积分表
147个积分表
58.
(八)含有 a 2 − x 2 (a > 0) 的积分 59.
∫
∫
dx a2 − x2
dx
= arcsin
x +C a
x +C
60.
(a − x )
2
2 3
=
a
2
a2 − x2
61.
∫
∫
x a −x
2 2
dx = − a 2 − x 2 + C 1 a2 − x2
62.
x (a 2 − x 2 )3
+C
49.
∫
∫
x2 x2 − a2
x2
dx =
x 2 a2 x − a 2 + ln x + x 2 − a 2 + C 2 2
x x −a
2 2
50.
(x − a )
2
2 3
dx = −
+ ln x + x 2 − a 2 + C
51.
∫x ∫x
2
dx x2 − a2 dx
=
1 a arccos + C a x x2 − a2 +C a2 x
3
32.
∫
dx (x + a )
2 2 3
=
x a
2
x2 + a2
+C
33.
∫
∫
x x +a
2 2
dx = x 2 + a 2 + C 1 x2 + a2
34.
x ( x 2 + a 2 )3
dx = −
+C
147个积分表
∫ ax
2
x 1 b dx dx = ln ax 2 + bx + c − 2 ∫ 2a 2a ax + bx + c + bx + c
x 2 + a 2 (a > 0) 的积分
= arsh
(六)含有 31.
∫
dx x2 + a2
x + C1 = ln( x + x 2 + a 2 ) + C a
13.
∫ ∫
x 2 dx = 2 (ax − 2b) ax + b + C 3a ax + b x2 2 dx = (3a 2 x 2 − 4abx + 8b2 ) ax + b + C 15a 3 ax + b
1 ln b ax + b − b + C (b > 0) ax + b + b
14.
⎧ ⎪ dx ⎪ =⎨ 15. ∫ x ax + b ⎪ ⎪ ⎩
77.
∫
∫
c + bx − ax 2 dx =
x c + bx − ax
2
78.
dx = −
7
(十)含有 ±
x−a 或 ( x − a )( b − x ) 的积分 x−b x−b )+C
79.
∫ ∫ ∫
∫
x−a x−a dx = ( x − b) + (b − a ) ln( x − a + x−b x−b
80.
x−a x−a x−a dx = ( x − b) + (b − a ) arcsin +C b− x b− x b− x dx x−a +C = 2 arcsin b− x ( x − a )(b − x )
积分公式表
12基本积分表kdx kx C (k 是常数)1xx dxC, (u11dx In | x | C x dx2 arl tanx C1 xsin xdx cosx Csecx tanxdx secx Ccscx cot xdx cscx Ce x dx e x C a x dx-C , (a0,且 a 1)In ashxdx chx C chxdx shx C1 丄x arc tan C aa(1) (2)(3)(4)(5)(6)(7) (8) (9)(10)(11) (⑵(13)(14) (15)(16)cosxdx sinx C1)—dx cosx —V-dxsin xtan x C cot x Cydx1 dx 12 2.a xx arc sin- Ca从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:类换元法也叫凑微分法。
务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。
(17)2-ln —| C2a x a (19),1 dxa 2 x 2 ln( x .a 2x 2) C(20)dx .x 2 a 2In |x x 2 a(21) tan xdx In | cosx | C(22) cot xdx In | sinx| C (23) secxdx In | secx tanx (24) cscxdx In | cscx cotx CCI I (18)注:1、 ・2sin x2 2cos x 1,ta n x 2 2sec x,sin 2x 2sin xcosx, cos x1 cos2x,sin 2 x1 cos2x注:由 f[ (x)] '(x)dxf[ (x)]d (x),此步为凑微分过程,所以第此方法是非常重要的一种积分法,要运用自如,小结:1常用凑微分公式。
(完整版)基本积分表
基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=c sc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosαtan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
积分表
~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~ Inverse Hyperbolic Functions
-1-
a 2 + u 2 du =
-2-
23
∫
∫ ∫
a2 + u 2 a + a2 + u2 du = a 2 + u 2 − a ln +C u u
∫u ∫
∫
d (sin x) = cos x dx d (csc x) = − csc x cot x dx
∫ a du = ln a + C
au
14 17
d (cos x) = − sin x dx d (sec x) = sec x tan x dx
15 18
d (tan x) = sec2 x dx d (cot x) = − csc2 x dx
26 29
d (cosh x) = sinh x dx d (sech x) = − sech x tanh x dx
27 30
d (tanh x) = sech 2 x dx d (coth x) = − csch 2 x dx
∫ ∫u
a 2 + u 2 du =
2
u 2 a2 a + u 2 + ln(u + a 2 + u 2 ) + C 2 2 u 2 a4 (a + 2u 2 ) a 2 + u 2 − ln(u + a 2 + u 2 ) + C 8 8
42 43
29
积分公式表
