基于Matlab的语音信号处理与分析
基于MATLAB的语音信号分析与处理的实验报告
基于MA TLAB的语音信号分析与处理的实验报告数字信号课程设计,屌丝们有福了一.实验目的数字信号课程设计,屌丝们有福了综合计运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,培养发现问题、分析问题和解决问题的能力。
并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。
此外,还系统的学习和实现对语音信号处理的整体过程,从语音信号的采集到分析、处理、频谱分析、显示和储存。
二.实验的基本要求数字信号课程设计,屌丝们有福了1.进一步学习和巩固MATLAB的使用,掌握MATLAB的程序设计方法。
2.掌握在windows环境下语音信号采集的方法。
3.掌握数字信号处理的基本概念、基本理论、原理和基本方法。
4.掌握MATLAB设计FIR和IIR数字滤波器的方法。
5.学会用MATLAB对信号进行分析和处理。
三.实验内容录制一段自己的语音信号,(语音信号声音可以理解成由振幅和相位随时间缓慢变化的正弦波构成。
人的听觉对声音的感觉特征主要包含在振幅信息中,相位信息一般不起作用。
在研究声音的性质时,往往把时域信息(波形图)变换得到它的频域信息(频谱),通过研究频谱和与频谱相关联的特征获得声音的特性。
)并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或者双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号发生的变化;回放语音信号。
数字信号课程设计,屌丝们有福了四.实验的实现(1).语音信号的采集采用windows下的录音机或者手机、其他的软件,录制一段自己的话音,时间控制在一分钟左右;然后在MATLAB软件平台下,利用函数wavread对自己的话音进行采样,记住采样的频率和采样的点数。
基于MATLAB的语音信号处理与识别系统设计与实现
基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。
本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。
二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。
在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。
通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。
三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。
通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。
2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。
预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。
3. 特征提取在语音信号处理中,特征提取是一个关键步骤。
通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。
4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。
通过模型训练,可以实现对不同语音信号的自动识别和分类。
四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。
这些模块相互配合,构成一个完整的系统架构。
2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。
良好的界面设计可以提升系统的易用性和用户体验。
五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。
语音信号处理及matlab仿真实验总结
语音信号处理及matlab仿真实验总结
语音信号处理是利用数字信号处理技术对语音信号进行分析、处
理和改进的过程。
语音信号是不规则的波形,其包含了很多信息,如
语音的音高、音调、音色、语速、语气等,因此语音信号处理是一项
非常重要的技术。
语音信号处理的一般流程包括语音信号采集、预处理、特征提取、模型建立和应用,其中预处理包括信号增强、降噪、去混响等,特征
提取包括时域特征、频域特征和时频域特征,模型建立包括声学模型
和语言模型等。
为了更加深入地掌握语音信号处理技术,我们进行了一些matlab
仿真实验。
我们首先学习了语音信号的采样和量化过程,并使用
matlab软件对语音信号进行了仿真采样和量化,了解了采样率和分辨
率等概念,还了解了量化噪声的影响。
其次,我们学习了语音信号的基本特征提取技术,并用matlab仿
真实现了时域特征、频域特征和时频域特征的提取,如时域的短时能
量和短时过零率、频域的傅里叶变换和倒谱系数、时频域的小波变换等。
最后,我们学习了基于模型的语音信号处理技术,如基于隐马尔
可夫模型、高斯混合模型、人工神经网络等模型的语音识别、语音合
成等应用,并用matlab进行了相关的仿真实验。
总之,语音信号处理是一项非常重要的技术,它可以在语音识别、语音合成、语音压缩、语音增强等领域得到广泛应用。
通过学习语音
信号处理及matlab仿真实验,我们了解到了它的基本理论和应用方法,并得到了一些实践经验,这对我们今后的学习和工作将具有很大的指
导意义。
毕业论文_基于Matlab的语音信号分析与处理系统设计
毕业论文_基于Matlab的语音信号分析与处理系统设计毕业论文语音信号分析与处理系统设计语音信号分析与处理系统设计摘要语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。
Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。
信号处理是Matlab重要应用的领域之一。
本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。
最后,本文对语音信号处理的进一步发展方向提出了自己的看法。
关键字:Matlab;语音信号;傅里叶变换;信号处理;The Design of Analysis and Processing Voice SignalAbstractSpeech signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processingof the emerging discipline is the fastest growing areas of information science one of the core technology. Transmission of information through the voice of humanity's most important, most effective, most popular and most convenient form of exchange of information..Matlab language is a data analysis and processing functions are very powerful computer application software, sound files which can be transformed into discrete data files, then use its powerful ability to process the data matrix operations, such as digital filtering, Fourier transform, when domain and frequency domain analysis, sound playback and a variety of map rendering, and so on. Its signal processing and analysis toolkit for voice signal analysis provides a very rich feature function, use of these functions can be quick and convenient features complete