数分考研大纲
2024数学三考研大纲
2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。
2024考研数学大纲
2024考研数学大纲一、考试分析1. 试卷题型结构:①单项选择题10小题,每小题5分,10*5=50分②填空题6小题,每小题5分,6*5=30分③解答题6小题,每小题约12分,12*6≈70分2. 试卷内容结构•数学一:①高等数学约60%(增大比例)②线性代数约20%③概率论与数理统计约20%•数学二:①高等数学约80%(增大比例)②线性代数约20%•数学三:①微积分约60%(增大比例)②线性代数约20%③概率论与数理统计约20%3. 考情变化注:考研数学从2021年起整体结构发生变化,具体变化如下:考研数学内容结构分值比例试卷题型结构分析:2021年的数学考纲明显提高了对高等数学的考察要求,毕竟高等数学是大学的数学基础;同时随着考研人数年年递增,通过提高选择题和填空题的分值占比,不仅可以减轻阅卷的工作量,也可以降低解答题阅卷的随机误差。
所以,研友们在做填空题时一定要仔细认真,因为错一点就零分!小结:提高对高等数学内容学科的能力,提升选择题与填空题的解题准确率与速度,整体难度可变性增大(选择题、填空题只有5分/0分,减少了解答题步骤分的可能性)总结因此,23/24数学复习应该要注重以下几个方面:•一、对基础知识,基础概念,基础计算要训练好。
(三基:基础不牢,地动山摇)•二、培养独立思考,独立解题的习惯。
(尤其锻炼选择题、填空题的方法和技巧)•三、锻炼做题速度,考场一共就三个小时,所以在平时要控制好时间。
(建议前期用150分训练,后期恢复180分钟。
类似赛跑训练课绑沙袋)•四、善于总结,对一系列类似题目,总结出来最合适的解法。
(适合自己的才是最好的方法)。
硕士研究生入学考试《数学分析》考试大纲
《数学分析》考试大纲Ⅰ考试形式和试卷结构一、试卷满分及考试时间本试卷满分为150分,考试时间为3小时。
二、答题方式答题方式为闭卷、笔试。
三、试卷题型结构1、填空题40 分2、计算题40 分3、证明题70分II 考试范围第一章实数集与函数1.运用实数的有序性、稠密性及封闭性论证有关问题,邻域概念的理解及应用;2.实数绝对值的有关性质及几个常见不等式的应用;3.实数集确界的概念及确界原理在有关问题中的正确运用;4.函数的概念及复合函数、反函数、有界函数、单调函数和初等函数等概念理解和运用;5.基本初等函数定义、性质及图象的识记,会求初等函数定义域,分析初等函数的复合关系。
第二章数列极限1.会用ε—N定义证明数列极限有关问题,并会用ε—N语言正确表述数列不以某数为极限;2.理解收敛数列的性质,极限的唯一性、保号性及不等式性质;3.会用极限的四则运算法则,迫敛性定理以及单调有界定理求收敛数列的极限;4.理解柯西准则在极限理论中的重要意义,能用该准则判定某些简单数列的敛散性。
第三章函数极限1.能运用函数极限定义证明与函数极限有关的某些命题,会给出函数不以某定数为极限的相应表述;2.掌握函数极限基本性质:唯一性、局部保号性、不等式性质及有理运算性质;3.理解Heine定理及Cauchy准则,初步掌握运用它们证明函数极限存在的基本思路;4.识记两个重要极限,能灵活运用其求一些相关函数极限;5.理解无穷小(大)量及其阶的概念,会用无穷小量求某些函数的极限,无穷小(大)量阶的比较。
第四章函数的连续性1.明确函数在一点连续定义的几种等价叙述;2.会熟练准确地求出一般初等函数或分段函数的间断点并判别其类型;3.理解连续函数的性质,并能在相关问题的讨论中正确运用这些重要性质;4.深刻理解初等函数的连续性,应用连续性求极限;5.掌握闭区间上连续函数的性质,理解其几何意义,并能在各种有关具体问题中加以运用;6.理解一致连续的概念,能认识到函数在区间上连续与一致连续两者之间的联系与区别。
硕士研究生入学考试大纲-601数学分析
全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
考研《数学分析》考试大纲
707数学分析第1章函数1.1 集合与实数系1.2 函数概念1.3 函数的特性1.4 反函数和复合函数1.5 初等函数第2章极限与连续2.1 数列极限2.2 函数极限2.3 无穷小和无穷大2.4 连续函数第3章导数与微分3.1 导数的概念3.2 基本初等函数的导数公式3.3 导数的运算法则3.4 高阶导数3.5 微分3.6 导数与微分的简单应用第4章微分中值定理与导数的应用4.1 微分中值定理4.2 不定式的定值法4.3 泰勒公式4.4 导数在函数研究中的应用第5章不定积分5.1 原函数与不定积分5.2 换元积分法5.3 分部积分法5.4 有理函数和积分法5.5 三角函数有理式的积分法第6章定积分6.1 定积分的概念6.2 定积分的性质6.3 微积分基本定理6.4 定积分的计算6.5 定积分的应用6.6 广义积分6.7 广义积分的判别法第7章空间解析几何与向量代数7.1 空间直角坐标系7.2 向量代数7.3 空间平面7.4 空间直线7.5 空间曲面7.6 空间曲线第8章多元函数微分学8.1 多元函数的极限与连续8.2 偏导数与全微分8.3 多元复合函数的微分法8.4 隐函数的微分法8.5 多元函数的泰勒公式8.6 方向导数和梯度8.7 偏导数的应用第9章重积分9.1 二重积分9.2 三重积分第10章级数10.1 常数项级数的概念与性质10.2 正项级数10.3 任意项级数10.4 函数项级数的一致收敛10.5 幂级数10.6 泰勒级数10.7 傅里叶级数。
601《数学分析》考研大纲
16、理解可微性、全微分和偏导数的概念,熟练掌握多元函数可微的条件、几何意义及其应用。熟练掌握多元复合函数的求导法则及全微分的求法。掌握高阶偏导数的概念及求法,了解多元函数中值定理和泰勒公式。理解多元函数极值的概念;掌握多元函数极值的求法。
2、理解数列极限的概念,熟练掌握收敛数列的性质,数列极限存在的条件。理解函数极限的概念,熟练掌握函数极限的性质,理解函数极限存在的条件。掌握函数极限与数列极限之间的关系,函数极限的柯西准则。掌握无穷大量与无穷小量的概念及相关性质。理解函数连续、一致连续的概念,熟练掌握连续函数的性质以及初等函数的连续性。
11、掌握一致收敛的概念与和性质,熟练掌握函数项级数一致收敛性的判别方法。
12、熟练掌握幂级数与Taylor数的概念、幂级数的收敛域与和函数的分析性质,熟练掌握常用基本初等函数的幂级数展开。
13、掌握函数展开为傅立叶级数的充分条件,能熟练将以2及2l为周期的函数展开为傅立叶级数。
14、掌握含参变量积分的概念、性质及判别法。
8、掌握定积分在几何和简单物理问题中应用的基本方法,能够应用定积分计算平面面积、体积、平面弧长、功、压力、引力等。
9、掌握反常积分的概念、无穷积分和瑕积分的性质及收敛性的判别方法。
10、熟练掌握数项级数收敛、绝对收敛与条件收敛的概念、性质,熟练掌握正项级数收敛的判别法,掌握一般项级数收敛的判别法,了解无穷乘积的概念及简单性质。
