'《材料成型基本原理》刘全坤版 第十章答案',doc_type,pdf

合集下载

材料成型原理答案

材料成型原理答案

一、填空(共10空,每空2分,共20分)1.液体的分类(按液体结构和内部作用力):原子液体,分子液体,离子液体。

2.接触角也为润湿角,当接触角为锐角时为润湿,接触角为钝角时为不润湿。

3.固相无扩散而液相有限扩散凝固过程的三个阶段:最初过渡区、稳定状态区和最后过渡区。

4.根据偏析范围的不同,可将偏析分为:微观偏析和宏观偏析两大类。

二、名词解释(共5题,每题2分,共10分)1.焊接:通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。

2.均质形核:形核前液相金属或合金中无外来固相质点,而液相自身发生形核的过程。

3.碳当量:碳当量是反映钢中化学成分对硬化程度的影响,它是把钢中合金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影响程度折合成碳的相当含量。

4.偏析:合金在凝固过程中发生的化学成分不均匀的现象称为偏析。

5.凝固收缩:金属从液相线冷却到固相线所产生的体收缩,称为凝固收缩。

三、简答题(共3题,每题10分,共30分)1. 黏度对成型质量的影响。

(1)影响铸件轮廓的清晰程度;(2)影响热裂、缩孔、缩松的形成倾向;(3)影响钢铁材料的脱硫、脱磷、扩散脱氧;(4)影响精炼效果及夹杂或气孔的形成:(5)熔渣及金属液粘度降低对焊缝的合金过渡有利。

2. 金属氧化还原方向的判据是什么?若氧在金属-氧-氧化物系统中:{pO2}---实际分压为,pO2----金属氧化物的分解压{pO2}>pO2 时,金属被氧化;{pO2}=pO2 时,处于平衡状态;{pO2}<pO2 时,金属被还原。

3. 什么是重力偏析?防止或减轻重力偏析的方法有哪些?重力偏析:是由于重力作用而出现的化学成分不均匀现象。

防止或减轻重力偏析的方法:(1)加快铸件的冷却速度,缩短合金处于液相的时间,使初生相来不及上浮或下沉。

(2)加入能阻碍初晶沉浮的合金元素。

(3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速度。

《材料成型工艺基础》部分习题答案(精品).docx

《材料成型工艺基础》部分习题答案(精品).docx

材料成型工艺基础(第三版)部分课后习题答案第一章⑵•合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?答:①合金的流动性是指合金本身在液态下的流动能力。

决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。

②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、缩孔缺陷的间接原因。

⑷•何谓合金的收缩?影响合金收缩的因素有哪些?答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸缩减的现象,称为收缩。

②影响合金收缩的因素:化学成分、浇注温度、铸件结构和铸型条件。

⑹•何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。

②定向凝固原则:在铸件可能出现缩孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。

第一早⑴•试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。

答:石墨在灰铸铁中以片状形式存在,易引起应力集中。

石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。

灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。

石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。

⑵•影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?答:①主要因素:化学成分和冷却速度。

②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。

在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。

⑸•什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁?答:①经孕育处理后的灰铸铁称为孕育铸铁。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度.②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性.2 。

如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数.r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡"着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型基本原理课后答案解析

材料成型基本原理课后答案解析

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

材料成型技术基础课后答案

材料成型技术基础课后答案

第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。

②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。

流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。

③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。

④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。

2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。

3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。

缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。

4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。

浇不足是沙型没有全部充满。

冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。

出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。

而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。

逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。

定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。

5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。

铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。

材料成形十,十一答案

材料成形十,十一答案

一、偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成?答:偏析主要是由于合金在凝固过程中扩散不充分、溶质再分配而引起的。

影响偏析的因素有:1)合金液、固相线间隔;2)偏析元素的扩散能力;3)冷却条件。

针对不同种类的偏析可采取不同的防止方法,具体有:(1)生产中可通过扩散退火或均匀化退火来消除晶内偏析,即将合金加热到低于固相线100~200℃的温度,进行长时间保温,使偏析元素进行充分扩散,以达到均匀化;(2)预防和消除晶界偏析的方法与晶内偏析所采用的措施相同,即细化晶粒、均匀化退火。

