计算机进制转换汇总

合集下载

各种进制转换

各种进制转换

各种进制转换
进制是数学中的一个重要概念,它指的是数的表示方式。

在计算机科学中,常用的进制有二进制、八进制和十六进制。

不同进制下的数在形式上有所差异,但其本质并没有变化。

二进制是计算机中最基础的进制,它只包含两个数字0和1。

二进制常用于表示计算机中的数据。

我们可以通过将十进制数不断地除以2,来将十进制数转换为二进制数。

例如,将十进制数13转换为二进制数,我们可以依次进行以下操作:
13 ÷ 2 = 6 余 1
6 ÷ 2 = 3 余 0
3 ÷ 2 = 1 余 1
1 ÷
2 = 0 余 1
将以上余数倒序排列,得到的二进制数为1101。

八进制和十六进制,分别包含8和16个数字。

它们常用于表示计算机中的颜色、地址和编码等数据。

八进制和十六进制数的转换同样可以通过不断地除以对应的进制数来实现。

例如,将十进制数100转换为八进制数,则可以依次进行以下操作:
100 ÷ 8 = 12 余 4
12 ÷ 8 = 1 余 4
1 ÷ 8 = 0 余 1
将以上余数倒序排列,得到的八进制数为144。

类似地,将十进制数100转换为十六进制数,可以依次进行以下
操作:
100 ÷ 16 = 6 余 4
6 ÷ 16 = 0 余 6
将以上余数倒序排列,得到的十六进制数为64。

总之,进制转换是计算机科学中的一项基本技能,它可以帮助我们更好地理解和处理计算机中的数据。

计算机等级考试进制转换及常用函数

计算机等级考试进制转换及常用函数

十进制转二进制:用2连续相除结果为1将余数和最后的1从下向上倒序排写:如:302302/2=151 余0151/2=75 余175/2=37 余137/2=18 余118/2=9 余09/2=4 余14/2=2 余02/2=1 余0故结果为 1 0010 1110化十六进制:将二进制向左四位一化分,不足补0,按8421BCD编码法得出结果!1 1 1 0=14 0 0 1 0=2 0 0 0 1=1 十进制10 11 12 13 14 158 4 2 1 8 4 2 1 8 4 2 1 十六进制A B C D E F结果为12E化八进制:将二进制向左三位一化分,不足补0,按421法得出结果即可!二进制转十进制:从最后一位开始算起,依次列为0、1、2、3、4……位第N位的数(0或1)乘以2的N次方,再把得到的结果相加即为答案例:0110110 转十进制:第0位:0乘2的0次方=0第1位:1乘2的1次方=2第2位:1乘2的2次方=4第3位:0乘2的3次方=0第4位:1乘2的4次方=16第5位:1乘2的5次方=32第6位:0乘2的6次方=0计算:0+2+4+0+16+32+0=54 即结果为:54Sum(求和) 用法:=sum(求和单元格的区域)如:=sum(a1:a10) 表示求a1到a10区域内的和If(判断是否满足某个条件) 用法:=if(表达式,满足条件反回的值,不满足条件反回的值)如:=if(a1>=75,"好","坏") 表示当a1大于或等于75时,返回好,否则返回坏注意:if函数内同时满足一个以上的条件时要加and(题目常见于求:大学英语,大学语文,大学数学之类)如:=if(and(a1>=80,b1>=80,c1>=80),"好","坏")表示同时满足三个条件,当a1\b1\c1这三个条件都大于或等于80时则返回好,否则返回坏Sumif(条件求和) 用法:=sumif(用于条件判断的单元格区域, 由数字、逻辑表达式等组成的判定条件,求和的单元格区域)如:=sumif(a1:a10,二组,b1:b10)表示a1到a10区域内二组的个数,再求b1到b10之间二组的和(题目常见于求二组的总成绩)Countif(求区域内单元格的个数) 用法:=countif(单元格数目的区域, 由数字、逻辑表达式等组成的判定条件)如:=countif(a1:a10,二组)表示在a1到a10这个区域内二组的个数注意:某些题目可能会要求考生求(二组平均成绩),根据以上公式用countif求出了二组的个数或人数,sumif求出二组的总成绩,再用sumif 除以countif即可求出二组的平均成绩!表达式写为:=sumif(a1:a10,二组,b1:b10)/countif(a1:a10,二组) 采用的公式是:二组总成绩/二组人数。