voice signal processing and analysis and visualization of signals, makes computer interaction more convenient . Matlab Signal Processing is one of the important areas of application.The design of voice-processing software for most of the content are numerous, easy to maneuver and so on, using MATLAB7.0 comprehensive use GUI interface design, various function calls to voice signals such as frequency, amplitude, Fourier transform and filtering, the program interface concise, simple, has some significance in practice.Finally, the speech signal processing further development putforward their own views.Keywords: Matlab, Voice Signal,Fourier transform,Signal Processing目录1 绪论 (1)1.1课题背景及意义 (1)1.2国内外研究现状 ..................................................... 1 1. 3本课题的研究内容和方法 .. (2)1.3.1 研究内容 .....................................................21.3.2 运行环境 (2)1.3.3 开发环境 .....................................................22 语音信号处理的总体方案 (3)2.1 系统基本概述 ......................................................3 2.2 系统基本要求 ....................................................... 3 2.3 系统框架及实现 ..................................................... 3 2.4系统初步流程图 .. (4)3 语音信号处理基本知识 (5)3.1语音的录入与打开 ...................................................5 3.2采样位数和采样频率 ................................................. 6 3.3时域信号的FFT 分析 ................................................. 6 3.4数字滤波器设计原理 ................................................. 6 3.5倒谱的概念 (7)4 语音信号处理实例分析 (7)4.1图形用户界面设计 ...................................................7 4.2信号的采集 ......................................................... 8 4.3语音信号的处理设计 (8)4.3.1 语音信号的提取 ...............................................84.3.2 语音信号的调整 (10)4.3.2.1 语音信号的频率调整 (10)4.3.2.2语音信号的振幅调整 (11)4.3.3 语音信号的傅里叶变换 (12)4.3.4 语音信号的滤波 .............................................134.3.4.1 语音信号的低通滤波 (13)?4.3.4.2 语音信号的高通滤波 .......................................154.3.4.3 语音信号的带通滤波 .......................................154.3.4.4 语音信号的带阻滤波 .......................................164.4 语音信号的输出 (17)5 总结 (18)参考文献 (19)致谢 (19)1 绪论语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。
MATLAB中的语音处理方法与应用
MATLAB中的语音处理方法与应用语音处理是一门研究如何处理和分析语音信号的学科。
在现代社会中,语音处理已经广泛应用于语音识别、语音合成、语音增强、语音编码等多个领域。
而MATLAB作为一种强大的数学软件工具,提供了丰富的语音处理函数和工具箱,为语音处理研究和应用提供了良好的平台。
一、语音信号的数字化在进行语音处理前,首先需要将语音信号转换为数字信号,即进行数字化处理。
MATLAB中提供了多种方法来实现语音信号的数字化过程,如使用ADDA(模数转换器和数模转换器)、录制语音、读取音频文件等。
其中常用的方法是通过录制语音来获取语音信号。
在MATLAB中,我们可以使用`audiorecorder`函数来录制语音,然后使用`recordblocking`函数来设置录音时间,最后使用`getaudiodata`函数获取语音信号的数值。
通过这些函数,我们可以很方便地将语音信号转换为数字信号进行后续处理。
二、语音信号的预处理在进行语音处理前,通常需要对语音信号进行预处理,以提取有用的信息或去除噪声。
常用的预处理方法包括语音分帧、加窗、预加重、噪声去除等。
1. 语音分帧语音信号通常是一个非平稳信号,为了方便处理,我们需要将其进行分帧处理。
在MATLAB中,可以使用`buffer`函数来实现语音信号的分帧操作,设置合适的窗长和重叠长度。
2. 加窗为了消除语音信号边界引起的突变问题,我们需要对每一帧的语音信号进行加窗处理。
在MATLAB中,常用的窗函数有矩形窗、汉宁窗、海明窗等。
可以使用`window`函数来生成需要的窗函数,并与语音信号相乘得到加窗后的语音信号。
3. 预加重由于语音信号的高频成分比较弱,为了提高高频分量的能量,需要对语音信号进行预加重处理。
在MATLAB中,可以通过一阶差分的方式实现预加重,即对每一帧语音信号进行差分运算。
4. 噪声去除在实际应用中,语音信号经常伴随着各种噪声,为了提取有用的语音信息,我们需要对语音信号进行噪声去除。
基于matlab信号分析与处理
基于matlab信号分析与处理信号分析与处理是一门重要的学科,它涉及到许多领域,如通信、音频处理、图象处理等。
在信号分析与处理中,Matlab是一种常用的工具,它提供了丰富的函数和工具箱,可以匡助我们进行信号的分析和处理。
首先,我们需要了解信号的基本概念。
信号可以分为连续信号和离散信号两种类型。
连续信号是在时间上是连续变化的,而离散信号则是在时间上是离散的。
在Matlab中,我们可以使用不同的函数来表示和处理这两种类型的信号。
对于连续信号,我们可以使用Matlab中的plot函数来绘制信号的图象。
例如,我们可以使用以下代码来绘制一个正弦信号:```matlabt = 0:0.01:2*pi; % 时间范围为0到2πx = sin(t); % 正弦信号plot(t, x); % 绘制信号图象xlabel('时间'); % 设置x轴标签ylabel('幅度'); % 设置y轴标签title('正弦信号'); % 设置图象标题```对于离散信号,我们可以使用Matlab中的stem函数来绘制信号的图象。
例如,我们可以使用以下代码来绘制一个离散的方波信号:```matlabn = 0:10; % 时间范围为0到10x = square(n); % 方波信号stem(n, x); % 绘制信号图象xlabel('时间'); % 设置x轴标签ylabel('幅度'); % 设置y轴标签title('方波信号'); % 设置图象标题```除了绘制信号的图象,我们还可以对信号进行一系列的分析和处理。
例如,我们可以使用Matlab中的fft函数来进行信号的频谱分析。