专业课《数学分析》考研大纲和参考书目
参考教材:《数学分析》(第三版),华东师范大学数学系编,高等教育出版社
参考用书:《数学分析》(第三版),陈传璋等编(复旦大学数学系),高等教育出版社
数学分析考研大纲
数学分析考研大纲数学分析是数学的重要分支之一,它研究函数的性质、极限、连续性、导数与积分等方面的问题。
作为研究生数学考试中的重点科目之一,数学分析考研大纲是考生备考的重要依据。
下面我将对数学分析考研大纲进行详细阐述。
数学分析考研大纲主要分为两个部分:基础知识和重点难点。
基础知识包括实数的完备性、数列与函数的极限概念与性质、连续性及其性质、导数与微分、不定积分、数值级数等;重点难点包括一致收敛性、Fourier级数、一致连续性。
接下来,我将对这些内容进行更加详细的介绍。
1.基础知识:1.1实数的完备性:介绍实数的基本概念,如有理数与无理数的区别,实数的良序性、稠密性和完备性等。
1.2 数列与函数的极限概念与性质:介绍数列、函数极限的定义和性质,包括极限存在的判定方法、Squeeze定理等。
1.3连续性及其性质:介绍函数连续性及其性质,包括连续函数的四则运算、复合函数的连续性等。
1.4导数与微分:介绍函数的导数与微分的概念和性质,包括导数存在的判定方法、求导法则、高阶导数等。
1.5不定积分:介绍不定积分的概念和性质,包括基本积分公式、换元积分法、分部积分法等。
1.6数值级数:介绍数值级数的概念和性质,包括级数的敛散性判定方法、正项级数的审敛法等。
2.重点难点:2.1 一致收敛性:介绍一致收敛性的概念和性质,包括Cauchy准则、一致收敛级数的性质和判定方法等。
2.2 Fourier级数:介绍Fourier级数的概念和性质,并介绍调和级数、傅里叶级数与函数的关系等。
2.3一致连续性:介绍一致连续性的概念和性质,包括一致连续函数的性质、利普希茨条件等。
总之,数学分析是数学考研的重要科目之一,掌握好数学分析考研大纲的基础知识和重点难点,备考方法要坚持理论学习与实践相结合,加强练习和真题的训练,才能够顺利通过数学分析考试,取得满意的成绩。
希望以上内容对考生备考数学分析有所帮助。
2024数学三考研大纲
2024数学三考研大纲第一部分:基本概念数学是一门关于数量、结构、空间和变化等概念的科学。
它涉及到形式逻辑、抽象代数、几何、拓扑、数论、分析、概率论、数理统计等多个领域。
考研数学三科的大纲主要包括以下内容:1.数论2.代数3.几何4.分析5.概率统计第二部分:数论数论是研究整数性质的数学分支,其重要性不言而喻。
数论包括以下几个方面的内容:1.整数性质2.素数3.同余4.数论函数5.数论定理6.数论方法第三部分:代数代数是数学的一个重要分支,研究数、符号和它们的代数结构及代数方程。
代数包括以下内容:1.群、环、域2.线性代数3.线性空间4.向量空间5.矩阵6.线性变换7.代数方程第四部分:几何几何是研究空间和形状的数学分支,包括以下内容:1.解析几何2.向量解析几何3.立体几何4.三角学5.概率统计第五部分:分析分析是研究极限、微积分和级数等概念的数学分支,包括以下内容:1.极限2.微积分3.泛函4.序列5.级数6.偏微分方程7.多元函数第六部分:概率统计概率统计是研究随机现象的概率和统计规律的数学分支,包括以下内容:1.概率2.随机变量3.概率分布4.统计推断5.方差分析6.回归分析7.抽样调查第七部分:考试范围数学三科的考试范围主要包括上述各个分支的知识点,考生需熟练掌握这些知识,并具备一定的解题能力和应用能力。
考试的形式包括选择题、填空题、解答题和证明题等。
考试内容主要测试考生的数学思维能力和解决问题的能力。
第八部分:备考建议备考数学三科需要考生具备扎实的数学基础知识,需要通过大量的练习来提高解题能力,并且需要阅读相关的数学教材和参考书籍来拓展自己的数学知识面。
此外,考生还需要针对性地进行一些重点知识的复习和强化训练,以及针对性地进行一些题型的练习和模拟考试,来提高解题能力和应试能力。
第九部分:总结数学三科的考试大纲内容涉及面广,难度较大,要想在考试中取得好成绩需要付出大量的努力和时间。
考生需要在备考过程中切记不要死记硬背,而应以理解和灵活运用为主,同时要注重知识点之间的联系和整体把握。
2024年数学二考研考试大纲
2024年数学二考研考试大纲如下:一、高等数学1. 函数与极限2. 导数与微分3. 积分4. 常微分方程5. 多元函数微分学6. 多元函数积分学7. 级数8. 空间解析几何9. 向量代数与解析几何10. 多元函数的极值与最值11. 重积分12. 曲线积分与曲面积分13. 场论初步二、线性代数1. 行列式2. 矩阵3. 向量空间4. 线性变换5. 特征值与特征向量6. 二次型7. 正定二次型8. 线性方程组9. 矩阵的对角化10. 实对称矩阵的对角化11. 二次型的标准形与规范形12. 二次型的正定性判定13. 线性空间的基本概念14. 线性空间的同构与基变换15. 线性空间的维数与基16. 线性空间的子空间17. 线性空间的直和与交和18. 线性空间的同态与同构19. 线性空间的泛性质20. 线性空间的完备性与距离21. 线性空间的内积空间22. 内积空间的基与正交性23. 内积空间的正交分解与标准正交基24. 内积空间的谱定理25. 内积空间的算子与本征值问题26. 内积空间的特征值与特征向量问题27. 内积空间的正定性判定问题28. 内积空间的紧性与完备性问题29. 内积空间的Hilbert空间问题30. 内积空间的Banach空间问题31. 内积空间的弱拓扑问题32. 内积空间的弱*拓扑问题33. 内积空间的弱收敛问题34. 内积空间的弱*收敛问题35. 内积空间的弱*一致收敛问题36. 内积空间的弱*可积问题37. 内积空间的弱*可测问题38. 内积空间的弱*连续问题39. 内积空间的弱*有界问题40. 内积空间的弱*紧性问题41. 内积空间的弱*完备性问题42. 内积空间的弱*Hilbert空间问题43. 内积空间的弱*Banach空间问题。
数学分析610研究生入学考试大纲
《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
2024数学三考研大纲
2024数学三考研大纲
一、推理和证明
1.数学基本概念与定义:集合、映射、函数、等价关系、序关系、数论基本概念和基本定理;
2.数学基本方法:数学归纳法、反证法、逆否命题的证明方法及
其应用;
3.常用数学工具:基本运算性质、数学公式及其推导、模运算、
数系的扩张、有理数的完备性;
4.数学基本理论:极限、函数连续性、可导性的定义、性质及其
应用。
二、数学分析
1.实数系:实数的完备性原理、实数的连续性、实数的构造与性质;
2.极限与连续:函数极限与连续性的定义、性质以及其应用;
3.一元微分学:导数的定义、性质、微分中值定理及其应用;
4.一元积分学:不定积分、定积分、积分中值定理、换元积分法、分部积分法、定积分的应用。
三、线性代数
1.矩阵与行列式:矩阵的性质、特征值特征向量、对角化及其应用;