进制之间的转换方法

进制之间的转换方法

进制之间的转换方法进制是计算机科学中非常重要的概念,它涉及到了数字的表示和计算。

在计算机中,常见的进制有二进制、八进制、十进制和十六进制。

不同进制之间的转换是我们在计算机编程和数据处理中经常需要用到的操作。

下面,我们将介绍几种常见的进制之间的转换方法。

首先,我们来看二进制和十进制之间的转换。

二进制是计算机中最基本的进制,它由0和1组成。

而十进制是我们平常生活中最常用的进制,由0到9的数字组成。

二进制到十进制的转换方法是将二进制数按权展开,然后相加得到十进制数。

例如,二进制数1011可以转换为十进制数的方法是,12^3 + 02^2 + 12^1 + 12^0 = 8 + 0 +2 + 1 = 11。

接下来,我们来看十进制到二进制的转换方法。

十进制到二进制的转换方法是通过不断除以2得到余数,然后将余数倒序排列得到二进制数。

例如,将十进制数13转换为二进制数的方法是,13÷2=6余1,6÷2=3余0,3÷2=1余1,1÷2=0余1,所以13的二进制表示为1101。

除了二进制和十进制之间的转换,我们还需要了解八进制和十六进制的转换方法。

八进制是由0到7的数字组成,而十六进制是由0到9和A到F的数字和字母组成。

八进制和十六进制到二进制的转换方法和十进制到二进制的转换方法类似,只是需要按照不同的进制规则进行计算。

总结一下,进制之间的转换方法是计算机科学中的基础知识,掌握了这些方法可以帮助我们更好地理解计算机的运行原理和进行数据处理。

通过本文介绍的方法,我们可以轻松地进行二进制、八进制、十进制和十六进制之间的转换,为我们的计算机编程和数据处理工作提供了便利。

希望本文的介绍对大家有所帮助,谢谢阅读!。

计算机基础——进制与进制的转换

计算机基础——进制与进制的转换

计算机基础——进制与进制的转换进制是计量系统中用来表示数字的一种方法,主要包括十进制、二进制、八进制和十六进制。

在计算机科学中,不同进制的转换是基础中的基础,对于理解计算机内部的数据表示方式以及进行编程、网络通信等方面都具有重要作用。

本文将详细介绍不同进制的表示方法和转换方式。

一、进制的定义和表示1. 十进制(Decimal)十进制是我们平时最常用的进制,使用0-9这10个数字来表示数值。

每位的权重是10的n次方,从右到左依次是10的0次方、10的1次方、10的2次方,依此类推。

例如,数值256在十进制中表示为2*10^2+5*10^1+6*10^0=200+50+6=2562. 二进制(Binary)二进制是计算机内部最基本的进制,只使用0和1这两个数字来表示数值。

每位的权重是2的n次方,从右到左依次是2的0次方、2的1次方、2的2次方,依此类推。

例如,数值101在二进制中表示为1*2^2+0*2^1+1*2^0=4+0+1=53. 八进制(Octal)八进制使用0-7这8个数字来表示数值。

每位的权重是8的n次方,从右到左依次是8的0次方、8的1次方、8的2次方,依此类推。

例如,数值73在八进制中表示为7*8^1+3*8^0=56+3=614. 十六进制(Hexadecimal)十六进制使用0-9和A-F这16个数字来表示数值,其中A表示10,B表示11,以此类推。

每位的权重是16的n次方,从右到左依次是16的0次方、16的1次方、16的2次方,依此类推。

例如,数值3F在十六进制中表示为3*16^1+F*16^0=48+15=63二、进制之间的转换十进制到二进制的转换原理是将十进制数不断除以2,直到商为0,然后将每次的余数倒序排列。

例如,将十进制数19转换为二进制:19/2=9余19/2=4余14/2=2余02/2=1余01/2=0余1二进制到十进制的转换原理是将二进制数的每位与对应的权重相乘,然后将乘积相加。

