水轮发电机组振动分析
简析水轮发电机组的振动原因及改进措施
简析水轮发电机组的振动原因及改进措施摘要:水轮发电机在长期运行过程中,会产生振动。
引起发电机组振动的原因可以从机械、水力和电力三方面考虑,针对这些原因,从发电机水机保护、励磁系统、发电机组导轴承方面进行改进。
关键词:水轮发电机;振动原因;改进随着现代技术的迅速发展,水轮发电机的比转速和单机容量越来越大,其结构更加复杂,机组稳定性问题日益突出。
一批像三峡工程等大、中型机组投入运行,其稳定性能尤为重要。
稳定性能成为衡量大、中型发电机组的重要性能指标。
1. 水轮发电机组的振动原因振动是旋转机械运行过程中的固有属性。
振动不仅影响机械的性能和寿命,还会引起机械故障和损坏会,造成重大经济损失。
水电机组的振动直接影响机组的安全运行、负荷的合理分配及供电的质量,如果不加以控制,还会造成严重的事故。
例如,西南某大型电厂的一台机组因导叶销破坏引起转轮周期性激振,导致转轮两块叶片振落,其它严重开裂叶片更换新转轮,直接经济损失一千万元;葛洲坝电厂某号机投产后出现明显振动,导致厂房震颇,严重地危及运行人员的身心健康。
可见,机组的振动值是一个重要的质量指标,既可以根据机组起动过程的振动来评价机组的安装质量,也可以根据机组振动状态确定机组的检修计划。
水轮发电机组的振动问题与一般动力机械的振动有所不同。
水电机组的振动除需考虑机组本身的转动或固定部分的振动外,尚需考虑作用于发电机部分的电磁力及水轮机过流部分的流体动压力对系统及其部件振动的影响。
在机组运转的情况下,流体一机械一电磁三部分是相互影响的。
因此,严格地说,水轮发电机组的振动是电气、机械、流休耦合振动。
完全按照这三者的耦合关系来研究系统的振动是非常复杂的,目前还难以建立起可以进行分析计算的数学模型,也不易在试验中同时考虑上述三种因素的互相影响。
为此,根据水电站所积累的典型经验,可将引起机组振动的原因划分为机械、水力、电气三方面。
1.1 机械因素由于制造、安装等因素引起的机械不平衡力主要有:(1)主轴弯曲或有挠度;(2)发电机转子与水轮机转轮动、静不平衡;(3)导轴承间隙调整不当;(4)推力轴承调整不良;(5)机组中心不正;(6)转动部分和固定部分不同心,产生摩擦或碰撞;(7)支持系统刚度不够。
水轮发电机组运行中的振动分析
水轮发电机组运行中的振动分析摘要:目前我国大部分水电站普遍存在的问题便是水轮发电机组的振动问题,并且已知的导致水轮发电机组振动程度的影响因素有很多,例如设计、制造、安装、检修、运行等。
每一个水电站针对这种振动程度都有自己的允许范围值,当水轮机组振动值超过允许范围的最大值时,这种振动便很有很能影响到机组的使用寿命,严重的还可能导致机组运行时发生故障导致工程事故,所以当出现这种振动时水电站工作人员需要及时处理,避免情况更加严重。
因为影响水轮发电机组振动的因素很多,但从振动的原因上分析,一般有机械、水力以及电磁等方面原因。
本文结合了水轮发电机组的原因以及振动的处理办法进行了简析,希望可以给相关部门提供些有价值的参考。
关键词:水轮发电机组;运行;振动分析水轮发电机组的振动和其他的机械振动时有很多不同之处的,而他们的相同之处都在于利用机械自身的转动或者传动产生的振动。
并且在水轮发电机组运行过程中产生的振动还需要考虑水流在经过发电机时,水本身的重量对发电机压力的占比,以及这种占比对发电机各个组件的影响。
1 水轮发电机的工作过程中出现振动简析想要了解和知道是什么原因导致的发电机的振动,就必须都发电机的工作机理有所了解。
水轮发电机的发电过程主要是依靠水力、机械以及电磁三大部分的相互作用进而产生电力的。
例如当水流的作用下机组发生振动这时发电机机组的转子和定子之间就会出现较大的缝隙,当这种缝隙过大时则会导致整个发电机机组的不稳定,这时发电机的磁场以及水流流畅都会受到影响,进而导致发电机组在工作过程中出现一些列问题,所以说水流流体、电磁和机械是导致发电机组振动的重要原因。
2 水轮发电机振动的原因分析2.1 机械振动所谓水轮发电机的机械振动指的就是在发电机工作过程中由于发电机本身的惯性力、摩擦力以及其他外界作用了的影响下,导致发电机的振动叫做机械振动,目前比较常见的引起机械振动的原因有三点,转子质量不平衡、机组轴线不正以及导轴承老化破损等。
水轮发电机组振动原因和处理措施分析
水轮发电机组振动原因和处理措施分析水轮发电机组振动会让水轮发电机组正常运行产生问题,会让水轮机组出现故障。
本文首先对水轮发电机组振动带来危害作出简要阐述,然后对水轮发电机组振动原因进行分析,之后结合笔者在新庄水电站工作的实际情况,提出几点水轮发电机组振动处理措施,希望可以对业内起到一定参考作用。
标签:水轮发电机组;振动原因;处理措施前言:在水电站中,水轮发电机组的安全运行可以保证水电站经济效益,如果水轮发电机组因为振动出现故障情况,那么就会对水轮发电机组运行平稳性与发电效益造成不利影响。
水力原因、机械原因与电气原因均有可能导致水轮发电机组出现振动情况,进而产生运行故障。
一、水轮发电机组振动带来危害在水电站中,水轮机占有核心地位,水轮机组可以转化水势能为机械能,在水电厂中,水轮发电机组的安全运行可以保证其供电安全性、供电优质性和供电经济性,这和电网运行的稳定性、安全性具有直接关系,这对于水电厂的社会效益与经济效益具有决定作用。
在水轮机组的运行中,水力原因、机械原因与电气原因均会造成水轮发电机组振动情况,据统计,现阶段,水轮发电机组大约有80%事故与故障和振动有关。
水轮发电机振动会带来五点主要危害:(1)會让机组零部件出现疲劳损坏区,该区主要出现在金属和焊缝之间,长期运行会让损害程度加重,可能会有裂缝出现,导致机组报废;(2)发电机组部分紧固部件会出现松动甚至断裂情况,会让连接部件出现振动情况,减少其使用寿命;(3)水轮发电机振动会让机组旋转部分磨损程度加剧;(4)水轮机组共振会对厂房以及多种设备造成影响;(5)水轮机组振动会让尾水管中形成涡流脉动压力,此压力可能会让水管壁开裂,可能会对尾水设备正常使用造成影响。