以下是一个示例代码:```matlabFs = 1000; % 采样频率为1000Hzt = 0:1/Fs:1; % 时间范围为0到1秒x = sin(2*pi*50*t) + sin(2*pi*120*t); % 两个正弦信号的叠加y = fft(x); % 对信号进行傅里叶变换f = (0:length(y)-1)*Fs/length(y); % 计算频率范围plot(f, abs(y)); % 绘制频谱图象xlabel('频率'); % 设置x轴标签ylabel('幅度'); % 设置y轴标签title('频谱分析'); % 设置图象标题```除了频谱分析,我们还可以对信号进行滤波、降噪、特征提取等处理。
课程设计基于MATLAB的语音信号录制采集和分析的程序设计
MA TLAB课程设计说明书摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。
该设计主要介绍语音信号的采集与分析方法,通过PC机录制自己的一段声音,运用Matlab提供的函数进行仿真分析,并画出采样后语音信号的时域波形和频谱图,对所采集的语音信号加入干扰随机高斯噪声,对加入噪声的信号进行播放,并进行时域和频谱分析;对比加噪前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。
关键词:语音信号;采集与分析;Matlab目录摘要 (I)1 语音信号的录制 (1)2 语音信号的采集 (3)3 语音信号的分析 (4)3.1语音信号时域分析 (4)3.2语音信号频域分析 (5)4 语音信号的加噪处理 (7)5 滤噪设计分析 (11)6 设计总结 (12)参考文献 (13)附录 (14)1 语音信号的录制为了将原始模拟语音信号变为数字信号,必须经过采样和量化两个步骤,从而得到时间和幅度上均为离散的数字语音信号。
语音信号经过预滤波和采样后,由A/D变换器变换为二址制数字码。
这种防混叠滤波通常与模数转换器做在一个集成块内,因此目前来说,语音信号的数字化的质量还是有保证的。
市面上购买到的普通声卡在这方面做的都很好,语音声波通过话筒输入到声卡后直接获得的是经过防混叠滤波、A/D变换、量化处理的离散的数字信号。
将声卡作为对象处理采集语音信号Matlab将声卡作为对象处理,其后的一切操作都不与硬件直接相关,而是通过对该对象的操作来作用于硬件设备(声卡)。
操作时首先要对声卡产生一个模拟输入对象(ai),给ai对象添加一个通道设置采样频率后,就可以启动设备对象,开始采集数据,采集完成后停止对象并删除对象。
实际工作中,我们可以利用windows自带的录音机录制语音文件,图1是基于PC机的语音信号录制过程,声卡可以完成语音波形的A/D转换,获得WAVE文件,为后续的处理储备原材料。
实验4基于MATLAB的语音信号LPC分析
的波形,预测语音帧波形和它们之间预测误差的波形。图3.2为原始语音帧和预测 语音帧的短时谱和LPC谱的波形
图3.1 原始语音帧、预测语音帧和预测误差的波形
图3.2 原始语音帧和预测语音帧的短时谱和LPC谱的波形
这里我们可以改变线性误差的阶数来观察语音帧的短时谱和LP谱的变化情况,如 图3.3。
图3.3 预测阶数对语音帧短时谱和LPC谱的影响
A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)
通过LPC分析,由若干帧语音可以得到若干组LPC参数,每组参数形成 一个描绘该帧语音特征的矢量,即LPC特征矢量。由LPC特征矢量可以进一步 得到很多种派生特征矢量,例如线性预测倒谱系数、线谱对特征、部分相关系 数、对数面积比等等。不同的特征矢量具有不同的特点,它们在语音编码和识 别领域有着不同的应用价值。
基于matlab语音信号的采集与分析
毕业论文(设计)题目:基于matlab语音信号的采集与分析姓名:学院:理学与信息科学学院专业:电子信息科学与技术班级:学号:指导教师:目录摘要 (I)ABSTRACT. .......................................................................................................................................... I I 1 绪论 (1)1.1选题的背景和意义 (1)1.2语音信号处理的进展 (2)2 系统设计的可行性研究 (4)2.1语音信号处理的概念 (4)2.2语音信号的特点 (4)2.3语音信号处理的要求及可行性 (5)2.4M ATLAB仿真软件简介 (5)3 系统设计 (7)3.1系统设计的理论依据 (7)3.2系统的详细设计 (9)3.2.1图形用户界面制作 (9)3.2.2 系统功能的实现 (10)4 系统调试及运行 (16)总结 (25)致谢 (27)参考文献: (28)基于matlab语音信号的采集与分析电子信息科学与技术专业马晓敏指导教师曹红波摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。
语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等[1]。
本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制一段声音,采集语音信号后,在MATLAB软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。
利用MATLAB来读入(采集)语音信号,将它赋值给某一向量。
再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。
使用Matlab进行实时语音处理与语音识别的实践指南
使用Matlab进行实时语音处理与语音识别的实践指南实时语音处理与语音识别是人工智能领域一个重要而复杂的研究方向。
而Matlab作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,为语音处理与语音识别的研究和实践提供了极大的便利。
本文将介绍如何使用Matlab进行实时语音处理与语音识别并给出一些实践指南。
一、Matlab的语音处理工具箱Matlab的语音处理工具箱(Speech Processing Toolbox)是Matlab中专门用于语音信号的处理和分析的工具箱。
它提供了一系列函数和工具,包括语音信号的录制和播放、声音特征提取、声音增强和去噪、语音识别等。
在进行实时语音处理与语音识别之前,我们需要先安装并激活语音处理工具箱。
二、实时语音处理的基本步骤实时语音处理通常由以下几个基本步骤组成:声音录制、语音信号分帧、对每帧信号进行加窗处理、进行傅里叶变换得到频谱信息、对频谱信息进行处理和特征提取、进行语音识别。
1. 声音录制Matlab提供了`audiorecorder`函数来实现声音的录制功能。
下面是一个简单的示例代码:```fs = 44100; % 采样率nBits = 16; % 采样精度nChannels = 1; % 声道数recorder = audiorecorder(fs, nBits, nChannels);record(recorder);pause(5); % 录制5秒stop(recorder);y = getaudiodata(recorder); % 获取录音数据```2. 语音信号分帧语音信号在进行处理之前需要进行分帧处理,将连续的语音信号分成若干个小的时间窗口。
分帧的目的是提取局部语音特征,常用的窗口函数包括矩形窗、汉明窗等。
Matlab提供了`buffer`函数用于分帧处理。
示例代码如下:```frameSize = 256; % 窗口大小overlap = 128; % 帧之间的重叠部分frames = buffer(y, frameSize, overlap);```3. 加窗处理加窗处理是对每一帧信号进行加窗操作,以减少频谱泄漏。
基于MATLAB语音信号检测分析及处理
第一章绪论Matlab是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括Matlab和Simulink两大部分。
1.1 Matlab简介MATLAB是英文MATrix LABoratory(矩阵实验室)的缩写。
早期的MATLAB 是用FORTRAN语言编写的,尽管功能十分简单,但作为免费软件,还是吸引了大批使用者。
经过几年的校际流传,在John Little。
Cleve Moler和Steve Banger 合作,于1984年成立MathWorks公司,并正式推出MATLAB第一版版。
从这时起,MATLAB的核心采用C语言编写,功能越来越强大,除原有的数值计算功能外,还新增了图形处理功能。