计算机进制之间的转换

计算机进制之间的转换

计算机进制之间的转换进制是计算机中用于表示数值的一组符号系统,包括二进制、八进制、十进制和十六进制等。

在计算机科学中,进制转换是一种常见且重要的操作。

本文将详细介绍计算机进制之间的转换方法。

1. 二进制 (Binary) 转换为十进制 (Decimal):方法1:将二进制数从右往左按位展开,每一位的值与2的幂相乘,然后将得到的结果相加。

例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=13方法2:使用公式法。

将二进制数从高位到低位按权展开,并将每一位的值乘以相应权重,然后将结果相加。

例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=132. 十进制 (Decimal) 转换为二进制 (Binary):方法1:使用除二取余法。

将十进制数从右往左不断除以2,直到商为0。

最后,将得到的余数按照从下往上的顺序排列,即为二进制数。

例如,十进制数13转换为二进制,计算过程如下:13÷2=商6、余16÷2=商3、余03÷2=商1、余11÷2=商0、余1将得到的余数按从下往上的顺序排列,即为二进制数1101方法2:使用公式法。

将十进制数转换为相应的二进制幂的和。

例如,十进制数13转换为二进制,计算过程如下:13=(2^3)+(2^2)+(2^0)=11013. 十进制 (Decimal) 转换为八进制 (Octal):方法1:使用除八取余法。

将十进制数从右往左不断除以8,直到商为0。

最后,将得到的余数按从下往上的顺序排列,即为八进制数。

例如,十进制数86转换为八进制,计算过程如下:86÷8=商10、余610÷8=商1、余21÷8=商0、余1将得到的余数按从下往上的顺序排列,即为八进制数126方法2:使用公式法。

将十进制数转换为相应的八进制幂的和。

计算机编码及进制转换

计算机编码及进制转换

1. 进制转换1.1 二进制(八进制、十六进制)转换成十进制【例1】二进制转十进制:(1011)2 = 1*23 + 0*22 + 1*21 + 1*20 = 8+2+1 = 11 【例2】八进制转十进制:(362)8 = 3*82 + 6*81 + 2*80 = 192+48+2 = 242【例3】十六进制转十进制:(16A)16 = 1*162 + 6*16+ 10 = 256 + 96 + 10 = 362 思考:其它进制如何转换成十进制?1.2 二进制与十六进制转换【方法】二进制转十六进制,将二进制数从低位起,每四位划分成一组,各组分别转换成十六进制数。

【例】求(11010110)2=(?)16思考:1.求(101100111)2=(?)16。

提示:将101100111看成 1 0110 0111。

最高组不足四位,可在前面补0,变成0001 0110 0111。

2.求(5A3)16 = (?)2。

提示:分别将每个十六进制数码转换成二进制。

5(0101),A(1010),3(0011),连起来即010*********,所以(5A3)16 = (0101 1010 0011)2 = (10110100011)23.如何进行二进制与八进制转换?1.3 十进制转换成二进制(八进制、十六进制)【方法】通过用目标基数作长除法;从最低位起列出余数“数字”。

【例1】十进制转二进制,求(23)10 = (?)223 / 2 = 11 余111 / 2 = 5 余15 / 2 = 2 余12 / 2 = 1 余01 /2 = 0 余1 = (10111)2直到商为’0’,结束【例2】十进制转十六进制,求(95)10 = (?)1695 / 16 = 5 余15 (F)5 / 16 = 0 余 5 = (5F)16思考:如何将十进制转换成其它进制?2. 计算机编码一个八位二进制数可以表示成十进制数:0~255(从00000000到11111111)。

