高频头常识
高频头基础知识
高频头基础知识一、高频头的名词解释(1) 何为LNB ? 低杂讯降频器的意思.,俗称高频头.作用是把C波段频率范围3.4-GHz-4.2GHz; Ku波段10.75GHz-12.75GHz卫星传送下来的微弱信号放大后再与其中的本振作用后输出卫星接收机所需要的950MHz-2150MHz中频信号,说白了就是信号的一个中转站.Low Noise Block Kownconverter 简称LNB.(2) 高频头内部结构由4个单元组成, 低噪声前端放大-极化信号切换-再放大后送入本振电路混频-两级中频放大输出信号,供电一般为78xx系列三端稳压.(3) 本振频率: C段高频头本振频率一般为5150MHz,双本振5150MHz和5750MHz两种;Ku 段本振较多,有9.75GHz、10.0GHz、10.6GHz、10.75GHz、11.25GHz、110.30GHz等.了解本振频率很重要,因为卫星下行频率与本振混频后所产生的信号中频,必需在接收机输入频率950MHz-2150GHz之内.否则收不到或者部分信号,通过查阅卫星下行频率,我们就很快知道应该选用什么本振的高频头. C段输出中频=本振频率-下行频率; Ku段输出中频=下行频率-本振频率(4) 噪声系数: C波段高频头的质量标准是噪声系数,用( K )表示如25°K 、17°K等.都说数字越小越好;而Ku波段则用dB (分贝)表示如0.8dB、0.6dB等市面上已出现13°k高频头,是否噪声糸数越低越好呢,笔者也在呐闷,为什么每每遇到收视不好的情况换上老嘉顿28°k 高频头后会有意外惊喜?难道是各厂标称不一.(5) 增益(GAIN): 常见LBN增益为60dB,数值偏高为好.但不能太高,放大倍数过高容易使放大器工作不稳定高频自激,形成网纹干扰.一般来讲,单输出窄带高频头比双极性宽带高频头有更高的增益,低噪声温度比高噪声温度的高频头对信号的接收有更高增益.(6) 双极性LNBF每颗卫星上通常拥有24个电视频道,为充分利用这些频道,以及避免相邻频道的相互干扰,通常将频道顺序按单、双分开,分别以不同极化方式的电磁波发射,即水平与垂直,因为卫星的带宽为27MHz,但频道间隔为20MHz.说明有部分频率重合了.双极化高频头是一种不用伺服马达的与馈源一体化的.从LNB 圆波导口看进去,您将看到两个互相垂直的探针,用来分别接收垂直极化和水平极化的信号. LNBF 波导采用最先进的设计,使两个探针间的水平/垂直信号隔离度超过20dB 并获得超低系数噪声温度利用来自接收机的13/18V 两种可切换的供电电压来确定所需要的是水平极化信号还是垂直极化信号。
第2.2讲 高频头
图像中频信号:fPI=fo-fP=38MHz 伴音中频信号:fCI=fo-fc=31.5MHz 色度中频信号:fSCI=fo-fsc=33.57MHz
(1)频率范围与通频带要宽; (2)功率增益足够大; 3、高频头的主要性能要求 (3)噪声系数小 ; (4)要有良好的选择性; (5)具有较强的AGC控制能力。
4、高频头的类型 (1)机械式高频头:有VHF高频头和UHF高频头两种。
调谐装置
VHF高频头
结构:电路板和转鼓(由13个骨架构 成),每个骨架上有5个线圈。
调谐原理:改变各个谐振回路中的 电感值,又称调电感式高频头。
UHF高频头
调谐装置
调谐原理:改变各个谐振回路中的电容值, 又称调电容式高频头。
IF
450MHz复合 带通 U单元
VHF 高放
UHF 混频
VHF本振
演 示
(2)调谐原理: 1)变容二极管:
- +
Cj/pF 18
-
+ -30
Hale Waihona Puke 3-3VD/V
VD 变容二极管的符号与变容曲线
变容二极管的结电容Cj与所加电压VD有如下关系:
Cj C0 (1 VD / U d ) n
2)电调谐原理 在电子调谐器中,各谐振回路中均接有一变容二极管。
6.5±4
TDQ-2管脚及参考电压 引出脚功能 调谐器电源电压输入 VHF频段工作电压输入 符号 BM BV 电压/V 12 12
开关电压输入
UHF频段工作电压输入 调谐电压输入
BS
BU BT
30
12 0.5~30
高放AGC电压输入
自动频率微调电压输入
UAGC
卫星高频头常识
三、高频头位置的调整
(1)首先应检查馈源是否处于抛物面天线的中心,焦点是否正确,否则可以稍微调整馈源支撑杆:使之对准(以信号最大为准)。
(2) 极化角: 进行极化角的调整时,顺时针转动为正,逆时针转动为负.由于不同品牌.类型的高频头标识极化角的方式一般不同,我们只需按说明书将高频头上的0刻度线对准垂直或水平方向,然后顺时针或逆时针稍微旋动它,同时在馈源盘内上下微动,使信号品质达到最大.因为只有在卫星所在经度的子午线上,其极化方向才完全是水平或垂直的,而在其他地区接收时,会略有偏差,在实际接收中按以上方调整以使信号最大为好,这时LNBF 顶端面上的刻度“0”可能不完全是垂直于水平面。调过星的朋友都会遇到这种情况,假如现在接收的是亚3号卫星要转到134°亚6号,必需把高频头转动差不多九十度.这都是纬度高低造成的偏差.