但对于氧化物和硫化物引起的晶界偏析,即使均匀化退火也无法消除,必须从减少合金中氧和硫的含量入手。

(3)向合金中添加细化晶粒的元素,减少合金的含气量,有助于减少或防止逆偏析的形成。

(4)降低铸锭的冷却速度,枝晶粗大,液体沿枝晶间的流动阻力减小,促进富集液的流动,均会增加形成V形和逆V形偏析的倾向。

(5)减少溶质的含量,采取孕育措施细化晶粒,加强固-液界面前的对流和搅拌,均有利于防止或减少带状偏析的形成。

(6)防止或减轻重力偏析的方法有以下几种:1)加快铸件的冷却速度,缩短合金处于液相的时间,使初生相来不及上浮或下沉;2)加入能阻碍初晶沉浮的合金元素。

例如,在Cu-Pb合金中加少量Ni,能使Cu固溶体枝晶首先在液体中形成枝晶骨架,从而阻止Pb下沉。

再如向Pb-17%Sn合金中加入质量分数为1.5%的Cu,首先形成Cu-Pb骨架,也可以减轻或消除重力偏析;3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速度。

二、简述析出性气体的特征、形成机理及主要防止措施。

答:液态金属在冷却凝固过程中,因气体溶解度下降,析出的气体来不及逸出而产生的气孔称为析出性气孔。

这类气孔主要是氢气孔和氮气孔。

析出性气孔通常分布在铸件的整个断面或冒口、热节等温度较高的区域。

当金属含气量较少时,呈裂纹多角形状;而含气量较多时,气孔较大,呈团球形。

材料成型传输原理课后答案

材料成型传输原理课后答案

第一章流体地主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定地形状、易于流动地物质.它包括液体和气体.流体地主要物理性质有:密度、重度、比体积压缩性和膨胀性.1-2某种液体地密度ρ=900 Kg/m3,试求教重度γ和质量体积v.解:由液体密度、重度和质量体积地关系知:∴质量体积为1.4某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体积为995cm3,当压强为1MN/m2时体积为1000 cm3,问它地等温压缩率kT为多少?解:等温压缩率KT公式(2-1):ΔV=995-1000=-5*10-6m3注意:ΔP=2-1=1MN/m2=1*106Pa将V=1000cm3代入即可得到KT=5*10-9Pa-1.注意:式中V是指液体变化前地体积1.6 如图1.5所示,在相距h=0.06m地两个固定平行乎板中间放置另一块薄板,在薄板地上下分别放有不同粘度地油,并且一种油地粘度是另一种油地粘度地2倍.当薄板以匀速v=0.3m/s被拖动时,每平方M受合力F=29N,求两种油地粘度各是多少?解:流体匀速稳定流动时流体对板面产生地粘性阻力力为平板受到上下油面地阻力之和与施加地力平衡,即代入数据得η=0.967Pa.s第二章流体静力学2-1作用在流体上地力有哪两类,各有什么特点?解:作用在流体上地力分为质量力和表面力两种.质量力是作用在流体内部任何质点上地力,大小与质量成正比,由加速度产生,与质点外地流体无关.而表面力是指作用在流体表面上地力,大小与面积成正比,由与流体接触地相邻流体或固体地作用而产生.2-2什么是流体地静压强,静止流体中压强地分布规律如何?解:流体静压强指单位面积上流体地静压力.静止流体中任意一点地静压强值只由该店坐标位置决定,即作用于一点地各个方向地静压强是等值地.2-3写出流体静力学基本方程式,并说明其能量意义和几何意义.解:流体静力学基本方程为:同一静止液体中单位重量液体地比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等地.第三章习题3.1已知某流场速度分布为,试求过点(3,1,4)地流线.解:由此流场速度分布可知该流场为稳定流,流线与迹线重合,此流场流线微分方程为:即:span style='mso-ignore:vglayout。