MathWorks公司于1992年推出了具有划时代意义的4.0版;1994年推出了4.2版扩充了4.0版的功能,尤其在图形界面设计方面提供了新方法;1997年春5.0版问世,5.0版支持了更多的数据结构,使其成为一种更方便、更完善的编程语言;1999年初推出的MATLAB5.3版在很多方面又进一步改进了MATLAB语言的功能,随之推出的全新版本的最优化工具箱和Simulink3.0达到了很高水平;2000年10月,MATLAB6.0版问世,在操作页面上有了很大改观,为用户的使用提供了很大方便,在计算机性能方面,速度变的更快,性能也更好,在图形界面设计上更趋合理,与C语言接口及转换的兼容性更强,与之配套的Simulink4.0版的新功能也特别引人注目;2001年6月推出的MATLAB6.1版及Simulink4.1版,功能已经十分强大;2002年6月推出的MATLAB6.5版及Simulink5.0版,在计算方法、图形功能、用户界面设计、编程手段和工具等方面都有了重大改进;2004年,MathWorks公司推出了最新的MA TLAB7.0版,其中集成了最新的MATLAB7编译器、Simumlink6.0仿真软件以及很多工具箱。
基于MATLAB的语音信号的清、浊音分析
目录1 语音信号概述 (1)1.1 语音信号的基本组成 (1)1.2 语音信号的“短时谱” (1)1.3 基音周期 (2)1.4 短时分析技术 (2)2 语音信号的采集及清浊音分析 (2)2.1 语音信号的采集 (2)2.2 采样分帧 (3)2.3短时能量和短时平均幅度 (4)2.4短时过零率 (6)2.5短时自相关函数 (8)3 心得体会 (10)主要参考资料 (10)附录 (11)1 语音信号概述1.1 语音信号的基本组成语音信号的基本组成单位是音素。
音素可分成“浊音”和“清音”两大类。
如果将不存在语音而只有背景噪声的情况称为“无声”。
那么音素可以分成“无声”、“浊音”、“清音”三类。
一个音节由元音和辅音构成。
元音在音节中占主要部分。
所有元音都是浊音。
在汉语普通话中,每个音节都是由“辅音一元音”构成的。
在信号处理中,语音按其激励形式的不同可分为2 类:(1)浊音当气流通过声门时,如果声带的张力刚好使声带发生张弛振荡式的振荡,产生一股准周期的气流,这一气流激励声道就产生了浊音。
这种语音信号是 1 种激励信号,它是由规则的全程激励产生的,其时域波形具有准周期性,语音频率集中在比较低的频率范围内,短时能量较高,由于语音信号中的高频成分有高的过零率而低频有低的过零率,因此浊音的过零率低。
通常,浊音信号可以由周期激励通过线性滤波器合成。
(2)清音当气流通过声门时,如果声带不振动,而在某处收缩,迫使气流高速通过这一收缩部分而产生湍流,就得到清音。
清音是由不规则的激励产生的,发清音时声带不振动,其时域波形不具有周期性,自相关函数没有很强的自相关周期峰,其语音频率集中在较高的范围内,短时能量较低,因而过零率较高。
通常,清音信号可由白噪声通过线性滤波器合成。
1.2 语音信号的“短时谱”对于非平稳信号,它是非周期的,频谱随时间连续变化,因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。
如果利用加窗的方法从语音流中取出其中一个短段,再进行傅里叶变换,就可以得到该语音的短时谱。
MATLAB处理语音信号
MATLAB处理语⾳信号⼀、实验项⽬名称语⾳信号的处理⼆、实验⽬的综合运⽤数字信号处理课程的理论知识进⾏频谱分析以及滤波器设计,通过理论推导得出相应结论,并进⾏计算机仿真,从⽽复习巩固了课堂所学的理论知识,提⾼了对所学知识的综合应⽤能⼒。
三、实验内容1. 语⾳信号的采集2. 语⾳信号的频谱分析3. 设计数字滤波器和画出频率响应4. ⽤滤波器对信号进⾏滤波5. ⽐较滤波前后语⾳信号的波形及频谱6. 回放语⾳信号四、实验具体⽅案1.语⾳信号采集录制⼀段语⾳信号并保存为⽂件,长度控制在1秒,并对录制的信号进⾏采样;录制时使⽤Windows⾃带的录⾳机。
采样是将⼀个信号(即时间或空间上的连续函数)转换成⼀个数值序列(即时间或空间上的离散函数)。
采样定理指出,如果信号是带限的,并且采样频率⾼于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
如果信号带宽不到采样频率的⼀半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表⽰原信号。
⾼于或处于奈奎斯特频率的频率分量会导致混叠现象。
⼤多数应⽤都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
⽤Windows⾃带录⾳机录⼊⼀段⾳乐,2秒钟,⽤audioread读取⾳频内容,这⾥不使⽤waveread是因为他要求⾳频⽂件格式为.wav ,并且我进⾏了尝试但没有成功,画出⾳频信号的时域波形图[y1,fs]=audioread('F:\MATLAB\ren.m4a');figure(1);plot( y1 );title('Ô原语⾳信号时域波形图');xlabel('单位');ylabel('幅度');2.语⾳信号频谱分析⾸先画出语⾳信号的时域波形,然后对语⾳信号进⾏频谱分析。
在matlab中利⽤fft对信号进⾏快速傅⾥叶变换,得到信号的频谱特性。
Matlab的信号处理⼯具箱中的函数FFT可⽤于对序列的快速傅⾥叶变换分析,其调⽤格式是y=fft(x,N),其中,x是序列,y是序列的FFT变换结果,N为整数,代表做N点的FFT,若x为向量且长度⼩于N,则函数将x补零⾄长度N;若向量x长度⼤于N,则截断x使之长度为N。
MATLAB的语音信号频谱分析
MATLAB的语音信号频谱分析MATLAB是一个功能强大的数学软件环境,它可以用于语音信号的频谱分析。
频谱分析是通过计算信号在不同频率上的能量分布来了解信号的频域特性。
在语音信号处理中,频谱分析可以用于声音的特征提取、语音识别、音频信号处理等各个方面。
要进行语音信号的频谱分析,我们需要首先将语音信号加载到MATLAB环境中。
这可以通过读取音频文件或者录制声音来实现。
然后,我们可以使用MATLAB中的信号处理工具箱中的函数来进行频谱分析。
下面是进行语音信号频谱分析的主要步骤:1.加载语音信号首先,我们需要将语音信号加载到MATLAB环境中。
可以使用`audioread`函数读取音频文件,或者使用`audiorecorder`函数录制声音。
```matlab[x, fs] = audioread('speech.wav');%或者recorder = audiorecorder(fs, 16, 1);recordblocking(recorder, 5); % 录制5秒声音x = getaudiodata(recorder);```2.预处理语音信号在进行频谱分析之前,通常需要对语音信号进行预处理。
这包括去除静音段、去除噪声等操作。
常用的预处理方法有均衡增强、滤波、语音端点检测等。
3.计算幅度谱幅度谱是频谱分析的最基本形式,它描述了信号在不同频率上的幅度分布。
可以使用`fft`函数对语音信号进行傅里叶变换,然后取幅度谱的绝对值。
```matlabX = abs(fft(x));```4.计算功率谱密度功率谱密度是幅度谱的平方值,它表示了信号在不同频率上的功率分布。
可以通过幅度谱的平方值来计算功率谱密度。
```matlabP=X.^2;```5.均衡化谱图为了更好地可视化频谱分析结果,可以对频谱图进行均衡化处理。
可以使用`db`函数将功率谱密度转换为分贝尺度。
```matlabdB = 10 * log10(P);```6.绘制谱图最后,可以使用`plot`函数绘制频谱图。
基于MATLAB的音频信号处理与语音识别系统设计
基于MATLAB的音频信号处理与语音识别系统设计一、引言音频信号处理与语音识别是数字信号处理领域的重要研究方向,随着人工智能技术的不断发展,语音识别系统在日常生活中得到了广泛应用。
本文将介绍如何利用MATLAB软件进行音频信号处理与语音识别系统的设计,包括信号预处理、特征提取、模式识别等关键步骤。
二、音频信号处理在进行语音识别之前,首先需要对音频信号进行处理。
MATLAB提供了丰富的信号处理工具,可以对音频信号进行滤波、降噪、增益等操作,以提高后续语音识别的准确性和稳定性。
三、特征提取特征提取是语音识别中至关重要的一步,它能够从复杂的音频信号中提取出最具代表性的信息。
常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。
MATLAB提供了丰富的工具箱,可以方便地实现这些特征提取算法。
