铝合金铸造技术篇

合集下载

铝合金的铸造方法

铝合金的铸造方法

铝合金的铸造方法铝合金铸造方法主要分为压力铸造和重力铸造两种。

1. 压力铸造方法(Pressure Casting)压力铸造是指将熔化的铝合金通过高压注入到金属模具中进行快速凝固的方法。

压力铸造包括冷室压力铸造和热室压力铸造两种方法。

具体步骤如下:- 铝合金材料熔化:将铝合金原料加热至熔点,通常在680C-750C之间。

- 模具准备:选择适当的金属模具,并进行涂料处理,以便提高铝合金熔体与模具表面的润湿性。

- 模具预热:根据具体合金类型和厚度,模具需要预热到一定温度,通常在200C-300C之间。

- 注射:将预热好的模具封闭在注射机中,通过高压将铝合金熔体注入模具中。

- 冷却:模具内的铝合金熔体在注射后迅速凝固,并冷却至室温。

- 模具开启和取出:冷却后,打开模具,取出铸件。

- 去毛刺和后处理:对铸件进行去毛刺和修整等后处理工艺。

2. 重力铸造方法(Gravity Casting)重力铸造是指利用重力将铝合金熔体注入模具中的方法。

相对于压力铸造,重力铸造的压力较低,适用于较大的铸件。

具体步骤如下:- 铸造准备:选择适当的金属模具,并进行涂料处理。

- 铝合金材料熔化:将铝合金原料加热至熔点,通常在680C-750C之间。

- 注射:借助于重力,将铝合金熔体通过溢流口倒入模具中。

在此过程中,可以通过控制溢流口的大小和位置来控制铸件的形状和尺寸。

- 冷却:待铝合金熔体在模具中凝固,冷却至室温。

- 模具开启和取出:冷却后,打开模具,取出铸件。

- 去毛刺和后处理:对铸件进行去毛刺和修整等后处理工艺。

值得注意的是,上述方法仅列举了最常用和基本的铝合金铸造方法,实际生产中还有其他特殊的铸造方法,如砂芯铸造、低压铸造等。

具体方法的选择会根据铸件形状、尺寸和要求等因素进行灵活确定。

铝合金铸造实用技术(15%)

铝合金铸造实用技术(15%)

3、砂眼:铸件内部或表面包有砂粒、砂块,常 伴有夹砂、掉砂
• 性能、成分、组织不合格类缺陷:
1、机械性能不合格(抗拉强度、延伸率、硬 度等) 2、成分不合格:化学成分含量不符合要求 3、组织不合格(组织粗大不致密、白点、偏 析等)
十一、铸件缺陷的检验
• 铸件表面缺陷一般靠目视检验;需方有要
求时,用无损检测,如渗透检测,磁粉检 测等检验。 • 铸件内部缺陷主要靠无损检测,如水(气) 压试验、超声波检测、射线检测等检验方 法。
十、铸造缺陷的识别
• 多肉类缺陷:
1、飞边和毛刺:多产生在分型面、分芯面、芯 头、芯型裂缝处
2、胀箱、胀砂:分型面方向尺寸增大,有厚大飞边, 铸件表面局部胀大
3、冲砂、掉砂:砂子被金属液冲掉,砂型、砂 芯局部掉块
• 孔洞类缺陷:
1、气孔:产生在铸件内部或表面,形状呈圆形、 椭圆形,孤立或成群分布,内壁较光滑
3、 III类铸件:承受轻载荷,用于一般 部位的铸件。
铸件类别一般在图样中标示出或在技术 文件中规定,对于未注明类别的铸件,视 为III类铸件。图示标记包括:所用合金牌号 或代号、铸造方法、铸件供应状态、铸件 类别等。 例如: ZL104J/T6-Ⅱ(215-2) AS7G03Y33-Ⅰ(216-2) AS7G03Y23-Ⅰ(216-2)
4、表面缺陷:主要有夹砂(鼠尾、沟槽)、 皱皮和缩陷。 5、残缺类缺陷:主要有浇不足、未浇满、跑 火、型漏等 6、形状及重量差错类缺陷:主要有尺寸和重 量差错、变形、错型、错芯等 7、夹杂类缺陷:主要有金属冷豆、非金属夹 渣和砂眼等 8、性能、成分、组织不合格类缺陷:主要有 抗拉强度、延伸率、硬度、化学成分、组 织不致密、偏析等缺陷
铝合金铸造实用技术

铝合金压铸技术要求

铝合金压铸技术要求

铝合金压铸技术要求一、铝合金压铸技术概述1.1 铝合金压铸技术的定义铝合金压铸技术是一种利用压力铸造机将铝合金液态金属注入到金属模具中,通过迅速冷却和凝固形成铸件的工艺方法。

