高一数学下学期期中试题文无答案新人教A版

合集下载

安徽省安庆市望江中学-高一数学下学期期中试题(含解析)新人教A版

安徽省安庆市望江中学-高一数学下学期期中试题(含解析)新人教A版

-安徽省安庆市望江中学高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(•陕西)设0<a<b,则下列不等式中正确的是()A.B.C.D.考点:基本不等式.专题:计算题.分析:令a=1,b=4代入选项中,分别求得 a ,,,b的值,进而可比较他们的大小解答:解:令a=1,b=4则=2,=,∵1<2<<4∴.故选B.点评:本题主要考查了不等式的基本性质.对于选择题可以用特殊值法,可以简便解题过程.2.(5分)(•江西)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0} B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}考点:交集及其运算.专题:计算题.分析:根据已知条件我们分别计算出集合A,B,然后根据交集运算的定义易得到A∩B的值.解答:解:∵A={x|﹣1≤2x+1≤3}={x|﹣1≤x≤1},={x|0<x≤2}故A∩B={x|0<x≤1},故选B点评:本题考查的知识点是交集及其运算,其中根据已知条件求出集合A,B是解答本题的关键.3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.考点:余弦定理;等比数列.专题:计算题.分析:根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解答:解:△ABC中,a、b、c成等比数列,且c=2a,则b=a ,=,故选B.点评:本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.4.(5分)等差数列{a n}的公差d<0,且a2•a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n﹣2(n∈N*)B.a n=2n+4(n∈N*)C.a n=﹣2n+12(n∈N*)D.a n=﹣2n+10(n∈N*)考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由题意列式求出公差,然后代入等差数列的通项公式求解.解答:解:由a2•a4=12,a2+a4=8,且d<0,解得a2=6,a4=2.所以d=.则a n=a2+(n﹣2)d=6﹣2(n﹣2)=﹣2n+10.故选D.点评:本题考查了等差数列的通项公式,如果给出了等差数列公差和第m项a m,则a n=a m+(n﹣m)d,是基础题.5.(5分)当x>1时,不等式x+恒成立,则实数a的取值范围是()A.(﹣∞,2] B.[2,+∞)C.[3,+∞)D.(﹣∞,3]考点:基本不等式.专题:计算题.分析:由题意当x>1时,不等式x+恒成立,由于x+的最小值等于3,可得a≤3,从而求得答案.解答:解:∵当x>1时,不等式x+恒成立,∴a≤x+对一切非零实数x>1均成立.由于x+=x﹣1++1≥2+1=3,当且仅当x=2时取等号,故x+的最小值等于3,∴a≤3,则实数a的取值范围是(﹣∞,3].故选D.点评:本题考查查基本不等式的应用以及函数的恒成立问题,求出x+的最小值是解题的关键.6.(5分)等差数列{a n}满足a42+a72+2a4a7=9,则其前10项之和为()A.﹣9 B.﹣15 C.15 D.±15考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得=9,由此求得a4+a7的值,再根据其前10项之和为S10==,运算求得结果.解答:解:∵等差数列{an}满足a42+a72+2a4a7=9,则有=9,∴a4+a7=±3.故其前10项之和为S10===±15,故选D.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于基础题.7.(5分)△ABC中,BC=2,角B=,当△ABC 的面积等于时,sinC=()A.B.C.D.考点:解三角形.专题:计算题.分析:先利用三角形面积公式求得AB,进而利用余弦定理求得AC的值,最后利用正弦定理求得sinC.解答:解:三角形面积为:sinB•BC•BA=××2×AB=∴AB=1由余弦定理可知:AC==∴由正弦定理可知∴sinC=•AB=故选B点评:本题主要考查了正弦定理和余弦定理的运用.在解三角形问题中,正弦定理和余弦定理是常用的方法,应强化训练和记忆.8.(5分)在△ABC中,若lgsinA﹣lgcosB﹣lgsinC=lg2,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形考点:三角函数中的恒等变换应用.专题:计算题.