卫星高频头常识
发表日期:2008年10月31日出处:神舟06 作者:神舟06 本页面已被访问 1733 次
1)何为LNB ? Low Noise BlockKownconverter简称LNB,低杂讯降频器的意思.,俗称高频头.作用是把C波段频率范围3.4-GHz-----4.2GHz; Ku波段10.75GHz---12.75GHz卫星传送下来的微弱信号放大后再与其中的本振作用后输出卫星接收机所需要的950MHz---2150MHz中频信号,说白了就是信号的一个中转站.
双本振高频头: 普通的C波段双极化高频头一般只有一个本振频率5150MHZ.当节目设置水平极化时,接收机向高频头馈送18V电压;垂直极化时,馈送13V电压.高频头识别工作电压,使相应的极化探针工作.所以高频头只能工作在一种极化方式,不是水平就是垂直.而双本振高频头是两个单本振高频头组合而成,各自工作混合输出.水平探针5150MHZ本振;垂直为5750MHZ本振.两个本振频率相差600MHZ,足以使两种极化信号的中频频率拉开距离.此时接收机识别到的只是不同频率的信号.极化设置无效.所以使用双本振高频头时接收机的设置很重要:一般水平节目的本振设5150MHZ;垂直节目设5750MHZ..水平节目设置一般与平常的设置没什从区别.而垂直5750MHZ本振极化信号.接收机中如本振仍为5150.则下行频率要减去600;若设5750,则下行频率应加上600.
第六章 高频调谐器(高频头
(2)
频段切换是靠切换调谐器有关引脚上的电压来实现的。以 TDQ-3型为例,BL、BH及BU三个引脚中,同一时刻只能有一个 引脚接上+12 V。当BL=+12 V,BH、BU为0V时,可接收VL频段 (1~5频道);当BH=+12 V,BL、BU为0V时,可接收VH频段 (6~12频道);当BU=+12 V,BL、BU为0V时,则可接收U频段 (13~68频道)。
第六章 高频调谐器(高频头)
6.1 高频调谐器的功用及性能要求
本节将主要介绍高频头的作用及技术指标。 6.1.1 高频调谐器的原理框图及功用 一、组成:
高频调谐器又叫频道选择器, 俗称高频头。它一般由输 入回路、高频放大器、本机振荡器和混频器等几部分组成, 整个电视频道所占的频率范围很宽,常把它们分为VHF(甚 高频)和UHF(特高频)两部分。其框图如6-1图。
UHF工作电 压 0 / 12V
Ⅰ/Ⅲ 波段切换 电压32V / 0V
VHF工作电 压 0 / 12V
调谐电压 0~32V
工作电 压 12V
表 6-1 选台电路各管工作状态与输出电压
补充:彩色电视机中常见的电子调谐器
1. 电子调谐器外形及引脚功能
TDQ-1型电子调谐器外形图
TDQ-2电调谐高频头的外形图
图 6-4 电子调谐原理电路
2. 波段覆盖和电子开关
⑴波段覆盖:已知变容管2CB14的CM=18 pF、CN=3 pF, 其电容覆盖系数(即电容变比)为NC=CM/ CN =6。由于变 容管用于调谐频率, 因而最重要的是它的变化范围(变比),
而不是电容量的绝对值。由图6-4可见, 谐振回路的频率为
图 6-3 变容管2CB14 压控特性
高频头基础知识介绍
高频头基础知识介绍一、高频头的作用:完成信号的选通、接收、变频。
二、高频头的用途:CRT电视、平板电视、DVD-RW、Satellite、车载电视或广播;三、高频头的分类:A、模拟:VS、FS、TWO IN ONE;1、在模拟产品中,按产品性质细分可以分为:PAL制(包含38.0MHz、38.9MHz 中频信号);NTSC制(45.75MHz、58.75 MHz中频信号);SECAM制(38.9 MHz 中频信号)B、数字:DVB-S、DVB-T、DVB-C;C、调制器、收音头、RF分配器;四、高频头的基本工作原理:A、VS高频头工作原理VS高频头原理框图B、FS高频头工作原理:A+BI2C及PLL部分原理框图C、一体化高频头工作原理:A+B+C中频部分(VIF)原理框图D、DVB-C/T高频头工作原理E、DVB-S高频头工作原理一、DVBS接收机前端模块五、模拟高频头在使用过程中常见的问题:1、当不能准确判断问题的性质时,可以将本机的A V输出接到已经OK的商品机,再将商品机的A V输出接到本机的A V输入,对比观察两台机器的画面效果,从而方便判断问题的出处。