四、模式识别模式识别是语音识别系统的核心部分,它通过对提取出的特征进行分类和识别,从而实现对不同语音信号的区分。
在MATLAB中,可以利用支持向量机(SVM)、人工神经网络(ANN)等算法来构建模式识别模型,并对语音信号进行分类。
五、系统集成将音频信号处理、特征提取和模式识别整合到一个系统中是设计语音识别系统的关键。
MATLAB提供了强大的工具和函数,可以帮助我们将各个部分有机地结合起来,构建一个完整的语音识别系统。
六、实验与结果分析通过实际案例和数据集,我们可以验证所设计的基于MATLAB的音频信号处理与语音识别系统的性能和准确性。
通过对实验结果的分析,可以进一步优化系统设计,并提高语音识别系统的性能。
七、结论基于MATLAB的音频信号处理与语音识别系统设计是一个复杂而又具有挑战性的任务,但是借助MATLAB强大的功能和工具,我们可以更加高效地完成这一任务。
未来随着人工智能技术的不断发展,基于MATLAB的语音识别系统将会得到更广泛的应用和进一步的优化。
通过本文对基于MATLAB的音频信号处理与语音识别系统设计进行介绍和讨论,相信读者对该领域会有更深入的了解,并能够在实际应用中灵活运用所学知识。
基于MATLAB语音信号处理(语音信号处理的综合仿真)
---------------------------------------------------------------范文最新推荐------------------------------------------------------ 基于MATLAB语音信号处理(语音信号处理的综合仿真)摘要:针对目前在嘈杂的环境中手机接听电话时人声不清楚的缺点,本文介绍了一个基于MATLAB的算法来对语音信号进行处理。
该算法通过计算机录音系统来实现对语音信号的采集,并且利用MATLAB的计算和信号处理能力进行频谱分析和设计滤波器,最终通过仿真得到滤波前后的波形,从而达到保留语音信号中的大部分人声并且滤除掉嘈杂噪声的目的。
仿真实验表明,采用低通滤波器保留人声的效果显著,失真较少。
本算法具有操作简单,运行速度快等优点。
关键词:语音信号;MATLAB;滤波;低通;噪声Speech Signal Processing Based on MATLAB1 / 17Abstract: At present, in view of the shortcomings of that the voice is not clear when people answering the phone in a noisy environment, this paper introduces a algorithm for speech signal processing based on MATLAB. The algorithm realizes the acquisition of the speech signal through a computer recording system. And the software can realize the capabilities of frequency spectrum analysis and filter design by the use of calculation and signal processing capabilities of MATLAB. Finally it can get the waveform before and after filtering through the simulation. So that we can retain most of the voices in the speech signal and at the same time remove noisy noise through filter. Simulation results show that the low pass filter has a remarkable effect of keeping voices and the distortion is little. This algorithm has the advantages of simple to operate and fast.Key Words: Speech signal; MATLAB; Filtering; Low pass; Noise目录---------------------------------------------------------------范文最新推荐------------------------------------------------------ 摘要1引言11.研究意义及研究现状21.1研究意义21.2研究现状22. 语音信号处理的总体方案2.1 研究的主要内容本课题主要介绍的是的语音信号的简单处理,目的就是为以后在手机上的移植打下理论基础。
语音信号处理实验报告.doc
语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2 学时)1)短时能量( 1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.54 x 102N=32 0 0.5 1 1.5 2 2.55 x 10N=64 0 0.5 1 1.5 2 2.510 x 1050.5 1 1.5 2 2.5 N=128 020 x 10100.5 1 1.5 2 2.5 N=256 040 x 1020N=5120 0.5 1 1.5 2 2.5x 10( 2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32; 3 43 43 43 43 43 4for i=2:6h=hanning(2.^(i-2)*N);% 形成一个汉明窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2), legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.52 x 101N=32 0 0.5 1 1.5 2 2.54 x 102N=64 0 0.5 1 1.5 2 2.54 x 102N=128 0 0.5 1 1.5 2 2.510 x 105N=256 0 0.5 1 1.5 2 2.520 x 1010N=5120 0.5 1 1.5 2 2.5x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0 3 43 43 43 43 43 4elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; % 每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;1-100.51 1.52 2.5 34x 10201000.51 1.52 2.5 34x 100.50204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.5-0.5-1-1.5050100150200250实验二基于 MATLAB 分析语音信号频域特征1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱 ');gridoriginal signal10.5-0.5-100.51 1.52 2.5 34x 10短时谱10.500.20.40.60.81 1.2 1.4 1.6 1.8 22)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间 (s)');ylabel('频率 (Hz)' );title('语谱图 ');语谱图50004000)zH3000(率频200010000.51 1.5 2时间 (s) 3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加矩形窗时的倒谱')subplot(2,1,2)plot(c);title( '加矩形窗时的复倒谱')加矩形窗时的倒谱1-1-2050100150200250300加矩形窗时的复倒谱105-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱 cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加汉明窗时的倒谱')subplot(2,1,2)plot(c);title( '加汉明窗时的复倒谱')加汉明窗时的倒谱1-1-2-3050100150200250300加汉明窗时的复倒谱105-5-10050100150200250300实验三基于 MATLAB 的 LPC 分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length, N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input( '请键入想要处理的帧位置= ' );% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input( '请键入预测器阶数= ' ); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧 vs.