二、水轮发电机组振动原因(一)水力原因在水力方面,水轮发电机组振动的主要原因是水轮机会受到动力水压的干扰,这种水力原因往往是具有较大随机性、很难进行控制的。
如果水轮机处于非设计环境工作,或是处于过度运行状态,那么由于不理想水流状况,机组部分组件会产生振动加速,出现断裂情况。
水轮发电机组振动分析
( 中国 电力 投资 集 团公 司格 尔木太 阳 能发 电分公 司 ,青海 西 宁
摘
8 1 0 0 1 6 )
要 :减 少水轮发 电机组振动对提 高机组 安全稳定 运行 、延 长机 组使 用寿命 具有 重要 的作 用。本文对 水轮发
电 机 组 产 生 的 各 种 振 动 的 危 害及 原 因进 行 了分析 ,并针 对 各种 振 动 的 原 因提 出 了具 体 解 决 措 施 。
Abs t r ac t : Th e r e d uc t i o n o f hy dr o — g e n e r a t i ng un i t v i b r a t i o n h a s i mp o r t a n t r o l e t o i mp r o v e s a f e a n d s t a bl e o p e r a t i o n o f t h e u ni t a nd pr ol o n g t he s e r v i c e l i f e o f t h e un i t . Th e ha r m a n d ca u s e o f wa t e r p o we r,me c h a n i c a l s a nd e l e c t r o ma g ne t i s m o n t h e v i br a t i o n o f hy d r o — g e n e r a t i n g un i t a r e f u r t h e r a n a l y z e d. Co nc r e t e s o l ut i o ns a r e p r o p o s e d a i mi n g a t a v a r i e t y o f r e a s o n s t o c a u s e v i b r a t i o n .
对于水轮发电机组振动的原因及处理方法的研究
对于水轮发电机组振动的原因及处理方法的研究水轮发电机组振动是指水轮机在运行时产生的振动现象。
水轮发电机组振动的原因主要包括以下几个方面:水力因素、结构因素以及操作因素。
首先,水力因素是水轮发电机组振动的主要原因之一、由于水轮机是通过自然水流将水流动能转化为机械能的装置,因此水流的流动状况直接影响水轮机的运行情况。
当水流入口流速过快或者过慢时,会导致水流输运不平稳,产生激烈的水力冲击,从而引起水轮机的振动。
此外,当水轮机在运行中遇到水涡、水柱等突状流场时,也容易引起振动。
其次,结构因素也是水轮发电机组振动的一个重要原因。
水轮机的结构决定了其在运行时的刚度和稳定性。
若水轮机的结构强度不足,或者存在设计缺陷、制造缺陷等问题,都会引起水轮机的振动。
此外,水轮机的附件、导流罩、导叶等也会对水轮机振动产生直接或间接的影响。
最后,操作因素也会对水轮发电机组振动产生影响。
例如,水轮机的启停过程中,由于操作不当或者控制系统故障等原因导致的运行不稳定性,都会引起水轮机振动。
此外,水轮机的维护保养不到位,如轴承磨损、机械连接松动等问题也会导致水轮机振动的发生。
针对水轮发电机组振动问题,可以采取以下处理方法来解决:首先,优化设计和制造工艺。
在水轮机的设计和制造过程中,应充分考虑各种因素对振动的影响,采用合理的结构设计和制造工艺,提高水轮机的刚度和稳定性。
其次,加强水力调节。
通过合理调节水流的流速和流量,减少水轮机在工作过程中的水力冲击和流场扰动,从而降低水轮机的振动。
再次,完善控制系统。
加强水轮机的控制系统,提高水轮机的运行稳定性,避免因操作不当或控制系统故障导致的振动问题。
最后,加强维护保养。
定期对水轮机进行维护保养,检查轴承、机械连接等关键部件的磨损情况,及时处理和修复,确保水轮机的正常运行。
综上所述,水轮发电机组振动是由水力因素、结构因素以及操作因素等多方面因素引起的。
在处理水轮机振动问题时,需要充分考虑各种因素的影响,并采取相应的措施来解决问题,从而确保水轮机的正常运行和发电效率。
水轮发电机组振动的分析及处理
水轮发电机组振动的分析及处理摘要:本文主要分析了水轮发电机组振动的原理和危害,并概述了引起发电机组振动的一些主要原因,并针对这些原因提出了一些诊断振动类型的方法,最后提出了一些有效处理振动的对策。
关键词:水轮;发电机组;振动;电磁社会经济的快速发展,使得水利发电工程在人们生产和生活中所发挥的重要性日益凸显,这就需要我们通过有效的措施确保水轮发电机机组的稳定运行。
机组的稳定运行是判断水轮发电机工作性能的一项重要指标,如果机组出现振动,会加大机械的磨损,缩短水轮发电机的寿命,所以,应该重点研究水轮发电机组振动的原因,并通过一些措施来识别引起振动故障的原因,最终找到有效的应对之策。
1 水轮发电机组振动原理及危害分析水轮发电机组主要包括两个部分:固定部分与旋转部分。
当水轮发电机组工作时,会因为一些部位出现了问题使得机组出现不稳定性振动。
此时的振动原理主要就是因为机组运转时,水能直接激发了水轮发电机组的振动,并间接的维持了机组振动。
发电机的正常工作离不开机械、流体以及电气三者的共同作用,且这三者是相互作用,不可缺少的,当气隙处于不对称状态时,发电机定子跟转子之间的磁拉力就会发生不平衡,当流体导致机组转动部分出现振动时,就会带动机组转动部分出现振动,这时水轮机的水流流场和发电机的磁场都会受到转动的影响。