分析:利用对数的运算法则可求得=2,利用正弦定理求得cosB,同时根据余弦定理求得cosB的表达式进而建立等式,整理求得b=c,判断出三角形为等腰三角形.解答:解:∵lgsinA﹣lgcosB﹣lgsinC=lg2,∴=2,由正弦定理可知=∴=∴cosB=,∴cosB==,整理得c=b,∴△ABC的形状是等腰三角形.故选D点评:本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用正弦定理和余弦定理完成了边角问题的互化.9.(5分)对于任意a∈[﹣1,1],函数f (x)=x2+(a﹣4)x+4﹣2a的值总大于0,则x的取值范围是()A.{x|1<x<3} B.{x|x<1或x>3} C.{x|1<x<2} D.{x|x<1或x>2}考点:二次函数在闭区间上的最值.专题:计算题.分析:把二次函数的恒成立问题转化为y=a(x﹣2)+x2﹣4x+4>0在a∈[﹣1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.解答:解:原题可转化为关于a的一次函数y=a(x﹣2)+x2﹣4x+4>0在a∈[﹣1,1]上恒成立,只需⇒⇒x<1或x>3.故选B.点评:本题的做题方法的好处在于避免了讨论二次函数的对称轴和变量间的大小关系,而一次函数在闭区间上的最值一定在端点处取得,所以就把解题过程简单化了.10.(5分)(•山东)设x,y 满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为()A.B.C.D.4考点:基本不等式;二元一次不等式(组)与平面区域.专题:压轴题.分析:已知2a+3b=6,求的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.解答:解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=,故选A.点评:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上).11.(5分)(•咸安区模拟)数列{a n}中,S n是前n项和,若a1=1,a n+1=(n≥1,n∈N),则a n =.考点:数列递推式.专题:计算题.分析:由题设条件可知a1=1,,化简可得,4a n=3a n+1,即,由此可知答案.解答:解:a1=1,,当n≥2时,S n =3a n+1,S n﹣1=3a n,∴a n=S n﹣S n﹣1=3a n+1﹣3a n,∴4a n=3a n+1,∴,∴a n=.故答案:.点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.12.(5分)(•铁岭模拟)在△ABC中,角A,B,C所对应的边分别为a,b,c,若a=csinA,则的最大值为.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:根据正弦定理及a=csinA求得C.进而根据勾股定理可知c2=a2+b2,对化简整理得1+根据基本不等式得到的范围,进而得出答案.解答:解:a=csinA,得到==sinA.所以sinC=1,即C=90°.所以c2=a2+b2.==1+=1+=1+≤1+=2所以得最大值为故答案为.点评:本题主要考查正弦定理和基本不等式在解三角形中的应用.13.(5分)11月12日广州亚运会上举行升旗仪式.如图,在坡度为15°的观礼台上,某一列座位所在直线AB与旗杆所在直线MN共面,在该列的第一个座位A和最后一个座位B测得旗杆顶端N的仰角分别为60°和30°,且座位A、B 的距离为米,则旗杆的高度为30 米.考点:解三角形的实际应用.专题:计算题.分析:先画出示意图,根据题意可求得∠NBA和∠BAN,则∠BNA可求,然后利用正弦定理求得AN,最后在Rt△AMN中利用MN=AN•sin∠NAM求得答案.解答:解:如图所示,依题意可知∠NBA=45°,∠BAN=180°﹣60°﹣15°=105°∴∠BNA=180°﹣45°﹣105°=30°由正弦定理可知CEsin∠EAC=ACsin∠CEA,∴AN==20米∴在Rt△AMN中,MN=AN•sin∠NAM=20×=30米所以:旗杆的高度为30米故答案为:30.点评:本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决.14.(5分)若数列{a n}满足a1,a2﹣a 1,a 3﹣a2,…,a n﹣a n﹣1,…,是首项为1,公比为2的等比数列,那么a n等于2n﹣1 .考点:等比数列的通项公式.专题:等差数列与等比数列.分析:直接把数列a1,a2﹣a1,a3﹣a2,…,a n﹣a n﹣1,…的前n项求和即可得到答案.解答:解:由题意可知,a n=a1+(a2﹣a1)+(a3﹣a 2)+…+(a n﹣a n﹣1)=.故答案为2n﹣1点评:本题考查了等比数列的前n项和公式,考查了学生的灵活变形能力,是基础题.15.