计算机进制转换汇总

计算机进制转换汇总

计算机进制转换汇总计算机进制转换汇总计算机中常用的数的进制主要有:二进制、八进制、十六进制,学习计算机要对其有所了解。

2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

以下简介各种进制之间的转换方法:一、二进制转换十进制例:二进制“1101100”1101100 ←二进制数6543210 ←排位方法例如二进制换算十进制的算法:1*26 + 1*25 + 0*24 + 1*23 + 1* 22 + 0*21 + 0*20↑↑说明:2代表进制,后面的数是次方(从右往左数,以0开始)=64+32+0+8+4+0+0=108二、二进制换算八进制例:二进制的“10110111011”换八进制时,从右到左,三位一组,不够补0,即成了:010 110 111 011然后每组中的3个数分别对应4、2、1的状态,然后将为状态为1的相加,如:010 = 2110 = 4+2 = 6111 = 4+2+1 = 7011 = 2+1 = 3结果为:2673三、二进制转换十六进制十六进制换二进制的方法也类似,只要每组4位,分别对应8、4、2、1就行了,如分解为:0101 1011 1011运算为:0101 = 4+1 = 51011 = 8+2+1 = 11(由于10为A,所以11即B)1011 = 8+2+1 = 11(由于10为A,所以11即B)结果为:5BB四、二进制数转换为十进制数二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:计算: 0 * 20 + 0 * 21 + 1 * 22 + 0 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100五、八进制数转换为十进制数八进制就是逢8进1。

计算机进制之间相互转换

计算机进制之间相互转换

计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制。

在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。

下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。

例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。

2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的。

每一个数位赋予的数值称为位权,简称权。

权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权。

例如,543.21各数位的权分别为102、101、100、10-1和10-2。

3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。

任意进位制的数都可以写成按权展开的多项式和的形式。

二、计算机中的常用的几种进制。

在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。

二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。

1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。

其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。

2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。

其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。

3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的。

其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。

计算机的进制转换方法

计算机的进制转换方法

计算机的进制转换方法计算机中常用的进制是二进制、八进制和十六进制。

进制转换是指将一个数从一种进制表示转换为另一种进制表示的过程。

本文将详细介绍二进制、八进制和十六进制之间的相互转换方法。

1.二进制转换为八进制:二进制转换为八进制的方法是按照三位一组的方式进行转换。

首先,将二进制数从右向左每三位一组进行划分。

如果最左边的组不足三位,则在最高位补0。

然后,将每一组转换为八进制数。

八进制数的基数是8,所以每组中的数的权重分别为4、2和1、将每组的三位二进制数与相应的权重相乘,得到的结果相加即可得到八进制数。

2.二进制转换为十六进制:二进制转换为十六进制的方法是按照四位一组的方式进行转换。

首先,将二进制数从右向左每四位一组进行划分。

如果最左边的组不足四位,则在最高位补0。

然后,将每一组转换为十六进制数。

十六进制数的基数是16,所以每组中的数的权重分别为8、4、2和1、将每组的四位二进制数与相应的权重相乘,得到的结果相加即可得到十六进制数。

3.八进制转换为二进制:八进制转换为二进制的方法是将八进制数的每个数字转换为对应的三位二进制数,然后将所有的三位二进制数连起来。

4.八进制转换为十六进制:八进制转换为十六进制的方法是先将八进制数转换为二进制数,然后再将二进制数转换为十六进制数。

5.十六进制转换为二进制:十六进制转换为二进制的方法是将十六进制数的每个数字转换为对应的四位二进制数,然后将所有的四位二进制数连起来。

6.十六进制转换为八进制:十六进制转换为八进制的方法是先将十六进制数转换为二进制数,然后再将二进制数转换为八进制数。

7.其他进制之间的转换:进制转换的方法可以应用于其他进制之间的转换。

首先,将原数按照转换前的基数进行分组(注意每组的位数要与转换前的基数对应),然后将每一组转换为与转换后的基数对应的数。

最后,将每组的数相加或连起来得到转换后的数。

总结:通过上述方法,我们可以相互转换二进制、八进制和十六进制之间的数。

各种进制的转换(计算机基础呀)

各种进制的转换(计算机基础呀)

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

计算机进制之间相互转换

计算机进制之间相互转换

计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制.在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。

下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。

例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。

2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的.每一个数位赋予的数值称为位权,简称权。

权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权.例如,543.21各数位的权分别为102、101、100、10-1和10—2.3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。

任意进位制的数都可以写成按权展开的多项式和的形式。

二、计算机中的常用的几种进制。

在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。

二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。

1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。

其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。

2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。

其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。

3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的.其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。