2.线性方程组:矩阵的秩、线性方程组的解的结构、向量空间的
基和维数;
3.向量空间:线性空间的基本概念、子空间的概念与性质、子空
间与基的关系。
四、概率统计
1.基本概率论:事件的概率、条件概率、独立性、全概率公式、
贝叶斯公式;
2.随机变量:随机变量的分布函数、密度函数、分布列;随机变
量的数学期望、方差与协方差;
3.大数定律与中心极限定理:大数定律的详细描述、中心极限定理的应用。
五、微分方程
1.一阶常微分方程:一阶微分方程的解法及其应用;
2.高阶常微分方程:高阶微分方程的解法及其应用;
3.线性微分方程:齐次线性微分方程的解法、非齐次线性微分方程的解法及其应用。
2024年硕士研究生招生数学考试大纲
全国研究生招生考试数学科考试大纲考试一般形式要求试卷满分为150分,考试时间为180分钟.答题方式为闭卷,笔试.试卷内容结构为数学(一)数学(二)数学(三)高等数学(微积分)60%80%60%线性代数20%20%20%概率论与数理统计20%/20%试卷题类型结构为•单选题10小题,每题5分,共50分.•填空题6小题,每题5分,共30分.•解答题(包括证明题)6小题,共70分.第一部分数学(一)考试内容及要求1高等数学1.1函数,极限,连续1.1.1考试内容•函数的概念及表示法,函数的有界性,单调性,周期性和奇偶性.•复合函数,反函数,分段函数和隐函数.11高等数学2•基本初等函数的性质及其图形,初等函数.•函数关系的建立.•数列极限与函数极限的定义及性质.•函数的左极限和右极限.•无穷小量和无穷大量的概念及其关系.•无穷小量的性质及无穷小量的比较.•极限的四则运算法则.•极限存在的两个准则:单调有界准则和夹逼准则•两个重要极限:lim x→∞(1+1x )x=e,lim x→0sin xx=1.•函数连续的概念.•函数间断点的类型.•初等函数的连续性.•闭区间上连续函数的性质.1.1.2考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性,单调性,周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限,右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.1高等数学38.理解无穷小量,无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性,最大值和最小值定理,介值定理),并会应用这些性质. 1.2一元函数微分学1.2.1考试内容•导数和微分的概念.•导数的几何意义和物理意义.•函数的可导性与连续性之间的关系.•平面曲线的切线和法线.•导数和微分的四则运算法则.•基本初等函数的导数.•复合函数,反函数,隐函数以及参数方程所确定的函数的微分法.•高阶导数.•一阶微分形式不变性.•微分中值定理.•洛必达(L’Hospital)法则.•函数单调性的判别.•函数的极值与最值.•函数的凹凸性,拐点及渐近线,函数图形的描绘.•弧微分.•曲率,曲率圆与曲率半径.1高等数学4 1.2.2考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平,铅直和斜渐近线,会描绘函数的图形.9.了解曲率,曲率圆与曲率半径的概念,会计算曲率和曲率半径.1.3一元函数积分学1.3.1考试内容•原函数和不定积分的概念.•不定积分的基本性质.•基本积分公式.•定积分的概念和基本性质.•积分中值定理.1高等数学5•积分上限函数及其导数.•牛顿-莱布尼茨(Newton-Leibniz)公式.•不定积分和定积分的换元积分与分部积分法.•有理函数,三角函数有理式和简单无理函数的积分.•反常(广义)积分.•定积分的应用.1.3.2考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数,三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积,平面曲线的弧长,旋转体的体积及侧面积,平行截面面积为已知的立体体积,功,引力,压力,质心,形心等)及函数的平均值.1.4向量代数和空间解析几何1.4.1考试内容•向量的概念.•向量的线性运算.•向量的数量积,向量积,混合积.•两向量的夹角,两向量垂直,平行的条件.•向量的坐标表示及运算.1高等数学6•单位向量,方向数与方向余弦.•曲面方程和空间曲线方程的概念.•平面方程,直线方程.•平面与平面,平面与直线,直线与直线的夹角以及平行垂直的条件.•点到平面和点到直线的距离.•球面,柱面,旋转曲面,常用二次曲面的方程及其图形.•空间曲线的参数方程和一般方程.•空间曲线在坐标平面上的投影曲线方程.1.4.2考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算,数量积,向量积,混合积),了解两个向量垂直,平行的条件.3.理解单位向量,方向数与方向余弦,向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面,平面与直线,直线与直线之间的夹角,并会利用平面,直线的相互关系(平行,垂直,相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.1高等数学7 1.5多元函数微分学1.5.1考试内容•多元函数的概念.•二元函数的几何意义.•二元函数的极限与连续的概念.•有界闭区域上多元连续函数的性质.•多元函数的偏导数和全微分.•全微分存在的必要条件和充分条件.•多元复合函数,隐函数的求导法.•二阶偏导数.•方向导数和梯度.•空间曲线的切线和法平面.•曲面的切平面和法线.•二元函数的二阶泰勒公式.•多元函数的极值和条件极值.•多元函数的最大值,最小值及其简单应用.1.5.2考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶,二阶偏导数的求法.1高等数学86.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.1.6多元函数积分学1.6.1考试内容•二重积分与三重积分的概念,性质,计算和应用.•两类曲线积分的概念,性质及计算.•格林(Green)公式.•平面曲线积分与路径无关的条件.•二元函数全微分的原函数.•两类曲面积分的概念,性质及计算.•两类曲面积分的关系.•高斯(Gauss)公式.•斯托克斯(Stokes)公式.•散度,旋度的概念及计算.•曲线积分和曲面积分的应用.1高等数学9 1.6.2考试要求1.理解二重积分,三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标,极坐标),会计算三重积分(直角坐标,柱面坐标,球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念,性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分,曲线积分及曲面积分求一些几何量与物理量(平面图形的面积,体积,曲面面积,弧长,质量,质心,形心,转动惯量,引力,功及流量等).1.7无穷级数1.7.1考试内容•常数项级数的收敛与发散的概念.