预测后语音帧 ')subplot(2,1,2),plot(err);grid;title('误差 ');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱 ')%%Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱 ');subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title( 'LPC谱 ');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%%find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));%not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);%direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title( '原始语音帧倒谱 (直接调用函数 )');subplot(212),plot(pitch);grid;title( '预测误差倒谱 (直接调用函数 )');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱 (根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱 (根据定义编写,去除高频分量 )');原始语音帧 vs. 预测后语音帧0.40.2-0.2-0.4050100150200250300误差0.20.1-0.1-0.2050100150200250300短时谱50-50-100010203040506070LPC 谱100806040010203040506070原始语音帧倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300实验四基于 VQ 的特定人孤立词语音识别研究1、mfcc.mfunction ccc = mfcc(x)bank=melbankm(24,256,8000,0,0.5,'m' );bank=full(bank);bank=bank/max(bank(:));for k=1:12n=0:23;dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80);for i=1:size(xx,1)y = xx(i,:);s = y' .* hamming(256);t = abs(fft(s));t = t.^2;c1=dctcoef * log(bank * t(1:129));c2 = c1.*w';m(i,:)=c2';enddtm = zeros(size(m));for i=3:size(m,1)-2dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);enddtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.mfunction [x1,x2] = vad(x)x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;maxsilence = 8; % 6*10ms = 30msminlen = 15; % 15*10ms = 150msstatus = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0;for n=1:length(zcr)goto = 0;switch statuscase {0,1}if amp(n) > amp1x1 = max(n-count-1,1);status = 2;silence = 0;count= count + 1;elseif amp(n) > amp2 | ...zcr(n) > zcr2status = 1;count = count + 1;elsestatus = 0;count= 0;endcase 2,if amp(n) > amp2 | ...zcr(n) > zcr2count = count + 1;elsesilence = silence+1;if silence < maxsilence count = count + 1;elseif count < minlenstatus = 0;silence = 0;count= 0;elsestatus = 3;endendcase 3,break;endendcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear;function xchushi= codebook(m) [a,b]=size(m);[m1,m2]=szhixin(m);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4);chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7);chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10);chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;while(k<=1000)sum=ones(1,16);for p=1:afor i=1:16d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d);sumd(k)=sumd(k)+dmin;for i=1:16if d(i)==dminxchushi(i,:)=xchushi(i,:)+m(p,:);sum(i)=sum(i)+1;endendendfor i=1:16xchushi(i,:)=xchushi(i,:)/sum(i); endif k>1dela=abs(sumd(k)-sumd(k-1))/sumd(k); endk=k+1;chushi=xchushi;endreturn4、 testvq.mclear;disp('这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中') disp('正在训练您的语音模版指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%da.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);m = mfcc(x);m = m(x1:x2-5,:);ref(i).code=codebook(m);enddisp('语音指令训练成功,恭喜!)?'disp('正在测试您的测试语音指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endsumsumdmax=0;sumsumdmin=0;disp('对训练过的语音进行测试')for w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a;sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;disp('正在匹配您的语音指令,请稍后...')for i=1:10if (sumd(i)==sumdmin1)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendenddelamin=sumsumdmin/10;delamax=sumsumdmax/10;disp('对没有训练过的语音进行测试')disp('正在测试你的语音,请稍后...')for i=1:10fname = sprintf(o£ ?ùμ ?éùò?\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endfor w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd);z=0;for i=1:10if (((sumd(i))/a)>delamax)||z=z+1;endenddisp('正在匹配您的语音指令,请稍后...')if z<=3for i=1:10if (sumd(i)==sumdmin)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendelsefprintf( '您输入的语音无效?\n'£)?endend(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