材料成型原理课后题答案

材料成型原理课后题答案

8:本质金属液态合金构造与理想纯金属液态构造有何不一样?答:纯金属的液态构造是由原子公司、游离原子、空穴或裂纹构成的,是近程有序的。

液态中存在着很大的能量起伏。

而本质金属中存在大批的杂质原子,形成夹杂物,除了存在构造起伏和能量起伏外还存在浓度起伏。

12:简述液态金属的表面张力的本质及其影响因数。

答:本质:表面张力是表面能的物理表现,是是由原子间的作使劲及其在表面和内部间摆列状态的差异惹起的。

影响因数:熔点、温度和溶质元素。

13:简述界面现象对液态成形过程的影响。

答:表面张力会产生一个附带压力,当固液互相湿润时,附带压力有助于液体的充填。

液态成形所用的铸型或涂料资料与液态合金应是不湿润的,使铸件的表面得以光洁。

凝结后期,表面张力对铸件凝结过程的补索状况,及能否出现热裂缺点有重要影响。

15:简述过冷度与液态金属凝结的关系。

答:过冷度就是凝结的驱动力,过冷度越大,凝结的驱动力也越大;过冷度为零时,驱动力不存在。

液态金属不会在没有过冷度的状况下凝结。

16:用动力学理论论述液态金属达成凝结的过程。

答:高能态的液态原子变为低能态的固态原子,一定超出高能态的界面,界面拥有界面能。

生核或晶粒的长大是液态原子不停地向固体晶粒聚积的过程,是固液界面不停向前推动的过程。

只有液态金属中那些拥有高能态的原子才能超出更高能态的界面成为固体中的原子,进而达成凝结过程。

17:简述异质形核与均质形核的差异。

答:均质形核是依赖液态金属内部自己的构造自觉形核,异质形核是依赖外来夹杂物所供给的异质界面非自觉的形核。

异质形核与固体杂质接触,减少了表面自由能的增添。

异质形核形核功小,形核所需的构造起伏和能量起伏就小,形核简单,所需过冷度小。

18:什么条件下晶体以平面的方式生长?什么条件下晶体以树枝晶方式生长?答:①平面方式长大:固液界眼前面的液体正温度梯度散布,固液界眼前面的过冷地区及过冷度极小,晶体生长时凝结潜热析出的方向与晶体的生长方向相反。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成形基本原理课后答案

材料成形基本原理课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成形原理__合肥工业大学(28)--第十、十一章阶段测验参考答案B

材料成形原理__合肥工业大学(28)--第十、十一章阶段测验参考答案B

《材料成形原理》阶段测验(第十、十一章)B卷班级: 姓名: 学号: 成绩:1、填空题(每空2分,共40分)1.液态金属从浇注温度冷却到常温要经历三个阶段: 液态收缩阶段 、 凝固收缩阶段 和固态收缩阶段 。

2.影响钢焊缝冷裂纹的三大主要因素是 拘束应力状态 、 氢的含量及分布 以及 钢的淬硬倾向 。

3.铸件产生集中性缩孔及分散性缩松的根本原因是金属的液态收缩和凝固收缩之和大 于固态收缩,对产生集中性缩孔倾向大的合金,通常采用“ 顺序凝固 ”的工艺原则。

4.碳当量反映了钢中 化学成分 对硬化程度的影响,它把钢中合金元素按其对材料 淬硬倾向的影响程度折合成碳的相当含量。

5.提高焊接线能量将会使得焊接热影响区内某固定点的最高加热温度 提高 ,相变温度以上的停留时间 延长 ,冷却速度 降低 。

6.易淬火钢热影响区包含 完全淬火 区和 不完全淬火 区,对于焊前是调质状态的易淬火钢,其热影响区还存在一个 回火软化 区,该区域的最高加热温度高于母材的 回火 温度。

7. 防止铸件产生缩孔和缩松可以通过凝固工艺原则的选择来加以控制,即选择 顺序凝固 和同时凝固 的凝固方式。

对于结构复杂的铸件,通常采用 复合 凝固方式。

2、判断题(每题4分,共32分)1.凝固过程中析出性气孔、夹杂、热裂纹的缺陷均与溶质再分配有关。

( √ )2. 金属凝固的脆性温度区间T B越大,收缩应力作用的时间就越长,产生的应变量越大,形成热裂纹的倾向越大。

( √ )3. 焊前预热、焊后后热的根本作用在于,通过减小冷却速度而降低淬硬组织形成倾向,从而达到消除冷裂的目的。

( × )4. 成分偏析及析出性气孔的形成过程,均与成分再分配有关。

( √ )5. 金属或合金在焊接过程中,若强度和硬度提高则一定发生脆化,同时发生脆化必然伴随着强度和硬度的提高。

( × )6. 对于氧化物和硫化物引起的晶界偏析,用均匀化退火的方法可以消除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料成型04-2班第十章焊接热影响区的组织与性能1、何谓焊接热循环?焊接热循环的主要特征参数有那些?答:焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程,即焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化。

决定焊接热循环特征的主要参数有以下四个:(1)加热速度ωH 焊接热源的集中程度较高,引起焊接时的加热速度增加,较快的加热速度将使相变过程进行的程度不充分,从而影响接头的组织和力学性能。

