18秋福师《近世代数》在线作业一满分答案-4
近世代数复习题及答案
近世代数复习题及答案1. 群的定义是什么?请给出一个例子。
答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。
例如,整数集合Z在加法运算下构成一个群。
2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。
判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。
3. 什么是正规子群?请给出一个例子。
答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。
例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。
4. 什么是群的同态?请给出一个例子。
答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。
例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。
5. 什么是群的同构?请给出一个例子。
答案:群的同构是两个群G和H之间的双射同态。
这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。
例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。
6. 什么是环?请给出一个例子。
答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。
例如,整数集合Z在通常的加法和乘法运算下构成一个环。
7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。
判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。
8. 什么是环的同态?请给出一个例子。
答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。
近世代数第一章答案
近世代数第一章基本概念答案§ 1 . 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 由题设以及真子集的定义得,A 的每一个元都属于B ,因此B A ⊂.于是由A B ⊂ B A ⊂得B A =.所以上述情况在A=B 时才能出现.2. 假设B A ⊂,?=⋂B A ?=⋃B A解 (i ) 由于B A ⊂,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的共同元,因而由交集的定义得B A A ⋂⊂但显然有A B A ⊂⋂所以A B A =⋂(ii) 由并集的定义,B A ⋃的每一个元素都属于A 和B 之一,但B A ⊂,所以B A ⋃的每一元素都属于B :B B A ⊂⋃另一方面B A B ⋃⊂,所以B B A =⋃.§ 2 . 映射1. A ={1,2,…,100}.找一个A A ⨯到A 的映射.解 用()b a ,表示A A ⨯的任意元素,这里a 和b 都属于A .按照定义做一个满足要求的映射即可,例如 Φ: ()b a ,→a 就是这样的一个,因为Φ替A A ⨯的任何元素()b a ,规定了一个唯一的象a ,而A a ∈.读者应该自己再找几个A A ⨯到A 的映射. 2.在你为习题1所找的映射之下,是不是A 的每一个元都是A A ⨯的一个元的象?解 在上面给出的映射Φ之下,A 的每一个元素都是A A ⨯的一个元的象,因为()b a ,中的a 可以是A 的任一元素.你自己找到的映射的情况如何?有没有出现A 的元素不都是象的情况?假如没有,找一个这样的映射.§ 3 .代数运算1. A ={所有不等于零的偶数}.找一个集合D ,使得普通除法是A A ⨯到D 的代数运算.是不是找得到一个以上的这样的D ?解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数.所以取 D ={所有不等于零的有理数} 普通除法就是一个A A ⨯到D 的代数运算.可以找得到一个以上的满足要求的D .读者可以自己找几个. 2.{}c b a A ,,=.规定A 的两不同的代数运算.解 (i )我们用运算表来给出A 的一个代数运算: a b ca a a ab a a ac a a a按照这个表,通过 ,对于A 的任何两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A ,所以 是A 的人一个代数运算.这个代数运算也可以用以下方式来加以描述 : ()y x a y x o =→, 对一切A y x ∈, (ii)同理: ()y x x y x o =→, 对一切A y x ∈,也是A 的一个代数运算.读者可用列表的方法来给出这个代数运算.读者应自己给出几个A 的代数运算.§4 .结合律1. A ={所有不等于零的实数}, 是普通的除法:ba b a =o 这个代数运算适合不适合结合律?解 这个代数运算 不适合结合律.例如, 当4=a 2==c b时()122224224)(====o o o o o c b a ()()414224224==⎪⎭⎫ ⎝⎛==o o o o o c b a所以当a ,b 和c 取上述值时()()c b a c b a o o o o ≠2. A ={所有实数},代数运算: (a,b )→a+2b=a b适合不适合结合律?解读者可以用解上一题的方法来证明,所给代数运算不适合结合律.3.A={a,b,c}.由表a b ca ab cb bc ac c a b给出的代数运算适合不适合结合律?解所给代数运算 适合结合律.为了得出这个结论,需要对元素a,b,c的27(=33)种排列(元素允许重复出现)加以验证.但是利用元素a的特性,可以把验证简化.仔细考察运算表,我们发现以下规律:对集合A的任意元素x来说,都有a x=x a=x由此得出,对于有a出现的排列,结合律都成立.这一点读者可以自己验证.还剩下a不出现的排列.这样的排列共有8(=32)种.我们在这里验证4种,其余4种读者可以自己验证.(b b) b=c b=ab (b b)=b c=a所以(b b) b=b (b b)(b b) c=c c=bb (b c)=b a=b所以 (b b) c=b (b c)(b c) b=a b=bb (c b)= b a=b所以 (b c) b=b (c b)(b c) c=a c=cb (c c)=b b=c所以 (b c) c=b (c c)§5.交换律1.A={所有实数}. 是普通减法:a b= a b这个代数运算适合不适合交换律?解容易验证,当a = 1,b = 2时a b b a ≠ 所以这个代数运算不适合交换律. 2. A ={a , b ,c , d},由表 a b c da abcd b b d a c c c a b d d d c a b所给的代数运算适合不适合交换律?解 要回答这个问题,只须考察一下运算表,看一看关于主对角线对称的位置上,有没有不相同的元素.易知此运算表不对称,所以此代数运算不适合交换律。
《近世代数》模拟试题1及答案.pdf
近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。
G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。
A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪−⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕ是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪−⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解:e 是R 的单位元。
福建师范大学2021年8月课程考试《近世代数》作业考核(答案参考)
姓名:王红
专业:数学与应用数学
学号:202202010658592
学习中心:东北大学无锡研究院奥鹏学习中心[பைடு நூலகம்017]
判断题(共20分,5个小题,每小题4分)
1.剩余类环 中没有非零的零因子。 (×)
2.群中指数为2的子群一定是正规子群 ( √ )
3.已知 是有限群 的子群, 和 分别表示 和 的元素个数,则 不一定能整除 ( √ )
3.有一队士兵, 三三数余二, 五五数余一, 七七数余三. 问:
这队士兵有多少人? 试求最小正整数解. (要写出解题过程)
4.求出剩余类环 的所有理想和所有极大理想。
答:所有理想为0,等价类2生成的理想,等价类4生成的理想和Z8。极大理想为等价类2生成的理想。
4.数域上的全矩阵环不是单环。 ( × )
5.环中理想的乘积还是理想。 ( √ )
二、计算证明题(共80分,4个小题,每小题20分)
1.设 是整数集,规定 ,证明: 关于所定义的
运算构成交换群
2.在四元对称群 中,设 .
