风电场电气系统应用需要掌握的知识点教学内容

合集下载

风电技术培训内容大全

风电技术培训内容大全

风电技术培训内容大全一、风力发电机组基础知识1. 风力发电概述:介绍风力发电的基本原理、风能的特点以及风力发电在全球范围内的应用情况。

2. 风力发电机组的基本构成:详细讲解风力发电机组的基本构成,包括风轮、发电机、塔筒等主要部件。

3. 风力发电机组的工作原理:阐述风力发电机组的工作原理,包括风能吸收、风轮转换、发电机发电等过程。

二、风力发电机组结构与原理1. 风轮结构与原理:详细介绍风轮的结构、特点、工作原理以及与发电机组的配合方式。

2. 发电机结构与原理:详细介绍发电机的结构、工作原理以及与风轮的配合方式。

3. 塔筒结构与原理:详细介绍塔筒的结构、特点、工作原理以及与风轮和发电机的配合方式。

三、风力发电机组控制系统1. 控制系统的基本组成:介绍控制系统的基本组成,包括传感器、控制系统硬件和软件等。

2. 控制系统的功能:阐述控制系统的功能,包括对风向、风速的监测和控制,对发电机组的启动、停止、调速等控制。

3. 控制系统的工作原理:详细介绍控制系统的工作原理,包括传感器的工作原理、控制算法的实现等。

四、风力发电机组维护与检修1. 维护与检修的基本知识:介绍维护与检修的基本概念和方法,包括定期维护、故障检修等。

2. 主要部件的维护与检修:详细介绍主要部件的维护与检修方法,包括风轮、发电机、塔筒等的维护与检修。

3. 维护与检修的安全措施:强调维护与检修过程中的安全措施和注意事项。

五、风力发电机组故障排除1. 故障排除的基本流程:介绍故障排除的基本流程,包括故障检测、故障定位、故障修复等。

2. 常见故障及排除方法:列举常见的风力发电机组故障及相应的排除方法。

3. 故障排除的安全措施:强调故障排除过程中的安全措施和注意事项。

六、风力发电机组安全知识1. 安全操作规程:介绍风力发电机组的安全操作规程,包括操作前的准备、操作过程中的注意事项等。

2. 安全防护措施:列举常见的安全防护措施,包括防护设备的使用、安全警示标识的设置等。

风电场电气知识

风电场电气知识

风电场电气知识随着人们对可再生能源的需求与日俱增,风能作为一种清洁且可持续的能源形式备受关注。

风电场作为利用风能发电的重要设施,在电气知识方面有着独特的要求和特点。

本文将从风电场电气系统的组成、运行原理、控制与保护等方面进行探讨。

一、风电场电气系统的组成风电场的电气系统主要由风力发电机、变压器、变流器、电缆和开关设备等组成。

风力发电机是风电场的核心设备,它将风能转化为电能。

变压器用于将发电机输出的低压交流电升压为输电所需的高压电。

变流器则将交流电转化为直流电,以适应电网的要求。

电缆和开关设备用于输送和分配电能,并在必要时进行控制和保护。

二、风电场的运行原理风电场的运行原理可以简单概括为风能转化为机械能,再通过发电机转化为电能,最终接入电网供电。

当风吹过风力发电机的叶片时,叶片会受到气流的作用力而转动。

叶片的转动带动发电机转子旋转,通过电磁感应原理,将机械能转化为电能。

发电机输出的电能经过变压器升压后,通过变流器转化为直流电,再通过逆变器转化为交流电,最终与电网连接,供给用户使用。

三、风电场的控制与保护风电场的控制与保护是确保其安全稳定运行的关键。

控制系统主要包括风速控制、功率控制和电网控制等。

风速控制通过调节叶片角度或变桨系统控制风力发电机的转速,以适应不同的风速。

功率控制则根据电网需求,控制发电机的输出功率,保持与电网的稳定连接。

电网控制则负责监测和调节风电场与电网之间的电压、频率等参数,确保电能的稳定传输。

保护系统主要包括过流保护、过压保护和接地保护等。

过流保护用于检测风电场电气设备中的电流异常,一旦发现过流情况,保护系统会及时切断电路,以防止设备损坏。

过压保护则是在电压超过设定值时,保护系统会自动切断电路,以避免设备损坏或事故发生。

接地保护则是通过监测电气设备的接地情况,一旦发现接地故障,保护系统会及时切断电路,以确保人身安全和设备的正常运行。

风电场电气知识的掌握对于保证风电场的安全运行至关重要。

《风电场电气部分》课件

《风电场电气部分》课件

风电场分类
01
02
03
陆上风电场
指在陆地上的风电场,一 般规模较大,风能资源丰 富。
海上风电场
指在海洋上的风电场,一 般规模较大,风能资源丰 富,但建设难度较大。
山地风电场
指在山地区域内的风电场 ,一般规模较小,风能资 源丰富,但建设难度较大 。
风电场发展历程
起步阶段
20世纪80年代初,我国开 始探索风电场建设,主要 集中在沿海地区。