•收敛级数的和的概念.•级数的基本性质与收敛的必要条件.•几何级数与p级数及其收敛性.•正项级数收敛性的判别法.•交错级数与莱布尼茨定理.1高等数学10•任意项级数的绝对收敛与条件收敛.•函数项级数的收敛与和函数的概念.•幂级数及其收敛,收敛区间(指开区间)和收敛域.•幂级数的和函数.•幂级数在其收敛区间内的基本性质.•简单幂级数的和函数的求法.•初等函数的幂级数展开式.•函数的傅立叶(Fourier)系数与傅立叶级数.•狄利克雷(Dirichlet)定理.•函数在[−l,l]上的傅立叶级数.•函数在[0,l]上的正弦级数和余弦级数.1.7.2考试要求1.理解常数项级数收敛,发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,根值判别法,会用积分判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径,收敛区间及收敛域的求法.1高等数学118.了解幂级数在其收敛区间内的基本性质(和函数的连续性,逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sin x,cos x,ln(1+x),(1+x)α的泰勒级数的麦克劳林(Maclau-rin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[−l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.1.8常微分方程1.8.1考试内容•常微分方程的基本概念.•可分离变量的微分方程.•齐次微分方程.•一阶段线性微分方程.•伯努利(Bernoulli)方程.•全微分方程.•可用简单的变量代换求解的某些微分方程.•可降阶的高阶微分方程.•线性微分方程解的性质及解的结构定理.•二阶常系数齐次线性微分方程.•高于二阶的某些常系数齐次线性微分方程.•简单的二阶常系数非齐次线性微分方程.•欧拉(Euler)方程.•微分方程的简单应用.2线性代数12 1.8.2考试要求1.了解微分方程及其阶,解,通解,初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程,伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:y(n)=f(x),y =f(x,y ),y =f(y,y ).5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式,指数函数,正弦函数,余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.2线性代数2.1行列式2.1.1考试内容•行列式的概念和基本性质.•行列式按行(列)展开定理.2.1.2考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.2线性代数13 2.2矩阵2.2.1考试内容•矩阵的概念.•矩阵的线性运算,矩阵的乘法,方阵的幂.•方阵乘积的行列式.•矩阵的转置.•逆矩阵的概念和性质,矩阵可逆的充分必要条件.•伴随矩阵.•矩阵的初等变换.•初等矩阵,矩阵的秩,矩阵等价.•分块矩阵及其运算.2.2.2考试要求1.理解矩阵的概念,了解单位矩阵,数量矩阵,对角矩阵,三角矩阵,对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算,乘法,转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.2线性代数14 2.3向量2.3.1考试内容•向量的概念.•向量的线性组合和线性表示.•向量组的线性相关与线性无关.•向量组的极大线性无关组,等价向量组.•向量组的秩,向量组的秩与矩阵的秩之间的关系.•向量空间以及相关概念.•n维向量空间的基变换和坐标变换过渡矩阵•向量的内积.•线性无关向量组的正交规范化方法,规范正交基.•正交矩阵及其性质.2.3.2考试要求1.理解n维向量,向量的线性组合与线性表示的概念.2.理解向量组线性相关,线性无关的概念,掌握向量组线性相关,线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间,子空间,基底,维数,坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基,正交矩阵的概念以及它们的性质.2线性代数15 2.4线性方程组2.4.1考试内容•线性方程组的克莱姆(Cramer)法则.•齐次线性方程组有非零解的充分必要条件.•非齐次线性方程组有解的充分必要条件.•线性方程组解的性质和解的结构.•齐次线性方程组的基础解系和通解,解空间.•非齐次线性方程组的通解.2.4.2考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系,通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.2.5矩阵的特征值及特征向量2.5.1考试内容•矩阵的特征值和特征向量的概念,性质.•相似变换,相似矩阵的概念及性质.•矩阵可相似对角化的充分必要条件及相似对角矩阵.•实对称矩阵的特征值,特征向量及相似对角矩阵.3概率论与数理统计16 2.5.2考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念,性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.2.6二次型2.6.1考试内容•二次型及其矩阵表示.•合同变换与合同矩阵,二次型的秩.•惯性定理.•二次型的标准形和规范形.•用正交变换和配方法化二次型为标准形.•二次型及其矩阵的正定性.2.6.2考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换和合同矩阵的概念,了解二次型的标准形,规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型,正定矩阵的概念,并掌握其判别法3概率论与数理统计3.1随机事件和概率3.1.1考试内容•随机事件与样本空间.3概率论与数理统计17•事件的关系与运算.•完备事件组.•概率的概念.•概率的基本性质.•古典型概率.•几何型概率.•条件概率.•概率的基本公式.•事件的独立性,独立重复试验.