+1/2*at2v2-v20=2a(x-x0)(2)抛体运动:a x=0,a y=-gv x=v0cosθ,v0=v0sinθ-1/2*gt2x=(v0cosθ)t,y=(v0sinθ)t-1/2*gt2 (3)圆周运动:角位置:θ=θ(t)角位移:△θ=θ(t+△t)-θ(t)角速度:ω=dθ/dt=v/R角加速度:β=dω/dt=d2θ/dt2法向加速度:a n=v2/R=Rω2切向加速度:aτ=dv/dt=Rβ3.伽利略变换伽利略速度变换式:v=v0+u。

质点运动学

质点运动学

质点运动学质点运动学一、概述质点运动学是研究质点在空间中的运动规律的一门学科,主要涉及到质点的位置、速度、加速度等基本概念和运动规律。

在物理学中,质点是指没有大小和形状,只有质量的物体。

二、基本概念1. 位移:表示物体从一个位置到另一个位置的距离和方向变化。

位移可以用矢量表示,即有大小和方向。

2. 速度:表示物体在单位时间内所走过的路程与时间的比值。

速度也可以用矢量表示,即有大小和方向。

3. 加速度:表示物体在单位时间内速度改变量与时间的比值。

加速度也可以用矢量表示,即有大小和方向。

4. 运动轨迹:表示物体在空间中运动时所经过的路径。

三、匀速直线运动1. 定义:当物体在直线上做匀速运动时,其位移与时间成正比例关系。

2. 公式:设物体起始位置为x0,末位位置为x1,所用时间为t,则位移Δx=x1-x0;平均速度v=Δx/t;即v=(x1-x0)/t;若匀速,则v不变。

3. 示例:小明从家里到学校的距离为10km,他步行到学校花了2小时,求他的速度。

解:v=Δx/t=10km/2h=5km/h。

四、匀加速直线运动1. 定义:当物体在直线上做匀加速运动时,其位移与时间成二次函数关系。

2. 公式:设物体起始位置为x0,末位位置为x1,所用时间为t,初速度为v0,末速度为v1,则位移Δx=(v0+v1)t/2;平均速度v=(v0+v1)/2;加速度a=(v1-v0)/t;即Δx=v0t+1/2at^2;v=v0+at;若匀加速,则a不变。

3. 示例:小明从家里到学校的距离为10km,他以每小时5km的速度步行到学校花了2小时,请问他的加速度是多少?解:a=(v1-v0)/t=[(10-5)km/h]/2h=1km/(h^2)。

五、曲线运动1. 定义:当物体在空间中做曲线运动时,其运动轨迹不再是一条直线。

2. 公式:由于曲线运动比较复杂,常常需要借助微积分等高级数学工具来求解。

3. 示例:一个小球以半径为R的圆周运动,速度大小为v,求它的加速度大小。

大学物理第1章 质点运动学

大学物理第1章  质点运动学
a= R
图1-12 变速圆周运动的加速度
1.3.3 圆周运动的角量描述
质点做圆周运动时,除了线量,还 可以用角量来描述其运动。 角量有角位置、角位移、角速度、 角加速度等。
图1-13 角位置和角位移
图1-14 角位移矢量
质点做匀速或匀变速圆周运动时的 角速度、角位移与角加速度的关系式为
2 0 0 t t / 2 2 2 0 2 ( 0 )
图1-1 公转的地球可以当作质点
但是,当研究地球自转时,由于地 球上各点的速度相差很大,因此,地球 自身的大小和形状不能忽略,此时,地 球不能作为质点处理,如图1-2所示。
但可把地球无限分割为极小的质元, 每个质元都可视为质点,地球的自转就成 为无限个质点(即质点系)运动的总和。
做平动的物体,不论大小、形状如 何,其体内任一点的位移、速度和加速 度都相同,可以用其质心这个点的运动 来概括,即物体的平动可视为质点的运 动。 所以,物体是否被视为质点,完全 取决于所研究问题的性质。
图1-4 位移
1.2.3 速度
v t 时间内的位移为 r , 若质点在 v 则定义 r 与 t 的比值为质点在这段时
间内的平均速度,写为
v v Dr v= Dt
其分量形式为
v v r x v y v z v v= = i+ j+ k t t t t
图1-5 速度推导用图
图1-3 位矢
1.2.2 位移
设在直角坐标系中,A,B为质点运动轨迹 上任意两点。t1时刻,质点位于A点,t2时刻,质 点位于B点,则在时间 t = t2 - t1 内,质点位矢的 长度和方向都发生了变化,质点位置的变化可用 uuu v uuu v 从A到B的有向线段 AB 来表示,有向线段 AB 称 为在 D t 时间内质点的位移矢量,简称位移。