1.2 铝合金压铸技术的优势铝合金压铸技术具有生产效率高、生产周期短、产品精度高、表面质量好等优势,被广泛应用于各个行业。

二、铝合金压铸技术要求2.1 材料选择选择适合铝合金压铸工艺的铝合金材料,常见的有ADC12、A380等。

材料的选择应根据产品要求和使用环境进行综合评估。

2.2 模具设计2.2.1 模具材料模具材料应具有良好的耐热性和耐磨性,常用的材料有H13、SKD11等。

2.2.2 模具结构设计模具结构应合理,可以根据产品的特点和需求进行设计和调整,以保证铸件的质量和精度。

2.3 注射设备2.3.1 压铸机选择根据产品的要求确定压铸机的型号和规格,包括锁力、注射压力等参数的选择。

2.3.2 注射系统注射系统包括注射缸、注射头、喷嘴等组成,其设计应合理,确保铝合金液态金属的注入和充填。

2.3.3 润滑系统润滑系统的设置对于铝合金压铸技术的稳定运行起着重要作用,应注意润滑剂的选择和使用。

2.4 工艺参数控制压铸工艺参数对于产品的质量和尺寸稳定性有很大的影响,应进行合理的控制和调整。

2.4.1 注射速度注射速度过快会导致铸件内部气孔、缺陷等问题,注射速度过慢会导致铝合金液态金属凝固不完全。

2.4.2 注射温度注射温度过高会导致铝合金液态金属粘度降低,流动性增强,但也会加快模具磨损。

注射温度过低则会导致液态金属凝固时间过长。

2.4.3 注射压力注射压力的控制对于铸件的密实性和表面质量有着重要影响,应根据产品要求进行精确控制。

2.4.4 注射时间注射时间应根据实际需要进行合理设置,以保证铝合金液态金属充填充实模腔。

2.5 热处理工艺铝合金压铸件在铸造成型后,经过热处理工艺可以改善其机械性能和物理性能,如固溶处理、时效处理等。

2.6 铸件表面处理铝合金压铸件的表面处理包括喷砂、喷涂、电镀等方法,以提高产品的外观质量和耐腐蚀性能。

铝合金铸造工艺

铝合金铸造工艺

铝合金铸造工艺一、铸造概论铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

(2) 收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。

缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。

生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。

铝合金铸造工艺简介

铝合金铸造工艺简介

铝合金铸造工艺简介一、铸造概论在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

(2) 收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

[铝合金铸造工艺]铝合金铸造工艺简介

[铝合金铸造工艺]铝合金铸造工艺简介

[铝合金铸造工艺]铝合金铸造工艺简介[铝合金铸造工艺]铝合金铸造工艺简介篇一 : 铝合金铸造工艺简介铝合金铸造工艺简介一、铸造概论在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

,)故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺外,还必须改善铸型工艺性,并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

?体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

铝合金铸造工艺简析

铝合金铸造工艺简析

铝合金铸造工艺简析一、铸造的分类重力铸造、低压铸造、压力铸造,我厂主要为重力铸造,利用重力自行流入模具,通过结晶器进行梯度降温,让铝合金按顺序凝固的铸造方式铸造铸棒。

二、铝液的熔炼铝合金熔炼简单知识影响铝液质量的主要因素:铝液中的含气量和氧化夹杂物。

在铝合金熔体(铝液)中溶解的气体有:H2、CO2、CO、N2、C n H m(碳氢化合物)等气体;其中以H2为主。

分析铝合金中的气体成分,证明H2占85﹪以上,因而铝合金的“含气量”可以近似地视为“含氢量”。

铝液中的氢主要来自高温铝液和溶解在其中的水发生化学反应生成氢。

铝液中气体的主要来源:1.燃料:火焰反射炉熔炼铝合金时,煤气中的水分以及燃烧时产生的水分易进入熔体(铝液);2.大气:熔炼过程中,大气中的水蒸气被熔体(铝液)吸收;3.炉衬:烘炉不彻底时,炉衬表面吸附的水分以及砌制时泥浆中的水分在熔炼头几个班次时对熔体(铝液)中的气体含量将有明显的影响;4.炉料:吸附在炉料(包括铝锭和辅料)表面上的湿气,在熔化过程中起化学作用而产生的氢将被溶解,如果炉料放置过久,且表面有油污,对熔体(铝液)的吸气量尤有影响;5.熔炼工具:如果熔炼工具干燥不好,易使熔体(铝液)的吸气量增加;6.倒料过程中:如果熔体(铝液)落差大或液流翻滚过急时也会使气体及氧化夹杂卷入熔体(铝液);高温时铝和水汽的反应:2Al+3H2O Al2O3+3H2(溶入铝液中)当在水汽比较多的环境下,剧烈反应,引起爆炸,造成事故。

当在干空气条件下(水分较少),水汽也能和铝液起反应,因此在铝液中总是含有一定数量的氢。

铝液中的氧化夹杂:铝液与空气中的氧气O2、氮气N2、在高温下发生化学反应生成氧化夹杂物,其中以生成的氧化膜(Al2O3)对铝液的污染最大。

这些氧化夹杂的熔点都较高,如氧化铝的熔点约为2050℃,所以铝液中的氧化夹杂主要以固态形式存在,严重影响我们熔炼的铝液质量。

氧化夹杂表面疏松,能吸附空气中的水汽和氢,增加了铝液中的气体含量。

铝合金铸造

铝合金铸造

铝合金铸造的基本原理
铝合金铸造的基本原理
• 熔炼:将铝合金原料加热至熔化状态,形成铝合金液 • 浇注:将铝合金液倒入模具中,使其充满整个模具 • 凝固:通过冷却使铝合金液在模具中凝固成型,形成铸件
铝合金铸造过程中的关键因素
• 合金成分:影响铸件的性能和组织结构 • 铸造温度:影响铝合金液的流动性和充型能力 • 冷却速度:影响铸件的组织结构和性能
铝合金铸造设备的维护与保养
铝合金铸造设备的维护
• 定期检查:定期对铸造设备进行检查,确保正常运行 • 清洁保养:定期对铸造设备进行清洁保养,防止杂质污染 • 润滑保养:定期对铸造设备进行润滑保养,保证设备运行顺畅 • 故障排除:及时发现并排除铸造设备的故障,避免影响生产
铝合金铸造设备的保养
• 定期更换易损件:定期更换铸造设备中的易损件,保证设备正常运行 • 设备调试:根据生产需求,对铸造设备进行调试,确保生产质量 • 设备升级:根据生产需求,对铸造设备进行升级,提高生产效率 • 安全操作:遵守安全操作规程,确保铸造设备的安全运行
• 高纯度铝合金:研究高纯度铝合金,提高铸件性能 • 复合铝合金:研究复合铝合金,提高铸件的综合性能 • 新型铝合金:开发新型铝合金,满足特殊领域的需求 • 环保型铝合金:研究环保型铝合金,降低对环境的影响
铝合金铸造行业的创新与突破
铝合金铸造行业的创新
• 材料创新:研究新型铝合金材料,提高铸件性能 • 工艺创新:研究新型铸造工艺,提高铸件质量和生产效率 • 产品创新:开发新型铝合金铸件,满足市场需求 • 管理创新:优化企业管理,提高铝合金铸造行业的管理水平
DOCS
谢谢观看
THANK YOU FOR WATCHING
铝合金铸造行业的发展