(1)写出 的轮换分解式(即将 写成一些互不相交的轮换的乘积);
(2)设集合 ,试写出 中全部元素(用轮换分解式表示);
19春福师《近世代数》在线作业一
(单选题)1: 最大的数域是()A: 整数集B: 有理数集C: 实数集D: 复数集标准解答:(单选题)2: 题面见图片A: AB: BC: CD: D标准解答:(单选题)3: 关于子群的说法正确的是()A: 无限群的子群是无限群B: 有限群的子群是有限群C: 存在没有子群的群D: 无限群有无限个子群标准解答:(单选题)4:A: AB: BC: CD: D标准解答:(单选题)5: 题面见图片A: AB: BC: CD: D标准解答:(判断题)6: 。
A: 错误B: 正确标准解答:(判断题)7: A: 错误B: 正确标准解答:(判断题)8: 题面见图片A: 错误B: 正确标准解答:(判断题)9: 。
A: 错误B: 正确标准解答:(判断题)10: 。
A: 错误B: 正确标准解答:(判断题)11: A: 错误B: 正确标准解答:(判断题)12: 。
A: 错误B: 正确标准解答:(判断题)13: A: 错误B: 正确标准解答:(判断题)14: A: 错误B: 正确标准解答:(判断题)15: 。
A: 错误B: 正确标准解答:(判断题)16: 。
A: 错误B: 正确标准解答:(判断题)17: 题见下图:A: 错误B: 正确标准解答:(判断题)18: A: 错误B: 正确标准解答:(判断题)19: 。
A: 错误B: 正确标准解答:(判断题)20: 。
A: 错误B: 正确标准解答:(判断题)21: A: 错误B: 正确标准解答:(判断题)22: 。
A: 错误B: 正确标准解答:(判断题)23: 。
A: 错误B: 正确标准解答:(判断题)24: 。
A: 错误B: 正确标准解答:(判断题)25: 。
A: 错误标准解答:(判断题)26: 。
A: 错误B: 正确标准解答:(判断题)27: A: 错误B: 正确标准解答:(判断题)28: 。
福建师范大学2020年8月课程考试《近世代数》作业考核试题
二、计算证明题(共80分,4个小题,每小题20分)
1.设 是整数集,规定 ,证明: 关于所定义的
运算构成交换群
2.在四元对称群 中,设 .
(1)写出 的轮换分全部元素(用轮换分解式表示);
3.有一队士兵, 三三数余二, 五五数余一, 七七数余三. 问:
这队士兵有多少人? 试求最小正整数解. (要写出解题过程)
4.求出剩余类环 的所有理想和所有极大理想。
答:所有理想为0,等价类2生成的理想,等价类4生成的理想和Z8。极大理想为等价类2生成的理想。
《近世代数》期末考试A卷
姓名:下载
专业:
学号:
学习中心:
1、判断题(共20分,5个小题,每小题4分)
1.剩余类环 中没有非零的零因子。 ( × )
2.群中指数为2的子群一定是正规子群 ( √ )
3.已知 是有限群 的子群, 和 分别表示 和 的元素个数,则 不一定能整除 ( √ )
4.数域上的全矩阵环不是单环。 ( × )
《近世代数》模拟试题1及答案
近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。
G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。
A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕ是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、 单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪-⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解: e 是R 的单位元。
福师(2021-2022)《近世代数》在线作业一(2)-辅导资料(答案)
福师[2021-2022]《近世代数》在线作业一注:本科目作业有多套随机试卷,请核实是否与您的试卷顺序相一致!!!