2、FS高频头或一体化高频头在应用过程中的搜台问题:A、地址字节(ADRESS BYTE)错误,整个搜索过程中无台。
B、频道划分同规格书不符,将漏掉部分边缘频道。
C、部分频段搜不到台,频段控制字节(BAND SWITCH BYTE)错误。
D、搜台过程有节目出现,但不能正常存台,AFT信息错误,偏离正常值;或AFT电压太过灵敏,S曲线太陡。
E、搜台过程中谐波台多,AFT电压变化太缓慢,S曲线太缓。
3、整机开机无图、黑屏或不能正常切换节目:高频头短路(部分引脚电压不正常,部分引脚对地电阻不正常)或总线(I2C BUS)失效。
4、整机图像信号弱:高频头混频IC失效,测试BM脚电阻不正常;AGC电压不正常,不能正常起控。
5、电视整机在低端频道(图像载频小于100MHz)图像亮点干扰很多:电源辐射干扰,注意电源的屏蔽隔离和接地。
高频头
C波段双本振高频头 对于两户或多户共用一面接收天线的用户而言,接收像亚太1A这样的双极化节目时,两种极化方式互相干扰的问题一直困扰着用户。现在普斯新出品的PX-1200双本振双极化单输出C波段高频头有效地解决了这一难题。在以往接收亚太1A或亚洲2号这些既有水平,又有垂直极化的卫星时,是不能多户同时使用一只双极化高频头的,工程上也不能使用,原因就在于两种极化工作在13/17V电压上,工作时有冲突。普斯PX-1200两个极化都工作在一个电压下,范围可从13--18V任选,对于不同的极化方式的信号,以不同的本ห้องสมุดไป่ตู้频率区分,当水平极化工作在5150M本振上时,那么垂直极化则工作在5750M的本振上,这样多台接收机就可以同时工作在普斯PX-1200上,这样一面天线就可多户同时接收水平垂直不同极化方式的节目而互不干扰了。
衡量一只高频头质量的标准是噪声系数,高频头质量越好,相应的接收天线口径要求越小,成本越低。对于一只C波段高频头来说,噪声系数用 °K表示,数值越小越好。现在一些品质优秀的高频头已将噪声系数降低到17°K,比如目前市场上广受欢迎的普斯(PAUXIS)PX-1000型双极化一体化单输出C波段高频头的噪声系数就是17°K。
Ku双本振高频头 其用途同C波段的不同,由于Ku节目的频带较宽,相应的Ku高频头分为标准、宽带、全频带。所谓宽带,是一个相对的概念,大家知道,Ku信号工作在11G和12G的频率上,这其中又可分为10.7-11.7G、11.7-12.2G、12.2-12.7G几个工作频带,可以说只能工作在每个频率范围内的高频头就是所谓的窄带高频头。相对而言像11.7-12.7G这样的频率范围可称为宽带。而可以用来接收10.7-12.7G频率范围信号的高频头就可以称作全频带。目前亚太地区上空的Ku卫视节目除了一些常见的12G信号的节目外,还有许多11G的信号。如果选择的高频头是窄带的话,接收不同频段的节目就需要不断来回更换高频头,选择宽带高频头后即可解除频繁更换高频头的苦恼。更为主要的是在东经116度上空的卫星,其转发器播放的信号,既有11G信号,又有12G信号,频率既有11747、11823MHz的信号,也有12G的信号。要想同时收全这些节目,如果用窄带高频头必须使用两面天线或频频更换两只不同频带的窄带高频头。ASK-168高频头就是这样一只宽带高频头。它的频带范围是11.7-12.7G,可接收从11700MHz到12700MHz范围内的Ku节目信号,而如果采用ASK-168宽带高频头只需一面天线和一只高频头即可大功告成,既省钱又省力。
电视机的高频头
信号处理
信号解调
自动增益控制
对中频信号进行解调,将其还原成原 始的模拟视频和音频信号。
根据信号强弱自动调整信号的增益, 确保输出信号的稳定性和一致性。
信号分离
将视频和音频信号分离,分别进行处 理和传输。
信号
输出接口
高频头通常提供复合视频和音频 输出接口,以便将处理后的信号
传输至电视机或后级设备。
力。
集成化
为了简化电视机结构,高频头正 趋向于与其他电路集成,形成一
体化设计。
智能化
高频头内部集成芯片组,具备信 号处理、故障诊断等功能,提高
了电视机的智能化水平。
高频头与其他设备的集成
与机顶盒集成
高频头与机顶盒集成在一起,实现信号接收与解码的统一管 理,简化了连接和调试过程。
与音响系统集成
高频头与音响系统集成,实现声音信号的同步传输和处理, 提高了音质效果。
数字高频头