水轮发电机组出现振动会造成很大危害,会造成很大的安全性问题:因为当尾水管会发生低频压力脉动时,尾水管壁会发生开裂,一旦发电机机组的振动频率跟尾水管低频压力脉动的频率相接近,就会发生共振,机组会跟着出现很大范围、很大幅度的振动,甚至会让机组脱离电力系统,对受力建筑物造成极大的伤害。
如果机组各个部位发生松动,各个部件相互间就会发生摩擦,最终会使得零部件和焊缝因为过度疲劳而加深加大开裂,甚至会导致断裂,其危害是相当大的。
2 水轮发电机组振动的主要引起因素跟一般的动力机械相比,水轮发电机组因为所处的工作环境比较特殊,工作特性也较为罕见,所以,导致其振动的原因也是多方面的,一般来说,导致其振动的因素常常划分成三类:2.1机械原因第一种原因就是主轴刚度不够,或者直径太短,两个轴承之间的间隙过大,最终导致机组出现振动,而机组的负荷变化会大大的影响到机组,导致振幅变大。
水轮发电机组定子在100HZ下的振动分析
[键入文字]水轮发电机组定子在100Hz下的振动分析水轮发电机在运行中,将不可避免的受到频率为100Hz 的电磁干扰力作用,如果结构的固有频率与这种电磁力的频率相等或接近时就会产生共振或较大的振动力,因此分析水轮发电机组定子在电网倍频100Hz 下的振动是必要的。
现采用有限元方法分析定子振动特性,既分析了冷态振动也分析了热态振动,从机组运行特点易知,冷态振动幅值远大于热态振动幅值。
为准确分析定子在电网倍频100Hz 下的振动,将上机架及定子联合建立有限元分析模型,模型细节见图1。
1.1基本参数 气隙平均磁通密度 9830=δBGs电网频率 50=f Hz额定功率 8.777=n P MVA 额定转速 75=n n min /r定子支臂数量 20 个定转子间正常磁拉力 2354=Nr F KN 半数磁极短路时径向力 14297=r F KN1.2计算模型利用美国ANSYS 程序,建立上机架和定子计算模型见图1,其中,计算过程中的单元处理见表1。
表1 等效模型单元列表图1 上机架和定子计算模型1.3边界条件1.3.1 约束处理根据结构的特点,采取空间直角坐标系,上机架和定子与基础连接处采用弹簧单元模拟,基础弹簧刚度采用三峡左岸机组数据。
1.3.2 载荷分布定子铁心承受100Hz电磁力的作用。
1.4 计算过程与结果利用ANSYS程序的谐响应分析模块对定子结构进行90~110Hz频率范围谐响应分析,计算分析定子铁心各个部位的响应值。
定子铁心各个部位标识见图1.5-1。
对定子铁心的各个部位响应值作曲线比较,曲线图见图1.5-2。
不同频率值下的定子铁心响应值在下面给出。
分析表明:冷态时在100Hz下,定子铁心径向响应单幅值最大为0.013mm,发生在铁心内径下部。
热态时在100Hz下,定子铁心径向响应单幅值最大为0.008mm,发生在铁心内径下部。
定子铁心和上机架在100Hz下响应值分布示意见图1.5-3和1.5-4。
水轮发电机组的振动原因
水轮发电机组的振动原因
1.静平衡问题:在水轮发电机组运行时,水轮及配重的质量分布不均
匀或者水轮不平衡,会导致转子在高速旋转时产生离心力,进而引起振动。
2.动平衡问题:动平衡是指水轮转子系统在运转时的动态平衡状态,
即转子在高速旋转时受到离心力的作用,导致转子产生起伏振动。
这通常
是由于转子的构造不均匀或者受到外部冲击等原因引起的。
3.涡轮进水不平衡:水轮是以涡轮原理进行能量转化的机械装置,当
水流进入涡轮时,若水流分布不均匀,会导致水轮不平衡,进而引起振动。
4.轴承问题:水轮发电机组的振动还与轴承磨损和润滑不良等相关。
当轴承磨损或润滑不良时,轴承的摩擦力增加,会导致转子的转动阻力增大,从而引起振动。
5.转子失衡:转子失衡是指转子的质量分布不均匀,导致转子在高速
旋转时无法达到完全平衡的状态。
这通常是由于制造过程中的误差或者腐
蚀磨损等原因引起的。
以上是水轮发电机组振动的几个主要原因,除此之外,还可能存在其
他因素,如水轮叶片的积垢和腐蚀、发电机组机械部件的磨损等。
为了减
少振动对发电机组的影响,需要通过定期检修和保养、科学的设计和制造
以及合理的调试来确保整个发电机组在运行中的平衡和稳定。
同时,还需
要采取相应的振动监测和控制措施,及时发现并解决振动问题,以保证发
电机组的安全运行和提高发电效率。
水轮发电机组振动原因分析
水轮发电机组振动原因分析概述振动是机器运行中不可避免的现象。
在水轮发电机组中,振动不仅会影响设备的性能和寿命,还会影响发电厂的生产效率和安全。
因此,深入分析水轮发电机组振动原因,采取有效措施减少振动,对于保障发电厂的正常运行和机组的长期稳定运行至关重要。
模型分析水轮发电机组振动主要有几种类型:•稳态振动:指机组长期处于一种稳定的运行状态,此时振动频率和振幅相对稳定。
水轮发电机组稳态振动主要由质量不平衡和未正确安装转子引起。
•暂态振动:指振动频率和振幅在短时间内发生变化,可能是由于负载突变或冲击引起的。
暂态振动对机组疲劳损伤影响较大,长期存在可能造成机械故障。
•横向振动:指机组的振动方向与转子轴线垂直,造成机组运转不稳定。
常见的横向振动原因包括转子偏心、轴承失效等。
•纵向振动:指机组的振动方向与转子轴线平行,较为严重时可能会造成转子碰撞和轴承故障等机械故障。
除了以上几种常见振动类型,水轮发电机组还可能出现多种组合振动。
振动原因分析1. 转子偏心转子偏心是指转子在旋转时轴向偏移,导致振动频率和振幅增大。
主要原因包括转子装配不良、轴承表面磨损不均、轴箱挠曲、转子重量不均等。
针对此问题,我们可以采取如下解决措施:•调整轴承的安装平面和支撑面,以保证轴承安装的精度。
•整体调平转子,保证转子在旋转时轴向偏移量小于要求。
•检查轴承并进行必要的维护、清洁和润滑。
2. 支承失效支承失效是指轴承在运转中失效,产生异常振动。