一、单选题(共5题,10分)
1、阶最小的非循环群是()
[A]3阶群
[B]4阶克莱因群
[C]6阶群
[D]8阶群
提示:认真复习课本知识302,并完成以上题目
[正确答案是]:[B]
2、题面见图片
[A][A]
[B][B]
[C][C]
[D][D]
提示:认真复习课本知识302,并完成以上题目
[正确答案是]:[C]
3、
[A][A]
[B][B]
[C][C]
[D][D]
提示:认真复习课本知识302,并完成以上题目
[正确答案是]:[A]
4、n阶方阵集合对于矩阵加法和乘法构成的环是()
[A]交换环
[B]除环
[C]整环
[D]都不是
提示:认真复习课本知识302,并完成以上题目
[正确答案是]:[D]
5、
[A][A]
[B][B]
[C][C]
[D][D]
提示:认真复习课本知识302,并完成以上题目
[正确答案是]:[A]。
近世代数练习题(附答案)
《近世代数》练习题(附答案)一.选择题1. 设R 是实数集, 则对任意的,a b R ∈, 代数运算2a b a b =+ ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律2. 在群G 中,a G ∈, a 的阶为12, 则8a 的阶为 ( B )(A) 12 (B) 3 (C) 4 (D) 63.在7次对称群7S 中(25)(437)π=和(13)(546)λ=, 则πλ等于( A )(A) (1376524) (B) (137)(6524) (C) (65)(24137) (D) (1746253)4.在一个无零因子环R 中,,a b R ∈,,0a b ≠对加法来说,有( C )(A) a 的阶<3b 的阶 (B) a 的阶>3b 的阶(C) a 的阶=3b 的阶 (D) 4a 的阶>3b 的阶5.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子6. 假定φ是A 与A 间的一一映射,A a ∈, 则)]([1a φφ-和)]([1a -φφ分别为 ( D )(A) a , a (B) 无意义, a (C) 无意义,无意义 (D) a ,无意义7. 在群G 中, G b a ∈,, 则方程b ax =和b ya =分别有唯一解为 ( B )(A) 1-ba , b a 1- (B) b a 1-, 1-ba (C) a b 1-, b a 1- (D) b a 1-, 1-ab8. 设M 是正整数集, 则对任意的,a b R ∈, 下面“o ”是代数运算的是( B ) (A) b a b a = (B) b a b a = (C) 2a b a b =+- (D) 2a b ab =- 9. 设M 是实数集, 代数运算是普通加法,下列映射是M 的自同构的是( D )(A) 2x x → (B) sin x x → (C) x x → (D) 5x x →-10. 在偶数阶群G 中阶等于2的元数为 ( A )(A) 奇数 (B) 偶数 (C) 1 (D) 不可确定11.在5次对称群5S 中元1(15)(24)π=和2(154)π=的乘积12ππ是( D )(A) (14)(25) (B) (124) (C) (152) (D) (142)12.若群G 的阶为48, G 的真子群H 的阶不可能为 ( C )(A) 12 (B) 16 (C) 18 (D) 2413.群G 中元a 的阶为24中,那么G 的循环子群9()a 的阶为 ( C )(A)3 (B) 4 (C) 8 (D) 914.在一个环R 里如果有一个消去律成立,那么下面不正确的是( B )(A) 另一个消去律也成立 (B) R 中非零元都有逆元(C) R 是无零因子环 (D) R 中非零元对加法的阶都一样15.假定F 是一个域,则一元多项式环[]F x 一定是 ( A )(A) 欧式环 (B) 除环 (C) 域 (D) 无法确定16.设12,εε为唯一分解环I 中单位, a 是I 中任意元, 则下列正确的是 ( B )(A) 12εε+ 也是单位 (B) 12,εε互为相伴元(C) 12,εε 都是a 的真因子 (D) a 有唯一分解17.一个30个元的域的特征可能是( A )(A) 5 (B) 6 (C) 10 (D) 1518.假定域R 与R 同态, 则R 是( C )(A) 域 (B) 整环 (C) 环 (D) 除环19.若I 是一个唯一分解环,I a ∈且a 21p p =和a 21q q =(其中2121,,,q q p p 都为素元),则下列说法正确的是 ( D )(A) 1p 与1q 互为相伴元 (B) 1p 与1q 互为相伴元和2p 与2q 互为相伴元(C) 2p 与2q 互为相伴元 (D) 1p 与1q 互为相伴元或1p 与2q 互为相伴元20.假定)(a 和)(b 是整环I 的两个主理想, 若)()(b a =, 则 ( A )(A) b 是a 的相伴元 (B) b 与a 互素 (C) b 是a 的真因子 (D) |b a 21.=A {所有整数},令τ: 2a a →,当a 是偶数;21+→a a ,当a 是奇数.则τ为 ( B )(A) 单射变换 (B) 满射变换 (C) 一一变换 (D) 不是变换22.若)(a G =,且a 的阶为有限整数n ,则下列说法正确的是 ( A )(A) G 与模n 的剩余类加群同构 (B) G 的阶可能无限(C) 元21012,,,,,---n a a a a a 中没有相同元 (D) G 与整数加群同构23.若R 是一个特征为有限整数n 的无零因子环,且R b a ∈,,则 ( D )(A) 0,00≠≠⇒=b a b a (B) 21n n n =,其中21,n n 为素数(C) 存在R 中元c 的阶为无限整数 (D) R 对乘法成立两个消去律24. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)22a b b a b =+ (B)b a b a= (C) 22a b a ab b =-+ (D) 10a b a b += 25. 在群G 中, ,,a b c G ∈, 则方程xaxba xbc =的唯一解为 ( D )(A)11abca b -- (B) 111bca a b --- (C) 111a b a bc --- (D) 111a bca b ---26.在6次对称群6S 中123456326514π⎛⎫= ⎪⎝⎭的阶是( A ) (A) 5 (B) 24 (C) 12 (D) 627.