1)—dx cosx—V-dxsin xtan x C cot x Cdx a x 1~2 ------- 2dxx a1 x a2aln|着* 1 C参考医学基本积分表kdx kx C(k 是常数) 1xx dxC, (u 11dx In | x | C xdxsin xdx cosx Csecx tanxdx secx C (1) (2)(3)(4)(5)(6)(7) (8) (9) (10)(11)(⑵(13)(14) (15) (16) (17)cosxdx sinx Ce xdx e xCa x dx-C , (a 0,且 a 1) In ashxdx chx Cchxdx shx Ccscx cot xdx cscx C1arc tan注:由 f[ (x)] '(x)dxf[ (x)]d (x),此步为凑微分过程,所以第类换元法也叫凑微分法。
此方法是非常重要的一种积分法,要运用自如, 务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。
小结:1常用凑微分公式参考医学(18)arc sin 仝 Ca(19)_1_ _a^x 2<(20)/ 2 2x aIn |x , x a(21) tan xdx ln | cosx | C (22) cot xdx ln |sinx| C (23) secxdx In | secx tanx| (24) cscxdx In | cscx cotx| C C 注:1、 从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式: 2 2 2sin x cos x 1,tan x 1 2 2sec x,sin 2x 2sin xcosx, cos x1 cos2xsin 2x1 cos2x 2参考医学积分类型换元公式1.1 f(ax b)dx — af (ax b)d(ax b) (a 0)u ax bf(x )x 1dx -u x2.-f(x )d(x ) ( 0)3. 1f(l nx) —dxx f(ln x)d(ln x) u In x 第 4.. f(e x ) e xdxf(e x)de xuxe5. f(a x ) a xdx — - F(a x )da x换In auxa元 6. f (sin x) cosxdxf (sin x)d sin xu sin x 积u cosx分 7. f (cosx) sin xdxf (cosx)d cosx法 8. f (tan x) sec xdxf (tan x)d tanxu tan x9. 2 f (cot x)csc xdxf (cot x)d cot xu cot x10. 1f (arctanx) --1 x… .、 1 -dx f (arctan x)d (arctanx) u arcta nx 11. 1 jp / __ ■ _ \ u arcsin xf (arcsin x):——dxT (arcsin x)d (arcsin x)(注:表格素材和资料部分来自网络,供参考。
(完整版)常用积分表
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦ 5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++(二)的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a -+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+15.=(0)(0)C b C b ⎧+><16.=2a b - 17.d x x ⎰=b ⎰18.x=2a + (三)含有22x a ±的积分 19.22d x x a +⎰=1arctan x C a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ 21.22d xx a -⎰=1ln 2x a C a x a-++ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b +⎰=2d x b xa a axb -+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b ++ 26.22d ()x x ax b +⎰=21d a xbx b ax b--+⎰(完整版)常用积分表27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a +=ln(x C + 32.C +33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x=ln(x C +++37.=1C a + 38.2C a x -+ 39.x2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.x x ⎰=422(2ln(88x a x a x C +++43.x ln a a C x +44.x =ln(x C +++((0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++51.=1arccos aC a x +52.2C a x +53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.x x ⎰=422(2ln 88x a x a x C -++57.x x⎰arccos aa C x -+58.2d x x ⎰=ln x C x-+++((0)a >的积分 59.=arcsinxC a + 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.=1C a +66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x xa x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.x ln a a C x ++72.2d x x ⎰=arcsin xC x a--+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C -+++76.