用于接收数字信号的高频头,常 见于现代的数字电视接收设备。
02 电视机高频头的工作原理
信号接收
信号接收
高频头的主要功能是接收 来自卫星或地面微波中继 系统的电视信号。
信号选择
高频头通过调谐器选择所 需的信号频率,并从众多 信号中提取出目标电视信 号。
信号降频
将接收到的射频信号(高 频信号)降频至中频信号, 以便于后续的信号处理。
高频头的头的主要功能是接收 来自电视台发射塔的无线 信号。
信号调谐
将接收到的信号进行调谐, 将其从射频信号转换为中 频信号,以便于电视机内 部电路进行处理。
信号解调
将调谐后的中频信号进行 解调,还原出原始的电视 信号。
高频头的种类
模拟高频头
用于接收模拟信号的高频头,常 见于早期的电视接收设备。
细说高频头
细说高频头细说高频头细说高频头(一)-说起高频头来都不陌生,知道高频头这是俗称,它的正式名称为高频调谐器。
这对于从事卫星电视、卫星通信专业人员以及卫视爱好者来讲并不陌生。
高频头是卫星电视、卫星通信设备系统中甚为重要且不可缺少的一个器件。
在电视接收机中,也有一个高频头器件。
两者的名子一样,作用也相似,只是它们工作的频段不一样而已。
现在的高频头(LNB及LNBF)一般由两部分组成,一部分是无源部分又称天馈部分,一部分是有源部分即高放。
本振、混频部分。
如图一和图二所示。
天馈即天线与馈源,这一部分是由天线(振子)和放置天线的谐振波导而构成的辐射器组成。
说到这里,有些读者可能感到困惑,怎么天线竟然在高频头里?天线不是几米大的庞然大物吗,就是小型偏馈天线也要有0.6m、0.75m……这么大的天线怎么一下子跑到小小的高频头里?实际上我们常说的几米几米的大天线,那不是真正意义上的天线,而是天线的反射面或反射器。
电波通过这个几米大的反射面(器)反射并聚焦到馈源天线上去(即接收)。
或者天线上的电信号,经馈源射通过反射面(器)传播到空中去(即发射)。
因此真正意义上的天线是存在于高频头馈源里面的那个像探针一样的小小的振子,如图三其几何尺寸是远远小于天线反射面的尺寸的。
我们把这个小小的天线称为天线振子或者耦合振子简称振子,就是因为它是线性天线中最基本的谐振天线单元。
在卫星接收中,就是这个称为振子的天线将天线反射面(器)反射过来的电波吸收并耦合到高频头的高放中去,经过后面的一系列处理,从而获得完整的图像信号和伴音信号。
这个小小的振子天线的长短是与接收的电波的波长有关的。
因为它属于线性的单谐振天线的非对称型的半波天线,因此它的长度应该是它所接收的电波波长的1/4左右。
比如C 波段,频率范围在f=3.7~4.2GHz之间,它所对应的波长λ=7.143~8.108cm。
那么C波段高频头内天线振子是1/4波长,对应的尺寸长度在1.786~2.027cm范围。
高频头
高频头:俗称调谐器,是电视机用来接收高频信号和解调出视频信息的一种装置,也是公共通道的第一部分。
目前电视机使用的高频头一般分为数字信号高频头(简称数字高频头)和模拟信号高频头(简称模拟高频头)。
简单的讲就是接受电视信号的调谐及高频信号放大器。
原理简介高频头称低噪声降频器(LNB)。
其内部电路包括低噪声放大器和下变频器,完成低噪声放大及变频功能,既把馈源输出的4GHz信号放大,再降频为950-2150MHz第一中频信号。
高频头的作用就是将微弱的视频信号进行放大,并且对传输不稳定引起的图像变形与干扰进行处理。
视频处理芯片决定影像的分辨率,而高频头则决定影像的稳定性。
但高频头本身非常容易受电磁干扰,因此内置电视卡一般会在高频头外面包裹一层金属层,以屏蔽电磁干扰数字高频头的作用是接收数字电视高频信号,并进行频道选择和高频信号放大及变频处理,有些还带中频信号放大和高频数字信号解调功能,高频数字信号经解调后,输出的数字信号为TS(Transport Stream)流,TS流:也叫传输流,它是以“帧”为单位的数字信号传输流,每一帧数字信号中含有同步头、数据、结尾等信号,对于MPEG2数字信号,每帧信号是由长度为188字节的二进制信号包组成,其内容含有一个或多个节目。
这里“帧”的概念与电视图像中的帧很类似,但内容不相同,一帧MPEG2数字信号对应于一帧图像来说,只相当于一幅图像内容中的几个像素点。
根据接收高频数字信号的调制方式,数字高频头还分QPSK(Quadrature Phase Shift Keying正交键控调相)调制高频头和QAM(Quadrature Amplitude Modulation正交调幅)调制高频头。