力学 第二章 质点运动学

力学 第二章 质点运动学
方向: 90, arccos vy 3342 '
v
arccos vz 5618'
v
二、平均加速度与瞬时加速度
1、平均加速度:速度矢量对时间的平均变化率。
a v v(t t) v(t)
t
t
v(t )

v

速度矢端曲线
v( t t )
§2.3 质点的直线运动(x vx ax )
一、运动学方程
x xt
二、速度和加速度
1、速度(瞬时速度)
vx

dx dt
大小表示质点在t时刻运动的快慢;
正负分别对应于质点沿Ox正向和负向运动。
2、加速度
ax

dvx dt

d2x dt 2
ax与vx同号,则加速;ax与vx反号,则减速。
4、质点的运动学轨迹方程
质点运动时描出的轨迹称为质点的轨迹。 也就是位置矢量的矢端曲线。
质点在平面Oxy上运动,
轨迹方程: y y(x) 或者:f (x, y, z) 0
例题:r R cos tiˆ R sin tˆj, 求:轨迹方程。
y R
解: x2 y2 R2.
x
二、位移
v
v
v
4、注意:
(1)平均速度的大小不等于平均速率。 (2)瞬时速度的大小等于瞬时速率。 (3)即使位置矢量的大小不变,也可以有速度。
ΔS
r(t )
r
S
r(
t

t
)
o
dr / dt
r(t )
ΔS

S
r

r( t t )

大学物理 第一章 质点运动学

大学物理 第一章 质点运动学

是否等于瞬时速率? t 时刻位矢
瞬时速度的大小是否
r
等于瞬时速率?
A
r
r1
B t 时间内位移
x
t +t 时刻位矢
平面直角坐标系中的瞬时速度(简称速度)
v lim r dr
t0 t
dt
r(t) x(t)i y(t) j
v d r
dx
i
d
y
j
y
vy
v
dt dt dt
vx
vxi vy j
力 学
§1-1 参照系 &坐标系 质点 §1-2 位移、速度和加速度 §1-3 圆周运动 §1-5 牛顿运动定律 §1-6 牛顿运动定律的应用举例
1. 运动的绝对性 绝对静止的物体是没有的
地球自转 太阳表面的运动
太阳随银河系运动
为了确定一个物体的位置和描述一个物体的机
械运动,必须另选一个物体或内部无相对运动的物
3. 坐标系 为了定量地描述物体相对于参考系的 运动情况,要在参考系上选择一个固定的坐标系
坐标系选定后,运动物体A 中任一点 P 的位置
就可以用它在此坐标系中的坐标来描述
运动物体
运动参考系
y
A P(x,y,z)
运动物体
O
z 参考系
x
地面参考系
常用坐标系: 平面直角坐标系和自然坐标系
一、质点 一般情况下,运动物体的形状和大小都可能变化
y
y z koj
r
i
x
*P
x
方向的单位矢量.
z
位矢r 的值为
r
xi
yj
zk
r r x2 y2 z2
位矢 r 的方向余弦