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个28.假定F 是一个域,则一元多项式环[]F x 一定是 ( B )(A) 除环 (B) 欧式环 (C) 域 (D) 无法确定29.若Q 是一个域, 不正确的是 ( B )(A) Q 是交换除环 (B) Q 对乘法作成群(C) Q 无零因子 (D) Q 中不等于零的元都有逆元30.若I 是主理想环, p 是I 中素元, 且I b a ∈, 则 ( C )(A) 主理想)(p 不是I 的最大理想 (B) a 没有唯一分解(C) 若p |ab ,有p |a 或p |b (D) I /()p 不是域31. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律32. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( A )(A) 2a b a b =+ (B)b a b a= (C) a b b a = (D) 10a a b = 33. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( D )(A)1aba - (B) 11a b -- (C) 11ba b -- (D) 1a -34.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B )(A) 2 (B) 3 (C) 4 (D) 535.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个36.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定37. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 838.一个有8个元的域的特征是( A )(A) 2 (B) 4 (C) 6 (D) 839.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子40.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 441. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律42. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)a b b a = (B)b a b a= (C) 2a b a b =+ (D) 10a a b = 43. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( C )(A)1aba - (B) 11a b -- (C) 1a - (D) 11ba b --44.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B ) (A) 2 (B) 3 (C) 4 (D) 545.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个46.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定47. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 848.一个有8个元的域的特征是( )(A) 2 (B) 4 (C) 6 (D) 849.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子50.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 4二.填空题1.设是集合A 的元间的一个等价关系,那么满足反射律、 对称律 、 推移律 .2.若G 为群,,,a b c G ∈,则3211()b c a c --- 123c ac b .3.循环群()a 的阶是50,则它的子群15()a 的阶是 10 .4. 群G 的中心N 是G 的一个 不变 子群.5.n 次对称群n S 的阶为 !n .6.假定B A ⊂,那么B A A , B A B .7. 假定A 和A 同态, A 和A 同态, 则A 和A 也同态 .8. 在群G 中, G b a ∈,, 则方程b ya =有唯一解为 1ba .9.设集合A 的元数为3 ,那么A 共有子集 8 个,A 的元间的关系共有 512 个.10.若G 为群, 方程1x ax bx -=的唯一解为 1ba .11.一个有限非可换群至少含有______ 6 ______个元素 .12.设~是集合A 的元间的一个等价关系,那么~满足自反律、对称律 、 推移律 .13.若G 为群,,,a b c G ∈,则211()bc a --- 21ac b .14.5次对称群5S 的阶为 120 .15.若φ是环R 与R 的同态满射, 则同态核中元都是R 中 单位元 e 的逆象,且同态核是R 的一个 理想 .16.设A 是有单位元的交换环R 的一个最大理想,那么剩余类环R A 是一个 域 .17.在整数环Z 中,理想(3,7)等于主理想 (1) .18.设9Z 为模9的剩余类环,那么[5]的负元为 [4] ,逆元为 【2】 .19.设G 是17阶群,则G 的生成元有 16 个.20.除环的最大理想是 零理想 .21.设R 是模7的剩余类环,在多项式环[]R x 中2([6][4])([2][5])x x x +-+=32[6][6]x x x -++22.设10Z 为模10的剩余类环,那么[3]的负元为 [7] ,逆元为[7] .23.在整数环I 中,主理想()()a b =当且仅当b 是a 的 相伴元 .24.设{,,}A a b c =,{,,,}R aRa aRc cRa cRc =.那么由R 决定的A 的分类为 {,},{}a c b .25.设I 是一个唯一分解环,那么多项式环[]I x 是 唯一分解 环.26.设9Z 为模9的剩余类环,那么[7]的负元为 [2] ,逆元为[4] .27.设I 是一个唯一分解环,那么I 的元12,,,n a a a 的两个最大公因子d 和d '相差一个相伴元 .28.若群的元a 的阶是15,b 的阶是8,且ab ba =, 则8a 和ab 的阶分别是 15 和 120 .29.