QPSK调制高频头主要用于卫星电视信号接收;QAM调制高频头主要用于有线电视信号接收。
模拟高频头的作用是接收模拟电视高频信号,并进行频道选择、高频信号放大及变频处理,模拟高频头一般不带中频信号放大和高频信号解调功能,因此模拟电视还需另外再加一个中频放大器和高频信号解调器。
高频头基础知识
高频头基础知识一、高频头的名词解释(1) 何为LNB ? 低杂讯降频器的意思.,俗称高频头.作用是把C波段频率范围3.4-GHz-4.2GHz; Ku波段10.75GHz-12.75GHz卫星传送下来的微弱信号放大后再与其中的本振作用后输出卫星接收机所需要的950MHz-2150MHz中频信号,说白了就是信号的一个中转站.Low Noise Block Kownconverter 简称LNB.(2) 高频头内部结构由4个单元组成, 低噪声前端放大-极化信号切换-再放大后送入本振电路混频-两级中频放大输出信号,供电一般为78xx系列三端稳压.(3) 本振频率: C段高频头本振频率一般为5150MHz,双本振5150MHz和5750MHz两种;Ku 段本振较多,有9.75GHz、10.0GHz、10.6GHz、10.75GHz、11.25GHz、110.30GHz等.了解本振频率很重要,因为卫星下行频率与本振混频后所产生的信号中频,必需在接收机输入频率950MHz-2150GHz之内.否则收不到或者部分信号,通过查阅卫星下行频率,我们就很快知道应该选用什么本振的高频头. C段输出中频=本振频率-下行频率; Ku段输出中频=下行频率-本振频率(4) 噪声系数: C波段高频头的质量标准是噪声系数,用( K )表示如25°K 、17°K等.都说数字越小越好;而Ku波段则用dB (分贝)表示如0.8dB、0.6dB等市面上已出现13°k高频头,是否噪声糸数越低越好呢,笔者也在呐闷,为什么每每遇到收视不好的情况换上老嘉顿28°k 高频头后会有意外惊喜?难道是各厂标称不一.(5) 增益(GAIN): 常见LBN增益为60dB,数值偏高为好.但不能太高,放大倍数过高容易使放大器工作不稳定高频自激,形成网纹干扰.一般来讲,单输出窄带高频头比双极性宽带高频头有更高的增益,低噪声温度比高噪声温度的高频头对信号的接收有更高增益.(6) 双极性LNBF每颗卫星上通常拥有24个电视频道,为充分利用这些频道,以及避免相邻频道的相互干扰,通常将频道顺序按单、双分开,分别以不同极化方式的电磁波发射,即水平与垂直,因为卫星的带宽为27MHz,但频道间隔为20MHz.说明有部分频率重合了.双极化高频头是一种不用伺服马达的与馈源一体化的.从LNB 圆波导口看进去,您将看到两个互相垂直的探针,用来分别接收垂直极化和水平极化的信号. LNBF 波导采用最先进的设计,使两个探针间的水平/垂直信号隔离度超过20dB 并获得超低系数噪声温度利用来自接收机的13/18V 两种可切换的供电电压来确定所需要的是水平极化信号还是垂直极化信号。
高频调谐器(高频头)原理
图 6-5 电子开关频段切换原理图
•
当电源开关S接通-4V, 电子开关VD1、 VD2截止, 相当开路, 这时初级回路电感为L1+L2, 次级回路电感为L3+L4, 回路工作在1~5频道。 当S接通+12 V, VD1 及VD2导通, L2及L4被短路, 则 初级回路电感为L1 、次级回路电感为L3, 这时回 路工作在6~12频道, 从而实现频段切换。 • 该电路要求开关二极管正向导通电阻 小于1 Ω, 以确保导通时的短路作用, 要求其反向 电阻大, 并且反向结电容很小(小于1 pF), 以保证 V截止时的交流开路作用。
•
5. 本机振荡的频率稳定度要高, 且对外辐射小 • 通常要求VHF段本振漂移小于 ±300 kHz, UHF段本振漂移小于±500 kHz。
6.2 高频调谐器的功能电路分析
• • 6.2.1 机械调谐与电子调谐原理 为了收看不同频道的电视信号, 根据需要能改变(切换)信号的频道 , 即所 谓高频调谐。 调谐的方法有两种: 机械调 谐 (改变LC回路的电感值) 和电子调谐 (改变LC回路的电容)。
•