计算机各进制换算

计算机各进制换算

计算机各进制换算计算机中常用的进制包括十进制、二进制、八进制和十六进制。

换算不同进制之间的方法是很基础和重要的,下面我们来看一下如何进行这些进制之间的转换。

1.十进制转二进制:十进制数可以被2整除或除2取余数的方式转为二进制数。

具体步骤如下:-将十进制数除以2,得到的商再除以2,如此类推,直到商为0。

将得到的余数从下往上排列,就得到了对应的二进制数。

例如,十进制数10转为二进制数:10÷2=5,余数为0,5÷2=2,余数为1,2÷2=1,余数为0,1÷2=0,余数为1、所以10的二进制表示为1010。

2.二进制转十进制:二进制数可以通过加权求和的方式转为十进制数。

具体步骤如下:-从二进制数的最右边(低位)开始,依次对每一位乘以2的n次方(n为该位的索引)。

-将得到的结果相加,即可得到对应的十进制数。

例如,二进制数1010转为十进制数:1x2^3+0x2^2+1x2^1+0x2^0=8+0+2+0=10。

3.十进制转八进制:十进制数可以被8整除或除8取余数的方式转为八进制数。

具体步骤如下:-将十进制数除以8,得到的商再除以8,如此类推,直到商为0。

将得到的余数从下往上排列,就得到了对应的八进制数。

例如,十进制数25转为八进制数:25÷8=3,余数为1,3÷8=0,余数为3、所以25的八进制表示为314.八进制转十进制:八进制数可以通过加权求和的方式转为十进制数。

具体步骤与二进制转十进制相同,只是将每一位乘以8的n次方(n为该位的索引)。

例如,八进制数31转为十进制数:3x8^1+1x8^0=24+1=255.十进制转十六进制:十进制数可以被16整除或除16取余数的方式转为十六进制数。

-将十进制数除以16,得到的商再除以16,如此类推,直到商为0。

将得到的余数从下往上排列,用A表示10、B表示11、C表示12、D表示13、E表示14、F表示15,就得到了对应的十六进制数。

计算机的进制计算方法

计算机的进制计算方法

计算机的进制计算方法!(韬杰整理)1.(1)二进制转十进制方法:“按权展开求和”例:(1011.01)2 =(1×2^3+0×2^2+1×2^1+1×2^0+0×2^(-1)+1×2^(-2) )10 =(8+0+2+1+0+0.25)10 =(11.25)10(2)十进制转二进制.十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法)例:(89)10 =(1011001)2 89÷2 (1)44÷2 ......0 22÷2 ......0 11÷2 ......1 5÷2 ......1 2÷2 01 ·十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)例: (0.625)10= (0.101)2 0.625X2=1.25 ……1 0.25X2=0.50 ......0 0.50 X2=1.00 (1)2.八进制与二进制的转换:二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。

八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。

八进制数字与二进制数字对应关系如下:000 -> 0 100 -> 4 001 -> 1 101 -> 5 010 -> 2 110 -> 6011 -> 3 111 -> 7 例:将八进制的37.416转换成二进制数: 3 7 . 41 6 011 111 .100 001 110 即:(37.416)8 =(11111.10000111)2 例:将二进制的10110.0011 转换成八进制:0 1 0 1 1 0 . 0 0 1 1 0 0 2 6 . 1 4 即:(10110.011)2 = (26.14)83.十六进制与二进制的转换:二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。