在一个特征为p 的无零因子的交换环R 中,有p 为 素 数,且()p a b += p p a b + .30. 若群G 的阶为60, G 的子群H 的阶为15,则H 在G 中的指数为 4 .31. 若φ是环R 与R 的同态满射,则对,,a b c R ∈,它们的象分别为,,a b c ,则元()a b c +的象为 ()a b c + .32.设A 是环R 的一个最大理想,那么包含A 的R 的理想仅有 A 和R .33.在整数环Z 中,理想(42,35)等于主理想 (7) .34.在唯一分解环I 中,若素元p 能整除ab ,则p 必能整除 ,a b 中一个元 .35. 若G 是由集合A 的全体一一变换所作成, 则G 是一个 变换 群.36.若R 是有单位元的交换环,则R 的主理想)(a 中的元有形式为 ,ra r R . 37.0R 是有单位元的交换环, x 是0R 的子环R 上的未定元, 则仅当 010n a a a时,才有010=+++n n x a x a a 成立.38. R 是一个有单位元的环, 且}0{≠R ,则在R 中必有一个元没有逆元, 它是 0 ; 必有两个元有逆元,它们是 1和-1 .39.唯一分解环I 中的元a 和b 的两个最大公因子d 和d '只能差一个 相伴元 .40.设}2,1{=A ,}4,3{=B .那么=⨯B A { (1,3),(1,4),(2,3),(2,4) } .41.若群G 和集合G 同态,则G 是 群 ,并且有G 中元e 和1-a 的象为G 中元e 和1a .42.在无零因子环R 中,如果对R b a ∈,有0=ab , 那么必有 0a 或0b .43.群的元a 的阶是n ,若d 是整数r 和n 的最大公因子,则r a 的阶是 n d. 44.在一个域Q 中,若有0,0,,≠≠∈d b Q d c b a ,则=+d c b a ad bc bd. 45.设φ是环R 与R 的同态满射, 则φ的核是环R 的一个 理想 . 46.在整环中必有一个元没有逆元,它是 0 ; 必有两个元有逆元,它们是 1和-1 .47.整环I 的元a 是][x I 的多项式)(x f 的根, 当且仅当)(x f 能被 xa 整除.三.判断题1.设}4,3,2,1{=A ,则能找到A A ⨯到A 的一一映射. ( × )2.无限群中的元的阶都无限. ( × )3.除环的最大理想是单位理想. ( × )4.整环中的素元只能有有限个数的因子. ( × )5.任何欧式环一定是主理想环,也一定是唯一分解环. ( √ )6.A 为不等于零的实数的全体,那么普通除法适合结合律. ( × )7.有限群中存在某个元的阶无限. ( × )8.假定域R 与R 同态, 则R 也是域. ( × )9.整环中的单位ε同素元p 的乘积p ε还是一个素元. ( √ )10.除环除了零理想和单位理想还有其它理想. ( × )四.解答题1. 用循环置换的方法写出三次对称群3S 的全体元.说明集合})23(,)1({=N 是3S 的子群,并且写出N 的所有左陪集.解: )}132(),123(),23(),13(),12(),1{(3=S ,(2分) 因为N 是有限集合, 由)1()1)(1(=,)23()23)(1(=,)23()1)(23(=,)1()23)(23(=知N 是封闭的,所以N 是3S 的子群.(4分) N 的全体左陪集为(6分):)}23(),1{()23()1(==N N ,)}132(),12{()132()12(==N N ,)}123(),13{()123()13(==N N .2. 求模6的剩余类环F 的所有子环.解:因为剩余类环F 是循环加群,所有子环为主理想:([1]),([2]),([3]),([6]).3. 设A 是整数集,规定A 中元间的关系R 如下:)6(b a aRb ≡⇔说明R 是A 中元间的等价关系,并且写出模6的所有剩余类.解: 因为对任意的整数 c b a ,,有(1)反射律: a 与a 模6同余;(2分)(2)对称律: 若a 与b 模6同余,那么必有b 与a 模6同余;(2分)(3)推移律: 若a 与b 模6同余,b 与c 模6同余,那么必有a 与c 模6同余, 所以R 是A 中元间的等价关系.(2分)模6的全体剩余类为(6分):},12,6,0,6,12,{]0[ --=, },13,7,1,5,11,{]1[ --=,},14,8,2,4,10,{]2[ --=, },15,9,3,3,9,{]3[ --=,},16,10,4,2,8,{]4[ --=, },17,11,5,1,7,{]5[ --=.4.求出阶是32的循环群()a 的所有子群.这些子群是否都是不变子群.解: 因为()a 为循环群,所以()a 为交换群,又因为32的所有正整数因子为:1,2,4,8,16,36. (2分) 所以循环群()a 的所有子群为循环子群:()a ,2()a ,4()a ,8()a ,16()a 360()(){}a a e ==. (8分)并且这些子群都是不变子群. (10分)5.设Z 是整数环,请把Z 的理想(3)(4)和(3,4)的元列出来.解: Z 是整数环,理想(3)(4)和(3,4)如下:(3)(4){,9,6,3,0,3,6,9,}{,12,8,4,0,4,8,12,}=------ (2分){,24,12,0,12,24,}=-- (4分)(12)= (6分) (3,4)(1){,3,2,1,0,1,2,3,}Z ===--- (10分)6.设R 是模8的剩余类环,在一元多项式环[]R x 中把32([2][7][3])([5][2])x x x x +--+计算出来,并求432()[4][5][2][7]f x x x x x =-+-+的导数. 解: R 是模8的剩余类环(1) 32([2][7][3])([5][2])x x x x +--+543322[2][5][2][2][2][7][5][7][7][2][3][5][3][3][2]x x x x x x x x =-++-+-+- (1分)543322[2][2][4][3][7][6][7][3][6]x x x x x x x x =-++-+-+- (3分) 5432[2][2][7][6][6]x x x x x =-+-+- (5分)(2) 多项式432()[4][5][2][7]f x x x x x =-+-+的导数为32()4[1]3[4]2[5][2]f x x x x '=-+- (2分)32[4][4][2][2]x x x =-+-.7.找出对称群3S 的所有子群.解:因为3{(1),(12),(13),(23),(123),(132)}S =,它的子群的阶只可能为:1,2,3,6.所以它的所有子群为:1阶子群1{(1)}H =; (1分) 2阶子群21{(1),(12)}H =,22{(1),(13)}H =,23{(1),(23)}H =; (4分) 3阶子群3{(1),(123),(132)}H =; (5分) 6阶子群3{(1),(12),(13),(23),(123),(132)}S =。