式中, C0是偏压 UR为零时的结电容, UR为PN结上的直流偏压, φ是PN结的扩散电 位, n为PN结附近杂质浓度决定的一个常数。 工作中, 变容管不允许工作在正向电压状态, 否则其结电阻很低(约几十欧), Q值很低, 谐振 电路不能工作, 所以必须工作在反向偏压状态。 • 由上式可见, 变容管的结电容Cj在零 偏时最大, 随外加负偏压的增加, Cj将成指数 下降。变容管的符号及压控特性(以变容管 2CB14为例)如图6-3所示。
• • •
一、 机械调谐 常用机械调谐有两种。 开关式高频头, 如KP12—2型, 对应每个频 道的输入线圈、 高放负载线圈和本机振荡线圈都 是独立的, 因此在频道切换时互相不干扰。 在每个 被切换线圈内部都有一个可调节的铜芯, 可以通过 齿轮机构分别微调, 一次调准后, 就不再需要重新 调节。 缺点是由于触点多而产生机械故障。 • 转盘式高频头, 它们的线圈在1~5频道和 6~12频道中, 有些是共用的, 用一个可变电感进行 微调。 因为线圈与线圈之间互相牵制, 所以调试比 较麻烦, 在更换频道时都需要重新进行微调。 但触 点少, 结构紧凑、 机械故障可能性小。
高频头资料
高频头资料卫星电视下变频器(高频头)的作用卫星电视低噪声下变频器又称为高频头(也称卫星电视的室外单元),它是由微波低噪声放大器,微波混频器,第一本振和第一中频前置放大器组成,其框图如图1所示。
图1 高频头的原理框图一般的卫星电视接收系统主要包括:(1)天线;(2)馈源;(3)低噪声下变频器,也称为高频头(是由低噪声放大器与下变频器集成的组件),用LNB表示;(4)电缆线;(5)端子接头;(6)卫星接收机;(7)电视接收机。
卫星电视接收系统框图如图2所示。
图2 卫星电视接收系统框图由于卫星电视接收系统中的地面天线接收到的卫星下行微波信号经过约40 000 km左右的远距离传输已是非常微弱,通常天线馈源输出载波功率约为-90dBmW〔注〕。
若馈线损耗为0.5 dB,则低噪声放大器输入端载波功率为-90.5 dBmW。
第一变频器和带通滤波器的损耗约为10 dB,第一中放的增益约为30 dB。
这样,若低噪声放大器给出增益(40~50) dB,则下变频器输出端可以输出(-30~-20) dBmW的信号。
因此,卫星电视下变频器的作用是在保证原信号质量参数的条件下,将接收到的卫星下行频率的信号进行低噪声放大并变频。
2 卫星电视下变频器的结构卫星电视下变频器中的低噪声放大器一般是将波导同轴转换器与低噪声放大器合成一个部件。
如果要达到噪声温度低和增益高,通常包含3~4级放大,前两级为低噪声放大器,主要采用高电子迁移率晶体管HEMT器件,后两级为高增益放大器,主要采用砷化镓场效应晶体管GaAsFET。
典型的LNA的噪声温度在C波段约为(20~40)°K。
增益约为(40~50) dB,输出输入电压驻波比(VSMR)小于1.5。
图3给出了低噪声放大器(LNA)的电原理图,设计时通常先给出必要的参数,如S参数、电路级数、匹配电路的方式、噪声参数、输出输入阻抗等等,然后利用计算机CAD软件进行优化设计并作出微带线电路图。
高频头种类及工作原理
高频头种类及工作原理摘要:高频头是一种常见的工业设备,广泛应用于加热、焊接、熔炼等领域。
本文将介绍高频头的种类和工作原理,以帮助读者了解该设备的运作原理和特点。
一、高频头的种类1. 振荡管高频头振荡管高频头采用振荡管作为振荡源,常见的振荡管有石英管和管状三极管。
这种高频头体积小、重量轻,适用于小型设备,但功率较低。
2. 功率管高频头功率管高频头采用功率管工作在开关状态下,常见的功率管有金属二极管和场效应晶体管。
这种高频头功率较大,适用于大型设备。
3. IGBT高频头IGBT高频头采用绝缘栅双极晶体管(Insulated Gate Bipolar Transistor)作为功率开关元件,兼具功率管和振荡管的优点。
IGBT 高频头在工作时,可以实现高效转换和控制,广泛应用于工业生产中。
二、高频头的工作原理高频头利用电磁感应原理进行工作。
当高频电源输出的交流电通过变压器进行降压、变压换流后,进入高频头。
高频头内的振荡电路将直流电转换为高频交流电,并将其传递到工作线圈或电极上,产生强烈的电磁场。
工作物体(如金属材料)置于该电磁场中时,会受到磁场的作用,从而达到加热、焊接或熔炼等目的。
在高频头的振荡电路中,振荡管、功率管或IGBT等元件扮演着重要角色。