升压站的运行管理对于保障风 电场的电力输出和电网稳定性 具有重要意义。
03
风电场电气系统运行
风力发电机组运行原理
风能转换
风力发电机组利用风能驱动涡轮 旋转,通过变速齿轮箱将动力传 递到发电机,从而将机械能转换
为电能。
发电原理
发电机通过电磁感应原理将机械能 转换为电能,产生的三相交流电通 过整流和逆变转换为直流电,供给 风电场的负荷。
定期检查集电线路的导线、绝缘子和杆塔等 部件,确保其正常运行。
集电线路检修
对集电线路进行全面的检查和维修,解决潜 在问题。
集电线路加固
对于存在安全隐患的集电线路,采取加固措 施,提高其稳定性。
集电线路更换
当集电线路的部件损坏或老化时,及时更换 。
升压站维护与检修
01
升压站维护
定期检查升压站的各设备,确保其 正常运行。
具有重要意义。
在风电场的建设和管理过程中,需要对集电线路进行 定期巡检和维护,以确保其正常运行。
集电线路是风电场中用于汇集和传输电能的线 路。
集电线路的设计需要考虑线路的电压等级、电流 大小、传输距离和环境条件等因素。
升压站
升压站是风电场中用于升高电 压和汇集电能的场所。

风电操作技术培训电气知识

风电操作技术培训电气知识

风电操作技术培训电气知识随着环境保护意识的提高,可再生能源越来越受到人们的关注和重视。

作为其中的一种能源形式,风能通过风力发电机转化为电能,并逐渐成为能源领域的热门话题之一。

风力发电技术的快速发展,也带动了对风电操作技术和电气知识的需求。

为了保证风力发电系统的高效运行和安全稳定,风电操作技术培训电气知识变得至关重要。

一、风力发电原理与构成1. 风力发电原理风力通过风轮转动风力发电机的叶片,使之带动发电机转子旋转,产生电能。

这是一种利用风力的动力装置,将机械能转化为电能。

2. 风力发电系统构成风力发电系统主要由风轮、发电机、电网和控制系统等组成。

风轮是风力发电的核心部分,通过叶片转动捕捉风能;发电机将机械能转化为电能,并输出给电网;电网则将电能输送到各个用户,供电使用;控制系统负责监测和控制整个发电系统的运行。

二、风电操作技术培训1. 风电系统运行原理风电系统的运行需要保证风轮的正常转动,并将所捕获的风能转化为电能供电。

风电操作技术培训需要涵盖风轮的安装、维护和故障排除等方面,以提高操作人员对风电系统运行原理的深入理解和掌握。

2. 风电系统安全操作要点在风力发电系统的操作过程中,操作人员需要严格遵守安全操作要点,保证操作过程的安全性。

这包括但不限于:- 确保操作人员具备足够的电气知识和技能;- 在操作前对设备进行全面检查和维护;- 遵循操作规程和操作流程;- 注意人身安全和设备防护;- 及时处理设备故障和紧急情况。

三、电气知识1. 风力发电系统的电气原理风力发电系统的电气原理是风轮驱动发电机旋转产生电能,再经过变压器升压送入电网。

风电操作技术培训应该涵盖风力发电系统的电气原理,以及相关的电路连接、电压变换和电能传输等知识。

2. 风力发电系统的保护与维护风力发电系统的保护与维护包括系统保护和设备维护两个方面。

系统保护是指通过监测和控制系统对风力发电系统进行保护,避免过电流、过电压和短路等故障;设备维护是指对发电机、变压器等设备进行定期维护,确保其正常运行。

风电场安全培训教材

风电场安全培训教材

风电场安全培训教材第一章:风电场基础知识为了确保风电场的安全运营,必须首先掌握一些基础知识。

本章将介绍风电场的定义、构成以及主要设备的功能。

一、风电场的定义风电场是指通过安装在地面或海洋风区的大型风力发电机组,利用风力驱动发电机旋转,进而发电的区域。

二、风电场的构成1. 风力发电机组:主要由机舱、叶片、涡轮、发电机等组成,叶片通过受风力作用旋转,带动涡轮和发电机发电。

2. 传输系统:包括电缆、变压器等设备,将发电机产生的电能传输到电网中。

3. 控制系统:用于监测和控制风力发电机组的运行,确保其安全和高效运行。

4. 基础设施:风电场的基础设施包括道路、通讯网络、风机安装平台等。

三、风电场设备的功能1. 风力发电机组:将风能转化为机械能,进而转化为电能。

2. 传输系统:将风力发电机组产生的电能传输到电网中,以供给用户使用。

3. 控制系统:监测和控制发电机组的运行状态,确保其安全稳定运行。

第二章:风电场安全管理为了确保风电场的安全运行,必须建立科学的安全管理系统。

本章将介绍风电场的安全管理体系以及针对不同风险的应急措施。

一、风电场安全管理体系风电场安全管理体系是指针对风电场设计、施工、运维等全过程的安全管理体系,包括以下几个方面:1. 安全责任制:明确各级人员的安全责任,建立健全的安全管理机构。