(5分)若,已知下列不等式:①a+b<ab;②|a|>|b|;③a<b ;④;⑤a2>b2;⑥2a >2b,其中正确的不等式的序号为①④⑥.考点:不等关系与不等式;命题的真假判断与应用.专题:常规题型.分析:若,则a<0,b<0,且a>b则①a+b为负数,ab为正数;②③⑤赋值来处理;④借助于均值不等式来处理;⑥由于a>b,且y=2x为增函数,则2a>2b解答:解:若,则a<0,b<0,且a>b则①a+b<0,ab>0,故①正确;②令a=﹣2,b=﹣3,则显然,但|a|=2,|b|=3,故②错误;③由②得a>b,故③错;④由于a<0,b<0,故则(当且仅当即a=b时取“=”)又a>b,则,故④正确;⑤由②知,a2<b2,故⑤错;⑥由于a<0,b<0,且a>b,则2a>2b,故⑥正确故答案为①④⑥点评:本题考查不等式的性质,属于基础题.三、解答题(共6小题,满分75分)16.(12分)在△ABC中,角A、B、C所对的边分别是a、b、c,若sin2B+sin2C=sin2A+sinBsinC,且,求△ABC的面积S.考点:余弦定理;平面向量数量积的运算;正弦定理.专题:计算题.分析:由已知条件利用正弦定理可得 b2+c2=a2+bc,再利用余弦定理求出cosA=,故sinA=,由求得,bc=8,由S=求出结果.解答:解:由已知条件利用正弦定理可得 b2+c2=a2+bc,∴bc=b2+c2﹣a2=2bc•cosA,∴cosA=,∴sinA=,由得bc•cosA=4,bc=8.∴S==2.点评:本题主要考查正弦定理、余弦定理,两个向量的数量积的定义,求得cosA=,是解题的关键.17.(12分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?考点:简单线性规划.专题:应用题.分析:先设甲、乙两种产品月产量分别为x、y件,写出约束条件、目标函数,欲求生产收入最大值,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.解答:解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.3x+0.2y由约束条件画出可行域,如图所示的阴影部分由z=0.3x+0.2y可得5z为直线z=0.3x+0.2y在y轴上的截距,截距最大时z最大.结合图象可知,z=0.3x+0.2y在A处取得最大值由可得A(200,100),此时z=80万故安排生产甲、乙两种产品月的产量分别为200,100件可使月收入最大.点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件②由约束条件画出可行域③分析目标函数Z与直线截距之间的关系④使用平移直线法求出最优解⑤还原到现实问题中.18.(12分)(1)已知x <,求函数y=4x﹣2+的最大值(2)已知a>0,b>0,c>0,求证:.考点:综合法与分析法(选修);基本不等式.专题:不等式的解法及应用.分析:(1)化简可得函数y=3﹣(5﹣4x+),而由基本不等式可得5﹣4x+的最小值为2,从而求得函数y=3﹣(5﹣4x+)的最大值.(2)由条件利用基本不等式可得,,,把这三个不等式相加在同时除以2,即可正得不等式成立.解答:解:(1)∵已知x <,函数y=4x﹣2+=4x﹣5++3=3﹣(5﹣4x+),而由基本不等式可得(5﹣4x)+≥2,当且仅当 5﹣4x=,即x=1时,等号成立,故5﹣4x+的最小值为2,故函数y=3﹣(5﹣4x+)的最大值为 3﹣2=1.(2)∵已知a>0,b>0,c>0,∴,,,当且仅当a=b=c时,取等号.把这三个不等式相加可得,∴成立.点评:本题主要考查利用基本不等式求函数的最值,利用基本不等式证明不等式,注意检验等号成立的条件以及不等式的使用条件,属于中档题.19.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*),在数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项公式;(2)记T n=a1b1+a2b2+…+a n b n,求T n.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:(1)由S n=2a n﹣2得:S n﹣1=2a n﹣1﹣2(n≥2),两式相减可得a n=2a n﹣1(n≥2),再求得a1=2,可知数列{a n}是以2为首项,2为公比的等比数列,从而可求a n=2n;点P(b n,b n+1)在直线x﹣y+2=0上,可知b n+1﹣b n=2,又b1=1,从而可求得{b n}的通项公式;(2))T n=1×2+3×22+5×23+…+(2n﹣3)×2n﹣1+(2n﹣1)×2n①,2T n=1×22+3×23+…+(2n﹣3)×2n+(2n﹣1)×2n+1②,错位相减即可求得T n.