振荡管根据其特定的工作方式,产生宽频谱的高频信号,形成强烈的磁场。
功率管或IGBT则负责将电流控制在合适的范围内,以确保工作负载得到适当的加热或焊接。
高频头的振荡电路中通常还配备了保护电路,以确保设备的安全和可靠运行。
同时,高频头的工作效果也与工作线圈和电极的设计和材料选择有关。
工作线圈和电极的材料一般选择高导磁性和高导电性的材料,以提高能量传递效率和加热效果。
工作线圈和电极的设计则需要考虑到工作物体的形状和尺寸,以及加热或焊接的要求。
结论:高频头是一种常见的工业设备,通过振荡电路产生高频信号,产生强烈的电磁场,从而实现对工作物体的加热、焊接或熔炼。
不同种类的高频头在工作原理和应用领域上有所不同,读者可以根据自身需求选择合适的高频头。
电视机高频头的种类及参数介绍
电视机高频头的种类及参数介绍电视机的高频头是我们收看卫星节目的必要存在,现在收看卫星节目和原来有所不同,所以电视机高频头的种类的各有不同。
不过在了解电视机高频头的种类都有哪些之前,我们首先要充分了解电视机高频头到底是什么东西才好,一起来看看吧。
什么是电视机高频头俗称电子调谐器,是电视(参数图片文章)高频信号公共通道的第一部分,目前电视机使用的高频头一般分为数位信号高频头(简称数位高频头)和类比信号高频头(简称类比高频头)。
数位高频头的作用是接收数位电视高频信号,并进行频道选择和高频信号放大及变频处理,有些还带中频信号放大和高频数位信号解调功能,高频数位信号经解调后,输出的数位信号为TS(Transport Stream)流。
这里“帧”的概念与电视图像中的帧很类似,但内容不相同,一帧MPEG2数位信号对应于一帧图像来说,只相当于一幅图像内容中的几个图元点。
电视机高频头的种类1.高频头的种类按结构形状划分,可分为单极化分体式和双极性馈源一体化LNBF两种,其中双极性馈源一体化高频头种类较多,按本振方式可分为单本振和双本振两种.按输出埠可分为单输出、双输出、多输出等。
2.高频头的种类从接收频率上分,可分为C波段和Ku波段高频头,前者体积大,后者体积小。
从极化方式上分,可分为单极化和双极化高频头。
个人家庭接收,应使用双极化的;有线工程只须单极化的即可。
从结构上划分,双极化高频头为一体化高频头,也叫LNBF,单极化高频头为分体式的,也叫LNB,需另配馈源,现在也把高频头统称为LNB。
按本振频率划分,又可分为单本振和双本振高频头。
3.电视机高频头还可以分为宽频高频头、标准高频头和全频带高频头。
宽频高频头的频带范围是11.7-12.7G,一般本振频率是10.75G。
标准高频头指的是本振为11.25或11.30G,接收12.2-12G信号的高频头。
全频带高频头指的是接收10.7-12.7G所有信号的高频头,这种高频头都是双本振的,低本振是9.75G,负责接收10.7-11.7G频段的信号。
c波段高频头
c波段高频头C波段高频头是一种高频磁头,其主要作用是将电磁信号转换成电信号,这种类型的磁头被广泛应用于无线通信领域中的信号检测和发送。
以下是围绕C波段高频头的详细阐述:第一步:了解C波段高频头的定义C波段高频头是一种高频磁头,其工作频率范围为4-8GHz,能够接收和发送高频电磁信号。
由于高频电磁信号具有极高的频率和短波长,要求接收和发送的设备具有非常高的灵敏度和准确性,而C波段高频头正是能够满足这些要求的设备之一。
第二步:C波段高频头的工作原理C波段高频头的工作原理是利用磁场感应原理,将接收的电磁信号转换成电信号的输出,或者将输入的电信号转换成电磁信号的发送。
其具体原理是当电磁波穿过一个螺旋线圈时,将在线圈中产生电流。
当电磁波频率等于线圈的共振频率时,将产生很大的感应电压,这个过程就是高频头接收信号的原理。
当电信号加到螺旋线圈上时,将在线圈中产生电流,从而在天线中产生电磁波。
这个过程就是C波段高频头发送信号的原理。
第三步:C波段高频头的应用C波段高频头的应用非常广泛,涉及到许多无线通信的领域,例如雷达、卫星通信、无线电频段测试、无线电信号接收和发送。
C波段高频头的应用也可以包括医疗诊断、导航和无线传感器网络通讯等领域中。
第四步:C波段高频头的未来发展趋势随着无线网络的发展和技术的不断进步,C波段高频头也将不断得到升级和改进。
例如,在新一代卫星通信领域,C波段高频头已被广泛应用,并且将很快被用于5G通信领域。