2. 安全培训:对风电场从业人员进行安全培训,提高安全意识和技能。

3. 危险源管理:识别和管理风电场可能存在的危险源,采取相应的控制措施。

4. 安全检查与监督:定期进行风电场的安全检查和监督,发现问题及时处理。

二、风电场应急措施1. 天气预警:根据气象部门发布的天气预警,及时采取相应的安全措施。

2. 事故应急:建立完善的事故应急预案,明确责任人员和应急流程,确保事故处置及时有效。

第三章:风电场作业安全风电场的作业安全是保证风电场正常运行的重要环节。

本章将介绍风电场的常见作业及安全注意事项。

一、风力发电机组的巡检与维护1. 巡检规范:进行定期巡视,检查发电机组的运行状态和设备完好情况。

风电场电气系统课件——第1章_风电场和电气部分的基本概念

风电场电气系统课件——第1章_风电场和电气部分的基本概念
电压互感器和电流互感器按作用来分可以认为是二次设备,但 其直接并联和串联于一次电路中,实际上是一次系统和二次系 统的连接设备。
电气主系统
风电场和电气部分的基本概念
§1.3 电气和电气部分
§1.3.2 电气部分的一般组成
继电保护及自动装置可以认为是电力系统的卫兵。当电气设备 发生故障时,对应的继电保护装置会根据采集到的电流和电压 进行分析,判定发生故障后便动作触发与故障设备相连的断路 器。
电气主系统
风电场和电气部分的基本概念
§1.3 电气和电气部分
§1.3.2 电气部分的一般组成
上述设备运行的时候需要消耗电能,是作为耗电设备存在的, 因此还需要装设相应的直流电源设备。 采用直流的好处是可以利用蓄电池进行电能存储。 在发电厂和变电站内二次设备由控制电缆连接构成了功能不 同的二次回路。
电气主系统
风电场和电气部分的基本概念
§1.4 电气部分的图示
对于风电场等各类发电厂和变电站内电气部分的设计、施工、 运行和研究等工作都需要依赖其图形方法,即用图形符号结 合文字符号在平面上抽象我们的具体问题,最为常见的就是 电气接线图,包括一次接线图和二次回路图,它们以规定的 图形和文字符号描述了厂站内一次部分和二次部分的电路基 本组成和连接关系。
风电场电气系统
风电场和电气部分的基本概念
主要内容
绪论 发电、变电和输电的电气部分 第一章 风电场和电气部分的基本概念 第二章 风电场电气部分的构成和主接线方
式 第三章 风电场主要一次设备 第四章 配电装置 第五章 电力变压器的运行
电气主系统
风电场和电气部分的基本概念
第1章 风电场和电气部分的基本概念