‘3.1.2考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率,条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式,减法公式,乘法公式,全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.3.2随机变量及其分布3.2.1考试内容•随机变量.•随机变量的分布函数的概念及其性质.•离散型随机变量的概率分布.•连续型随机变量的概率密度.3概率论与数理统计18•常见随机变量的分布.•随机变量函数的分布.3.2.2考试要求1.理解随机变量的概念,理解分布函数F(x)=P{X≤x}(−∞<x<+∞)的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布,二项分布B(n,p),几何分布,超几何分布,泊松(Poisson)分布P(λ)及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a,b),正态分布N(µ,σ2),指数分布E(λ)的概率密度及其应用.5.会求随机变量函数的分布.3.3多维随机变量及其分布3.3.1考试内容•多维随机变量及其分布.•二维离散型随机变量的概率分布,边缘分布和条件分布.•二维连续型随机变量的概率密度,边缘概率密度和条件概率密度.•随机变量的独立性和不相关性.•常用二维随机变量的分布.•两个及两个以上随机变量简单函数的分布.3.3.2考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质.理解二维离散型随机变量的概率分布,边缘分布和条件分布,理解二维连续型随机变量的概率密度,边缘密度和条件密度,会求与二维随机变量相关事件的概率.3概率论与数理统计192.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布N(µ1,µ2,σ21,σ22)的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.3.4随机变量的数字特征3.4.1考试内容•随机变量的数学期望(均值),方差,标准差及其性质.•随机变量函数的数学期望,矩,协方差,相关系数及其性质.3.4.2考试要求1.理解随机变量数字特征(数学期望,方差,标准差,矩,协方差,相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.5大数定律和中心极限定理3.5.1考试内容•切比雪夫(Chebyshev)不等式.•切比雪夫大数定律伯努利(Bernoulli)大数定律.•辛钦(Khinchine)大数定律.•棣莫弗-拉普拉斯(De Moivre-laplace)定理.•列维-林德伯格(Levy-Lindberg)定理.3概率论与数理统计203.5.2考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律,伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).3.6数理统计的基本概念3.6.1考试内容•总体,个体.•简单随机样本.•统计量,样本均值,样本方差和样本矩.•χ2分布,t 分布F 分布.•分位数.•正态总体的常用抽样分布.3.6.2考试要求1.理解总体,简单随机样本,统计量,样本均值,样本方差及样本矩的概念,其中样本方差定义为S 2=1n −1n i =1(x i −¯x )2.2.了解χ2分布,t 分布和F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.3.7参数估计3.7.1考试内容•点估计的概念.3概率论与数理统计21•估计量与估计值.•矩估计法,最大似然估计法.•估计量的评选标准.•区间估计的概念.•单个正态总体的均值和方差的区间估计.•两个正态总体的均值差和方差比的区间估计.3.7.2考试要求1.理解参数的点估计,估计量与估计值的概念.2.掌握矩估计法(一阶矩,二阶矩)和最大似然估计法.3.了解估计量的无偏性,有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.3.8假设检验3.8.1考试内容•显著性检验假,设检验的两类错误.•单个及两个正态总体的均值和方差的假设检验.3.8.2考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.22第二部分数学(二)考试内容及要求1高等数学1.1函数,极限,连续1.1.1考试内容•函数的概念及表示法.•函数的有界性,单调性,周期性和奇偶性.•复合函数,反函数,分段函数和隐函数.•基本初等函数的性质及其图形,初等函数,函数关系的建立.•数列极限与函数极限的定义及其性质.•函数的左极限和右极限.•无穷小量和无穷大量的概念及其关系.•无穷小量的性质及无穷小量的比较.•极限的四则运算.•极限存在的两个准则:单调有界准则和夹逼准则.•两个重要极限:lim x→∞(1+1x )x=e,lim x→0sin xx=1.•函数连续的概念.•函数间断点的类型.•初等函数的连续性.•闭区间上连续函数的性质.。
《数学分析》考试大纲
三、 一元积分学
1. 不定积分法与可积函数类 2. 定积分的概念、性质与计算
级数 数项级数的敛散判别与性质 函数项级数与一致收敛性 幂级数 Fourier 级数
五、 1、 2、 3、 4、 5、 6、 7、 8、
多元微分学 欧式空间 多元函数的极限 多元连续函数 偏导数与微分 隐函数定理 Taylor 公式 多元微分学的几何应用 多元函数的极限
求某些级数的和(如
1 )。
n1 n 2
五、多元微分学 1、理解欧式空间中的概念及欧式空间的内积与模、开集、开区域与闭区域的意义,了解 完备性定理及紧性定理。 2、理解多元函数的概念,掌握多元函数的重极限、累次极限和特殊路径极限的意义,并 能够根据定义计算多元函数极限,或证明二元极限不存在,能计算多元函数的重极限和累 次极限。 3、理解多元连续函数的概念及其性质。并能够判断多元函数的连续性,了解多元函数的 一致连续性。 4、理解偏导数的概念,掌握其计算法则,能够熟练计算多元函数的偏导数和复合函数的 导函数,能计算给定函数在给定方向上的导函数。 5、理解多元函数的微分的概念,并能够判断函数的可微性。 6、理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。 7、理解 Taylor 公式的意义,并能够求出二元函数的具有指定阶数的 Taylor 公式。 8、能应用偏导数求空间的切线、法平面及空间曲面的法线和切平面的方程。 9、理解多元函数的极限和最值的意义,极值的充分必要条件,掌握求多元函数极值、条 件极值及在闭区域上的最值的方法,并用于解决实际问题。
全国硕士研究生数学考试大纲
全国硕士研究生数学考试大纲一、考试性质全国硕士研究生数学考试是教育部规定的研究生招生考试中最重要的部分,旨在科学、公平、准确地评价研究生的数学知识和能力,是选拔人才的重要标准。