=C +77.x 2C +78.x =C ++(十)79.x =((x b b a C --+80.x =((x b b a C -+-81.C ()a b <82.x 2()arcsin 4b a C -+()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m nm x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n +----+++⎰100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin xx C a +114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d xx x a⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos xx C a117.arccos d xx x a ⎰=22()arccos 24x a x C a --+118.2arccos d xx x a⎰=3221arccos (239x x x a C a -++119.arctan d x x a ⎰=22arctan ln()2x ax a x C a -++120.arctan d x x x a ⎰=221()arctan 22x aa x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d x a x ⎰=1ln xa C a +123.e d ax x ⎰=1e ax C a +124.e d ax x x ⎰=21(1)e ax ax C a -+125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a --⎰126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n xn x a x a x a a --⎰128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )axb bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n --+ 22222(1)e sin d ax n n n b bx x a b n --++⎰ 131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n --++⎰ (十四)含有对数函数的积分 132.ln d x x ⎰=ln x x x C -+ 133.d ln xx x⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d nx x ⎰=1(ln )(ln )d n nx x n x x --⎰136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C +140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++(十六)定积分 142.cos d nx x π-π⎰=sin d nx x π-π⎰=0143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m nm n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π(完整版)常用积分表换元积分法一、第一换元积分法(凑微分法)。
基本积分表-新版.pdf
sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设 α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sin α cos ( 2kπ+α)= cos α tan ( 2kπ+α)= tan α cot ( 2kπ+α)= cot α 公式二: 设 α为任意角, π+α的三角函数值与 α的三 角函数值之间的关系: sin(π+α)= -sin α cos(π+ α)= -cosα tan( π + α)= tan α cot(π+α)= cot α 公式三: 任意角 α与 -α的三角函数值 之间的关系: sin( -α)= -sin α cos(-α)= cos α tan(-α)= -tan α cot ( -α)= -cot α 公式四: 利用公式二和公式三可以得到 π-α与 α的三角函 数值之间的关系: sin(π-α)= sin α cos(π-α)= -cosα tan( π-α)= -tan α cot(π-α)= -cot α 公式五: 利用公式 -和公式三可以得到 2π-α与 α的三角 函数值之间的关系: sin( 2π-α)= -sin α cos( 2π-α)= cos α tan(2π-α) = -tan α cot(2π-α)= -cot α 公式六: π /2 ±及α 3π /2 ±与α α的三角函数 值之间的关系: sin(π/2+ α)= cos α cos(π/2+ α)= -sin α tan( π/2+ α) = -cot α co(t π /2+ α)= -tan α sin( π /2-α)= cos α cos(π /2-α)= sin α tan ( π/2-α)= cot α cot(π/2-α)= tan α sin(3π/2+ α)= -cosα cos( 3π/2+ α) = sin α tan( 3π /2+ α)= -cot α cot( 3π /2+ α)= -tan α sin(3π /2-α)= -cos α cos ( 3π /2-α)= -sin α tan (3π /2-α)= cot α cot( 3π /2-α)= tan α (以上 k∈Z) A· sin( ω t+ θ )+ B · sin( ω t+√φ{()A=2 +B2 +2ABcos( -φθ)} · sin{ ω t + arcsin[ (A · sin θ +B· sin φ ) / √ {A^2 +B^2; +-2φAB)}c}os(√表θ示根号 ,包括 { ……} 中的内容 诱导公式
常用积分表(绝对有帮助)
∫ 40. ( x2 + a2 )3dx = x (2x2 + 5a2 ) x2 + a2 + 3 a4 ln( x +
8
8
∫ 41. x x2 + a2 dx = 1 ( x2 + a2 )3 + C
3
x2 + a2 ) + C
∫ 42. x2 x2 + a2 dx = x (2x2 + a2 ) x2 + a2 − a4 ln( x + x2 + a2 ) + C
=
2 15a3
(3a2 x2
−
4abx
+
8b2
)
ax + b + C
15. ∫ x
dx ax + b
⎧
⎪
=
⎪ ⎨
⎪
⎪⎩
1 ln ax + b − b b ax + b + b
2 arctan ax + b
−b
−b
+C +C
(b > 0) (b < 0)
∫ 16.
x2
dx = − ax + b
ax + bx
x2 − a2
2
2
∫ 50.
x2
dx = −
x
+ ln x + x2 − a2 + C
(x2 − a2 )3
x2 − a2
∫ 51.
dx = 1 arccos a + C
x x2 − a2 a
x
∫ 52.
x2
dx = x2 − a2
常用积分表
44. ( ) 45.