铝合金压铸技术论文

铝合金压铸技术论文

铝合金压铸技术论文铝镁合金质量轻且具有较高的强度、刚度以及良好的铸造性能和减振性能, 下面是店铺整理了铝合金压铸技术论文,有兴趣的亲可以来阅读一下!铝合金压铸技术论文篇一浅析铝镁合金压铸成型技术及应用摘要:铝镁合金质量轻且具有较高的强度、刚度以及良好的铸造性能和减振性能, 同时还具有良好的导热性和电磁屏蔽性能,这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础。

本文综述了铝镁合金的成形技术及其在汽车、电子、航空航天工业以及日常生活领域中的应用。

关键词:铝镁合金;压铸成形;铝镁应用引言在今天人们更关注可持续发展和环境保护时,以质轻和可回收利用为应用特点的铝镁合金结构材料的开发和应用越来越受到世界各国的重视,并日益成为现代工业产品的理想材料。

现代科技和相关产业技术的发展, 使其各项独特优点日臻完善, 应用范围迅速扩展, 特别是汽车及3C 和航空用铝镁合金零部件的大量应用,使铝镁合金成为目前各研究和生产单位所关注的热点。

本文论述了铝镁合金的成形工艺及应用现状。

1 铝镁合金成形工艺压铸成形是铝镁合金铸造最主要的成形工艺。

铝镁合金有优良的压铸工艺性能:合金液粘度低,流动性好,易于充满复杂型腔。

用铝镁合金可以很容易地生产壁厚的压铸件,现在最小壁厚可达镁压铸件的铸造斜度为,而铝合金是镁压铸件的尺寸精度比铝压铸件高铝镁合金的熔点和结晶潜热都低于铝合金,压铸过程中对模具冲蚀比铝合金小,且不易粘型,其模具寿命可比铝合金件倍铝镁合金件压铸周期比铝件短,因而生产效率可比铝合金提高铝镁合金铸件的加工性能优于铝合金铸件,铝镁合金件的切削速度可比铝合金件提高27%,加工耗能比铝合金件低31%。

生产经验表明由于生产效率高,热室压铸的铝镁合金小件的总成本低于冷室压铸的铝合金同样件。

近年来,一些新的压铸方法包括真空压铸、充氧压铸、半固态压铸也相继发展应用。

其在消除铸造缺陷,提高铸件内在质量方面具有传统压铸方法无法比拟的优点。

铝合金铸造工艺简介

铝合金铸造工艺简介

铝合金铸造工艺简介文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)铝合金铸造工艺简介一、铸造概论在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1)流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

(2)收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

铸造铝合金基础基础知识

铸造铝合金基础基础知识

铸造铝合金基础基础知识铸造铝合金基础知识铝合金是一种重要的金属材料,具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、船舶建造等领域。