本大纲规定了考试的目标、内容、形式和评价标准。
二、考试目标本考试的目标是考查考生对数学基本概念、理论和方法的理解和掌握程度,以及运用数学知识分析问题和解决问题的能力。
三、考试内容和要求1、高等数学部分:(1)函数、极限、连续:理解函数的概念,掌握函数的性质和计算方法,了解极限的概念和基本性质,掌握极限的求法,理解连续函数的概念,会判断函数连续性。
(2)一元函数微分学:掌握导数的定义和计算方法,会求函数的极值和最值,了解微分中值定理及其应用。
(3)一元函数积分学:掌握定积分的概念和计算方法,掌握不定积分的计算方法,理解积分在实际问题中的应用。
(4)多元函数微积分学:理解多元函数的概念和性质,掌握偏导数和全微分的计算方法,掌握二重积分的计算方法。
(5)常微分方程:理解常微分方程的概念和基本性质,掌握常微分方程的初值问题、边值问题的求解方法。
2、线性代数部分:(1)行列式:理解行列式的概念和性质,掌握行列式的计算方法。
(2)矩阵:理解矩阵的概念和性质,掌握矩阵的运算方法,了解矩阵的逆和特征值的概念和计算方法。
(3)向量:理解向量的概念和性质,掌握向量的运算方法。
(4)线性方程组:理解线性方程组的概念和性质,掌握线性方程组的求解方法。
(5)矩阵的特征值和特征向量:理解矩阵的特征值和特征向量的概念和性质,掌握特征值和特征向量的计算方法。
(6)二次型:理解二次型的概念和性质,掌握二次型的化简和相似对角化方法。
四、考试形式和试卷结构1、考试形式:闭卷笔试。
2、试卷结构:试卷包括选择题、填空题、计算题和应用题等题型。
选择题和填空题分值约占40%,计算题和应用题分值约占60%。
试卷难度结构一般为容易题约占30%,中等难度题约占50%,较难题约占20%。
考研《数学分析》(学术学位)考试大纲
(1)数项级数
掌握级数、正项级数、交错级数的概念和收敛判别法,明确级数和数列的关系。
(2)函数列与函数项级数
掌握函数列与函数项级数一致收敛的概念、判别法、性质, 和函数的连续性,级数的逐项可导、逐项可积性。
(3)幂级数
掌握幂级数收敛半径、收敛区间的求法,熟练掌握函数的泰勒级数展开法,注意利用逐项求导和逐项积分的展开方法。
(3)函数极限
熟悉各种极限定义,可用 语言证明函数极限的存在性,熟悉函数极限的性质和存在条件,明确无穷小量和无穷大量阶的比较,会求给定函数的极限。
(4)实数集和实数完备性
掌握实数集上下确界概念。熟悉实数完备性的几个基本定理,掌握其证明和应用。
(5)函数的连续性
熟悉函数连续的定义,函数间断点的分类,掌握连续函数的性质。掌握一致连续的概念,能够证明和函数连续性有关的命题。
2、《数学分析》(第一版)欧阳光中、姚允龙、周渊编著 复旦大学出版社 2003 或之后版本
会用定积分求平面图形的面积、已知截面面积的立体体积、曲线的弧长、曲率。熟悉微元法。
4、多元函数及其微分学
(1)多元函数的极限与连续
掌握重极限与累次极限的定义、联系与区别,能熟练讨论极限的存在性,会求极限值。
(2)偏导、微分和方向导数
掌握偏导、微分和方向导数的概念、求法,特别是复合函数高阶偏导的求法,隐函数偏导的求法。熟悉可微性条件、几何意义与应用。能熟练讨论多元函数连续、可微、偏导连续之间的关系,能举出具有其中几种性质而不具有其余性质的多元函数例子。
(4)傅里叶级数
熟悉傅里叶级数的收敛定理,掌握函数展开成傅里叶级数的条件与方法。
二、考试要求(包括考试时间、总分、考试方式、题型、分总分:150分
硕士《数学分析》考试大纲 .doc
硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。
2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。
3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。
4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。
5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。
二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。
2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。
3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。
明确不连续点的类型;掌握反函数、复合函数的连续性。
4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。
5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。
三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。
2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。
3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。
四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。
考研大纲_数学分析
考研大纲_数学分析考研数学分析是考研数学的重要组成部分,也是考生们备考中的难点和重点之一、下面我们就来详细了解一下考研大纲中关于数学分析的内容。
1.实数与函数:实数的性质,实数的上确界和下确界,实数的连续性,函数的概念和性质,函数的极限与连续性2.一元函数的微分学:导数的概念和性质,一元函数的可导性和连续性,一元函数的微分中值定理和导数的四则运算,函数的单调性,函数的凸凹性3.一元函数的积分学:定积分的概念和性质,定积分的计算方法,换元法,分部积分法,定积分的应用,曲线的长度和曲面的面积4.无穷级数:数项级数的概念和性质,数项级数的判敛法,幂级数的概念和性质,幂级数的收敛半径和收敛域5.多元函数的微分学:多元函数的极限和连续性,偏导数的定义和计算,多元函数的全微分,多元函数的微分中值定理,多元函数的极值和最值6.多元函数的积分学:重积分的概念和性质,二重积分和三重积分的计算方法,换序积分,累次积分的性质,曲线的面积和曲面的体积7.曲线积分与曲面积分:向量场的概念和性质,曲线积分的计算方法,格林公式和斯托克斯公式的应用,曲面积分的概念和性质,曲面积分的计算方法8.泰勒公式与函数的展开:泰勒公式及其余项估计,函数的泰勒展开,常用函数的泰勒展开式以上就是考研数学分析的内容大纲,大纲中涵盖了实数与函数、一元函数的微分学、一元函数的积分学、无穷级数、多元函数的微分学、多元函数的积分学、曲线积分与曲面积分、泰勒公式与函数的展开等内容。
在备考中,考生们需要对每个知识点进行深入的学习和掌握,了解每个概念的定义和性质,掌握不同知识点的计算方法和应用技巧。