(2)最高加热温度Tmax 也称为峰值温度。

距焊缝远近不同的点,加热的最高温度不同。

焊接过程中的高温使焊缝附近的金属发生晶粒长大和重结晶,从而改变母材的组织与性能。

(3)相变温度以上的停留时间tH 在相变温度TH以上停留时间越长,越有利于奥氏体的均匀化过程,增加奥氏体的稳定性,但同时易使晶粒长大,引起接头脆化现象,从而降低接头的质量。

(4)冷却速度ωC(或冷却时间t8 / 5) 冷却速度是决定焊接热影响区组织和性能的重要参数之一。

对低合金钢来说,熔合线附近冷却到540℃左右的瞬时冷却速度是最重要的参数。

也可采用某一温度范围内的冷却时间来表征冷却的快慢,如800~500℃的冷却时间t8 / 5,800~300℃的冷却时间t8/3,以及从峰值温度冷至100℃的冷却时间t100。

总之,焊接热循环具有加热速度快、峰值温度高、冷却速度大和相变温度以上停留时间不易控制的特点2、焊接热循环对母材金属近缝区的组织、性能有何影响?怎样利用热循环和其他工艺措施改善HAZ的组织性能?答:(1)对组织的影响:A不易淬火钢的热影响区组织:在一般的熔焊条件下,不易淬火钢按照热影响区中不同部位加热的最高温度及组织特征,可分为以下四个区1) 熔合区: 焊缝与母材之间的过渡区域。

范围很窄,常常只有几个晶粒,具有明显的化学成分不均匀性。

2) 过热区(粗晶区): 加热温度在固相线以下到晶粒开始急剧长大温度(约为1100℃左右)?# ?/仝攭??鈔c夽2洺=佃積玁€??Q瘃 材料成型04-2班范围内的区域叫过热区。

由于金属处于过热的状态,奥氏体晶粒发生严重的粗化,冷却后得到粗大的组织,并极易出现脆性的魏氏组织。

3) 相变重结晶区(正火区或细晶区): 该区的母材金属被加热到AC3至1100℃左右温度范围,其中铁素体和珠光体将发生重结晶,全部转变为奥氏体。

形成的奥氏体晶粒尺寸小于原铁素体和珠光体,然后在空气中冷却就会得到均匀而细小的珠光体和铁素体,相当于热处理时的正火组织,故亦称正火区。

4) 不完全重结晶区: 焊接时处于AC1~AC3之间范围内的热影响区属于不完全重结晶区。

因为处于AC1~AC3范围内只有一部分组织发生了相变重结晶过程,成为晶粒细小的铁素体和珠光体,而另一部分是始终未能溶入奥氏体的剩余铁素体,由于未经重结晶仍保留粗大晶粒。

B 易淬火钢的热影响区组织:母材焊前是正火状态或退火状态,则焊后热影响区可分为:1) 完全淬火区:焊接时热影响区处于AC3以上的区域。

在紧靠焊缝相当于低碳钢过热区的部位,由于晶粒严重粗化,得到粗大的马氏体;相当于正火区的部位得到细小的马氏体。

2) 不完全淬火区:母材被加热到AC1~AC3温度之间的热影响区。

快速加热和冷却过程得到马氏体和铁素体的混合组织;含碳量和合金元素含量不高或冷却速度较小时,其组织可能为索氏体或珠光体。

母材焊前是调质状态,则焊接热影响区的组织分布除上述两个外,还有一个回火软化区。

在回火区内组织和性能发生变化的程度决定于焊前调质的回火温度:若焊前调质时回火温度为Tt,低于此温度的部位,组织性能不发生变化,高于此温度的部位,组织性能将发生变化,出现软化。

若焊前为淬火态,紧靠Ac1的部位得到回火索氏体,离焊缝较远的区域得到回火马氏体。

(2) 对性能的影响使HAZ发生硬化、脆化(粗晶脆化、析出脆化、组织转变脆化、热应变时效脆化、氢脆以及石墨脆化等)、韧化、软化等。

(3)改善HAZ组织性能的措施1)母材焊后选择合理的热处理方法(调质、淬火等)。

2)选择合适的板厚、接头形式及焊接方法等。

3)控制焊接线能量、冷却速度和加热速度。

3.简要说明易淬火钢和不易淬火钢HAZ粗晶区的组织特点和对性能的影响? 0H(8材料成型04-2班答:(1)易淬火钢HAZ粗晶区:在紧靠焊缝相当于低碳钢过热区的部位,由于晶粒严重粗化,故得到粗大的马氏体,强度硬度很高,塑性韧性较低;正火区得到细小的马氏体,强度硬度较高,但是比粗大马氏体要低,塑性韧性比粗大马氏体好。