解答:解:(1)由S n=2a n﹣2得:S n﹣1=2a n﹣1﹣2(n≥2),两式相减得:a n=2a n﹣2a n﹣1,即=2(n≥2),又a1=2a1﹣2,∴a1=2,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2n.∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n+1﹣b n=2,∴数列{b n}是等差数列,∵b1=1,∴b n=2n﹣1;(2)T n=1×2+3×22+5×23+…+(2n﹣3)×2n﹣1+(2n﹣1)×2n①∴2T n=1×22+3×23+…+(2n﹣3)×2n+(2n﹣1)×2n+1②①﹣②得:﹣T n=1×2+2(22+23+…+2n)﹣(2n﹣1)×2n+1=2+2×﹣(2n﹣1)×2n+1=2+2×2n+1﹣8﹣(2n﹣1)×2n+1=(3﹣2n)2n+1﹣6,∴T n=(2n﹣3)2n+1+6.点评:本题考查等差数列与等比数列的通项公式,考查等比关系的确定与错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.考点:一元二次不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)直接因式分解后求解不等式的解集;(2)把函数f(x)的解析式代入f(x)≥(m+2)x﹣m﹣15,分离变量m后利用基本不等式求解m 的取值范围.解答:解:由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,即(x+2)(x﹣4)<0,解得﹣2<x<4.所以不等式g(x)<0的解集为{x|﹣2<x<4};(2)因为f(x)=x2﹣2x﹣8,当x>2时,f(x)≥(m+2)x﹣m﹣15成立,则x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,即x2﹣4x+7≥m(x﹣1).所以对一切x>2,均有不等式成立.而(当x=3时等号成立).所以实数m的取值范围是(﹣∞,2].点评:本题考查了一元二次不等式的解法,考查了数学转化思想方法,训练了利用基本不等式求函数的最值,是基础题.21.(14分)(•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1•a2•a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行 3 2 10第二行 6 4 14第三行9 8 18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)lna n,求数列b n的前n项和s n.考点:等比数列的通项公式;数列的求和.专题:计算题.分析:(Ⅰ)由表格可看出a1,a2,a3分别是2,6,18,由此可求出{a n}的首项和公比,继而可求通项公式(Ⅱ)先写出b n发现b n由一个等比数列、一个等差数列乘(﹣1)n的和构成,故可分组求和.解答:解:(Ⅰ)当a1=3时,不合题意当a1=2时,当且仅当a2=6,a3=18时符合题意当a1=10时,不合题意因此a1=2,a2=6,a3=18,所以q=3,所以a n=2•3n﹣1.(Ⅱ)b n=a n+(﹣1)n lna n=2•3n﹣1+(﹣1)n[(n﹣1)ln3+ln2]=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)n nln3所以s n=2(1+3+…+3n﹣1)+[﹣1+1﹣1+1+…+(﹣1)n](ln2﹣ln3)+[﹣1+2﹣3+4﹣…+(﹣1)n n]ln3 所以当n为偶数时,s n ==当n为奇数时,s n ==综上所述s n =点评:本题考查了等比数列的通项公式,以及数列求和的方法,只要简单数字运算时不出错,问题可解,是个中档题.。

云南省曲靖市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

云南省曲靖市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某市高一(下)期中数学试卷一.选择题(本大题共12小题,每题5分共60分)1.sin15°cos15°的值是()A.B.C.D.2.已知角α的终边过点P(1,2),则tan()=()A.B.﹣ C.3 D.﹣33.已知向量,的夹角为120°,且||=1,||=2,则•(﹣2)=()A.﹣1 B.1 C.﹣3 D.34.已知正方形ABCD的边长为1,则|﹣|=()A.1 B.2 C.D.25.设向量的模为,则cos2α=()A.B.C.D.6.下列函数中,最小正周期为π的偶函数是()A.y=sinx+cosx B.y=cos4x﹣sin4xC.y=cos|x| D.y=7.如图,已知△ABC, =3, =, =,则=()A.+B.+C.+D.+8.函数y=﹣xcosx的部分图象是()A.B.C.D.9.