近世代数经典题与答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载近世代数经典题与答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.设为整数加群, ,求解在 Z中的陪集有:, , ,, , 所以, .2、找出的所有子群。
解:S3显然有以下子群:本身;((1))={(1)};((12))={(12),(1)};((13))={(13),(1)};((23))={(23),(1)};((123))={(123),(132),(1)}若S3的一个子群H包含着两个循环置换,那么H含有(12),(13)这两个2-循环置换,那么H含有(12)(13)=(123),(123)(12)=(23),因而H=S3。
同理,若是S3的一个子群含有两个循环置换(21),(23)或(31),(32)。
这个子群也必然是S3。
用完全类似的方法,可以算出,若是S3的一个子群含有一个2-循环置换和一个3-循环置换,那么这个子群也必然是S3。
7.试求高斯整环的单位。
解设 () 为的单位, 则存在 , 使得 , 于是因为 , 所以 . 从而 , , 或 . 因此可能的单位只有显然它们都是的单位. 所以恰有四个单位:5.在中, 解下列线性方程组:解: 即 , .12. 试求的所有理想.解设为的任意理想, 则为的子环,则 , , 且 .对任意的 , , 有 ,从而由理想的定义知, 为的理想. 由此知, 的全部理想为且 .13、数域上的多项式环的理想是怎样的一个主理想。
解由于,所以,于是得。
14、在中, 求的全部根. 解共有16个元素: , , , , 将它们分别代入 ,可知共有下列4个元素, , , 为的根.20.设R为偶数环.证明:问:是否成立?N是由哪个偶数生成的主理想?解::故另外故总之有另方面,由于且而且实际上N是偶数环中由8生成的主理想,即,但是因此,.实际上是22、设,求关于的所有左陪集以及右陪集.解 , 的所有左陪集为:;;.的所有右陪集为:;;.1.在群中, 对任意 , 方程与都有唯一解.证明令 , 那么 , 故为方程的解。
《近世代数》模拟试题1及答案
近世代数模拟试题一 .单项选择题 ( 每题 5 分,共 25 分)1、在整数加群( Z,+)中,以下那个是单位元() .A. 0B.1C.- 1D. 1/n, n 是整数2、以下说法不正确的选项是() .A . G只包括一个元 g,乘法是 gg= g。
G对这个乘法来说作成一个群 ;B . G是全体整数的会合,G对一般加法来说作成一个群;C . G是全体有理数的会合,G对一般加法来说作成一个群;D. G 是全体自然数的会合,G对一般加法来说作成一个群 .3.假如会合 M的一个关系是等价关系,则不必定具备的是 ( ).A .反身性 B.对称性 C.传达性 D.关闭性4. 对整数加群Z 来说,以下不正确的选项是().A. Z没有生成元.B. 1是其生成元.C.- 1 是其生成元 .D.Z 是无穷循环群 .5.以下表达正确的选项是()。
A.群 G是指一个会合 .B.环 R 是指一个会合 .C.群 G是指一个非空会合和一个代数运算,知足联合律,而且单位元,逆元存在 .D.环R 是指一个非空会合和一个代数运算,知足联合律,而且单位元,逆元存在 .二. 计算题 ( 每题 10 分,共 30 分)1.设 G是由有理数域上全体 2 阶满秩方阵对方阵一般乘法作成1213的群,试求中 G中以下各个元素 c, d0,cd ,011的阶 .2.试求出三次对称群S3(1),(12),(13),(23),(123),(132)的全部子群 .3.若 e 是环R的唯一左单位元,那么 e 是R的单位元吗假如,请赐予证明 .三. 证明题(第 1小题 10分,第 2小题 15分,第 3小题 20分,共 45 分).1.证明 : 在群中只有单位元知足方程x2 x.2.设G是正有理数乘群,G是整数加群.证明:n b: 2 g a n是群 G 到G的一个满同态,此中a, b 是整数,而 (ab,2) 1 .3.设S是环R的一个子环.证明:假如R与S都有单位元,但不相等,则 S 的单位元必为 R 的一个零因子 .近世代数模拟试题答案2008 年 11 月一、单项选择题 ( 每题 5 分,共 25分 )1.A2. D3.D 4 . A 5 . C二.计算题(每题10分,共30分)1.解:易知 c的阶无穷,(3分 )d 的阶为 2.(3分)可是11cd,(2分)01的阶有限,是 2.(2分)2.解: S3的以下六个子集H1(1) , H 2(1),(12) , H 3(1),(13) ,H 4(1),(23) , H 5(1),(123),(132) ,H6 S3(7 分)对置换乘法都是关闭的,所以都是S3的子集.(3 分)3. 解: e 是 R 的单位元。
19秋福师《近世代数》在线作业一-0003参考答案
在今天的中国,互联网给人们的生活带来了极大的便利,智能手机已然成为人们生活的重要工具。对人们的生活来说,网络像水和空气不可缺少。P2P 网贷、第三方支付、众筹等新兴的筹融资形式给传统的银行存贷业务带来了巨大冲击,给银行的盈利能力造成了负面影响。互联网依靠大数据、云计算等新兴技术降低了传统金融服务的成本和困扰银行已久的信息不对称情况,减少了银行传统的佣金收入、手续费等中间业务收入。互联网金融已然在我国传统的金融业务领域占有重要影响。面对互联网金融的冲击,商业银行不能消极被动接受,更要主动积极应对。
远程教育复学科的教学和研究工作有利于总结我国远程教育的实践经验并进行理论概括和创新,开创开放与远程教育的中国模式和中国学派,为世界制远程教育的繁荣和发展作出我们的贡献;有利于借鉴世界各国远程教育的实践经验和理论研究成果,使我国远程教育学科理论研究和教学的起点高、成效快;同时,将有利于更好百地以理论指导教育决策。这是因为,远程教育度已经成为世界各国教育发展新的增长点,旅得了国际社会和教育界的关注,成为各国教育决策的新的热点之一.
