高考数学难点突破_难点30__概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点30 概率
概率是高考的重点内容之一,尤其是新增的随机变量这部分内容.要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法.
●难点磁场
(★★★★★)如图,用A、B、C三类不同的元件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1,N2正常工作的概率P1、P2
.
●案例探究
[例1](★★★★★)有一容量为50的样本,数据的分组及各组的频率数如下:
[10,15]4 [30,35)9 [15,20)5 [35,40)8 [20,25)10 [40,45)3 [25,30)11
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图和累积频率的分布图.
命题意图:本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法.
知识依托:频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法.
错解分析:解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别.
技巧与方法:本题关键在于掌握三种表格的区别与联系.
(2)频率分布直方图与累积频率分布图如下:
[例2](★★★★★)某电器商经过多年的经验发现本店每个月售出的电冰箱的台数ζ
设每售出一台电冰箱,电器商获利300元,如销售不出而囤积于仓库,则每台每月需花
保养费用100元,问电器商每月初购进多少台电冰箱才能使自己月平均收益最大?
命题意图:本题考查利用概率中的某些知识如期望来解决实际问题. 知识依托:期望的概念及函数的有关知识.
错解分析:在本题中,求Ey 是一个难点,稍有不慎,就将产生失误.
技巧与方法:可借助概率分布、期望、方差等知识来解决日常生产生活中的实际问题. 解:设x 为月初电器商购进的冰箱台数,只须考虑1≤x ≤12的情况,设电器商每月的
收益为y 元,则y 是随机变量ζ的函数且y =⎩
⎨⎧<--≥x x x x
x ζζζ),(100300,300,电器商平均每月获益
的平均数,即数学期望为:Ey =300x (P x +P x +1+…+P 12)+[300-100(x -1)]P 1+[2×300-100(x
-2)]P 2+…+[300(x -1)-100]P x -1
=300x (12-x +1)121+ 12
1[300×2)1(1002)1(x x x x -⨯
--] =
3
25
(-2x 2+38x ) 由于x ∈N ,故可求出当x =9或x =10时,也即电器商月初购进9台或10台电冰箱时,收益最大.
●锦囊妙记
本章内容分为概率初步和随机变量两部分.第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验.第二部分包括随机变量、离散型随机变量的期望与方差.
涉及的思维方法:观察与试验、分析与综合、一般化与特殊化. 主要思维形式有:逻辑思维、聚合思维、形象思维和创造性思维. ●歼灭难点训练 一、选择题
1.(★★★★★)甲射击命中目标的概率是21,乙命中目标的概率是3
1
,丙命中目标的概率是
41
.现在三人同时射击目标,则目标被击中的概率为( ) 10
7 D. 54C. 32 B. 43A. 2.(★★★★)已知随机变量ζ的分布列为:P (ζ=k )=3
1
,k =1,2,3,则P (3ζ+5)等于( )
A.6
B.9
C.3
D.4 二、填空题
3.(★★★★)1盒中有9个正品和3个废品,每次取1个产品,取出后不再放回,在取得正品前已取出的废品数ζ的期望E ζ=_________.
4.(★★★★)某班有52人,男女各半,男女各自平均分成两组,从这个班中选出4人参
加某项活动,这4人恰好来自不同组别的概率是_________.
三、解答题
5.(★★★★★)甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算: (1)两人都击中目标的概率;
(2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率.
6.(★★★★)已知连续型随机变量ζ的概率密度函数f (x )=⎪⎩
⎪
⎨⎧≥<≤-≤2 021 1
0x x a x x
(1)求常数a 的值,并画出ζ的概率密度曲线; (2)求P (1<ζ<
2
3
). 7.(★★★★★)设P 在[0,5]上随机地取值,求方程x 2+px +
2
1
4+p =0有实根的概率. 8.(★★★★★)设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元。求一周内期望利润是多少?
参考答案
难点磁场
解:记元件A 、B 、C 正常工作的事件分别为A 、B 、C ,由已知条件P (A )=0.80, P (B )=0.90,P (C )=0.90.
(1)因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率P 1=P (A ·B ·C )=P (A )P (B )P (C )=0.648,故系统N 1正常工作的概率为0.648
(2)系统N 2正常工作的概率P 2=P (A )·[1-P (C B ⋅)] =P (A )·[1-P (B )P (C )]
=0.80×[1-(1-0.90)(1-0.90)]=0.792 故系统N 2正常工作的概率为0.792 歼灭难点训练
一、1.解析:设甲命中目标为事件A ,乙命中目标为事件B ,丙命中目标为事件C ,则目标被击中的事件可以表示为A+B+C ,即击中目标表示事件A 、B 、C 中至少有一个发生.
.
4
1)411)(311)(211()](1[)](1[)](1[)()()()(=---=-⋅-⋅-=⋅⋅=⋅⋅∴C P B P A P C P B P A P C B A P
故目标被击中的概率为1-P (A ·B ·C )=1-4
3
41= 答案:A