基于MATLAB的语音处理
基于MATLAB的语音滤波实验实验目的:1.在Matlab环境下对语音的频谱进行处理(数字滤波)并试听效果;2.在Matlab环境下对语音的抽样率进行处理(语音压缩)并试听效果实验步骤:一、音频文件的压缩(抽取)。
1.利用windows附件中的录音机功能录制8~10秒的.wav语音文件,并以lei为文件名保存到Matlab/work的文件夹中。
a.打开开始/程序/附件/娱乐/录音机;b.用windows media player播放一首音乐并用MIC对着耳机录音或自已说话录音(按键),到10秒时停止(按键);c.将录制的文件加存为C:/Matlab/work中,文件名为leii.wav;2.打开Matlab并新建一.m文件;3.在.m文件中用y=wavread(‘lei.wav’)命令读入语音文件。
4.语音压缩:在m命令窗中输入如下命令:5.运行sample2.m之后会在work文件夹中生成一个名为lei2的.wav文件,如下图:6.双击lei2音频文件,用耳机试听效果,并跟lei1的效果比较。
7.在sample2.m文件中改变抽取倍率s (必须为正整数),重复4、5、6步,观察在不同抽取倍率s下的音频质量,(注意:在运行sample2.m之前必须将work中名为lei2的.wav音频文件删除,或在.m文件中wavwrite()中的保存文件名改为其它的名字。
)二、音频信号的时域滤波(音频数据的时域卷积)。
(一)、低通滤波1.打开Matlab并新建一.m文件,在.m文件中用y=wavread(‘lei.wav’)命令读入语音文件。
2.在m命令窗中输入如下命令,并加存为sample3.m,运行该m文件。
3.双击lei3音频文件,用耳机试听效果,并跟lei1的效果比较。
4.再加一级h(n)的低通滤波,重复2、3步,如下图:(注意:在运行lei2.m之前必须将work中名为lei3的.wav音频文件删除,或在.m文件中wavwrite()中的保存文件名改为其它的名字。
基于matlab的语音信号处理
数字信号处理设计报告题目:基于Matlab的语音信号处理系别信息工程学院专业班级通信工程1342学生姓名范泉指导教师吉李满提交日期 2016年6月 10日摘要数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。
数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。
本设计的具体内容是基于MATLAB的语音信号处理,核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。
然后添加噪声信号,选用合适的滤波器对噪声信号进行滤除,使数字信号处理从理论走向实用。
MATLAB功能强大,可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
用MATLAB来解算问题要比用其他语言简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
关键词:数字信号处理器;离散傅立叶变换;MATLAB目录第一章绪论 (1)1.1课题研究的目的 (1)1.2课题研究的意义和现状 (1)1.2.1课题研究的意义 (1)1.2.2课题研究的现状 (1)第二章课题研究方案的确定 (3)2.1概要设计 (3)2.1.1主要工作 (3)2.1.2研究步骤 (3)2.2方案选择 (3)2.2.1运行的环境 (3)2.2.2总体方案 (4)第三章课题研究内容 (5)3.1 Matlab简单介绍 (5)3.2语音信号的采样理论依据 (5)3.2.1采样频率 (5)3.2.2采样位数 (5)3.2.3采样定理 (6)3.3语音信号的采集 (6)3.4设计数字滤波器 (6)3.4.1数字滤波器设计的基本思路 (6)3.4.2 IIR数字滤波器概述 (6)3.4.3 FIR数字滤波器概述 (7)3.4.4 FIR数字滤波器和IIR数字滤波器比较 (7)3.4.5低通高通及带通滤波器 (7)3.5程序流程图 (8)第四章软件仿真调试结果分析 (9)4.1语音信号的时频分析 (9)4.2语音信号加噪与频谱分析 (10)4.3滤波器的设计 (12)4.3.1设计FIR滤波器 (12)4.3.2设计IIR滤波器 (12)4.3.3双线性变换法和窗函数法 (12)4.4验证所设计的滤波器 (13)4.5滤波 (15)第五章 GUI界面 (17)5.1 GUI界面概述 (17)5.2创建GUI界面 (17)第六章总结与展望 (20)参考文献 (21)附录I设计FIR和IIR数字滤波器 (1)附录II比较滤波前后语音信号的波形及频谱 (7)附录III 源程序代码 (16)第一章绪论1.1课题研究的目的1.学会MATLAB的使用,掌握MATLAB的程序设计方法。
语音信号处理实验报告
语音信号处理实验报告语音信号处理实验报告一、引言语音信号处理是一门研究如何对语音信号进行分析、合成和改善的学科。
在现代通信领域中,语音信号处理起着重要的作用。
本实验旨在探究语音信号处理的基本原理和方法,并通过实验验证其有效性。
二、实验目的1. 了解语音信号处理的基本概念和原理。
2. 学习使用MATLAB软件进行语音信号处理实验。
3. 掌握语音信号的分析、合成和改善方法。
三、实验设备和方法1. 设备:计算机、MATLAB软件。
2. 方法:通过MATLAB软件进行语音信号处理实验。
四、实验过程1. 语音信号的采集在实验开始前,我们首先需要采集一段语音信号作为实验的输入。
通过麦克风将语音信号输入计算机,并保存为.wav格式的文件。
2. 语音信号的预处理在进行语音信号处理之前,我们需要对采集到的语音信号进行预处理。
预处理包括去除噪声、归一化、去除静音等步骤,以提高后续处理的效果。
3. 语音信号的分析语音信号的分析是指对语音信号进行频谱分析、共振峰提取等操作。
通过分析语音信号的频谱特征,可以了解语音信号的频率分布情况,进而对语音信号进行进一步处理。
4. 语音信号的合成语音信号的合成是指根据分析得到的语音信号特征,通过合成算法生成新的语音信号。
合成算法可以基于传统的线性预测编码算法,也可以采用更先进的基于深度学习的合成方法。
5. 语音信号的改善语音信号的改善是指对语音信号进行降噪、增强等处理,以提高语音信号的质量和清晰度。
常用的语音信号改善方法包括时域滤波、频域滤波等。
六、实验结果与分析通过实验,我们得到了经过语音信号处理后的结果。
对于语音信号的分析,我们可以通过频谱图观察到不同频率成分的分布情况,从而了解语音信号的特点。
对于语音信号的合成,我们可以听到合成后的语音信号,并与原始语音信号进行对比。
对于语音信号的改善,我们可以通过降噪效果的评估来判断处理的效果。
七、实验总结通过本次实验,我们深入了解了语音信号处理的基本原理和方法,并通过实验验证了其有效性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析学生姓名指导教师班级学号完成日期:2013 年5 月目录1 绪论.............................................................................................................. 错误!未定义书签。
1.1课题背景及意义................................................................................. 错误!未定义书签。