380/220V
发 市 场

风电 专业 知识点总结

风电 专业 知识点总结

风电专业知识点总结1. 风电发电原理风电发电原理是通过风力驱动风机发电。

风机又分为水平轴风机和垂直轴风机。

水平轴风机是指风叶垂直于地面转动,根据风叶转动的方向可以分为上风式和下风式。

垂直轴风机则是风叶平行于地面转动,其优势在于可以适应多个方向的风。

2. 风电发电系统风电发电系统主要包括风机、转子传动系统、电力系统、监控系统和气象站。

其中,风机是发电系统的核心,通过风机的装配、设置和调试,保证发电系统顺利运行。

3. 风电场的选址风电场的选址是十分重要的,需要考虑到地理环境、气象条件、土地安排、电网接入等因素。

同时,需要遵循相关法规和环保标准来进行选址。

4. 风电场建设风电场建设包括风电场的规划、设计、设备采购、施工、验收等环节。

建设过程中需要考虑到工程质量、工程进度、安全环保等方面的管理与控制。

5. 风电场运营维护风电场的运营维护包括风机的日常运行、设备的检修维护以及风电场的管理运营。

在运营维护过程中,需要做好监测预警、设备保养、故障处理等工作,确保风电场的正常运行。

6. 风电场的环保与效益风电场的环保与效益是评价一个风电场成败的关键因素。

发电过程中减少污染排放、保护生态环境是风电场的重要职责,同时提高风电场的发电效率、降低发电成本也是风电场运营的必要目标。

7. 风力发电机组风力发电机组通过风力轮转,驱动发电机生成电能。

风力发电机组包括定子和转子两部分,定子通过塔架与基座固定,转子则通过轴承连接到叶轮,根据风力的大小产生不同的转速。

8. 风力机叶片风力机叶片是风力机组的关键部件,其性能直接影响风力机的发电效率。

叶片的形状、材料以及表面处理都会直接关系到风力机的运行效果,对于提高发电效率至关重要。

9. 风电场的并网接入风电场的并网接入是指将风电场发电系统与电网相连接,实现对外供电。

并网接入需要遵守相关法规安全标准,进行可靠性测试和性能检测,确保风电场与电网的安全稳定运行。

10. 风电技术的发展趋势风电技术的发展趋势主要包括提高发电效率、增加装机容量、延长设备寿命、降低发电成本、提高电网适应性等方面。

风电场电气系统(朱永强)第1章 电气系统1

风电场电气系统(朱永强)第1章 电气系统1
风电场电气系统
风电场和电气部分的基本概念
§1.3 电气和电气部分
§1.3.2 电气部分的一般组成
包括风电场在内的各类发电厂站、实现电压等级变换和能量输 送的电网、消耗电能的各类设备(用户或负荷)共同构成了电 力系统,即用于生产、传输、变换、分配和消耗电能的系统。 电力系统各个环节的带电部分统称为其各自的电气部分。 发电厂和变电站是整个电力系统的基本生产单位。电气部分不 仅仅包括电能生产、变换的部分,还包括其自身消耗电能的部 分。以上用于能量生产、变换、分配、传输和消耗的部分称为 电气一次部分。 为了实现对厂站内设备的监测与控制,电气部分还包括所谓的 二次部分,即用于对本厂站内一次部分进行测量、监视、控制 和保护的部分。
风电场电气系统
风电场和电气部分的基本概念
本课程主要内容
第7章介绍风电场的防雷和接地问题,首先说明雷电的形成机 理和雷电的危害,介绍雷电防护的一般方法;然后对接地的意 义和作用,尤其是对接触电压和跨步电压等重要概念进行具体 的说明,给出接地设计的一般要求;并全面介绍风电场发电机 组、集电线路和升压站的防雷保护措施,有助于大家了解风电 场电气设备安全方面的知识和解决办法,提高安全生产的意识。 第8章介绍风电场中的电力电子设备,在简述电力电子技术应 用和常见电力电子器件的基础上,阐述变流技术和PWM技术 的基本原理;重点介绍主流大型风电机组的并网换流器,包括 其电路结构和基本工作原理;最后简单介绍风电场的无功补偿 与电压控制需求,以及SVC和STATCOM等无功补偿设备。
风电场电气系统
风电场和电气部分的基本概念
本课程主要内容
第3章详细介绍风电场中的各主要一次电气设备的结构和工作 原理,包括风电机组、变压器、断路器和隔离开关、母线和输 电线路、电抗器和电容器、电压互感器和电流互感器等,以及 变压器、断路器等重要一次设备的型式、参数,使大家对风电 场电气设备的原理、功能、结构、外观等有具体认知。 第4章介绍风电场一次电气设备选择的一般条件和技术条件, 以及热稳定校验、动稳定校验和环境校验方法,使大家了解和 掌握电气设备的型式、参数与其在风电场中运行环境的关系, 并且能对风电一次设备的选择进行初步分析和简单计算。

风电场电气知识

风电场电气知识

电气运行基本知识第一章电气设备倒闸操作与事故处理原则第一节电气设备倒闸操作一、电气设备倒闸操作基本原则1.倒闸操作的概念当电气设备由一种状态转换到另一种状态或改变电力系统的运行方式时,需要进行一系列的操作,这种操作叫做电气设备的倒闸操作。

2.电气设备状态(1)运行状态:指设备的断路器及隔离开关都在合闸位置,将电源至受电端间的电路接通(包括辅助设备,如电压互感器、避雷器等)。

(2)热备用状态:指设备的断路器在断开位置,而隔离开关在合闸位置,断路器一经合闸,电路即接通转为“运行状态”。

(3)冷备用状态:是指设备的断路器及隔离开关均在断开位置。

其显著特点是该设备与其他带电部分之间有明显的断开点。

(4)检修状态:是指设备的断路器及隔离开关均已断开,检修设备两侧装设了保护接地线(或合上了接地隔离开关),并悬挂了工作标示牌,安装了临时遮栏等。

3.倒闸操作的内容(1)拉开或合上断路器和隔离开关。

(2)拉开或合上接地刀闸(拆除或挂上接地线)。

(3)装上或取下某控制回路、合闸回路、电压互感器回路的熔断器。

(4)投入或停用某些继电保护和自动装置及改变其整定值。

(5)改变变压器或消弧线圈的分接头。

4.倒闸操作的基本原则(1)在拉、合闸时,必须用断路器接通或断开回路的负荷电流及短路电流,绝对禁止用隔离开关接通或切断回路负荷电流。

(2)线路停送电操作:1)线路送电时,应从电源侧进行,在检查断路器确在断开位置后,按先合上母线侧隔离开关,再合上线路侧(负荷侧)隔离开关,最后合上断路器的顺序操作。