(2)不易淬火钢HAZ粗晶区:由于金属处于过热的状态,奥氏体晶粒发生严重的粗化,冷却之后便得到粗大的组织。

并极易出现脆性的魏氏组织。

故该区的塑性、韧性较差。

焊接刚度较大的结构时,常在过热粗晶区产生脆化或裂纹。

4.焊接条件下组织转变与热处理条件下组织转变有何不同?答:焊接条件下热影响区的组织转变与热处理条件下的组织转变相比,其基本原理是相同的。

但由于焊接过程的特殊性,使焊接条件下的组织转变又具有与热处理不同的特点。

焊接热过程概括起来有以下六个特点:(1)一般热处理时加热温度最高在AC3以上l00~200℃,而焊接时加热温度远超过AC3,在熔合线附近可达l350~l400℃。

(2)焊接时由于采用的热源强烈集中,故加热速度比热处理时要快得多,往往超过几十倍甚至几百倍。

(3)焊接时由于热循环的特点,在AC3以上保温的时间很短(一般手工电弧焊约为4~20s,埋弧焊时30~l00s),而在热处理时可以根据需要任意控制保温时间。

(4)在热处理时可以根据需要来控制冷却速度或在冷却过程中不同阶段进行保温。

然而在焊接时,一般都是在自然条件下连续冷却,个别情况下才进行焊后保温或焊后热处理。

(5)焊接加热的局部性和移动性将产生不均匀相变及应变;而热处理过程一般不会出现。

(6)焊接过程中,在应力状态下进行组织转变;而热处理过程不是很明显。

所以焊接条件下热影响区的组织转变必然有它本身的特殊性。

此外,焊接过程的快速加热,首先将使各种金属的相变温度比起等温转变时大有提高。

加热速度越快,不仅被焊金属的相变点AC1和AC3提高幅度增大,而且AC1和AC3之间的间隔也越大。

加热速度还影响奥氏体的形成过程,特别是对奥氏体的均质化过程有着重要的影响。

由于奥氏体的均质化过程属于扩散过程,因此加热速度快,相变点以上停留时间短,不利于扩散过程的进行,从而均质化的程度很差。

这一过程必然影响冷却过程的组织转变。

焊接过程属于非平衡热力学过程,在这种情况下,随着冷却速度增大,平衡状态图上各材料成型04-2班相变点和温度线均发生偏移。

在焊接连续冷却条件下,过冷奥氏体转变并不按平衡条件进行,如珠光体的成分,由w(C)0.8%而变成一个成分范围,形成伪共析组织。

此外,贝氏体、马氏体也都是处在非平衡条件下的组织,种类繁多。

这与焊接时快速加热、高温、连续冷却等因素有关。

5.在相同的条件下焊接45钢和40Cr钢,哪一种钢的近缝区淬硬倾向大?为什么?答:在相同的条件下焊接45钢和40Cr钢,淬硬倾向45钢的近缝区淬硬倾向大。

因为45钢不含碳化物形成元素,奥氏体开始长大温度低,高温区晶粒粗大,容易形成粗大的马氏体,而40Cr含强碳化物形成元素,强碳化物分解温度高,碳化物的存在会阻碍奥氏体晶粒长大,形成细小的马氏体;钢的淬硬倾向取决于钢的含碳量,45钢的含碳量比40Cr高,综合以上两方面的原因可知淬硬倾向。

6.焊接热影响区的脆化类型有几种?如何防止?答:焊接热影响区的脆化类型及防止措施:(1)粗晶脆化:对于某些低合金高强钢,由于希望出现下贝氏体或低碳马氏体,可以适当降低焊接线能量和提高冷却速度,从而起到改善粗晶区韧性的作用,提高抗脆能力。