1.2国内外研究现状................................................................................. 错误!未定义书签。
1.3本课题的研究内容和方法................................................................. 错误!未定义书签。
1.3.1 研究内容................................................................................ 错误!未定义书签。
1.3.2 开发环境................................................................................ 错误!未定义书签。
2 语音信号处理的总体方案............................................................................ 错误!未定义书签。
2.1 系统基本概述.................................................................................... 错误!未定义书签。
2.2 系统基本要求与目的........................................................................ 错误!未定义书签。
2.3 系统框架及实现................................................................................ 错误!未定义书签。
2.3.1 语音信号的采样.................................................................... 错误!未定义书签。
2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。
2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。
2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。
2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。
2.4系统设计流程图................................................................................. 错误!未定义书签。
3 语音信号处理基本知识................................................................................ 错误!未定义书签。
3.1语音的录入与打开............................................................................. 错误!未定义书签。
3.2采样位数和采样频率......................................................................... 错误!未定义书签。
3.3时域信号的FFT分析......................................................................... 错误!未定义书签。
3.4切比雪夫滤波器................................................................................. 错误!未定义书签。
3.5数字滤波器设计原理......................................................................... 错误!未定义书签。
4 语音信号实例处理设计................................................................................ 错误!未定义书签。
4.1语音信号的采集................................................................................. 错误!未定义书签。
............................................................................................................ 错误!未定义书签。
............................................................................................................ 错误!未定义书签。
4.3.3 FIR滤波................................................................................. 错误!未定义书签。
5 总结................................................................................................................ 错误!未定义书签。
参考文献............................................................................................................ 错误!未定义书签。
语音信号的处理与分析【摘要】语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。
Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。
信号处理是Matlab重要应用的领域之一。
本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。
最后,本文对语音信号处理的进一步发展方向提出了自己的看法。
【关键词】Matlab 语音信号傅里叶变换低通滤波器1 绪论语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。
随着社会文化的进步和科学技术的发展,人类开始进入了信息化时代,用现代手段研究语音处理技术,使人们能更加有效地产生、传输、存储、和获取语音信息,这对于促进社会的发展具有十分重要的意义,因此,语音信号处理正越来越受到人们的关注和广泛的研究。
1.1课题背景及意义语音信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。
通过语言相互传递信息是人类最重要的基本功能之一。
语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。
语音是语言的声学表现,是相互传递信息的最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。
语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。
1.2国内外研究现状20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。
随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。
近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。
1.3本课题的研究内容和方法1.3.1 研究内容本论文主要介绍的是的语音信号的简单处理。
本报告针对以上问题,运用数字信号学基本原理实现语音信号的处理,在matlab7.0环境下综合运用信号提取,幅频变换以及傅里叶变换、滤波等技术来进行语音信号处理。
我所做的工作就是在matlab7.0软件上编写一个处理语音信号的程序,能对语音信号进行采集,并对其进行各种处理,达到简单的语音信号处理的目的。