2)线路停电时,应从负荷侧进行,拉开断路器后,检查断路器确在断开位置,然后拉开负荷侧隔离开关,最后拉开母线侧隔离开关。

3)较长线路的停、送电,应防止电压产生过大波动,防止发电机产生自励磁,注意调节发电机电压。

(3)变压器操作:1)变压器送电,送电前应将变压器中性点接地,送电先合电源侧断路器,后合负荷侧断路器。

2)变压器停电,停电前将变压器中性点及消弧线圈倒至运行变压器。

第二讲 风电场的电气系统资料

第二讲 风电场的电气系统资料
(4)电阻接地方式
中性点经电阻接地的系统,相当于在零序阻抗上并联一个电阻R,该电阻与系统对地电容 构成并联回路,可起到抑制谐振过电压的作用。当发生接地故障时,中性点出现电压,能 迅速切除故障,可降低设备绝缘水平。继电保护可方便地监测接地的故障线路。
2.2.3 风电场的接地的系统
风电场接地系统特点: ①风电场延伸至几公里范围 ②现代风力机的高度使它们易遭受雷击 ③它们有的位于山顶的高阻性地基上
2.3 风电场的防雷保护
雷击是非常复杂的自然现象,包含一系列的气体放 电电流。术语“闪电”用来描述放电序列,它利用 相同的电离通道,可以持续达1s。闪光的各个部分 叫雷“击”。
雷闪通常分成4种主要类型: • 起初向下,负的和正的极性; • 起初向上,负的和正的极性。
通常由带电雷云引起,负电荷雷云传递负电荷到地 (起初向下—负极性) 是最普遍的。向下的负闪电 典型的是由高幅值的电流脉冲组成的,持续时间几 个ms,持续流过的电流几百A。然后,随着雷云和 地之间初始传递电流的熄灭,可能有多次再击雷。
有防备故障的瞬时过流保护,有延滞(热)功能的过电流保护 双向晶闸管软起动单元,通常具有一个旁路电流接触器,被用来
减小在发电机接通时的浪涌电流 功率因数校正电容器(PFC)电路,分级投切,+小的电感器限制
容性合闸电流(浪涌电流) 辅助交流电源,直流电源(风轮机控制器、保护等用) 保护保险丝额定电流较小。 浪涌分流器(避雷器),避免内部电气系统遭受站内电气网络传
架空线(绝缘架空线) 电缆(直流电缆、交流电缆)
海上风电场电气接线一例
电缆特性:电阻与面积、距离;充电电流 与面积、距离
海上风电用电缆传输的比较: HVDC、VSC、交流