46.
47. 48.
√ x dx = x 2 − a2 + C x 2 − a2 x (x2 − a2 )3 dx = − √ x2 1 +C − a2
49.
√
√ a2 x2 x√ 2 2+ x − a x 2 − a2 | + C dx = ln | x + 2 2 x 2 − a2 x2 (x2 − a2 )3 dx = − √ √ x + ln | x + x 2 − a2 | + C x 2 − a2
( )
ax + b
1.
dx 1 = ln |ax + b| + C ax + b a 1 (ax + b)µ+1 + C a(µ + 1) (µ = −1)
2. (ax + b)µ dx = 3. 4. 5. 6. 7.
1 x dx = 2 (ax + b − b ln |(x + b)|) + C ax + b a x2 1 1 dx = 3 (ax + b)2 − 2b(ax + b) + b2 ln |ax + b| + C ax + b a 2 1 ax + b dx = − ln +C x(ax + b) b x x2 (ax dx 1 a ax + b = − + 2 ln +C + b) bx b x
14.
15.
dx √ = x ax + b
√ √ 1 √ √ax+b−√b + C ln b ax+b+ b 2 ax+b √ arctan + −b − −b
高等数学积分表大全
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d xax b +⎰=1ln ax b C a++ 2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -+12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -+14.2x=22232(34815a x abx b C a -++ 15.=(0)(0)C b Cb +><⎧⎪⎪⎩16.=2a bx b -- 17.x=b + 18.2d x x ⎰=2a + (三)含有22x a ±的积分19.22d x x a +⎰=1arctan x C a a + 20.22d xx a -⎰=1ln 2x a C a x a-++ 21.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)x C b C b ⎧+>⎪⎪⎨+<23.2d x x ax b +⎰=21ln 2ax b C a ++ 24.22d x x ax b +⎰=2d x b x a a ax b -+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a +=ln(x C ++ 32.C + 33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x=ln(x C +++37.=1C a + 38.2C a x -+ 39.x2ln(2a x C ++ 40.x=2243(25ln(88x x a a x C ++++41.x ⎰C42.x x ⎰=422(2ln(88x a x a x C +++43.x a C ++44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a +=ln x C +46.C + 47.x C +48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos a C a x + 52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos aa C x+58.x =ln x C +++(0)a >的积分59.=arcsinx C a + 60.C +61.x =C 62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.=1C a + 66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x xa x a C a -+69.x ⎰=C +70.x x ⎰=422(2arcsin 88x a x x a C a-++71.x ln a a C x-+72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C -+++76.=C +77.x 2C78.x =C +或79.x =((x b b a C --+80.x =((x b b a C --81.C ()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n ----+⎰96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a +108.2222d cos sin xa xb x-⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin xx C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -++ 115.2arcsin d xx x a⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccos xx C a-+117.arccos d xx x a⎰=22()arccos 24x a x C a --118.2arccos d xx x a⎰=3221arccos (239x x x a C a -+119.arctan d x x a ⎰=22arctan ln()2x ax a x C a -++120.arctan d x x x a ⎰=221()arctan 22x aa x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a + 123.e d ax x ⎰=1e ax C a + 124.e d ax x x ⎰=21(1)e ax ax C a -+ 125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a--⎰126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln xx x⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d n x x ⎰=1(ln )(ln )d n nx x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。
基本积分表
22kdx = kx + ca + 1 x a dx = x + c a + 11dx = ln x + cx 1 dx = arctan x + c1+x 2 1-1x 2 dx =arcsin x +ccos xdx = sin x + csin xdx = -cos x +c 1 dx = sec 2xdx =tan x +c cos 2 x 1 dx = csc 2 xdx = -cot x +c sin 2 x sec x tan xdx =sec x +c csc x cot xdx = -csc x +c xx e x dx = e x + cx a x dx = a + c ln a基本积分表1、 2、 3、 4、 5、 6、 7、 8、9、 10、 11、12、 13、 14、 15、shxdx = chx + c 其中 shxx - x e x - e -x chxdx = shx + c其中chx x - x e x + e -x 为双曲正弦函数 为双曲余弦函数基本积分表的扩充16、 tan xdx = -ln cos x +c17、 cot xdx = ln sin x +c18、 sec xdx = ln sec x + tan x +c19、 csc xdx = ln csc x - cot x + c = ln tan x + c2-x 24、 1 dx = ln x + x 2 + a 2 + c x2 + a 2 25、 1 dx = ln x + x 2 -a 2 + c x 2 - a 2sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[( α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注 