计算机的进制转换

计算机的进制转换

一、不同进制的表示(10111)2(34)10(17)8(AA)1610111B34D17O AA H十六进制数0 12 3 4 5 6 7 8 9 A(10) B C D E(14) F(15)八进制数0 12 3 4 5 6 7二进制数0 1二、任何进制转换成十进制——按权展开式1234567=1*106+2*105+3*104+4*103+5102+6101+710010111B=1*24+0*23+1*22+1*21+1*20=16+4+2+1=23D17O=1*81+7*80=8+7=15DAAH=10*161+10*160=160+10=170D三、八-二相互转换23=8 三位二进制数的大小相当于一位八进制数的大小101B=5D=5O 不足三位在前面加0补齐010*********B 2 166O2166O 2 1 6 610001 110 110十六-二相互转化24=16 四位二进制数的大小相当于一位十六进制数的大小010*********B 47 6H0100B=1*22=4数值为7 的十进制数如何写7,八进制数7 ,十六进制7数值为9 的十进制数如何写9,八进制数10 ,十六进制9数值为14 的十进制数如何写14,八进制数16 ,十六进制E14D=8+6=1*81+6*80三、十进制转换二进制数(整数部分和小数部分)整数部分-》除2取余法,直到尚未结束,得到的数从下往上的顺序,写出来101商余数10D 10÷2 5 05÷2 2 12÷2 1 01÷2 0 123D 21÷2 11 111÷2 5 15÷2 2 12÷2 1 01÷2 0 110111小数部分-》乘2取整法0.125D 0.125*2=0.250.25*2=0.50.5*2=1.00.001B0.33333 0.33333*2=0.666660.6666*2=1.33320.3332*2=0.3334 0.010B。

计算机进制之间的转换

计算机进制之间的转换
计算机进制之间的转换
常见进制
进制也就是进制位,我们常用的进制包括:
二进制、八进制、十进制与十六进制。
二进制用B表示 八进制用O表示 十进制用D表示 十六进制用H表示
十进制
十进制由数字0-9组成,逢10进一位。
在十进制中没有一个个位数的数字可以表示10, 所以向上进一位这是一个两位数。
如:(7)O,(6)O,
(1+7=10)O,逢8进1
例子:(11)O这就是一2位数,有几个数字就是几位数。
八进制转十进制或者十六进制(课外)
方法为: 把八进制按权展开相加即得十 进制数。 如果要转换成十六进制,在通过十 进制转换成十六进制即可。
十六进制由数字0-9和字母A-F组成,逢16进一位。
如:(F)H,(9)H,
(1+9=A)H,阿拉伯数字只有10个数字,但是16进制超过了10,所以要表示10到15, 就用A到F来表示,例如A=10,B=11,F=15。 例子:(11F)H这就是一3位数,有几个数字和字母就是几位数。
十进制转二进制
请把下列二进制数转换成十进制数:
(1111)B
=
(15 )D ( 21 )D ( 32 )D
(10101)B
=
(100000)B =
十六制转二进制
方法为: 一位变四位
十六进制数通过除 2 取余法,得到二进制数, 对每个十六进制数为4个 二进制数,不足时在最 左边补零。
课堂练一练
请把下列十六进制数转换成二进制数:
(19)H
=
( 11001 )B ( 100100)B ( 10101111 )B
(24)H
=
(AF)H
=
二进制转十六进制 方法为:四位变一位。 (注意事项, 4 位二 进制转成十六进制是 从右到左开始转换, 不足时补0)。

计算机中进制及进制转换

计算机中进制及进制转换

计算机中进制及进制转换计算机中的进制是指用来表示数字的基数,常见的进制有二进制(base-2)、八进制(base-8)、十进制(base-10)和十六进制(base-16)等。