风电机组电气基础知识

风电机组电气基础知识

风电机组电气基础知识风电机组是利用风能转换为电能的设备,具有清洁、可再生等特点,被广泛应用于发电领域。

在了解风电机组的电气基础知识之前,我们先简单介绍一下风电机组的工作原理。

风电机组的工作原理是利用风能驱动风轮旋转,通过风轮与发电机的联动转动,将机械能转化为电能。

风轮是由多个叶片组成的,当风力作用于叶片上时,风轮开始旋转。

旋转的风轮通过轴将机械能传递给发电机,发电机则将机械能转化为电能输出。

风电机组的电气基础知识主要包括以下几个方面:1. 发电机:风电机组中的发电机是将机械能转化为电能的关键设备。

发电机常见的类型有同步发电机和异步发电机。

同步发电机是最常见的类型,它的转速与电网频率同步,输出的交流电频率为50Hz或60Hz。

异步发电机则适用于小型风电机组,其转速可以根据风速的变化而调节。

2. 变频器:为了适应风速的变化,提高风能的利用效率,风电机组通常会配备变频器。

变频器可以调节发电机的转速,使其与电网频率保持同步。

当风速较低时,变频器可以提高发电机的转速,增加发电量;而当风速较高时,变频器则可以降低发电机的转速,保证发电机的安全运行。

3. 电网连接:风电机组通过电网连接实现电能的输送和分配。

在连接电网之前,需要经过变压器将输出的电能升压至电网的工作电压。

同时,为了确保风电机组与电网的稳定运行,还需要配备并网保护装置,并遵循相关的电网接入规范。

4. 控制系统:风电机组的控制系统起着监测、保护和调节的作用。

通过对风速、转速、电压等参数的实时监测,控制系统可以判断风电机组的运行状态,并在必要时采取保护措施,如停机、切除负荷等。

此外,控制系统还可以根据电网的需求,调节风电机组的输出功率。

5. 智能化技术:随着科技的不断进步,智能化技术在风电机组中得到了广泛应用。

智能化技术可以实现对风电机组的远程监控和管理,提高运行效率和可靠性。

通过传感器、数据通信等技术手段,可以实时获取风电机组的运行数据,并进行远程故障诊断和维护。

《风电场电气系统》课件

《风电场电气系统》课件

风电场电气系统的维护与管理
风电场电气系统的维护与管理是确保风力发电持续运行的关键。本节将介绍 安全管理、运行维护和故障处理等方面的内容。
风电场电气系统的未来发展
风电场电气系统将朝着智能化、新能源电力系统和网络化管理系统方向发展。本节将展望风电场电气系 统未来的发是将风力发电机组产生的电能进行变压、变流、接入电网的设 备。本节将介绍变电站的作用,变压器的分类,开关设备的作用以及线路的 作用。
风机并网
风机并网是将风力发电机组产生的电能与电网连接的过程。本节将介绍并网的意义,必要的要求以及实 现并网的方法。
风机的控制系统
风机的控制系统包括主控制系统、监控系统和底层控制系统。本节将详细介 绍这些控制系统的功能和作用。
《风电场电气系统》PPT 课件
风电场电气系统是风力发电的重要组成部分。本课件将介绍风电场电气系统 的概念、作用与功能,以及风电场变电站、风机并网和风机控制系统等内容。
风电场电气系统简介
风电场电气系统是风力发电中不可或缺的一部分。本节将概述风电场电气系 统的基本概念,以及其在风力发电中的作用与功能。

风力发电课件--电气系统1讲解

风力发电课件--电气系统1讲解

风力发电机组输出的电能经由特定电力线路送给用户或接入电 网。 风力发电机组与电力用户或电网的联系是通过风电场中的电气 部分得以实现的。
风电场电气系统
风电场和电气部分的基本概念
§1.2 风电场的概念
风电场是在一定的地域范围内由同一单位经营管理的所有风力 发电机组及配套的输变电设备、建筑设施、运行维护人员等共 同组成的集合体。 选择风力资源良好的场地,根据地形条件和主风向,将多台风 力发电机组按照一定的规则排成阵列,组成风力发电机群,并 对电能进行收集和管理,统一送入电网,是建设风电场的基本 思想。
风电场电气系统
风电场和电气部分的基本概念
第1章 风电场和电气部分的基本概念
关注的问题 风电场的基本概念,电气和电气部分的概念; 电气部分的一般组成有哪些?各部分的作用是什么? 电气部分的图形表示法 教学目标 了解风电场的基本概念和风电场电气部分的含义, 初步理解和掌握电气部分的大致构成及表示方法, 尤其是重要电气设备及其图形符号。
1. 能量转换过程
燃料的化学能→热能→机械能→电能
2. 火力发电厂三大主机
锅炉 汽轮机 发电机
3. 火力发电厂分类
凝气式火力发电厂,生产过程示意图见1-1 热电厂
风电场电气系统
风电场和电气部分的基本概念
▉ 火力发电厂— 凝汽式火电厂生产过程示意图
风电场电气系统
风电场和电气部分的基本概念
▉ 水力发电厂
发电厂中的发电机是一般意义上的电源,它将其他能源转化为 电能,如:煤炭、石油、水能、风能、太阳能、地热、潮汐等。 电能无法由自然界直接获取,是一种二次能源,那些存在于自 然界可以直接利用的能源被称为一次能源。 发电厂中发电机生产的电能一般需要经过变压器升高电压后送 入其所在电网中。 电能由电网输送到用户所在地,经降压后分配给最终的用户。 在电能生产到消费之间需要由电能可以传导的路径,由于一定 区域内发电厂和用户的分布非常复杂,因此这一路径自然形成 了网状结构,即所谓的电网,电能由发电厂生产出来以后在电 网中根据其结构按照物理规律自然分配。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电场电气系统应用需要掌握的知识点风电场电气系统应用需要掌握的知识点第一章1、风力发电机组:用于实现该能量转换过程的成套设备(利用风力机获取风能转化为机械能,再利用发电机将风力机输出的机械能转化为电能输出的生产过程)2、风电场:在一定的地域范围内,由同一单位经营管理的所有风力发电机组机配套的输变电设备、建筑设施、运行维护人员等共同组成的集合体。

3、一次能源、二次能源:①一次能源:那些存在于自然界可以直接利用的能源;②二次能源:一次能源无论经过几次转换所得到的另一种能源。

4、什么是电力系统?包括风电场在内的各类发电厂站、实现电压等级变换和能量输送的电网、消耗电能的各类设备(用户或负荷)共同构成的,用于生产、传输、变换、分配和消耗电能的系统。

5、什么是电气部分?电力系统各个环节的带电部分。

6、电气一次、二次部分的概念及其基本组成是什么?①概念:用于能量生产、变换、分配、传输和消耗的部分称为电气一次部分;对本厂站内一次部分进行测量、监视控制和保护的部分称为电气二次部分。