而铸造是一种常见的加工方法,通过将熔融的金属注入到预先制造好的模具中,冷却凝固后得到所需形状的零件。

本文将介绍铸造铝合金的基础知识,包括其合金类型、工艺流程以及应用领域。

一、铸造铝合金的合金类型铸造铝合金通常是由铝与其他元素的混合物组成,为了获得不同的性能和用途,可以添加不同种类的合金元素。

常见的铸造铝合金包括以下几类:1. 铝硅合金(Al-Si):添加硅元素可提高材料的流动性和耐磨性,常用于汽车发动机缸套等零部件的制造。

2. 铝铜合金(Al-Cu):添加铜元素可提高铝合金的强度和耐蚀性,适用于船舶建造和航空航天领域。

3. 铝镁合金(Al-Mg):添加镁元素可提高材料的强度和韧性,常用于航空航天和汽车工业中。

4. 铝锌合金(Al-Zn):添加锌元素可提高铝合金的耐蚀性和热处理性能,适用于建筑、电力行业等。

5. 铝锡合金(Al-Sn):添加锡元素可提高铝合金的耐磨性和摩擦性能,适用于制造轴承等零部件。

二、铸造铝合金的工艺流程铸造铝合金常采用砂型铸造、压力铸造和真空熔铸等工艺流程。

1. 砂型铸造:先制作出铸件的模具,然后将熔融的铝合金浇注到模具中,经冷却凝固后取出成型的零件。

这种工艺简单、成本低廉,广泛应用于小批量生产。

2. 压力铸造:将熔融的铝合金通过高压注射器喷射进型腔中,借助于高压力和快速冷却,迅速凝固成型。

该工艺制造出的铝合金零件密度高、性能均匀,适用于大批量生产。

3. 真空熔铸:通过将铝合金放入真空熔炼炉中进行熔炼,然后再通过真空注铸设备将熔融的铝合金注入到模具中进行成型。

该工艺可消除气孔和夹杂物,制造高品质的铝合金零件。

三、铸造铝合金的应用领域铸造铝合金在各个领域都有广泛应用。

1. 航空航天:铸造铝合金在飞机的结构零件、发动机部件、航空仪表等方面发挥重要作用,其轻量化和高强度的特性符合航空航天工业对材料的要求。

铝合金铸造技术要求

铝合金铸造技术要求

铝合金铸造技术要求铝合金铸造技术是一种常用的金属加工技术,广泛应用于航空航天、汽车、机械等领域。

在铝合金铸造过程中,需要满足一定的技术要求,以确保产品的质量和性能。

本文将介绍铝合金铸造技术的要求,包括合金选择、模具设计、熔炼与浇注、热处理和表面处理等方面。

一、合金选择选择合适的铝合金对于铝合金铸造至关重要。

铝合金的选择应根据产品的用途、性能要求和成本考虑。

常用的铝合金有铝硅合金、铝铜合金、铝镁合金等。

不同的合金具有不同的性能特点,如强度、耐蚀性、导热性等。

在选择合金时,需综合考虑产品的使用环境和要求,以及合金的可加工性。

二、模具设计模具设计是铝合金铸造中的关键环节。

合理的模具设计能够提高产品的质量和生产效率。

在模具设计中,需要考虑产品的结构形式、壁厚、收缩率等因素。

模具的结构应具有足够的强度和刚性,以承受铝液的冲击和热应力。

同时,模具的排气和冷却系统也需要合理设计,以避免缺陷的产生。

三、熔炼与浇注铝合金铸造的熔炼与浇注过程需要严格控制。

首先,需选择合适的熔炼设备和工艺。

熔炼设备应具备良好的加热和保温性能,以确保铝液达到适宜的浇注温度。

其次,需控制铝液的成分和温度,以确保合金的成分和性能符合要求。

在浇注过程中,应注意避免气体和杂质的混入,以减少缺陷的产生。

四、热处理热处理是提高铝合金铸造品质的重要手段。

常用的热处理方法有时效处理、固溶处理和淬火等。

热处理能够改善铝合金的强度、硬度和耐腐蚀性。

在热处理过程中,需控制加热温度、保温时间和冷却速率,以确保合金的组织和性能达到预期目标。

五、表面处理表面处理是铝合金铸造的最后一道工序,能够提高产品的外观和耐腐蚀性。

常用的表面处理方法有阳极氧化、电泳涂装和喷涂等。

表面处理能够形成保护膜,防止铝合金与外界环境的接触,延长产品的使用寿命。

铝合金铸造技术要求包括合金选择、模具设计、熔炼与浇注、热处理和表面处理等方面。

合理选择合金、设计模具、控制熔炼与浇注过程、进行合适的热处理和表面处理,能够确保铝合金铸造产品的质量和性能,满足用户的需求。

铝合金铸造技术

铝合金铸造技术
铝的吸气量随着温度的升高,液态下保温时间的加长以及与燃烧产物的接触而增加。铝液周围空气中及熔化炉燃料产物的接触而增加。如果型砂中的潮气过多也可引起吸气。同样,铝锭或其它金属炉料上吸附的潮气或其它氢化合物(例如,油)也可增加铝液中氢的含量。加炉料前将其预热到900℉(480℃)可大大减少氢的来源。
铝液表面被一层氧化物所覆盖,只要这个氧化物层不被破坏,铝液的吸气速率会很低,而且也会抑制进一步的氧化。
铝熔化炉的吸氢和氧化应尽量小,它应具有能够最经济地提供充足铝液的容量。熔化炉的正常运作需要良好的温度控制。过高的熔化温度和处理温度会造成晶粒粗大,气孔和夹渣等铸造缺陷。
消失模铸造(EPC)是最近发展起来的一种新工艺。在EPC中,利用放入疏松干砂中的膨胀聚苯乙烯模型造型,可进行铸件的大批量生产。这种工艺也可在无型芯条件下生产出形状复杂的铸件,因而增强了铸铝的竞争能力。
铝合金铸造技术(教材
第一章
铝合金的铸造性能
特性
铸造铝合金是用途最广泛的铸造合金之一,通常认为其铸造性能最好。铝可采用多种常用铸造方法进行铸造,而且利用金属模或安装在自动机械上的模具可实现大批量,低成本铸件的成产。铝也可采用砂型铸造,壳型铸造,离心铸造,熔模铸造,实型铸造以及石膏型铸造等方法进行铸造生产,可一模单件或多件。
由于强度较低且铸造性能有限,所以纯铝在电动机转子和其它一些需要高导电率的零部件上的应用受到了极大的限制。对铝进行合金化后,其力学性能和铸造性能均得到明显改善。因此,所有实用的铸造铝合金都含有不同含量的合金元素,每种合金均具有能够足其不同应用需要的性能。
选择合金和最经济的铸造方法时,必须考虑铸造厂的能力,合金的力学和物理性能以及零部件
铝液的这些优点使铝非常适合于采用由钢铁材料制成的金属模或压铸模进行铸造。在金属型重力铸造中,铝液由模具顶部的浇口浇入,在自身重量(重力)的作用下充满型腔。