2、应对我国资本市场新形势的方法
随着我国资本市场的成熟,企业融资方式越来越多元,外资也越来越多的参与我国资本市场。随着股票发行筹资额增长,商业银行的非利息收入随之提高。金融市场的繁荣削弱了银行金融中介的作用,证券信托等金融机构开始与银行在部分业务上竞争。随着我国资本账户开放程度的逐渐加大,我国股票、债券市场逐渐打开,资本跨境流动规模和频率逐渐加大,给我国的股份制商业银行带来了巨大挑战。随之,直接融资逐渐成为社会融资的重要组成情况。2016 年10 月,人民币加入国际货币基金组织特别提款权的篮子,有力的推动了人民币的国际化,进一步促进了中国资本市场的开放。
(一)应对宏观经济方面的对策
近世代数复习题答案
近世代数复习题答案1. 群的定义是什么?答:群是一个集合G,配备有一个二元运算*,满足以下四个条件:封闭性、结合律、单位元、逆元。
即对于任意的a, b属于G,有a*b属于G;对于任意的a, b, c属于G,有(a*b)*c = a*(b*c);存在一个元素e属于G,使得对于任意的a属于G,有e*a = a*e = a;对于每一个a属于G,存在一个元素b属于G,使得a*b = b*a = e。
2. 什么是子群?答:如果群G的一个非空子集H满足对于任意的a, b属于H,有a*b^(-1)属于H,则称H为G的一个子群。
3. 什么是正规子群?答:如果群G的一个子群N满足对于任意的g属于G和任意的n属于N,有g*n*g^(-1)属于N,则称N为G的一个正规子群。
4. 群同态的定义是什么?答:设G和H是两个群,如果存在一个映射φ: G → H,满足对于任意的a, b属于G,有φ(a*b) = φ(a)*φ(b),则称φ为从G到H的一个群同态。
5. 什么是群的同构?答:如果群G和H之间存在一个双射的群同态φ,则称G和H是同构的,记作G ≅ H。
6. 什么是环?答:环是一个集合R,配备有两个二元运算+和*,满足以下条件:(R, +)是一个交换群;(R, *)满足结合律;乘法对加法满足分配律。
即对于任意的a, b, c属于R,有(a+b)+c = a+(b+c);存在一个元素0属于R,使得对于任意的a属于R,有a+0 = 0+a = a;对于每一个a属于R,存在一个元素-a属于R,使得a+(-a) = (-a)+a = 0;对于任意的a, b属于R,有(a*b)*c = a*(b*c);对于任意的a, b属于R,有a*(b+c) = a*b + a*c,(b+c)*a = b*a + c*a。
7. 什么是理想?答:如果环R的一个非空子集I满足对于任意的a属于I和任意的r 属于R,有a*r和r*a属于I,则称I为R的一个理想。
近世代数的答案
近世代数习题解答第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([ 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n nn===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a Θ的阶等于1-a 的阶(2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a nm∈K K K ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: nma a = )(n m 〈 故 e amn =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G 但231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{K =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τ b ax x +→:λ d cx x +→:τλ d cb cax d b ax c x ++=++→)( d cb ca +,是有理数 0≠ca Θ 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :ε x x → (4) :τ b ax + )(1:1ab x a x -+→-τ 而 εττ=-1所以构成变换群.又 1τ: 1+→x x :2τ x x 2→ :21ττ )1(2+→x x :12ττ 12+→x x 故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元. 证 :1τ )(1a a τ→ :2τ )(2a a τ→那么:21ττ )()]([2121a a a ττττ=→显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ= =→)]([:)(321321a a ττττττ)]]([[321a τττ 故 )()(321321ττττττ= 再证ε还是S 的单位元 :ε )(a a a ε=→ :ετ )()]([a a a ττε=→τ:τε )()]([a a a τετ=→ ∴ τεετ=4. 证明一个变换群的单位元一定是恒等变换。
《近世代数》习题及答案
《近世代数》作业一.概念解释1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元二.判断题1.Φ是集合n A A A ⨯⨯⨯ 21列集合D 的映射,则),2,1(n i A i =不能相同。
2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。
3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。
4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。
5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。
6.环R 的非空子集S 作成子环的充要条件是:1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。
7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。
8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。
9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。
10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。
11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。
12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么*F 的任何有限子群G 必为循环群。
13. 集合A 的一个分类决定A 的一个等价关系。
( )14. 设1H ,2H 均为群G 的子群,则21H H ⋃也为G 的子群。
( )15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。
( )三.证明题1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。
《近世代数》模拟试题1与答案
近世代数模拟试题一.单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C.-1D. 1/n,n 是整数2、下列说法不正确的是().A . G 只包含一个元g,乘法是gg= g。