同时,还需要注重理论与实际的结合,注重数学分析的应用能力的培养。
在解题时,要灵活运用所学知识,通过将问题转化为数学模型进行分析和解决。
总之,考研数学分析是考研数学中的重要部分,对于考生们来说,熟练掌握数学分析的各个知识点,掌握思想方法与解题技巧,具备良好的数学分析能力,将有助于在考试中取得好成绩。
数分高代考试大纲
一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。
2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。
要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。
3.考试内容和要点(一) 实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。
2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。
3、函数的几何特性:单调性;奇偶性;周期性。
要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。
(二) 数列极限1、数列极限的概念(定义)。
2、数列极限的性质:唯一性;有界性;保号性。
3、数列极限存在的条件:单调有界准则;两边夹法则。
要求:理解和掌握数列极限的概念,会使用语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。
(三) 函数极限1、函数极限的概念(定义、定义);单侧极限的概念。
2、函数极限的性质:唯一性;局部有界性;局部保号性。
3、函数极限与数列极限的联系。
4、两个重要极限。
要求:理解和掌握函数极限的概念,会使用语言以及语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。
(四) 函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。
2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。
3、初等函数的连续性。
最新《数学分析》考试大纲45460
《数学分析》考试大纲45460《数学分析》考试大纲本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。
一、本考试科目简介:《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。
是从事数学理论及其应用工作的必备知识。
本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、考试内容及具体要求:第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质(惟一性、保序性等)。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个特殊极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。
(2)掌握间断点定以及分类。
(3)了解在区间上连续的定义,能使用左右极限的方法求极限。
(4)掌握在一点连续性质及在区间上连续性质。
(5)了解初等函数的连续性。
第5章导数与微分(1)熟练掌握导数的定义,几何、物理意义。
(2)牢固记住求导法则、求导公式。
(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012西安电子科技大学数学分析考研大纲一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。
2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。
要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。
3.考试内容和要点(一) 实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。
2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。
3、函数的几何特性:单调性;奇偶性;周期性。
要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。
(二) 数列极限1、数列极限的概念(N ε-定义)。
2、数列极限的性质:唯一性;有界性;保号性。
3、数列极限存在的条件:单调有界准则;两边夹法则。
要求:理解和掌握数列极限的概念,会使用N ε-语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。
(三) 函数极限1、函数极限的概念(εδ-定义、X ε-定义);单侧极限的概念。
2、函数极限的性质:唯一性;局部有界性;局部保号性。
3、函数极限与数列极限的联系。
4、两个重要极限。
要求:理解和掌握函数极限的概念,会使用εδ-语言以及X ε-语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。
(四) 函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。
2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。
3、初等函数的连续性。
要求:理解与掌握函数连续性、一致连续性的定义以及它们的区别和联系,会证明具体函数的连续以及一致连续性;理解与掌握函数间断点的分类;能正确叙述并简单应用闭区间上连续函数的性质;了解反函数、复合函数以及初等函数的连续性。
(五) 实数系六大基本定理及应用1、实数系六大基本定理:确界存在定理;单调有界定理;闭区间套定理;致密性定理;柯西收敛准则;有限覆盖定理。
2、闭区间上连续函数性质的证明:有界性定理的证明;最值性定理的证明;介值性定理的证明;一致连续性定理的证明。
要求:理解和掌握上、下确界的定义,会求具体数集的上、下确界;理解和掌握闭区间上连续函数性质及其证明;能正确叙述实数系六大基本定理的内容及其证明思想,会使用开覆盖以及二分法构造区间套进行简单证明。
(六)导数与微分1、导数概念:导数的定义;单侧导数;导数的几何意义。
2、求导法则:初等函数的求导;反函数的求导;复合函数的求导;隐函数的求导;参数方程的求导;导数的运算(四则运算)。
3、微分:微分的定义;微分的运算法则;微分的应用。
4、高阶导数与高阶微分。
要求:能熟练地运用导数的运算性质和求导法则求具体函数的(高阶)导数和微分;理解和掌握可导与可微、可导与连续的概念及其相互关系;掌握左、右导数的概念以及分段函数求导方法,了解导函数的介值定理。