意右式 前的负号】20、1 dx = a2 + x 2 1x arctan + c aa22、 23、 22 a 2 - x 2dx = dx 1 ln 2a 1 ln 2a x -a x +a a +x a -x +c +c dx = arcsin + c 21、三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα =1 sinα ·cscα =1 cosα ·secα =1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1 一个特殊公式(sina+sinθ )*(sina+sinθ )=sin(a+θ )*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 锐角三角函数公式正弦:sin α= ∠ α的对边/ ∠ α的斜边余弦:cos α= ∠ α的邻边/∠ α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α 为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosα tan(2kπ+α)= tanαcot (2kπ+α)= cotα 公式二:设α 为任意角,π+α 的三角函数值与α 的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α 与-α 的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α 与α 的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosα tan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α 与α 的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α) = -tanαcot(2π-α)= -cotα 公式六:π/2±α 及3π/2±α 与α 的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinαtan(π/2+α)= -cotα co(t π/2+α )= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotαcot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt +arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……} 中的内容诱导公式sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²] 其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+ (sinB)²+ (sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
(完整版)高等数学积分表大全
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d xax b +⎰=1ln ax b C a++ 2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -+12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -+14.2x=22232(34815a x abx b C a -++ 15.=(0)(0)C b Cb +><⎧⎪⎪⎩16.=2a bx b -- 17.x=b + 18.2d x x ⎰=2a + (三)含有22x a ±的积分19.22d x x a +⎰=1arctan x C a a + 20.22d xx a -⎰=1ln 2x a C a x a-++ 21.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)x C b C b ⎧+>⎪⎪⎨+<23.2d x x ax b +⎰=21ln 2ax b C a ++ 24.22d x x ax b +⎰=2d x b x a a ax b -+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a +=ln(x C ++ 32.C + 33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x=ln(x C +++37.=1C a + 38.2C a x -+ 39.x2ln(2a x C ++ 40.x=2243(25ln(88x x a a x C ++++41.x ⎰C42.x x ⎰=422(2ln(88x a x a x C +++43.x a C ++44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a +=ln x C +46.C + 47.x C +48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos a C a x + 52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos aa C x+58.x =ln x C +++(0)a >的积分59.=arcsinx C a + 60.C +61.x =C 62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.=1C a + 66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x xa x a C a -+69.x ⎰=C +70.x x ⎰=422(2arcsin 88x a x x a C a-++71.x ln a a C x-+72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C -+++76.=C +77.x 2C78.x =C +或79.x =((x b b a C --+80.x =((x b b a C --81.C ()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n ----+⎰96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a +108.2222d cos sin xa xb x-⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin xx C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -++ 115.2arcsin d xx x a⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccos xx C a-+117.arccos d xx x a⎰=22()arccos 24x a x C a --118.2arccos d xx x a⎰=3221arccos (239x x x a C a -+119.arctan d x x a ⎰=22arctan ln()2x ax a x C a -++120.arctan d x x x a ⎰=221()arctan 22x aa x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a + 123.e d ax x ⎰=1e ax C a + 124.e d ax x x ⎰=21(1)e ax ax C a -+ 125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a--⎰126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln xx x⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d n x x ⎰=1(ln )(ln )d n nx x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。