G 对这个乘法来说作成一个群;B . G 是全体整数的集合,G 对普通加法来说作成一个群;C . G 是全体有理数的集合,G 对普通加法来说作成一个群;D. G 是全体自然数的集合,G 对普通加法来说作成一个群.3. 如果集合M 的一个关系是等价关系,则不一定具备的是().A . 反身性 B.对称性 C.传递性 D. 封闭性4. 对整数加群Z 来说,下列不正确的是().A.Z 没有生成元 .B. 1 是其生成元 .C.-1 是其生成元 .D.Z 是无限循环群 .5.下列叙述正确的是()。
A.群 G 是指一个集合 .B.环 R 是指一个集合 .C.群 G 是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在 .D.环 R 是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在 .二. 计算题 (每题 10 分,共 30 分)1.设 G 是由有理数域上全体 2 阶满秩方阵对方阵普通乘法作成1213的群,试求中 G 中下列各个元素 c, d0,cd ,011的阶 .2.试求出三次对称群S3(1), (12), (13), (23),(123),(132)的所有子群 .3.若 e是环 R 的惟一左单位元,那么 e 是 R 的单位元吗?若是,请给予证明 .三. 证明题(第1小题 10分,第 2小题 15分,第 3小题 20分,共45 分).1.证明 : 在群中只有单位元满足方程x2x.2.设G是正有理数乘群,G是整数加群.证明:: 2n b na是群 G 到G的一个满同态,其中a, b 是整数,而 (ab,2) 1.3.设S是环R的一个子环.证明:如果R与S都有单位元,但不相等,则 S 的单位元必为R的一个零因子.近世代数模拟试题答案2008 年 11 月一、单项选择题 (每题 5分,共 25 分)1.A2. D3.D4.A 5 . C二.计算题(每题10分,共30分)1.解:易知 c 的阶无限,(3 分)d 的阶为 2.(3 分)但是1 1cd,01的阶有限,是 2.2.解: S3的以下六个子集(2 分)(2 分)H1(1) , H2(1),(12) ,H 3 (1),(13) ,H 4(1),(23) ,H 5 (1),(123),(132) , H 6 S3(7 分)对置换乘法都是封闭的,因此都是S3的子集.(3 分)3.解: e是R的单位元。
近世代数参考答案
近世代数参考答案《近世代数》A/B 模拟练习题参考答案⼀、判断题(每题4分,共60分)1、如果循环群G=(a)中⽣成元a 的阶是⽆限的,则G 与整数加群同构。
( √ )2、如果群G 的⼦群H 是循环群,那么G 也是循环群。
( × )3、两个⼦群的交⼀定还是⼦群。
( × )4、若环R 满⾜左消定律,那么R 必定没有右零因⼦。
( √ )5、任意置换均可表⽰为若⼲个对换的乘积。
( √ )6、F (x)中满⾜条件p(a)=0的多项式叫做元a 在域F 上的极⼩多项式。
( × )7、已知H 是群G 的⼦群,则H 是群G 的正规⼦群当且仅当g G ?∈,都有 1gHg H -= ( √ )8、唯⼀分解环必是主理想环。
( × )9、已知R 是交换环,I 是R 的理想,则I 是R 的素理想当且仅当是/R I 整环。
( √ )10、欧⽒环必是主理想环。
( √ )11、整环中,不可约元⼀定是素元。
( √ )12、⼦群的并集必是⼦群。
( × )13、任何群都同构于某个变化群。
( √ )14、交换环中可逆元与幂零元的和是可逆元。
( √ )15、集合,A Z B N ==,::2f A B nn →+是从A 到B 的映射。
( × )⼆、证明题(每题20分,共300分)1Q 上的最⼩多项式。
解:令=u 32==u u .于是3223323315(32-?-=+-+=u u u u u u .移项后得32152(3+-=-u u u 两边平⽅,得到3222(152)(35)5+-=-?u u u .这是u 上满⾜的Q 上6次⽅程,故[():]6≤Q u Q .⼜3(2=u ()Q u .由[]2=Q Q 及[]|[():]Q Q Q u Q ,知2|[():]Q u Q .u (()=Q u Q u .⼜[]3=Q Q 及[]|[():]Q Q Q u Q ,得3|[():]Q u Q .于是6|[():]Q u Q ,因⽽[():]6=Q u Q . 由于3222(152)(35)50+---?=u u u ,故6次多项式3222(152)5(35)+---x x x 是u 在Q 上的最⼩多项式.2、求出阶是32的循环群(a )的所有⼦群,这些⼦群是否都是不变⼦群。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A错误
B正确
【答案】参考选择:A
34、题面见图片
A错误
B正确
【答案】参考选择:B
35、
。
A错误
B正确
【答案】参考选择:A
36、,
A错误
B正确
【答案】参考选择:B
37、
A错误
B正确
【答案】参考选择:A
38、。
A错误
B正确
【答案】参考选择:B
39、
A错误
B正确
【答案】参考选择:B
40、
A错误
B正确
Hale Waihona Puke B正确【答案】参考选择:B
26、
A错误
B正确
【答案】参考选择:B
27、题面见图片
A错误
B正确
【答案】参考选择:B
28、.
A错误
B正确
【答案】参考选择:B
29、
A错误
B正确
【答案】参考选择:B
30、。
A错误
B正确
【答案】参考选择:A
31、
A错误
B正确
【答案】参考选择:A
32、。
A错误
B正确
【答案】参考选择:B
11、
A错误
B正确
【答案】参考选择:B
12、题面见图片
A错误
B正确
【答案】参考选择:B
13、。
A错误
B正确
【答案】参考选择:B
14、。
A错误
B正确
【答案】参考选择:A
15、题面见图片
A错误
B正确
【答案】参考选择:A
16、。
A错误
B正确
【答案】参考选择:A
17、题面见图片
A错误
B正确
【答案】参考选择:B
18、题面见图片
A错误
B正确
【答案】参考选择:A
19、。
A错误
B正确
【答案】参考选择:B
20、
。
A错误
B正确
【答案】参考选择:B
21、.
A错误
B正确
【答案】参考选择:B
22、
A错误
B正确
【答案】参考选择:A
23、.
A错误
B正确
【答案】参考选择:A
24、.。
A错误
B正确
【答案】参考选择:B
25、
A错误
【答案】参考选择:A
41、。
A错误
B正确
【答案】参考选择:A
42、
A错误
B正确
【答案】参考选择:A
43、。
A错误
B正确
【答案】参考选择:A
44、。
A错误
B正确
【答案】参考选择:B
45、
A错误
B正确
【答案】参考选择:B
3、
。
A错误
B正确
【答案】参考选择:B
4、。
A错误
B正确
【答案】参考选择:B
5、
A错误
B正确
【答案】参考选择:B
6、。
A错误
B正确
【答案】参考选择:A
7、
A错误
B正确
【答案】参考选择:A
8、。
A错误
B正确
【答案】参考选择:A
9、。
A错误
B正确
【答案】参考选择:A
10、
A错误
B正确
【答案】参考选择:A
18秋福师《近世代数》在线作业一-4
1、B
2、C
3、D
4、C
5、D
一、单选题共5题,10分
1、n阶方阵集合对于矩阵加法构成()
A半群
B群
C环
D域
【答案】参考选择:B
2、18阶循环群的生成元有()个
A3
B4
C5
D6
【答案】参考选择:C
3、关于置换、循环置换和对换的说法错误的是()
A置换一定能写成循环置换的乘积
B置换一定能写成对换的乘积
C循环置换一定能写成对换的乘积
D对换不改变置换的奇偶性
【答案】参考选择:D
4、题面见图片
AA
BB
CC
DD
【答案】参考选择:C
5、题面见图片
AA
BB
CC
DD
【答案】参考选择:D
二、判断题共45题,90分
1、题面见图片
A错误
B正确
【答案】参考选择:B
2、
A错误
B正确
【答案】参考选择:B