支承失效常见原因包括轴承老化、过载运转、润滑不良等。
中长期的解决措施为定期维护和更换轴承。
短期的解决措施包括监控轴承温度和压力,确保轴承正常运行。
3. 质量不平衡质量不平衡是指转子及其附属部件质量分布不均,引起机组振动。
这种振动通常是稳态振动,振动频率与机组的物理结构有关。
当不存在其他明显的故障时,质量不平衡经常是导致振动的根本原因。
解决措施包括:•对机组进行动平衡校对来修正在机组内部的重量分配不均(即转子杂散质量)。
水电站水轮发电机机组振动问题分析处理方法的探讨
水电站水轮发电机机组振动问题分析处理方法的探讨水轮发电机机组振动问题是水电站运行过程中常见的故障之一,它不仅影响了机组的稳定运行,还可能导致设备的损坏甚至事故的发生。
对水轮发电机机组振动问题进行分析和处理显得尤为重要。
本文将从振动问题的原因分析入手,探讨针对不同原因所采取的相应处理方法,以期为相关工程技术人员在水电站振动问题的处理中提供一些参考和借鉴。
一、振动问题的原因分析1.不平衡水轮发电机机组的不平衡是引起振动问题的常见原因之一。
当机组转子的质量分布不均衡时,会导致旋转时的不平衡力,从而引起机组的振动。
而不平衡可能来自于机组本身的制造问题,也可能是在运行过程中由于叶片磨损、机械松动等原因导致的。
2.轴承故障水轮发电机机组的轴承故障也是引起振动问题的常见原因之一。
当轴承损坏或磨损严重时,会导致机组的不稳定运行,产生较大的振动。
3.失衡失衡是指机组旋转零件或叶片的动力重心与几何轴线不在同一条直线上。
失衡主要是由于静、动平衡不足、质量、尺寸和装配不对称等引起的。
4.共振共振是指机组受到外力激励使其振动幅度变得异常大的一种现象。
共振现象可能十分危险,因为它可能导致机组受损或者损坏。
二、振动问题的处理方法1.不平衡针对机组不平衡问题,应当采取动平衡的措施,通过动平衡仪器检测机组的不平衡情况,确定不平衡的位置和大小,然后通过增加或减少相应位置的质量来进行校正。
在机组停机检修期间,还可以对机组进行整体的静平衡和动平衡处理,以保证机组的平衡性。
2.轴承故障针对机组轴承故障问题,首先需要进行轴承的检测和诊断,确定轴承的具体故障原因,然后根据故障原因采取相应的处理措施。
如果是轴承磨损严重,需要及时更换轴承;如果是轴承损坏,需要进行轴承的修复或更换;如果是轴承润滑不良导致的故障,需要对轴承进行润滑维护。
3.失衡对于失衡问题,需要通过精确加工和装配来保证机组零部件的质量和尺寸的准确性,避免因质量、尺寸和装配不对称而引起失衡问题。
水轮发电机振摆偏大原因分析及防范措施研究
水轮发电机振摆偏大原因分析及防范措施研究水轮发电机振摆偏大是指水轮发电机在运行过程中出现的振动幅度超过正常范围的现象。
这种振摆偏大不仅会影响发电机的正常运行和发电效率,还可能造成设备损坏和安全事故。
本文将对水轮发电机振摆偏大的原因进行分析,并提出相应的防范措施。
水轮发电机振摆偏大的原因可以归结为以下几个方面。
1. 设备老化和磨损:长时间运行和经年累月的使用会导致水轮发电机内部零部件的磨损,如轴承、齿轮等。
这些磨损会造成发电机的不平衡,从而引起振摆偏大。
2. 不良安装和调试:水轮发电机的安装和调试是确保其正常运行的关键。
如果安装过程中存在不合理的操作或调试不到位,如轴线不平行、轴承间隙不合适等,都有可能导致水轮发电机振摆偏大。
3. 偏心和非对称负荷:当水轮发电机所受负荷不均匀时,例如在运行过程中机组的叶轮存在偏心或负荷分布不均匀等情况,都会引起振摆偏大。
4. 水力条件异常:水轮发电机是通过水力驱动的,如果水轮发电机进水口的流量、水压等水力条件异常,如水流过大或水质含有固体颗粒等,会引起水轮发电机运行不稳定,从而导致振摆偏大。
针对水轮发电机振摆偏大的原因,我们可以采取一些防范措施来避免或减少振摆偏大的问题。
1. 定期检查和维护:根据设备使用寿命和运行情况,定期检查和维护水轮发电机的零部件,及时更换磨损严重的部件,确保设备处于良好状态,减少振摆偏大的发生。
3. 平衡叶轮和负荷:对于已安装的水轮发电机,我们可以采用动态平衡技术对叶轮进行平衡调整,减少其偏心程度。
对于负荷分布不均匀的问题,可以进行相应的调整,保证水轮发电机受力均匀。
4. 监测水力条件:定期监测水轮发电机进水口的流量、水压等水力条件,确保其正常工作。
如果发现异常情况,应及时采取相应的措施来纠正,防止振摆偏大的发生。
水轮发电机振摆偏大的原因主要包括设备老化和磨损、不良安装和调试、偏心和非对称负荷以及水力条件异常等。
我们可以通过定期检查和维护、合理安装和调试、平衡叶轮和负荷以及监测水力条件等防范措施来避免或减少振摆偏大的问题的发生,确保水轮发电机的正常运行和发电效果。
水力发电站的振动与噪声评估与控制
水力发电站的振动与噪声评估与控制随着能源需求的增加,水力发电被广泛应用作为一种清洁、可再生的能源来源。
然而,水力发电站的运行过程中产生的振动和噪声问题引起了人们的关注。
这些问题不仅会对周边环境和生态系统造成影响,还可能对水电站的运行稳定性和设备寿命产生负面影响。
因此,对水力发电站的振动和噪声进行评估与控制十分重要。
一、振动与噪声评估1. 振动评估水力发电站的振动评估是通过对设备和结构进行振动测试与分析来判断其振动水平是否超过限制值。
常用的检测手段包括加速度传感器、振动测量系统和频谱分析等。
通过采取这些措施可以准确测量水力发电站的振动水平,并通过与国家相关标准进行对比来判断是否符合要求。
2. 噪声评估水力发电站的噪声评估主要针对发电机组、水轮机、变压器和冷却系统等设备。
常用的测试方法包括声级计、频谱分析以及噪声源定位技术。
这些方法可以帮助工程师分析噪声产生的原因和来源,从而进行相应的控制和减排措施。
二、振动与噪声控制1. 设备改造与优化对于已经存在振动和噪声问题的设备,可以通过改变结构、调整运行参数或者增加有效的缓冲材料等方式来降低振动和噪声水平。