铝合金铸造技术篇要点

铝合金铸造技术篇要点

铝合金铸造技术篇要点铝合金铸造技术,这可是个相当有趣且实用的领域呢!咱先来说说铝合金铸造的基本原理。

简单来讲,就是把铝合金加热融化成液态,然后倒入模具里,等它冷却凝固,就变成了咱们想要的形状。

这过程听起来好像挺简单,但实际操作可大有讲究。

就拿我曾经参观过的一家铝合金铸造厂来说吧。

当时我走进车间,一股热浪扑面而来,巨大的熔炉里,铝合金正在欢快地翻滚着,呈现出一种亮闪闪的橙色。

工人们穿着厚厚的防护服,全神贯注地盯着熔炉的温度和铝液的状态。

模具的准备也是关键一环。

模具的设计得精准无误,尺寸、形状、结构,一个小差错都可能导致整个铸件的失败。

而且模具的材质也有讲究,得能经受住高温的考验,还得保证铸件容易脱模。

铸造过程中的温度控制那可是重中之重。

温度太高,铝合金容易氧化,产生杂质;温度太低,流动性不好,铸件容易出现缺陷。

有一次,我看到一个新手工人没控制好温度,结果出来的铸件表面坑坑洼洼的,这可让师傅们头疼了好一阵。

还有啊,铝合金的成分也会影响铸造的效果。

不同的合金元素添加比例,会让铝合金的性能大不相同。

比如说,加一些镁能增加强度,加一些硅能提高流动性。

另外,铸造后的处理也不能马虎。

铸件得经过打磨、抛光、热处理等一系列工序,才能达到最终的质量要求。

总之,铝合金铸造技术可真是个精细活,每个环节都得小心翼翼,就像一场精心编排的舞蹈,任何一个舞步出错都可能影响整个演出的效果。

希望通过我这一番不太专业但还算真诚的分享,能让您对铝合金铸造技术有个初步的了解。

这技术啊,还得靠不断地实践和摸索,才能真正掌握其中的奥秘!。

铝合金铸造工艺

铝合金铸造工艺

一、铸造概论铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同.故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件.1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合.流动性、收缩性、气密性、铸造应力、吸气性.铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关.1流动性流动性是指合金液体充填铸型的能力.流动性的大小决定合金能否铸造复杂的铸件.在铝合金中共晶合金的流动性最好.影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力俗称浇注压头的高低.2收缩性收缩性是铸造铝合金的主要特征之一.一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩.合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化.通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性.铝合金收缩大小,通常以百分数来表示,称为收缩率.①体收缩体收缩包括液体收缩与凝固收缩.铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔.集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处.分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位.显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间.缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩.生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中.对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固.②线收缩线收缩大小将直接影响铸件的质量.线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大.对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同.应根据具体情况而定.3热裂性铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽.裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面.不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同.生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹.通常采用热裂环法检测铝铸件热裂纹.4气密性铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度.铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高.同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高.也可用浸渗法堵塞泄露空隙来提高铸件的气密性.5铸造应力铸造应力包括热应力、相变应力及收缩应力三种.各种应力产生的原因不尽相同.①热应力热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的.在薄壁处形成压应力,导致在铸件中残留应力.②相变应力相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化.主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致.③收缩应力铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致.这种应力是暂时的,铝铸件开箱是会自动消失.但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹.铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度.铝铸件中的残留应力可通过退火处理消除.合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小.6吸气性铝合金易吸收气体,是铸造铝合金的主要特性.液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致.铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍.当含碱金属杂质时,氢在铝液中的溶解度显着增加.铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”.气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内.若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征.铸铝合金液中含氢量越高,铸件中产生的针孔也越多.铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能.要获得无气孔或少气孔的铝铸件,关键在于熔炼条件.若熔炼时添加覆盖剂保护,合金的吸气量大为减少.对铝熔液作精炼处理,可有效控制铝液中的含氢量.二、砂型铸造采用砂粒、粘土及其他辅助材料制成铸型的铸造方法称为砂型铸造.砂型的材料统称为造型材料.有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成.铝铸件成型过程是金属与铸型相互作用的过程.铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用.因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型芯砂的配比、造型及浇注等工艺.三、金属型铸造1、简介及工艺流程金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使用寿命长.2、铸造优点1优点金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右.金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低.劳动条件好,生产率高,工人易于掌握.2缺点金属型导热系数大,充型能力差.金属型本身无透气性.必须采取相应措施才能有效排气.金属型无退让性,易在凝固时产生裂纹和变形.3、金属型铸件常见缺陷及预防1针孔预防产生针孔的措施:严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料.控制熔炼工艺,加强除气精炼.控制金属型涂料厚度,过厚易产生针孔.模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等.采用砂型时严格控制水分,尽量用干芯.2气孔预防气孔产生的措施:修改不合理的浇冒口系统,使液流平稳,避免气体卷入.模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用.设计模具与型芯应考虑足够的排气措施.3氧化夹渣预防氧化夹渣的措施:严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底.Al-Mg合金必须在覆盖剂下熔炼.熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用.设计的浇注系统必须有稳流、缓冲、撇渣能力.采用倾斜浇注系统,使液流稳定,不产生二次氧化.选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣.4热裂预防产生热裂的措施:实际浇注系统时应避免局部过热,减少内应力.模具及型芯斜度必须保证在2°以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯.控制涂料厚度,使铸件各部分冷却速度一致.根据铸件厚薄情况选择适当的模温.细化合金组织,提高热裂能力.改进铸件结构,消除尖角及壁厚突变,减少热裂倾向.5疏松预防产生疏松的措施:合理冒口设置,保证其凝固,且有补缩能力.适当调低金属型模具工作温度.控制涂层厚度,厚壁处减薄.调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力.适当降低金属浇注温度.。