②基本组成:一次部分最为重要的是发电机、变压器、电动机·······二次部分由互感器和一些仪表组成。

第二章1、风电厂与常规电厂的区别是什么?①风力发电机组的单机容量小;②风电场的电能生产方式比较分散,发电机组数目多;③风电机组输出的电压等级低(输出电压一般为690V或400V);④风力发电机组的类型多样化;⑤风电场的功率输出特性复杂;⑥风电机组并网需要电力电子换流设备。

2、风电场的电气部分的构成有哪些?其一次系统主要由哪几部分组成?各部分的作用是什么?(1)风电场的电气部分是由一次部分(系统)和二次部分(系统)共同组成。

(2)一次系统主要部分:风电机组、集电系统、升压变电站及厂用电系统。

(3)作用:①风电机组除了风力机和发电机以外,还包括电力电子换流器(有时也称为变频器)和对应的机组升压变压器(有的文献称之为集电变压器);②集电系统将风电机组生产的电能按组收集起来;③升压变压站的主变压器将集电系统汇集的电能再次升高;④风电场的厂用电包括维持风电场正常运行及安排检修维护等生产用电和风电场运行维护人员在风电场内的生活用电等。

3、地理接线图:用来描述某个具体电力系统中发电厂、变电所的地理位置,电力线路的路径,以及他们互相的连接;它是对该系统的宏观印象,只表示厂站级的基本组成和连接关系,无法表示电气设备的组成和关系。

4、电气主接线图:在发电厂和变电所中各种电气设备必须被合理组织连接以实现电能的汇集和分配;根据这一要求由各种电气设备组成,并按照一定的方式由导体连接而成的电路。

(发电机、变压器、线路都有可能作为电源)5、运行中的电气设备可分为哪几种状态,停电和送电过程中设备的工作状态变化顺序为什么?(1)运行中的电气设备可分为四种状态,即运行状态、热备用状态、冷备用状态和检修状态。

①运行状态是指电气设备的断路器、隔离开关都在合闸位置;②热备用状态是指设备只断开断路器而隔离开关仍在合闸位置;③冷备用状态是指设备断路器、隔离开关都在分闸位置;④检修状态是指设备所有的断路器、隔离开关已断开,并完成了装设地线、悬挂标示牌、设置临时遮拦等安全技术措施。

(2)工作状态变化顺序:①送电过程:检修→冷备用→热备用→运行②停电过程:运行→热备用→冷备用→检修6、倒闸操作的基本原则有哪些?①绝对禁止带负荷拉(分断操作)、合隔离开关(刀闸),停、送电只能用断路器(开关)接通或断开负荷电流(路);②停电拉闸操作须按照断路器→分断负荷侧隔离开关→分断电源侧隔离开关的顺序依次操作;送电合闸操作与上述相反的顺序进行;③利用等电位原理,可以用隔离开关分、合无电流(或电流极小)的并联支路;④隔离开关只能按规定接通或断开小电流电路,如避雷器电路,电压互感器电路,一定电压等级、一定长度的空载线路,一定电压等级、一定容量的空载变压器。

但上述操作必须严格按现场操作规程的规定执行。

现场除严格按操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间加装电磁闭锁、机械闭锁或电脑钥匙。

7、常见的电气主接线形式有哪些?①有汇流母线的接线形式包括:单母线、单母线分段、双母线、双母线分段、带旁路母线分段等;②无汇流母线的接线形式包括:单元接线、桥形接线、角形接线、变压器-线路单元接线等。

8、风电场电气主接线由哪几部分组成,其接线形式是什么?双母线带旁路接线第三章1、发电机的结构及工作原理是什么(同步、异步)?(1)结构:各类发电机的主体部分都有静止的定子和可以旋转的转子两大部分构成。

(2)工作原理:电磁感应定理。

(3)类型:①同步发电机的转子分为凸极式(适用于低速运转,即水力发电厂)和隐极式(适用于高速运转,即火力发电厂);②异步发电机(也称为感应发电机)分为鼠笼式(应用于电流大的场合)和绕线式(应用于启动性能要求很高的场合)。

2、发电机的有关公式:①同步发电机:f1=601pn(p表示磁极对数,n1表示转速,f1表示输出电压的频率);②异步发电机:n-n1=pf260(n表示转子旋转磁场的转速,n1表示定子旋转磁场的转速,p表示磁极对数,f2表示输出电压的频率)2、双馈式异步风力发电机:①双馈异步风力发电机是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。

该发电机主要由电机本体和冷却系统两大部分组成。

电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。

②双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。

由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。

3、变压器的工作原理是什么?利用电磁感应现象实现一个电压等级的交流电能到另一个电压等级交流电能的交换。

4、变压器的调压方式:激磁调压;②有载调压。

5、什么是变压器的铁损?铁心中的磁滞损耗和涡流损耗统称为铁心损耗。

6、简述变压器的结构。

主要构件是初级线圈、次级线圈和铁心(磁芯)。

7、变压器油的作用:绝缘和冷却作用。

8、什么是电弧?一种放电现象,是一种等离子状态,即带正电荷和负电荷粒子数量相等的离子集团状态。

9、交流电弧过零熄灭条件:介质强度ud 和恢复电压utr,即ud(t)>utr(t)。

10、熄灭交流电弧的方法:高触头的分闸速度;②采用多断口;③吹弧(横向、纵向)④短弧原理灭弧;⑤利用固体介质的狭缝狭沟灭弧;⑥采用耐高温金属材料制作触头;⑦采用优质灭弧介质。