第1章 质点运动学

第1章 质点运动学

第1章 质点运动学
1.1 质点运动的描述
一、几个基本概念
运动是绝对的,对运动的描述是相对的。
1. 参考系 为了描述物体的运动而被选作参考的 物体叫做参考系.
任何实物物体均可被选作参考系;场不能作为参考系。
2. 坐标系 为了定量的描述物体的运动,在选定的参考 系上建立的带有标尺的数学坐标,简称坐标系。 坐标系是固结于参考系上的一个数学抽象。
?
即:
v v lim lim ? t 0 t t 0 t
v
vB
A
v
v v dv dv dt dt
第1章 质点运动学
总结:
描述对象 位置
描述质点运动的基本物理量
物理量 位矢 定义
r , r (t )
中心
位置变化
位移
v v0
a (t )
,如何求解

dv a dt
t dv adt
t0
同理:

r
r0
t dr v dt
t0
积分上、 下限!
第1章 质点运动学 例: 质量为5kg可视为质点的物体从原点开始运动, 其加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
rB
r
r r
第1章 质点运动学
讨论: 比较位移和路程
r AB
s AB
s
A
B
r
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关 直线(直进)运动 r s 何时取等号? 曲线运动 t 0时, dr ds

第1章 质点运动学

第1章 质点运动学
r
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别


第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别

质点运动学

质点运动学

et (t)
A
Δs
Δθ
Δθ
Δ et
o
B
et (t + Δt)
dθ 1 en (t) = v dt ρ o' det dθ 1 v =v en = v en 切向加速度分量 an dt dt ρ 2 dv v2 d s 1 ds 2 a= et + en = et + ( ) en 2 dt ρ dt ρ dt
ds v = vet = et dt
dv d(vet ) a= = dt dt det dv = et + v dt dt
反映速度大小的变化
反映速度方向的变化
dv d s 切向加速度分量: a t = = 2 dt dt
2
det v ? dt
t时间内: Δet
Δθ 大小: Δet = 2 et sin( ) 2 当 Δt 0 有 Δθ 0 Δθ 大小: Δet = 2 Δθ 2
lim Δr = dr ——元位移 记: Δ t 0
Δt 0
lim Δr = dr ——元位移的大小
A B
Δr
3、Δ r 与Δ r 的区别
——标量 = rB Δr = r B -r A A
Δr Δr
(三角形的两边之差小于第三边)
rA
o
rB
二、速度
7/8班
A
Δr
et
Δs
Δr 平均速度: v = Δt Δs 平均速率: v = Δt
2
2
2
极坐标系:
随时间变化 横向单位矢量 径向单位矢量