铝合金压铸技术要求内容

铝合金压铸技术要求内容

1、围本标准规定了铝合金压铸件的技术要求、试验方法、检验规则、交货条件等。

本标准适用于汽车发电机铝合金端盖压铸件。

2、引用标准GB6414铸件尺寸公差GB6987.1-GB6987.16铝及铝合金化学分析方法GB288-87金属拉力试验法GB/T13822-92 压铸有色合金试样GB6060.5 表面粗造度比较样块抛(喷)丸、喷吵加工表面3、技术要求3.1 压铸铝合金的牌号压铸铝合金采用UNS-A03800(美国A380.0,日本ADC10)可选用材料 UNS-A03830 (美国383.0,日本ADC12)化学成份见表1表1供应商可选择上述四种牌号的任何一种,如在生产过程中更换其它牌号,需重新进行样件鉴定。

3.1.1回炉料使用规定3.1.1.1回炉料分类一级回炉料:浇道、化学成份合格的废铸件,后加工次品等不含水分和油污。

二级回炉料:集渣包、坩埚底部剩料、退货废品、存放时间长(超过10天)的一级回炉料。

三级回炉料:飞边、溅屑、细小的碎料、带有油污的渣料、因化学成份报废的铸件、从铝渣中捡出的铝粒。

3.1.1.2回炉料使用比例使用单一某级回炉料:一级回炉料最大使用量50%,二级回炉料最大使用量40%。

一级、二级回炉料混合使用:回炉料总量不超过40%,其中二级回炉料最大使用量20%。

三级回炉料:不能直接使用,必须经过重熔、精炼且化学成份分析合格后才能使用,其最大使用量10%,仅与铝锭混合使用。

3.1.1.3加料循序3.2 力学性能采用单铸拉力试样检验,其力学性能应满足抗拉强度≥240Mpa,伸长率≥1%,HB85(5/250/30)。

试样尺寸及形状应符合GB/T 13822-92《压铸有色合金试样》的规定。

3.3 压铸件尺寸压铸件的几何形状和尺寸应符合铸件图的规定。

3.4 待加工表面用符号“”标明,尖头指向被加工面。

例: 0.5 表示该表面留有加工余量0.5mm3.5 表面质量3.5.1 铸件清理后的表面质量铸件的浇口、飞边、溢流口、隔皮等应清理干净,但允许留有清理痕迹。

铝合金铸造实用技术(15%)

铝合金铸造实用技术(15%)

2021/3/27
CHENLI
24
2、供应状态
铸件供应状态分为两种:铸态和热 处理状态,一般由设计部门在图样中 规定。
2021/3/27
CHENLI
25
铸造合金的热处理规范

淬火
号 合金状态 加热温度 保温时间
(℃)
(h)
F
铸态
T1 人工时效
T2 退火
T4 淬火+自然时 535±5 2~6

T5 淬火+不完全 535±5 2~6
2021/3/27
CHENLI
19
1、熔化工艺步骤(铝合金)
• 配料→坩埚预热(暗红色) →加入中间
合金及纯铝锭→升温→除气扒渣→加 入镁或铝镁合金→加入变质剂→出炉 浇注
2021/3/27
CHENLI
20
2、浇注
• 浇注前应检查浇包是否清洁,浇包必
须刷涂料、烘干、预热,浇注时浇包 嘴靠近浇口杯,逐渐提高浇包,不允 许中断金属流,整个浇注过程必须做 到稳、准、快。
2021/3/27
CHENLI
32
2、胀箱、胀砂:分型面方向尺寸增大,有厚大飞边, 铸件表面局部胀大
2021/3/27
CHENLI
33
3、冲砂、掉砂:砂子被金属液冲掉,砂型、砂 芯局部掉块
2021/3/27
CHENLI
34
• 孔洞类缺陷:
1、气孔:产生在铸件内部或表面,形状呈圆形、 椭圆形,孤立或成群分布,内壁较光滑
CHENLI
49
十一、铸件缺陷的检验
• 铸件表面缺陷一般靠目视检验;需方有要
求时,用无损检测,如渗透检测,磁粉检 测等检验。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国兴金属制品有限公司教育训练教材铝合金铸造技术篇一、前言:铝合金为目前使用极为广泛的一种金属。

在铸造上而言,不论重力铸造,砂模铸造、压铸精密铸造┄等各种铸造方法均可见到大量的铝合金铸件,由于这些方法铸造,其原因乃在于铝合金具有质量轻、机械质优良、耐腐蚀、美观以及机械加工容易等优点。

因而不仅大量使用于一般生活用品,例如:运输工具、通信器材、运动器材料、家庭五金┄等商业用途上,亦大量使用于航空太空载具及武器系统等军事装备。

铝合金铸造技术的发展时间,已有数十年历史,由于机械设计及加工观念的改变与要求以及机械设计的日趋复杂,加上新的合金不断的被发展出来,部份的铸造用铝合金机械强度甚至超过一些锻造用铝合金,如A201、A206等,因而铸造的重要性再度被肯定,在铸造一般生活用品时,铝合金的铸造并非一困难工作,但要铸造高品质的铸件时,则铝合金的铸造就非想象中的容易。

影响铸件品质的要素有八点,例如:铸造方案的设计,材料的选择以及铝水的品质等,其中铝水的品质,则系熔炼的工作。

二、熔炼设备熔炉:铝合金熔炼用的炉子,以热源区分,可分为两个主要的种类:燃料及电力。

在使用燃料的熔炉中,则又分为油炉及瓦斯两种。

而电力炉则可区分为反应炉及电阻炉。

在选择炉子时,值得考虑的因素甚多,例如:熔解量的多寡;能源的价格;原始设备的成本,安装的价格,设备维护的难易,厂房设施配合;以及产品的种类。

就一般铝合金铸造的:由于铝件的重量有限,为求操作上的方便,以及成本的考虑,绝大部份均系采用坩锅炉(目前已大量改用连续炉)。

以不同加热方式的炉子而言,使用油炉或气炉,或可降低成本。

但是,不论油炉或电炉,均有机会增加铝水中的氢气量。

一般而言,在使用油炉时,所使用的燃油中带含有10-20%的水气,对气炉而言,例如瓦斯不包含空气之中,因温度而含的水分,而仅计算燃烧所产生水蒸气,至少在消耗气体量的两倍以上。