进制转换是将一个数从一种进制表示转换为另一种进制表示的过程。

本文将介绍计算机中常见的进制及其转换方法。

一、二进制:二进制是最基本的进制,在计算机中广泛使用。

二进制中只包含0和1两个数字,称为位(bit),是计算机中数据的最小单位。

二进制中每一位的权重是2的幂,从右往左递增,分别为2^0、2^1、2^2、2^3...。

例如,二进制数1010表示10,计算方式是1乘以2的3次方加上0乘以2的2次方再加上1乘以2的1次方加上0乘以2的0次方。

二、八进制:八进制是一种用8个数字来表示数值的进制。

八进制中的每一位的权重是8的幂,从右往左递增,分别为8^0、8^1、8^2、8^3...。

例如,八进制数75表示61,计算方式是7乘以8的1次方加上5乘以8的0次方。

三、十进制:十进制是我们日常生活中常用的进制,也是最容易理解的进制。

十进制中的每一位的权重是10的幂,从右往左递增,分别为10^0、10^1、10^2、10^3...。

例如,十进制数123表示123,计算方式是1乘以10的2次方加上2乘以10的1次方再加上3乘以10的0次方。

四、十六进制:十六进制是一种用16个数字(0-9以及A-F)来表示数值的进制。

十六进制中的每一位的权重是16的幂,从右往左递增,分别为16^0、16^1、16^2、16^3...。

为了区分十六进制和十进制,在十六进制数的末尾通常会添加"h"或"0x"作为标识。

例如,十六进制数1A7表示423,计算方式是1乘以16的2次方加上10(表示A)乘以16的1次方再加上7乘以16的0次方。

进制转换:在计算机中,经常需要进行不同进制的转换,下面将介绍一些常见的进制转换方法。

1.二进制转八进制和十六进制:2.八进制和十六进制转二进制:3.十进制转二进制、八进制和十六进制:十进制转换为二进制的方法是不断除以2,将每一步的余数作为二进制数的一位,直到商为0为止。

计算机各进制换算

计算机各进制换算

一:十进制数转换成二进制数。

随便拿出一个十进制数“39”,(假如你今天买书用了39元)先来把这个39转换成2进制数。

商余数步数39/2= 19 1第一步19/2= 9 1 (这里的19是第一步运算结果的商)第二步9/2= 4 1 (这里的9是第二步运算结果的商)第三步4/2= 2 0 (这里的4是第三步运算结果的商)第四步2/2= 1 0 (这里的2是第四步运算结果的商)第五步1/2= 0 1 (这里的1是第五步运算结果的商)第六步那么十进制数39转换成2进制数就是100111. 既39(10)=100111(2)解析一:1. 当要求把一个10进制数转换成2进制数的时候,就用那个数一直除以2得到商和余数。

2. 用上一步运算结果的商在来除以2,再来得到商和余数。

3. 就这样,一直用上一步的商来除以2,得到商和余数!那么什么时候停止呢?4. 请看上述运算图,第六步的运算过程是用1除以2.得到的商是0,余数是1. 那么请你记住,记好了啊共2点。

A: 当运算到商为“0”的时候,就不用运算了。

B:1/2的商为“0”余数为“1”。

这个你要死记住,答案并不是0.5!答案就是商为“0”余数为“1”。

你不用去思考为什么,记好了就行了!5. 在上述图中你会清晰的看到每一步运算结果的余数,你倒着把它们写下来就是“100111”了。

那么这个就是结果了。

6. 在上述图中符号“/”代表“除以”。

二:十进制数转换成八进制数。

随便拿出一个十进制数“358”,(假如你今天买彩票中了358元)。

358是我们现实生活中所用10进制表达出来的一个数值,转换成八进制数十多少?商余数步数358/8= 44 6第一步44/8= 5 4 (这里的44是第一步运算结果的商)第二步5/8= 0 5 (这里的5是第二步运算结果的商)第三步那么十进制数358转换成8进制数就是546。

既358(10)=546(8)解析二: 1.没什么好说的啦,10进制数转换成2进制数和10进制数转换成8进制数的唯一不一样的地方就是除数变了,除数由“2” 变成了“8”。

计算机基础进制转换

计算机基础进制转换

计算机基础进制转换计算机基础之进制转换一、引言计算机基础是每个计算机科学学生必修的一门课程,其中进制转换是其中的重要内容之一。

进制转换是指将一个数字从一种进制表示转换为另一种进制表示的过程。

本文将介绍常见的进制转换方法及其应用。

二、十进制与二进制的转换1. 十进制转二进制十进制是我们常用的一种进制,而二进制是计算机中最基本的进制。

将十进制数转换为二进制数的方法是通过不断除以2来进行的。

具体步骤如下:(1)将十进制数除以2,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的二进制数。

2. 二进制转十进制将二进制数转换为十进制数的方法是通过按权展开法进行的。

具体步骤如下:(1)将二进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重2的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。

三、十进制与八进制的转换1. 十进制转八进制将十进制数转换为八进制数的方法是通过不断除以8来进行的。

具体步骤如下:(1)将十进制数除以8,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的八进制数。

2. 八进制转十进制将八进制数转换为十进制数的方法是通过按权展开法进行的。

具体步骤如下:(1)将八进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重8的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。