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[﹣,]上的最小值是()A.﹣B.﹣1 C.﹣ D.﹣10.已知向量,的夹角为,||=1,||=,若=+, =﹣,则在上的投影是()A.﹣B.C.﹣2 D.211.若直线xcosα+ysinα﹣1=0与圆(x﹣1)2+(y﹣sinα)2=相切,α为锐角,则斜率k=()A.﹣B.C.﹣D.12.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin),b=f(cos),c=f(tan),则()A.a>b>c B.c>a>b C.b>a>c D.c>b>a二.填空题(本大题共4小题,每题5分共20分)13.已知,是两个不共线的非零向量,若2+k与k+共线,则k的值是.14.计算﹣=.15.若函数y=sinx+cosx的图象向左平移φ>0个单位后,所得图象关于y轴对称,则φ的最小值是.16.已知函数y=cos2x+2cos(x+),则y的取值X围是.三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在平面直角坐标系中,O为坐标原点,已知A(﹣2,0),B(0,﹣2),C(cosφ,sinφ),其中0<φ<π.(Ⅰ)若•=,求sin2φ的值;(Ⅱ)若|+|=,求与的夹角θ.18.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为,.(Ⅰ)求sin(α﹣β)的值;(Ⅱ)求α+2β的值.19.已知函数f(x)=sin2x+2sinxcosx+3cos2x+α的最大值与最小值之和为﹣2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求使得函数f(x)≥0成立的x的集合.20.已知函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,0<φ<π),对于任意x ∈R满足f(﹣x)=f(x),且相邻两条对称轴间的距离为.(Ⅰ)求y=f(x)的解析式;(Ⅱ)求函数的单调减区间.21.已知f(x)=(1+)sin2x﹣2sin(x+)sin(x﹣).(Ⅰ)若sinθ+cosθ=,其中,求f(θ)的值;(Ⅱ)当≤x时,求函数f(x)的值域.22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<0)的图象上任意两点(x1,f (x1),(x2,f(x2)),且φ的终边过点(1,﹣),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(Ⅰ)求f(x)的解析式;(Ⅱ)若对于任意的x∈[0,],不等式mf(x)=2m≥f(x)恒成立,某某数m的取值X 围.2016-2017学年某某省某某市宣威九中高一(下)期中数学试卷参考答案与试题解析一.选择题(本大题共12小题,每题5分共60分)1.sin15°cos15°的值是()A.B.C.D.【考点】GS:二倍角的正弦.【分析】根据二倍角的正弦公式将sin15°cos15°化为sin30°,再进行求值.【解答】解:sin15°cos15°=sin30°=,故选B.2.已知角α的终边过点P(1,2),则tan()=()A.B.﹣ C.3 D.﹣3【考点】G9:任意角的三角函数的定义.【分析】直接利用任意角的三角函数,求出tanα,根据二倍角求解即可.【解答】解:角α的终边为点P(1,2),即x=1,y=2,∴tanα=.tan()==故选:A.3.已知向量,的夹角为120°,且||=1,||=2,则•(﹣2)=()A.﹣1 B.1 C.﹣3 D.3【考点】9R:平面向量数量积的运算.【分析】将式子展开计算即可.【解答】解: =1, =4, =1×2×cos120°=﹣1,∴则•(﹣2)=﹣2=1﹣2×(﹣1)=3.故选D.4.已知正方形ABCD的边长为1,则|﹣|=()A.1 B.2 C.D.2【考点】9R:平面向量数量积的运算.【分析】作出图形,利用平面向量加法的三角形法及向量的模的几何意义即可求得|﹣|=||=,从而可得答案.【解答】解:正方形ABCD的边长为1,如图:则|﹣|=|+|=||=,故选:C.5.设向量的模为,则cos2α=()A.B.C.D.【考点】GT:二倍角的余弦;93:向量的模.【分析】由向量的模为,可求出sinα的平方,代入cos2α=1﹣2sin2α 可求出cos2α 的值.【解答】解:∵向量的模为,∴+cos2α=,cos2α=,∴cos2α=2cos2α﹣1=﹣,故选B.6.下列函数中,最小正周期为π的偶函数是()A.y=sinx+cosx B.y=cos4x﹣sin4xC.y=cos|x| D.y=【考点】H1:三角函数的周期性及其求法.【分析】利用三角函数的奇偶性和周期性,判断各个选项中的函数的奇偶性和周期性,从而得出结论.