此外,对于新建设备,选用低振动、低噪声的设计方案是减少振动和噪声的有效手段。
2. 隔音和隔振措施在水力发电站的布置中,可以采用隔音和隔振措施来减少振动和噪声的传播。
例如,在设备旁边设置隔音墙或隔音罩,采用悬挂式装置减少机组的振动传递等。
3. 环境监测与管控通过安装振动和噪声监测系统,对水力发电站进行24小时实时监控,及时发现异常情况并采取相应措施解决。
此外,制定相关的管理规定和操作规程,加强对设备运行的监管和管控。
4. 定期检查与维护定期对水力发电站的设备和结构进行检查和维护,保持其在良好的工作状态。
及时更换老化的设备和损坏的部件,减少振动和噪声的产生。
三、案例分析以某水力发电站为例,该发电站在运行过程中产生了较大的振动和噪声问题,严重影响了周边居民的生活和环境。
水轮机发电机组振动的影响因素与处理方法
水轮机发电机组振动的影响因素与处理方法近些年以来,随着我国科学技术的发展,我国的水利发电事业也获得了非常显著的进步和发展,各种类型的大型、中型以及小型的水轮发电机组相机建设成功并且很快的投入使用。
在水轮机发电机组的运行过程中还是经常性地出现相应的振动问题,这对水轮机机组安全、稳定、可靠的运行造成一定的不良影响,下面我们着重分析一下水轮机发电机组振动的影响因素与相应的处理方案。
1 水轮机发电机组振动的影响因素1.1 电磁因素若是当不确定的磁极发生了短路的情况之后,会使得磁动势逐渐减小,与之相对称的磁极磁动势却不会因此出现任何的变化,之后便能诞生出一个和转子呈现出同向转动的不平衡磁拉力,由此就导致了机组出现振动的情况。
定子铁芯的组合缝如果出现了松动的问题,或者是铁芯本身发生了松动的情况,将会导致机组出现振动现象。
若是定子绕组的固定不科学,当电气负荷比较高的时候,也会让机组出现振动问题。
1.2 机械因素(1)如果发电机组在空载低转速的情况之下发生了相对显著的振动情况,则可以分析出引起这类问题的原因是机组紧固的零部件出现了松动的问题,再就是轴线发生了曲折的情况、中心尚未对准等。
(2)如果发电机的振幅及机组转速的二次方呈现出较为明显的正比关系,水平振动的幅度比较大,则可以判定为导致机组振动的原因是机组转动部分出现了质量不平衡的情况。
(3)如果发电机组振动相对强烈,同时还出现了撞击的声音,应该考虑引起机组振动的原因是相关转动部件和固定部件处于相互碰撞的状态之下。
(4)如果发电机组振幅伴随着机组负荷发生的变化呈现出显著的变化,则应该考虑的原因是主轴较细或者是轴本身的刚度不符合相应的标准。
1.3 水力因素(1)汽蚀汽蚀被列入水力因素的范畴之中,通常可以划分出三种主要的类型,也就是间隙、空腔、翼形。
其一会让转轮室发生破坏,叶片的周边和转轮体的局部等部位受到负面的影响。
其二常见于水轮机座环内侧,同时也可见于尾水管的上半段。
水轮发电机组异常振动原因分析及处理
水轮发电机组异常振动原因分析及处理摘要:轮发电机组运行中的各部位振动和摆度是机组运行健康状况的最直接反映,良好的振动和摆度对机组长期的安全稳定运行具有重要意义,将其幅值限制在规程规范要求的限值之内,是确保机组能长期安全、稳定运行的基本要求。
大修机组和新装机组在启动调试过程中,时常会遇到机组的振动和摆度超标异常情况,虽然水轮发电机组振动和摆度异常的原因主要归结有机械因素、电磁因素和水力因素三个方面,但这三个方面又都包含很多不同的具体原因,不同方面的具体原因的故障现象有些还是相似的,在实际中,往往还存在多个不同因素共同起作用。
关键词:水轮发电机组;异常震动;处理措施引言要找到机组振动和摆度异常的真实原因,往往需要对这些原因进行逐一仔细排查,往往需花费大量人力、物力和时间。
同时,由于现场试验手段及各种条件限制,逐一排查各种振动和摆度异常的原因并不现实,为此,如何尽快缩小排查范围、快速找到机组振动异常的原因就显得尤为重要。
1水轮发电机组异常振动原因(1)机械因素引起机械不平衡的常见原因主要有:转子质量不平衡、水轮机质量不平衡、轴承缺陷、机组轴线不正等。
机械不平衡一般表现为振动频率与转速一致,且和转速平方成正比。
根据表1数据,机组在空转状态下,机组各部位振动和摆度数据优良,各振动和摆度频率也以转速频率为主,其他频率成分很小,长时间空转运行机组各部位瓦温也正常。
因此,由于机械不平衡引起机组振动过大的可能性很小,可暂不考虑是由机械因素引起的机组振动过大。
(2)电磁因素引起电磁不平衡的常见原因主要有:转子绕组短路、空气间隙不均匀、定转子椭圆度超标等。
电磁不平衡一般表现为振动随励磁电流增大而明显增大。
机组投入励磁,发电机机端电压为25%Ue(Ue为机端额定电压)时,机组的各部振动和摆度都出现较明显的变化。
机组上导摆度呈下降趋势,摆度值由88μm降至54μm,下导摆度和上导摆度则有轻微波动,无规律可循。
从机组各部位振动和摆度频谱分析,上机架水平、上导摆度和定子水平振动仍然以转频为主。
水轮发电机组振动危害性分析及预防
水轮发电机组振动危害性分析及预防水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。
在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。
1 水轮发电机组振动类型1.1 机械类振动。
由于机械部分的平衡力引起的振动称为机械类振动。
例如,转动部分重量不平衡、轴线偏差、摆动过大等。
其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。
1.2 电气类振动。
由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。
例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。