极径

er
极角
极点

r θ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
例1-3 有一质点沿x轴作直线运动为 x(t) =4.5t2 -2t3 (SI),试求: (1)第2秒内的平均速度 v, (2)第2秒末的速度 v, (3)第2秒内经过的路程s 及平均速率 v, (4)第2秒末的加速度 a 。 解:(1) vx = x/ t = [ x(2)-x(1)]/(2-1) = (4.5×22-2×23 )-(4.5-2) = -0.5 m /s v = - 0.5 i m /s
目录
第1章
v2/ρ 为 a 沿法向分量,故称为质点的 法向加速度 an 。 因其方向指向曲率中心,故又称为向心 加速度,它表示速度方向变化的快慢。 因此 , at = dv/dt an = v2/ρ 加速度的大小:a = ( at2 + an2 )1/2
目录
例1-4 已知质点在Oxy平面内的运动方程为 r(t) = 2t i + (2 - t2 ) j ( SI ),求:(1)质点的轨 迹方程;(2)质点的速度和速率;(3)质点在 直角坐标系和自然坐标系中的加速度;(4)轨 迹的曲率半径ρ 。 解:(1)运动方程分量式: x = 2t, y = 2 - t2 消去 t 得轨迹方程: y = 2 - x 2/4 ( 轨迹为抛物线 ) (2) vx = dx/dt = 2 (m/s) vy = dy/dt = - 2t (m/s) v = ( vx2 + vy2 ) 1/2 = 2( 1+ t2 ) 1/2 (m/s)
第1章
目录
(3)速率 Speed 平均速率:v = s / t 速率:v = lim t→0 s / t = ds/dt 平均速率和速率是标量,而平均速度和 速度是矢量,它们是两个不同的概念。但 在 t 趋于 0 极限情况下,因路程 s 和 位移大小 | r| 相等,所以速度的大小和 速率相等,即 v =lim t→0 s / t = lim t→0 | r| / t =| v | 一般说来:v 不等于dr/dt,v 也不等于 | v | 在SI中,速度和速率的单位均为米/秒(m/s).
目录
第1章
1.2.2 长度的计量 定义长度或空间间隔时,我们只叙述一 把米尺使用的步骤,以及如何复制另一把良 好的标准米尺,以便每个人所量得数据都是 相同的。 因此,在物理学上一个物体的长度的概 念只是以一标准米尺用特定的方法比较或度 量出来的且有一定单位的数字。 1983 年规定长度计量基准: 1 米 = 光在真空中1/299792458 秒的时间间 隔内运行路程的长度。
o
第1章
x
z
目录
第1章
2、速度和速率
(1)平均速度 Average velocity
平均速度 v = r/ t =[ r(t + t)-r(t)]/ t
= x/ t I + y/ t j+ z/ t k
= vx i + vy j + vz k
因为 t 是标量,故平均速度 v 的方
目录
第1章
目录
第1章 3、加速度 Acceleration (1)平均加速度:a =v/t =[(v(t+t)-v(t)]/ t 它是平行于 v的矢量。 (2)加速度:a=lim t→0v/t=dv/dt= d2r/dt2 加速度与速度的瞬时变化的方向相同。 由于速度是顺轨迹曲线弯曲的方向而改变的 ,故加速度永远指向曲线凹的方向. 在直角坐标中:a=dvx/dt i+ dvy/dt j+ dvz/dt k = ax i + ay j + az k 加速度的大小:a =|a| =(ax2 + ay2 +az2 )1/2 在SI中加速度的单位为米/秒2 ( m/s2 )
目录
第1章
目录
第1章
如果我们把物体牵涉到里面,时间便 似乎与空间有点关系,因为我们无法想象 一个物体存在于空间内而不占据一段时间, 或者一个物体存在一段时间但并不占据空 间内某一位置。 物理学家定义一个概念时是基于数量 的度量,以及度量的方法,而不只是根据 字典上的定义。
1.2.1 时间的计量 定义时间概念时,我们说时间间隔几分 钟或几秒钟便牵涉到如何做一个标准钟,以 及如何用这一标准钟去度量时间。 所以,时间只是依照特定的方法用一标 准钟量出来的具有单位的数字。 1967年规定时间计量基准: 1 秒 = 与铯 133 原子基态两个超精细能 级之间跃迁相对应的辐射周期的 9192631770 倍。
v(t) P
第1章
v(t+dt)
Q
ρ no dθ O
目录
第1章
dv 沿切线分量为 dt 时 间内质点的速率改变量 dv ;若 d 为速度在 dt 时 间内转过的角度, dv 沿 法线的分量为 vd 。 设曲线在 P点的切向单 位矢量为 to ,法向的单 位矢量为 no ,则 dv 可写 成: dv = dv to + vd no