高碳低合金高强钢与此相反,提高冷却速度会促使生成孪晶马氏体,使脆性增大。

所以,应采用适当提高焊接线能量和降低冷却速度的工艺措施。

(2)析出脆化:控制加热速度和冷却速度,加入一些合金元素阻止碳化物,氮化物等的析出。

(3)组织脆化:控制冷却速度,中等的冷速才能形成M-A组元,冷速太快和太慢都不能产生M-A组元氏体(孪晶马氏体);控制合金元素的含量,合金化程度较高时,奥氏体的稳定性较大,因而不易分解而形成M-A组元;控制母材的含碳量,选用合适含碳量的材料。

(4)HAZ 的热应变时效脆化(HSE): 焊接接头的HSE往往是静态应变时效和动态应变时效的综合作用的结果。

尽量使焊接接头无缺口,从而减轻动态应变时效脆化程度;采用合适的冷作工序,静态应变时效脆化的程度取决于钢材在焊前所受到的预应变量以及轧制、弯曲、冲孔、剪切、校直、滚圆等冷作工序。

焊接工艺上控制加热速度和最高加热温度以及焊接线能量。

7.何谓热影响区的热应变时效脆化?在焊接工艺上如何防止?答:在制造过程中要对焊接结构进行加工,如下料、剪切、冷弯成型、气割、焊接和其它热加工等。

由这些加工引起的局部应变、塑性变形对焊接HAZ 脆化有很大的影响,由此而引起的脆化称为热应变时效脆化(Hot Straining Embrittlement,简称HSE)。

材料成型04-2班防止措施:由于明显产生HSE的部位是HAZ的熔合区和A ri以下的亚临界HAZ200~600℃,反映在在焊接工艺上就是控制加热速度和最高加热温度以及焊接线能量。

8.试叙中碳调质钢焊接热影响区软化机制?应如何改善和控制?答:中碳钢淬火后得到粗大的马氏体,强度硬度很高,中碳钢经过调质处理后得到回火索氏体,它的硬度和强度比淬火马氏体低,即中碳调质钢发生了热处理强化,在焊接热影响区出现了不同程度的失强。

控制调质处理的回火温度,提高回火温度可以降低中碳调质钢焊接热影响区软化。

因为焊接调质钢时,HAZ的软化程度与母材焊前的热处理状态有关。

母材焊前调质处理的回火温度越低(即强化程度越大),则焊后的软化程度越严重。

9.如何提高热影响区的韧性?韧化的途经有那些?答:(1)提高热影响区的韧性的措施1)控制组织:对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系,应尽量控制晶界偏析。

2)韧化处理: 对于一些重要的结构,常采用焊后热处理来改善接头的性能。

合理制定焊接工艺,正确地选择焊接线能量和预热、后热温度是提高焊接韧性的有效措施。

(2)韧化的途径:除了上述措施外,还有如细晶粒钢(利用微量元素弥散强化、固熔强化、控制析出相的尺寸及形态等)采用控轧工艺,进一步细化铁素体的晶粒,也会提高材质的韧性;采用炉内精炼,炉外提纯等一系列措施,从而得到高纯净钢,使钢中的杂质(S、P、O、N等)含量极低,使钢材的韧性大为提高,也提高了焊接HAZ的韧性。

10.某厂制造大型压力容器,钢材为14MnMoVN钢,壁厚36mm,采用手弧焊:1)计算碳当量及HAZ最大硬度Hmax(t8/5=4s);2)根据Hmax来判断是否应预热;3)如何把Hmax降至350HV以下;解:(1)依据BVMoNiCrCuMnSiC51015602030Pcm++++++++=查得14MnMoVN的成分wC=(0.10-0.18)%,wMn=(1.2-1.6)%,wMo=(0.41-0.65)%, wV=(0.05-0.15)%,代入上式得前所受到的预应变量以及轧制、弯曲、/?U祚 材料成型04-2班Pcm=0.255 依据H max(HV10)= 140 + 1089 Pcm- 8.2 t 8∕5 t 8∕5=4s, Pcm=0.255得H max=524.89 HV(2)H max=524.89 HV 说明其淬硬倾向较大,冷裂倾向也随之较大,应该预热(3)依据H max(HV10)= 140 + 1089 Pcm- 8.2 t 8∕5 H max<350,Pcm=0.255得t 8∕5>8.26 s 由壁厚36mm可知钢板为厚板所以()()?????????=058T8001T50012Etπλ冷却时间58t随着线能量E和初始温度T0的提高而延长,焊接方式和材料确定,则线能量E确定,主要是通过提高初始温度即预热温度来降低冷却速度,延长58t时间大于8.26s。

相关文档
最新文档