而不论使用燃油或瓦斯气体为热源时,燃烧后产生的水气,必然是包围着熔解炉。

因此,可想而知的是氢气的来源必然可观。

三、铝汤处理之目的:在铝汤有由原材料在熔解过程中发生的氢气或氧化物等非金属介在物之外,尚含钠碱性金属之不纯物,这些不纯物混入铸件时,不仅在铸件中产生针孔,使展伸材发生起泡等表面缺陷而影响机械性,因此,铝汤处理目的即把上述不纯物在熔汤的阶段就除去或降低不纯物含量到能接受的范围内。

1、氢气熔汤中之氢气的主要来源分为附着于放入熔解的原材料之水分燃油、气、燃烧气体中之水蒸气,铸材的水分等,和铝熔汤反应而进入铝汤中。

2、氢在铝水中的溶解量熔炼环境中的水蒸气,是铝水中氢气重要来源之一,根据计算在温度25度,相对湿度80%时,每一立方公尺空气中,约含18的水蒸气,而水气在铝中的反应式为:3H2O+2Al=3H2 +Al2O3,由反应中产生的氢则为气孔的来源之一,而反应中产生的氧化铝则是渣的来源,二者均是铸件的缺陷,也是熔炼时所不希望得到的东西。

3、除气方法在知道铝水中氢气的来源及其影响后,则熔炼时应尽量防止氢气的吸收,但无论如何防止,铝水多少总会吸收一部份的气体,此时,除气的工作即显出重要性。

通氮气使用氮气除气的效果较氯气差,因为氮气除气的原理与其不同,氮气的作用为一种机械作用,利用产生的气泡,让铝中的氢,经扩散作用进入气泡,而后被带出铝水,因此,在使用时,气泡甚多则除气效果较佳,而要气泡量多则有赖于通气管之设计,通气管的材质常为石墨。

以机械作用的原理除气,除了可以用氮气外,亦可用其他的气体,例如:氩气等惰性气体,但有鉴于价格的因素,仍以使用氮气为主,此外亦有人使用氮气与氯气的混合气体。

四、浇道系统设计目的:A、为了让金属液流经绕道系统进入模穴时,能减少乱流,由于铝液极易因乱流而形成氧化渣及气体卷入金属液内而形成渣孔,气孔等铸造毛病。

B、减少卷气及模内气体陷入金属液内,当绕道系统设计不当时易于浇注过程中造成低压地区而造成气体卷入或吸气作用。

C、当金属液流经绕道系统进入模穴时,能够达到减低金属液流速。

如此才可以减少模壁被铝水冲蚀现象,而且使得进入模内之渣及气泡易于往上浮,减少铸件缺陷。

D、使模穴能够快速填满,以便防止铝液局部先凝固现象,而造成水纹,冷接或滞流情形。

E、造成良好之温度梯度,以便促进方向性凝固造成良好之补充效果,可以减少微缩孔之情形。

F、提高铸件之成品率,良好之绕道系统设计可以达到以最少量之铝液铸造出高品质之铸件,降低成本。

G、控制稳定之流速,可以减少因个人浇注技术之差异,而造成铸件品质不稳定现象。

目前为减少人为浇注技术及速度之差异,已大量采用ABB自动手臂浇注。

五、铝合金凝固特性:A、铝液凝固过程中有形成糊状之特性,因此一般来说,冒口设计均比钢铁来得大。

大冒口可以帮助维持良好温度梯度,以便于补充铸件。

B、由于铝合金于凝固过程中,不易形成固化膜,因此任何部位局部过热均易造成表面缩孔过热成因通常是太多金属液流经同一部位或者冒口太靠近铸件所致。

C、由于铝合金于凝固特性,所以要减少微缩孔,必须要有显著之温度梯度,一般说可使用冷铁或利用肉厚差,才易达成。

六、铝合金铸疵分析铝合金铸件常发生的疵病依类型大致可分为五类:1、气孔2、缩孔3、夹渣4、裂缝5、外型铸疵1、气孔气孔为铝合金铸件最常见,最常发生,也是种类最多也最难完全克服铸疵。

依气孔的来源及形成的可分为三类:(A)空气孔(B)氢气孔(C)反应气孔A、空气孔空气孔此为铝合金经常发生的一种铸疵,且铝合金比重低所以空气很容易以机械混合的方式卷入铝合金熔液中,且空气一旦进入就很难突破出来。