其主要特点是振幅与励磁电流大小成正比。
1.3 水施类振动。
由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。
例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。
其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。
2 水轮机组振动所带来的危害2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。
2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。
2.3 加速机组转动部分相互磨损程度。
如大轴剧烈摆动可使轴与轴瓦的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。
2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。
2.5 水轮机组共振引起的后果更加严重。
如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。
3 引起振动的原因及预防措施3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动;③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。
水轮发电机组振动原因分析
水轮发电机组振动原因分析
水轮发电机组在运行过程中会产生一定的振动,这些振动会影
响机组的安全运行和寿命。
因此,分析水轮发电机组的振动原因对
于提高机组的运行质量和安全性具有重要意义。
首先,水轮发电机组一般由水轮机、发电机和轴系组成,该系
统的振动可能来自以下几个方面:
1.水轮机叶轮不平衡。
叶轮的设计、制造和安装质量是影响水
轮机振动的主要因素之一,制造不精确或安装不到位都会导致叶轮
的不平衡,从而引起水轮机的振动。
2.水轮机进水管道或出水管道存在泄漏或压力波动。
水轮机进
水或出水管道的泄漏或压力波动会引起整个水轮发电机组的振动,
尤其是在水轮机高速旋转时影响更为明显。
3.水轮机进水口、导叶或叶片损坏。
水轮机进水口、导叶或叶
片的损坏都会对水流的流向和强度造成影响,进而引起水轮机振动。
4.发电机不平衡。
发电机转子的平衡等质量问题容易导致转子
的不平衡,进而引起整个水轮发电机组的振动。
5.轴系安装不当。
轴系的安装质量对于水轮发电机组的振动影
响很大。
如果轴系的对中度、扭矩传递等参数调整不当,会导致轴
系的振动,从而影响水轮发电机组的运行质量。
以上是水轮发电机组常见的振动原因。
解决这些问题需要从前
期的设计和制造环节着手,同时,对于已经投入使用的水轮发电机组,要定期进行检查和维护,确保机组的正常运行和安全性。
1。
水轮发电机组振动过大原因分析及处理
转子质量不平衡的处理
• 机组采用加重动平衡试验,对转子进行配重, 人为的改变转子的不平衡性,以除发电机 转子质量不平衡引起的振动。
• 对转子磁极进行处理,并作电气试验,检 查转子绕组是否存在短路现象。检查机组 空气间隙,如存在问题,回装时,按规程 对中心进行调整,空气间隙符合要求
振动的机械因素
• 振动的机械因素是振动中干扰力来自机械部 分的惯性力、摩擦力及其它力,引起振动的 机械因素主要有:机组轴线不正、导轴承缺 陷、转子质量不平衡等。
• 1、机组轴线不正:机组轴线不正的主要表 现形式是轴线与推力头底平面不垂直和轴线 法兰结合面处曲折。由于轴线倾斜和曲折, 使机组转子的总轴向力不通过推力轴承中心, 就产生偏心力矩。随着转子的旋转,偏心力 矩也同时旋转,使各支柱螺栓的受力是脉动 力,起脉动频率与转速频率相同,从而产生
• 推力轴承各支柱螺栓的轴向振动,转子也 随之产生振摆。所以,轴线不正,也是引 起径向振动的原因之一。检查各处摆度值, 如果其值满足于国家标准,从而可排除该 机组的振动不是由于轴线不正引起的,否 则对其轴线进行了调整。
• 1、转子绕组短路:当一个磁极的磁动势因短 路而减小时,与其相对的磁极的磁动势没有变 化,因而出现一个跟转子一起旋转的不平衡磁 拉力,引起转子振动。
• 2、空气间隙不均匀:当发电机转子不圆,或 机组中心不正时,空气间隙就会不均匀,从而 产生单边的不平衡磁拉力,随着转子的旋转而 引起空气间隙周期性变化,单边不平衡磁拉力 沿着圆周作周期性移动,引起机组振动。
• 机组大修检查时,检查转子磁极松动情况, 磁极与铁芯贴合是否够好,如存在上述问 题,遂对转子磁极进行处理,更换了磁极 键,用环氧板填实磁极与铁芯的间隙,并 打紧磁极键。在磁极处理过程中,极有可 能引起转子质量的不平衡。
水轮发电机组振动原因分析
INSERT YOUR LOGO水轮发电机组振动原因分析通用模板The work content, supervision and inspection and other aspects are arranged, and the process is optimized during the implementation to improve the efficiency, so as to achieve better scheme effect than expected.撰写人/风行设计审核:_________________时间:_________________单位:_________________水轮发电机组振动原因分析通用模板使用说明:本解决方案文档可用在把某项工作的工作内容、目标要求、实施的方法步骤以及督促检查等各个环节都要做出具体明确的安排,并在执行时优化流程,提升效率,以达到比预期更好的方案效果。