(七)微分学基本定理1、中值定理:罗尔中值定理;拉格朗日中值定理;柯西中值定理。
2、泰勒公式。
要求:理解和掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开(八)导数的应用1、函数的单调性与极值。
2、函数凹凸性与拐点。
3、几种特殊类型的未定式极限与洛必达法则。
要求:理解和掌握函数的单调性和凹凸性,会使用这些性质求函数的极值点以及拐点;能根据函数的单调性、凹凸性、拐点、渐近线等进行作图;能熟练地运用洛必达法则求未定式的极限。
(九)不定积分1、不定积分概念。
2、换元积分法与分部积分法。
3、有理函数的积分。
要求:理解和掌握原函数和不定积分概念以及它们的关系;熟记不定积分基本公式,掌握换元积分法、分部积分法,会求初等函数、有理函数、三角函数的不定积分。
(十)定积分1、定积分的概念;定积分的几何意义。
2、定积分存在的条件:可积的必要条件和充要条件;达布上和与达布下和;可积函数类(连续函数,只有有限个间断点的有界函数,单调函数)。
3、定积分的性质:四则运算;绝对值性质;区间可加性;不等式性质;积分中值定理。
4、定积分的计算:变上限积分函数;牛顿-莱布尼兹公式;换元公式;分部积分公式。
要求:理解和掌握定积分概念、可积的条件以及可积函数类;熟练掌握和运用牛顿-莱布尼兹公式,换元积分法,分部积分法求定积分。
(十一)定积分的应用1、定积分的几何应用:微元法;求平面图形的面积;求平面曲线的弧长;求已知截面面积的立体或者旋转体的体积;求旋转曲面的面积。
2、定积分的物理应用:求质心;求功;求液体压力。
要求:理解和掌握"微元法";掌握定积分的几何应用;了解定积分的物理应用。
(十二)数项级数1、预备知识:上、下极限;无穷级数收敛、发散的概念;收敛级数的基本性质;柯西收敛原理。
2、正项级数:比较判别法;达朗贝尔判别法;柯西判别法;积分判别法。
3、任意项级数:绝对收敛与条件收敛的概念及其性质;交错级数与莱布尼兹判别法;阿贝尔判别法与狄利克雷判别法。
要求:理解和掌握正项级数的收敛判别法以及交错级数的莱布尼兹判别法;掌握一般项级数的阿贝尔判别法与狄利克雷判别法;了解上、下极限的概念和性质以及绝对收敛和条件收敛的概念和性质。
(十三)反常积分1、无穷限的反常积分:无穷限的反常积分的概念;无穷限的反常积分的敛散性判别法。
2、无界函数的反常积分:无界函数的反常积分的概念;无界函数的反常积分的敛散性判别法。
要求:理解和掌握反常积分的收敛、发散、绝对收敛、条件收敛的概念;掌握反常积分的柯西收敛准则,会判断某些反常积分的敛散性。
(十四)函数项级数1、一致收敛的概念。
2、一致收敛的性质:连续性定理;可积性定理;可导性定理。
3、一致收敛的判别法;M-判别法;阿贝尔判别法;狄利克雷判别法。
要求:理解和掌握一致收敛的概念、性质及其证明;能够熟练地运用M-判别法判断一些函数项级数的一致收敛性。
(十五)幂级数1、幂级数的概念以及幂级数的收敛半径、收敛区间、收敛域。
2、幂级数的性质。
3、函数展开成幂级数。
要求:理解和掌握幂级数的概念,会求幂级数的和函数以及它的收敛半径、收敛区间、收敛域;掌握幂级数的性质以及两种将函数展开成幂级数的方法,会把一些函数直接或者间接展开成幂级数。
(十六)傅里叶级数1、傅里叶级数:三角函数系的正交性;傅里叶系数。
2、以2 为周期的函数的傅里叶级数。
3、以2L为周期的傅里叶级数。
4、收敛定理的证明。
5、傅里叶变换。
要求:理解和掌握三角函数系的正交性与傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明以及傅里叶变换的概念和性质。
(十七)多元函数极限与连续1、平面点集与多元函数的概念。
2、二元函数的二重极限、二次极限。
3、二元函数的连续性。
要求:理解和掌握二元函数的二重极限、二次极限的概念以及它们之间的关系,会计算一些简单的二元函数的二重极限和二次极限;掌握平面点集、聚点的概念;了解平面点集的几个基本定理以及闭区域上多元连续函数的性质。
(十八)多元函数的微分学1、偏导数与全微分:偏导数与全微分的概念;可微与可偏导、可微与连续、可偏导与连续的关系。
2、复合函数求偏导数以及隐函数求偏导数。
3、空间曲线的切线与法平面以及空间曲面的切平面和法线。
4、方向导数与梯度。
5、多元函数的泰勒公式。
6、极值和条件极值要求:理解和掌握偏导数、全微分、方向导数、梯度的概念及其计算;掌握多元函数可微、可偏导和连续之间的关系;会求空间曲线的切线与法平面以及空间曲面的切平面和法线;会求函数的极值、最值;了解多元泰勒公式。
(十九)隐函数存在定理、函数相关1、隐函数:隐函数存在定理;反函数存在定理;雅克比行列式。
2、函数相关。
要求:了解隐函数的概念及隐函数存在定理,会求隐函数的导数;了解函数行列式的性质以及函数相关。
(二十)含参变量积分以及反常积分1、含参变量积分:积分与极限交换次序;积分与求导交换次序;两个积分号交换次序。
2、含参变量反常积分:含参变量反常积分的一致收敛性;一致收敛的判别法;欧拉积分、B函数、Γ函数。
要求:理解和掌握积分号下求导的方法;掌握B函数、Γ函数的性质及其相互关系;了解含参变量反常积分的一致收敛性以及一致收敛的判别法。
(二十一)重积分1、重积分概念:重积分的概念;重积分的性质。
2、二重积分的计算:用直角坐标计算二重积分;用极坐标计算二重积分;用一般变换计算二重积分。
3、三重积分计算:用直角坐标计算三重积分;用柱面坐标计算三重积分;用球面坐标计算三重积分。
4、重积分应用:求物体的质心、转动惯量;求立体体积,曲面的面积;求引力。
要求:理解和掌握二重、三重积分的各种积分方法和特点,会选择最合适的方法进行积分;掌握并合理运用重积分的对称性简化计算;了解柱面坐标和球面坐标积分元素的推导。
(二十二)曲线积分与曲面积分1、第一类曲线积分:第一类曲线积分的概念、性质与计算;第一类曲线积分的对称性。
2、第二类曲线积分:第二类曲线积分的概念、性质与计算;两类曲线积分的联系。
3、第一类曲面积分:第一类曲面积分的概念、性质与计算;第一类曲面积分的对称性。
4、第二类曲面积分:曲面的侧;第二类曲面积分的概念、性质与计算;两类曲面积分的联系。
5、格林公式:曲线积分与路径的无关的四种等价叙述。
6、高斯公式。
7、斯托克斯公式。
8、场论初步:梯度;散度;旋度。
要求:理解和掌握两类曲线积分与曲面积分的概念、性质与计算,会使用对称性简化第一类曲线以及曲面积分;熟练掌握格林公式、高斯公式的证明并能利用它们求一些曲线积分和曲面积分;了解两类曲线积分及曲面积分的区别和联系;了解斯托克斯公式和场论初步。
二、考试形式与试卷结构1. 考试时间180分钟。
2.试卷分值150分。
3.考试方式闭卷考试。
4.题型结构类型包括:选择题、填空题、计算题、证明题、应用题。
三、推荐教材参考书目【1】欧阳光中等主编《数学分析》(第三版)高等教育出版社【2】华东师范大学数学系主编《数学分析》(第三版)高等教育出版社【3】陈纪修等主编《数学分析》(第二版)高等教育出版社。