于铸造过程中如果铝合金在流入模穴的过程中产生乱流,便很容易将空气卷入铝水中,并随之进入模穴内形成空气孔。

空气孔的缺陷具下列特征:a.空气孔的形状大致呈圆形,由断面观察气孔表面圆滑常附有氧化膜或浮渣。

b.空气孔的体积通常较大,于喷砂后可于铸件表面以肉眼很轻易观察到。

c.由于空气孔是在熔液凝固前被卷入,空气孔易向上浮升,所以空气孔发生的位置大都在上模面。

d.空气孔分布的位置与大小并无一定之类别,与流动的方向稍有关系,于靠近入水口的区域较常出现。

气孔的分布与凝固方向无关,所以铸件薄区或有冷铁的区域也会出现空气孔。

e.空气孔铸疵的形态再现性很差,相同的铸件疵病的位置与分布并无一定的模式。

空气孔是由于机械式的混合作用所造成,所以要避免发生此种铸疵必须使铸入模穴的金属熔液尽量得保持平稳减少乱流的发生。

要达到这项要求必须由同样铸造方案设计,改善浇注方法及严格控制浇注技巧等项目上着手改进。

2、氢气孔氢为一般相信最容易熔入液态铝合金的气体,由于氢在铝合金中固相与液体的熔解度差异很大所以液相中所熔入的氢会在凝固过程中释放出来。

这些氢在铸成的组织中以气相的形态析出造成孔穴,即所谓之氢气孔。

3、缩孔几乎大部分的金属于凝固时均产生收缩,如果这些必然会收缩的体积没有被适当补充便于最后凝固的部位形成缩孔。

缩孔的形态、位置、大小、分布等与使用合金种类含氢量,水口位置、冒口位置、冷却位置,铸模的散热等有极为密切的关系,引起缩孔的原因,必须由彻底的检讨这些因素的影响来设法改善。

七、铝合金铸造之制程品管:铸造厂中,制程品管的确切实施,对提高生产铸件之品质,必会有明显的效果,当然铸件之品质亦受材料、设备、温度、气候状况人员技术及混液等多项变动因素的影响,利用统计分析归纳的方法,制定标准化作业程序,则可使品质达到更稳定均一的程度。

国兴金属制品有限公司教育训练教材CNC车床加工技术篇一、前言铝合金轮圈之加工,已由仿削式加工进步改为电脑数控式车床(CNC车床)加工方法要完成一个铝合金轮圈成品,需分成四个步骤加工作业,即一)、第一工程二)、钻气孔三)、钻P.C.D孔四)、第二工程,在这四个工作站,各有其不同的夹持方式和加工要素,现就其各站分别详加说明如后:(一)第一工程之加工本站加工有二种因素,会直接影响后三站,因此加工前,必需确认二件事情,即1)一工程加工完成后的一工程半成品工件的长度。

A、如果一工程加工后之工件长度比标准要求还长,则会造成下列困扰:1、安装面黑皮2、二工程外胎环黑皮3、气孔厚度异常4、一工程内胎环黑皮5、A面切削太多。

B、如果一工程加工后长度比标准要求还短的话,则会产生下列问题:1、安装面切削太多,可能会发生装车上的干扰,诸如刹车来令会卡到无法装车2、一工程外胎环会黑皮3、A面无法依要求准确尺寸加工,黑皮亦多。

因此一工程长度可说相当重要,需严格要求。

2)工件夹持是否正确在夹持治具同圆心内加工(即一工程夹具之正确使用)。

如果夹持点和工件无法有效而适当之接合,太松亦或太紧均会在加工完成后,御下工件,即发生变形或黑皮现象,造成肉厚不均,平衡不良。

A)太紧之夹持,在加工后工件取下不易并会造成椭圆形状之加工物。

B)太松之夹具则左右肉厚不均,造成平衡不良,且二工程A面切削时无法依工件形状均匀切削,造成加工不良品产生。

C)三爪夹紧工件后亦需检查工件在三爪部位,工件是否紧贴垫块之平面上,如果有一爪工件无法紧贴垫块平面上,加工切削时,非常容易产生震力并且工件容易飞出造成撞车事故,非常危险。

3)中心孔尺寸之车削其精确度尤其重要,尤其是车轴配置之车子一定要在规格内A、太大,车子会抖动以至平衡不良B、太小,无法装车因此必需以钻石刀把头确保尺寸之精密度。

(二)钻气孔之加工本公司钻气孔机台为自制手动夹持工件之钻孔机,钻气孔之角度及深浅,均需用人调整,因此加工后,必需确认所钻孔之角度及肉厚是否正确,才能继续生产,且生产中要随时注意品质及尺寸,因为气孔机所钻出的品质极不稳定(目前引进之钻气孔机均在M/C机器上较准确)。

ARE 之工件如果汽嘴孔之位置在铆钉孔之中间必须校正,或先钻铆钉孔后再钻汽孔。

(三)P.C.D钻孔之加工本站之钻孔作业采用电脑自动数控钻孔机器(M/C),其工件之夹持,靠人工定位脚踏式油压中心伸缩夹持方式,因此在操作上相当简便,但在上下工件及夹持加工时,仍需注意下列几点:A.定位必需以气孔点为基准,采顺时针方式固定,不让其工件因钻孔而产生轻微滑动。

(反时针方式易滑动)并切忌使用逆时针方式为固定点,因为逆时针方式固定工件,极易造成工件蠕动而偏差,造成P.C.D不在准确位置钻孔,甚至不能装车。

B.挂工件时,必需绝对清除夹持点所堆积之铝屑,及中心仔周边所附着之铝屑,以免造成P.C.D真圆度之不良。

C.钻孔前目视切削液喷出量及喷出方向,必需对准钻刃才能不致影响刀具寿命及所钻出之孔径尺寸和品质。

D.钻孔完成后,必需即刻测量其真圆度,如有不良应立即追查原因并作改善后才能继续生产。

(四)二工程之加工本站工程为最后一站加工,在工件夹持方式系采用全周爪夹持,将整个工件以圆周紧贴夹盘,以适中之油压压力夹持住工件加工,其一二工程接刀缝的好坏,则全赖油压压力及三片爪子的同心度决定之,若稍有变异即产生二工程真圆度不良或接刀不良现象,因此在加工前,必需确认三爪的精确度,若有异常请以百分表测量其异常问题并作矫正,二工程加工完成则需测量平衡度,真圆度,各部位尺寸,并用目视检查其外观品质诸如接刀缝,盖子实配,中心孔等,依品检表格要求一一检查记录。

相关文档
最新文档