为便于学习和使用,请在下载后查阅和修改详细内容。
水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。
在机组运转的状态下,流体—机械—电磁三部分是相互影响的。
例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。
因此,水轮机的振动是电气、机械、流体等多种原因引起的。
可见,完全按照这三者的相互关系来研究系统的振动是不够的。
鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。
1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。
水轮发电机组运行中的振动分析
水轮发电机组运行中的振动分析前言水轮发电机组振动是水电站存在的一个普遍问题,有设计、制造、安装、检修、运行等方面的原因。
运行中的机组不同程度都存在着振动,电站规定振动值在某一允许范围内,当振动超过规定的允许值时,便会影响机组的安全运行和机组的寿命,需及时找出原因并采取措施消除。
同时水轮发电机组的振动是一个复杂的问题,但从振动的原因来看,一般有机械、水力及电磁等方面的原因。
本章结合实践谈谈水轮发电机组运行中的振动问题。
一机械振动由于机组机械部分的惯性力、摩擦力及其他力的干扰造成的振动叫做机械振动。
引起机械振动的因素有:转子质量不平衡、机组轴线不正、导轴承缺陷等。
1 转子质量不平衡由于转子质量不平衡,转子重心与轴心产生一个偏心距。
当主轴旋转时,由于失衡质量离心惯性力的作用,主轴将产生弯曲变形。
轴变形越大,振动也越严重。
在制造时,要进行转于的静平衡、动平衡试验,使不平衡重量尽可能小,从根本上消除这种振动的原因.2 轴线不正机组轴线不正会引起两种形式的振动,弓状回旋.由于转子、转轮几何中心偏离旋转中心,运行中会产生横向及纵向振动,直接形成回旋对推力轴承、导轴承均构成威胁,还能增大离心惯性力,两者都使振幅增大。
从运行角度分析,一般出现在投运年限较长,各导轴承间隙大,没能及时修复,或者检修质量不良等情况下。
3摆振在动水压力下,推力轴承处发生摆振。
为此,在安装和检修时必须找正轴线,调整各导轴承的间隙在允许范围内。
对新投产的机组,一般不会由于轴线不正而引起剧烈振动,但对于运行一段时间后的机组,由于某种原因使轴线改变,如推力头与轴配合不严密、卡环不均匀压缩、推力头与镜板间的垫变形或破坏等,都会引起机组振动。
4导轴承缺陷当导轴承松动、刚性不足、运行不稳而润滑不良时,会发生摩擦,引起反向弓状回旋,即横向振动力。
导轴承间隙过小,会把转轴的振动传给支座和基础,导轴承间隙过大,转轴振动大。
适当的导轴承间隙,才有可能同时保证转轴与支座的振动均在允许范围内。
水轮发电机组异常振动原因分析及处理
水轮发电机组异常振动原因分析及处理摘要:水能作为一种可再生的能源被充分开发利用。
水力发电的基本原理是通过利用水位落差,配合水轮发电机组产生电力,也就是将水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。
机组受制造、施工安装影响,存在一定的效率差异。
水轮发电机组中的机电设备运行过程中会出现不同类型的震动情况,若振动幅值长时间的超过水轮发电机组的工作允许范围,将对机组零部件造成疲劳损坏,从而导致机组维护周期的缩短和整个机组允许效率的下降。
本文对水轮发电机组异常振动原因分析及处理进行分析,仅供参考。
关键词:水轮发电机组;异常振动;处理引言旋转的水轮发电机组在水利工程机电设备运行过程中会出现不同类型的震动情况,若振动幅值长时间的超过水轮发电机组的工作允许范围,将对机组零部件造成疲劳损坏,从而导致机组维护周期的缩短和整个机组允许效率的下降。
如果在运行过程中存在共振现象,则机电设备也会产生损坏或机械故障等问题,甚至可能威胁到人员安全、损坏厂房建筑物。
1水电站水轮发电机组运行分析1.1水轮发电机组的运行方式我国各大水电站的水轮发电机组的运行原理如下:发电机组借助物理学中的复合传递原理以及各个运行机组构成不同的运行模式,常见模式包括并网运行模式、单机运行模式。
另外,还有部分水轮机组会根据调速器的运行情况采用不同的运行模式,如自动模式和手动模式。
1.2水轮发电机组的结构分析水电站的水轮发电机组并非由单个的机器构成,而是由多种机器和零件组成的,其核心功能为实现水电站发电。
水轮发电机组的主要构成如下:①水轮机设备。
②调速系统设备。
③机架和轴承设备(含上机架、下机架、水导、下导、上导、推力轴承)。
④定子。
⑤转子。
其中,定子主要由机座、铁芯及绕组构成,主要功能是支撑绕组,绕组在切割磁力线产生电能后汇流传导作用。
转子是通过电能产生均匀磁场,通过改变转子励磁电能大小,可以改变磁场大小,以此调节发电量。
除此之外,水轮发电机组可根据水电站的实际发电条件,对定子中铁芯冷轧硅钢片的叠成情况进行优化,以此来显著提升发电效率,确保水电站发电系统的结构稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水轮发电机组振动分析
作者:马骏华
来源:《科技创新与应用》2017年第11期
摘要:水轮发动机组振动有诸多原因以及危害。
由于破坏了转轮结构和固定导叶,这种振动现象会威胁水电站运行的安全性和稳定性,降低水电站的经济效益。
文章阐述了水轮发电机组原理、原因以及危害等问题,为了提高机组安全稳定运行延长机组使用寿命,我们要减少水轮发电机组振动这种现象。
关键词:水轮发电机组振动;原理;振动;危害
1 概述
随着社会的发展,水利工程对人们的生活至关重要,我们应该采取有效措施保障水利工程项目内部机电设备的正常运行。
为了提高水轮发电机组的稳定性,对水轮发电机组振动进行分析与研究。