随着技术的不断进步和创新,C波段高频头有望在未来变得更加灵敏和更加准确。
总结C波段高频头作为一种高频磁头,在无线通信领域中具有非常重要的作用。
其工作原理是基于磁场感应原理,能够将电磁信号转换成电信号的输出,或将输入的电信号转换成电磁信号的发送。
除了无线通信领域的应用外,C波段高频头也涉及到医疗诊断、导航和无线传感器网络通讯等领域中。
未来,随着技术的不断进步和创新,C波段高频头将继续得到升级和改进,有望变得更加灵敏和准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先明确一下,我们常说的高频头学名应该叫做降频器。
其作用是将高频信号变换为低频信号供卫星接收机内置的高频头接收处理。
从工作频段上来讲,根据国际电联的规定,卫星信号的下行频率根据波段的不同,可分为C波:3.7-4.2GHz,Ku波为11.7-12.75GHz。
而卫星接收机内置的高频头的工作频率一般在950兆到2100兆之间(0.95-2.1GHz)。
二者的工作频段并不相同。
所以,为了使卫星接收机能接收到卫星信号,则使用降频器(外置高频头)降低卫星下行频率的工作频段到卫星接收机内置高频头的工作范围之内,使卫星接收机能正常工作,接收到卫星信号。
分别举例说明如下:
1、C波。
C波的工作方式为:降频器本振频率减去卫星下行频率所得的差,在卫星接收机内置高频头的工作范围内即可正常工作。
比如东经115.5度,中星6B,中央电视台综合频道一组,其下行频率为3840兆赫,即3.84GHz,降频器的工作频率为5150,卫星接收机的工作频率为0.95至2.1GHz。
其原理方程式如下:降频器本振频率5150——卫星下行频率3840=1310兆赫,位于卫星接收机950兆赫至2100兆赫的工作频率范围内,则可以正常接收。
2、Ku波。
工作方式为:卫星下行频率减去降频器本振频率所得的差,在卫星接收机内置高频头的工作范围内即可正常工作。
比如东经138度亚洲5号,中央电视台国际频道一组,其下行频率为12537兆赫,即12.537GHz。
降频器的工作频率是11300兆赫,即11.3GHz,卫星接收机的工作频率为0.95至2.1GHz。
其原理方程式如下:卫星下行频率12537兆赫——降频器本振频率11300兆赫==1237兆赫,位于卫星接收机950兆赫至2100兆赫的工作频率范围内,则可以正常接收。
在这里,有两个数值是相对固定的:卫星下行频率和卫星接收机内置高频头的工作范围。
只有当降频器处理的卫星信号频率位于卫星接收机的工作范围之内,卫星接收机方可正常工作。
也就是说,高频头的选择是根据卫星下行频率和接收机的性能而定的。
由于卫星下行频率范围较宽,且由于有线电视前端系统设计的复杂性,所以,某些降频器的工作频率不同,本振频率也不同。
C波降频器常见的本振频率有5150和5750两种。
而由于Ku波频带较宽,所以Ku波降频器常见的本振频率有11300、10750、10600、9750等。
在实际应用当中,C波段卫星信号由于较为稳定,没有雨衰等现象,所以常被用作电视台的信号源。
而由于一个卫星的极化方式一般分为垂直和水平两种,而控制极化方式的电路,设计为电压控制,所以单本振单输出的C波降频器一般只能同时输出单一的极化方式,若要实现多机双极化方式的接收,则必须使用两套卫星天线方可,这
就带来了一些问题,比如投资、场地等等。
为了解决这个问题,双本振多输出降频器就出现在市场当中。
这种降频器每一个输出口都可以单独输出两种极化方式,互不干扰。
这样就解决了投资成本和场地的问题。
该类降频器多应用于大型的卫星接收系统当中。
Ku 波段的信号一般应用于家庭。
由于ku波段的信号带宽较宽,为了有效传输较多的节目,故设计了双本振降频器以应对不同的卫星下行频率。
比如前段时间风风火火的东经122天浪一组。
其下行频率最低的是11727,而如果使用11300的降频器,则传输给接收机的频率为11727-11300=427兆赫,低于卫星接收机最低950兆的要求,故采用10750之类的高频头,则输出频率为11727-10750=977兆赫,满足卫星接收机的接收频率,可正常收视。
同时,有些卫星接收机内置的高频头的工作带宽较窄,位于1000-1900兆赫之间,所以,当收看11727的节目时,使用10750的降频器则无法正常收看。
这时便可以使用10600的降频器。