目录
x2
+
y2
=9
Z
第1章
X
z=0 Oxy-plane
Y
目录
Z
第1章
trajectory
O
z=0 Oxy-plane
X
Y
1.3.2 位移、速度、加速度 为了与引起物体运动的原因联系起来, 物理学家引入了位移、速度和加速度等概念 来描述运动性质,从而为研究物体的运动规 律奠定基础。 1、位移和路程 (1)位移 Displacement 设在时刻 t 质点在A处,它的位矢为 r(t),经过△t时间该质点在B处,此时位矢为 r(t+△t),则质点在△t时间内位置矢量的变 化量△r 称为质点的位移矢量、简称位移。
1.1.2 质点 Partical 几何线度趋于无限小的物体。 任何物体可看成一大群质点的集合 。 可以将物体简化为质点的两种情况: 1、物体不变形,不作转动时(此时物体上 各点的速度及加速度都相同,物体上任一点 可以代表所有点的运动)。 2、物体本身线度和它活动范围相比小得很 多(此时物体的变形及转动显得并不重要)
目录
第1章
v(t) P Q ρ no dθ
v(t+dt)
O vdθ v(t) v(t+dt) dv dv
目录
第1章
dv = dv to + vd no 所以 vdt =ρd 故 d /dt = v /ρ 将上式两边除以dt可得质点在P点的加速度 a = dv/dt = dv/dt to + vd /dt no = dv/dt to + v2/ρ no dv/dt 为沿切向分量,故称为质点的切 向加速度 at ,其值等于速率的变化率,它 表示速度变化的快慢。
no O
第1章
目录
下面我们作详细分析。 质点作曲线运动时,其速度方向与曲线 的切线方向相同。 PQ 曲线为一质点的 路程,若此质点在 P点 的速度为 v(t),经过 dt 时间后质点移到Q点,其 速度变为 v( t + d t)。 质点的速度增量 dv 可 被分解成一沿切线的分 量和一沿法线的分量。
v(t) P Q ρ no dθ
v(t+dt)
O vdθ v(t) v(t+dt) dv dv
因为P点与Q点无限接近 ,故PQ弧可视为一圆弧的 一段,此圆的半径称为曲 线在P点的曲率半径。 图中P点与Q点的法线相 交于 O 点,这一交点即为 PQ 弧的曲率中心。 OP 或 OQ的长度ρ 即为曲率半径 。 因质点由 P点移到 Q点 费时 dt,故 PQ弧的长度为 vdt,而弧长为ρd ,
第1加速度 ax = dvx/dt = 9 - 12t |t=2 = 9 - 12×2 = - 15 ( m/s2 ) 因为加速度与速度方向相同, 所以质点在2秒末作加速运动。
目录
(3)切向加速度和法向加速度 有时我们根据需要把加速度分解二个分量: A 切向加速度 Tangential acceleration 平行于质点运动轨迹的加速度切线分量at B 法向加速度 Normal acceleration 平行于质点运动轨迹的加速度法线分量an v(t) 这样建立的坐标系称为 P 自然坐标系
目录
第1章
目录
r = r (t+ t)-r(t) 在直角坐标系中: r = x i+ y j+ z k (2)路程 Distance y 图中所示曲线 AB 的 A △s 长度称为质点经过的路 △r 程 s,它是标量。在 r(t) B SI 中位移和路程的单位 r(t+△t) 都为米 ( m )。
i
γ
k
β β β
r
y
j
x
目录
2、运动方程:质点位矢随时间的变化 矢量形成: r (t ) = x(t) i + y(t ) j + z(t ) k
第1章
分量形成:x = x(t), y = y(t), z = z(t). 3、轨道方程:坐标 x,y,z 之间的关系式 运动方程是轨道的参数方程,消去 t 可 得轨道方程 例1-1 运动方程 轨道方程 x = 3sin5t x2 + y2 = 9 : 圆柱面 y = 3cos5t z=0 : Oxy平面 z=0 轨道为 交界为圆
目录
第1章
目录
1.1.3 参考系和坐标系 1、参考系 Frame of reference 用以描写物体运动所选用的另一物体。 2、坐标系 Coordinate system 固定在参考系上以确定物体相对于参 考系的位置。 常用的坐标系:直角坐标系、自然坐标系
Z
第1章
地面系 日心系
o
地心系
Y
§1.2 时间和空间的计量 牛顿“绝对”时间和空间观: 时间 Time 是绝对的。时间一直向前 “流去”,与物体的存在以及物理现象的发 生毫无关系。我们无法降低或加快时间流动 的速度,并且在宇宙中任何一个地方时间流 动的情形都是相同的。 空间 Space 也是绝对的,即空间的存在 是永恒的,与空间里是否有物质存在毫无关 系。假设我们所处的空间是欧几里德空间。 时间与空间毫无关联存在着。
相关文档
最新文档