2 水轮发电机组振动原理
在机组运转的状态下,在水轮机作为其原动力的前提下,水能的作用能够直接有效激发水轮发电机组振动,还能够间接维持机组振动。
流体、机械、电磁三者是相互影响相互作用的,由于气隙在不对称的状态下,由于发电机定子与转子之间的磁拉力不平衡的情况,当流体激起机组转动部分振动时会造成机组转动部分的振动,而发电机的磁场和水轮机的水流流场也会受到转动部分的运动状态的影响。
3 关于水轮发电机组振动的原因
3.1 机械原因
(1)机组轴线不同心。
因为轴心线受到水轮机轴与发电机轴不同心的现象导致不正,因此出现振动,造成机械故障。
它的主要振动特征1倍频和2倍频为径向振动的主要频率;2倍频分量与轴系不对中成正比,2倍频分量比例越大,轴系不对中越的现象越显著,一般会超过1倍频分量。
(2)不平衡的转子质量。
水轮发电机组转子质量不平衡是是旋转机械最常见的故障,也是导致机组振动的常见原因之一。
其转子质量不平衡振动现象表现有三点:随着转速增加振动频率也随之增加;以圆或椭圆为轴心轨迹;以转频为主要振动频率。
(3)轴承缺陷。
引起发生干摩擦的原因:导轴间隙过大、松动、润滑不好,或轴承与固定止漏环轴线不正等,这些因素都会使机组横向振动。
为了解决机械原因引起的振动等问题不影响精密度和相对同心度的降低,需要利用动平衡来调节轴瓦间隙和轴线等。
3.2 水力因素
(1)尾水管出现低频水压脉动。
水轮机的转轮在未设定的工作情况下,在出口处形成脱流旋涡、旋转水流和汽蚀等现象,因为在尾水管内出现大涡带后,涡带在管内以接近于固定的频率转动,将会在尾水管内造成水压脉动。
一但管内水流发生流动,压力脉动就会导致转轮、尾水管壁、压力管道、蜗壳、导水机构的振动。
(2)水力不平衡。
因为正常水流受到块状物体卡在转轮叶片之间或较软的粗麻绳、橡胶带缠住转轮叶片的阻碍,使水力造成不平衡,产生引起机组振动。
通过蜗壳的作用使具有动能和位能的水流形成环流,引起转轮旋转。
在安装和加工误差等因素以及流道的外观形状和导水叶的叶片的尺寸相差很大时,其横向力会受到转轮的水流不再轴对称的影响产生不平衡,因此在低负荷或空载运行时将出现十分强烈的转轮振动。
(3)卡门涡列。
机组振动也会受到转轮叶片出口处所形成卡门涡列的影响。
如图1所示,卡门涡列与翼型的尾部形状以及流体的速度有密切关系,所以卡门涡列的振动幅度越大,表示其流量越大。
(4)空腔汽蚀。
设计时要保证在最优工况区及附近不发生严重汽蚀,因为水轮机汽蚀与水轮机运行条件有密切联系。
然而机组运行中,当系统要求在偏离最优工况区运行时,使转轮的出流条件发生极大变化,机组振动受到汽蚀在不同程度上加严重增加的影响。
它的振动有三个特征:尾水管压力脉动大、尾水管进人孔门处噪声大、机组在某负荷工况下振动大,其振频为高频。
3.3 电气因素
(1)定子铁心叠片出现松动。
在定子铁心叠加安装时,由于铁心压紧螺杆将会出现一定的紧靠力,然而长时间工作中,因为振动和温度的变化,铁心松动会受到螺杆压紧时出现的一些塑形变形而紧靠力降低或者螺母稍微松动以及铁心冲片出现绝缘老化收缩的情况的影响。
铁心松动会造成振动,同时振动也会加快铁心松动。
其振动频率是100赫兹。
(2)气隙不均匀。
电力和机械力的结合点是气隙,发电机组振动会受到发电机定转子间气息不均匀在定子上产生单边磁拉力的影响。
在发电机转子有摆度或不圆时,就会有不均匀的空气间隙产生,因此会产生磁拉力在单边不平衡的现象,同时转子的旋转会引起空气间隙沿着圆周做周期性移动,出现的单边不平衡磁拉力将会引起机组振动。
它的振动特点:振幅随发电机出力以及励磁电流的增加而增加,振动频率为转频。
(3)定子绕组固定结构松动。
把定子线棒用槽楔固定在槽中,有时线棒出现槽楔脱落,齿端铁片断裂的现象,是因为在长时间运行中,因为振动不断地摩擦,槽楔一般会容易松动,线棒将会出现压不紧的情况。
(4)不对称的三相负荷。
绕组产生的转子磁场在定子不对称的三相负荷情况下与负序磁场同步在2倍转速下,两者相互影响,交变电磁转矩作用于转子、定子、机座和铁心上,引起机组振动,同时产生倍频。
它的主要振动频率为100赫兹。
(5)转子磁极出现松动。
机组在静止的情况下检测发电机大小间隙、定转子气隙是否分布均匀,规范设计气隙在要求范围内,气隙值比平均值范围在正负百分之十,此时如果转子磁极继续出现松动并且造成机组运行过程中出现气隙不均匀的情况,是因为机组在工作过程中产生不平衡的磁拉力现象的振动,在这种工作状态下,产生位置不断变化的气隙不均匀。
4 水轮发电机组振动的危害
振动对机组安全的危害在于:由于尾水管出现低频压力脉动,尾水管壁将出现裂缝,当发电机的自振频率与尾水管低频压力脉动的频率两者接近时,出现共振,机组此时会产生大幅度波动,以致于机组从电力系统中分解,严重地危害正在受益的建筑物。
当机组各连接部件出现松动,部件之间出现摩擦的情况,将导致焊缝和零部件的过度疲劳、加大裂缝的深度甚至严重时将会断裂。
5 结束语
水电站的核心组成部分是水轮发电机组。
引起其振动因素很多,主要包括:机械因素、水力因素、电气因素,研究这三种因素的主要特征,分析水轮发电机组振动原因,确定振动位置,采取有效的解决措施切实地解决机组振动问题,使水轮发电机组运行的稳定性和可靠性得到提高,给整个水电站的经济效益和运行效益。
参考文献
[1]黄万全.水轮发电机组常见振动原因分析[J].青海电力,2014(12):50-57.
[2]龚斌辉.水轮发电机组运行中的振动分析[J].低碳世界,2016(08):132-145.
[3]梁学辉.水轮发电机组振动分析[J].中国水能及电气化,2013(03):223-234.
作者简介:马骏华(1966,6-),男,民族:壮族,籍贯:广西德保县,学历:大专,职称:工程师,现工作或学习单位:广西麻石水力发电厂,研究方向:水电站水轮机、调速机。