11、简述断路器的结构和工作原理:(以SF6断路器为例)(1)结构:有三个级组成每个级都是由弹簧操作机构驱动的,三个级由灭弧室、支柱、传动箱组成。

(2)工作原理:灭弧室属于热膨胀型,利用电弧的能量并具有辅助的自动氩气功能。

12、各种开关设备的作用(功能)是什么?(1)断路器:最为重要的开关电器,由于装设了专门的灭弧装置断路器可以分合电路时所产生的电弧,因此它用来实现电路的最终分合。

(2)隔离开关:隔离电源;倒闸操作;接通和断开小电流。

(3)熔断器:在电路中发生故障或过负荷的情况下自动断开。

从而使得故障设备从整个电路中切除出去,以保证故障设备和系统的安全。

(4)接触器:实现电路正常工作时电路的分合,它能分合正常电流,无法断开故障电流。

(接触器和熔断器在一起工作,可以取代较为昂贵的断路器)13、断路器与隔离开关有何不同?隔离开关无灭弧装置但有明显的断开点,断路器可以切断负载或故障电流. 14、各种载流导体(硬、软导体)的作用是什么?其特征又是什么?(1)作用:连接电力系统中的各个电气设备。

(2)特征:①硬导体根据其截面形状可分为管形、槽形和矩形;②软导体常见的是钢芯铝绞线,形似麻花。

15、集肤效应:集肤效应又叫趋肤效应,当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。

是电流或电压以频率较高的电子在导体中传导时,会聚集于总导体表层,而非平均分布于整个导体的截面积中。

(直流电没有集肤效应)16、电晕:因为不平滑的导体产生不均匀的电场,在不均匀的电场周围曲率半径小的电极附近当电压升高到一定值时,由于空气游离就会发生放电,形成电晕。

比如在110kV以上的变电所和线路上,时常能听到“陛哩”的放电声和淡蓝色的光环。

17、电抗器和电容器的作用是什么?(1)电抗器的作用:①稳流和限流(串联);②无功补偿(并联)。

(2)电容器的作用:无功补偿。

18电流互感器:将一次系统的大电流按照比例变成标准的小电流(5A,10A),(1)电压互感器:将一次系统的高电压按照比例变成标准的低电压(100V,3100V)。

19、为什么电流互感器二次回路不允许接入熔断器,电压互感器二次回路中需接入自动空气开关。

答:因为电流互感器二次回路不允许开路,电压互感器二次回路不允许短路。

第四章1、长期发热和短期发热的概念,有何不同?①长期发热:由于导体正常运行时,电流运行于额定电流发热量不是很大可以持续运行而不超过导体的最高允许温度;②短期发热:短路发生后导体中流过的电流急剧增加,热量积累也非常迅速(按照电流的平方产生),但是短路不允许持续时间很长时间,继电保护尽可能快地将其切除。

(2)区别:长期发热是设备正常运行时产生的热量,而短期发热是设备发生短路时产生的热量。

2、电气设备选择的依据是什么?(1)按工作环境及正常工作条件选择电气设备:①根据设备所在位置(户内或户外)、使用环境和工作条件,选择电气设备型号。

②按工作电压选择电气设备的额定电压。

③按最大负荷电流选择电气设备的额定电流。

④电气设备的额定电流IN应不小于实际通过它的最大负荷电流Im ax (或计算电流Ij),即IN ≥Im ax或IN≥Ij(2)按短路条件校验电气设备的动稳定和热稳定:为保证电气设备在短路故障时不至损坏,按最大可能的短路电流校验电气设备的动稳定和热稳定。

动稳定:电气设备在冲击短路屯流所产生的电动力作用下,电气设备不至损坏。

热稳定:电气设备载流导体在最大隐态短路屯流作用下,其发热温度不超过载流导体短时的允许发热温度。

(3)开关电器断流能力校验:断路器和熔断器等电气设备担负着可靠切断短路电流的任务,所以开关电器还必须校验断流能力,开关设备的断流容量不小于安装地点最大三相短路容量。

3、电气选择的环境因素:①温度②日照③风速④冰雪⑤湿度⑥污秽⑦海拔⑧地震第五章1、什么是电气二次部分?由二次设备相互连接,构成对一次设备进行监测、控制、调节和保护的电气回路(对一次设备的工作进行监测、控制、调节、保护以及为运行、维护人员提供运行工况或生产指挥信号所需的低压电气设备,称为二次设备)。

相关文档
最新文档