四、十进制与十六进制的转换1. 十进制转十六进制将十进制数转换为十六进制数的方法是通过不断除以16来进行的。

具体步骤如下:(1)将十进制数除以16,得到商和余数;(2)将得到的余数从下往上按顺序排列,得到的就是转换后的十六进制数。

其中,余数大于9时,可以用A、B、C、D、E、F来表示。

2. 十六进制转十进制将十六进制数转换为十进制数的方法是通过按权展开法进行的。

具体步骤如下:(1)将十六进制数从右往左按位数编号,最右边为第0位;(2)将每一位的数乘以权重16的n次方,n为该位的编号;(3)将各位乘积相加,得到的和就是转换后的十进制数。

计算机进制换算

计算机进制换算

表1-1 几种常用进制之间的对照关系十进制二进制八进制十六进制0 0000 0 01 0001 1 12 0010 2 23 0011 3 34 0100 4 45 0101 5 56 0110 6 67 0111 7 78 1000 10 89 1001 11 910 1010 12 A11 1011 13 B12 1100 14 C13 1101 15 D14 1110 16 E15 1111 17 F1、将(1111101100.0001101)2转换成十六进制数。

0011 1110 1100 . 0001 1010↓↓↓↓↓↓3 E C . 1 A结果为:(1111101100.0001101)2=(3EC.1A)162、(1101100.111)2=1×26+1×25+1×23+1×22+1×2-1+1×2-2 +1×2-3=64+32+8+4+0.5+0.25+0.125=(108.875)103、十进制数215用二进制数表示是A)1100001B)1101001C)0011001D)11010111【答案】D【解析】十进制向二进制的转换前面已多次提到,这一点也是大纲要求重点掌握的。

采用"除二取余"法。

4、十六进制数34B对应的十进制数是A)1234B)843C)768D)333【答案】B【解析】十六进制数转换成十进制数的方法和二进制一样,都是按权展开。

5、二进制数0111110转换成十六进制数是A)3FB)DDC)4AD)3E【答案】D【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。

6、二进制数10100101011转换成十六进制数是A)52BB)D45DC)23CD)5E【答案】A【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机进制转换汇总
计算机中常用的数的进制主要有:二进制、八进制、十六进制,学习计算机要对其有所了解。

2进制,用两个阿拉伯数字:0、1;
8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;
10进制,用十个阿拉伯数字:0到9;
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

以下简介各种进制之间的转换方法:
一、二进制转换十进制
例:二进制“1101100”
1101100 ←二进制数
6543210 ←排位方法
例如二进制换算十进制的算法:
1*26 + 1*25 + 0*24 + 1*23 + 1* 22 + 0*21 + 0*20
↑↑
说明:2代表进制,后面的数是次方(从右往左数,以0开始)=64+32+0+8+4+0+0
=108
二、二进制换算八进制
例:二进制的“10110111011”
换八进制时,从右到左,三位一组,不够补0,即成了:
010 110 111 011
然后每组中的3个数分别对应4、2、1的状态,然后将为状态为1的相加,如:
010 = 2
110 = 4+2 = 6
111 = 4+2+1 = 7
011 = 2+1 = 3
结果为:2673
三、二进制转换十六进制
十六进制换二进制的方法也类似,只要每组4位,分别对应8、4、2、1就行了,如分解为:
0101 1011 1011
运算为:
0101 = 4+1 = 5
1011 = 8+2+1 = 11(由于10为A,所以11即B)
1011 = 8+2+1 = 11(由于10为A,所以11即B)
结果为:5BB
四、二进制数转换为十进制数
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:0110 0100,转换为10进制为:
计算: 0 * 20 + 0 * 21 + 1 * 22 + 0 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100
五、八进制数转换为十进制数
八进制就是逢8进1。

八进制数采用 0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:
计算: 7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839
结果是,八进制数 1507 转换成十进制数为 839
六、十六进制转换十进制
例:2AF5换算成10进制
直接计算就是: 5 * 160 + F * 161 + A * 162 + 2 * 163 = 10997
(别忘了,在上面的计算中,A表示10,而F表示15)、
现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

假设有人问你,十进数 1234 为什么是一千二百三十四?你尽可以给他这么一个算式: 1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100。

相关文档
最新文档