【解答】解:由于y=sinx+cosx=sin(x+),故它的最小正周期为2π,故排除A;由于y=cos4x﹣sin4x=(cos2x﹣sin2x)•(cos2x+sin2x)=cos2x,故它的最小正周期为π,且它是偶函数,故B满足条件;由于y=cos|x|=cosx,它的最小正周期为2π,故排除C;由于y==•tan2x,故该函数为奇函数,不满足条件,故排除D,故选:B.7.如图,已知△ABC, =3, =, =,则=()A.+B.+C.+D.+【考点】9F:向量的线性运算性质及几何意义.【分析】利用三角形法则得出结论.【解答】解: ====.故选C.8.函数y=﹣xcosx的部分图象是()A.B.C.D.【考点】3O:函数的图象.【分析】由函数奇偶性的性质排除A,C,然后根据当x取无穷小的正数时,函数小于0得答案.【解答】解:函数y=﹣xcosx为奇函数,故排除A,C,又当x取无穷小的正数时,﹣x<0,cosx→1,则﹣xcosx<0,故选:D.9.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[﹣,]上的最小值是()A.﹣B.﹣1 C.﹣ D.﹣【考点】H7:余弦函数的图象.【分析】利用余弦函数的图象对称性,诱导公式,求得f(x)的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[﹣,]上的最小值.【解答】解:∵函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,故有f (π)=cos(2π+θ)=0,故有θ=kπ+,k∈Z,∴θ=,f(x)=﹣sin2x.在[﹣,]上,2x∈[﹣,],故当2x=﹣时,f(x)取得最小值是﹣1,故选:B.10.已知向量,的夹角为,||=1,||=,若=+, =﹣,则在上的投影是()A.﹣B.C.﹣2 D.2【考点】9R:平面向量数量积的运算.【分析】依题意,可求得•=,•=(+)•(﹣)=﹣2,及||=1,于是可求在上的投影==﹣2.【解答】解:∵向量,的夹角为,||=1,||=,∴•=||||cos=1××=,又=+, =﹣,∴•=(+)•(﹣)=﹣=1﹣3=﹣2,又=﹣2•+=1﹣2×1××+3=1,∴||=1,∴在上的投影为==﹣2,故选:C.11.若直线x cosα+ysinα﹣1=0与圆(x﹣1)2+(y﹣sinα)2=相切,α为锐角,则斜率k=()A.﹣B.C.﹣D.【考点】J9:直线与圆的位置关系.【分析】根据圆心到直线的距离等于半径即可求解.【解答】解:直线xcosα+ysinα﹣1=0,圆(x﹣1)2+(y﹣sinα)2=,可知圆心为(1,sinα).半径r=.圆心到直线的距离d=.可得:cos2a﹣cosα±=0,∵α为锐角,∴cosα=.∴sinα=.那么斜率k==﹣.故选:A.12.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin),b=f(cos),c=f(tan),则()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【考点】3N:奇偶性与单调性的综合.【分析】根据题意,由三角函数的诱导公式可得a=f(sin)=f(﹣sin),b=f(﹣cos),结合函数的奇偶性可得a=f(sin),b=f(cos),结合三角函数的定义分析可得0<cos<sin<1<tan,结合函数的奇偶性即可得答案.【解答】解:根据题意,sin=sin(2π﹣)=﹣sin,则a=f(sin)=f(﹣sin),cos=cos(π﹣)=﹣cos,b=f(﹣cos),又由函数f(x)是定义在R上的偶函数,则a=f(sin)=f(﹣sin)=f(sin),b=f(﹣cos)=f(cos),又由<<,则有0<cos<sin<1<tan,又由函数在[0,+∞)上是增函数,则有c>a>b;故选:B.二.填空题(本大题共4小题,每题5分共20分)13.已知,是两个不共线的非零向量,若2+k与k+共线,则k的值是.【考点】9K:平面向量共线(平行)的坐标表示.【分析】2+k与k+共线,可得存在实数λ使得2+k=λ(k+),又,是两个不共线的非零向量,根据平面向量基本定理即可得出.【解答】解:∵2+k与k+共线,∴存在实数λ使得2+k=λ(k+),又,是两个不共线的非零向量,∴2=λk,k=λ,解得k=.故答案为:.14.计算﹣=.【考点】GI:三角函数的化简求值.【分析】将切化弦,通分,利用和与差公式换化角度相同,可得答案.【解答】解:由﹣====.故答案为:.15.若函数y=sinx+cosx的图象向左平移φ>0个单位后,所得图象关于y轴对称,则φ的最小值是.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;GL:三角函数中的恒等变换应用.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的最小值.【解答】解:把函数y=sinx+cosx=2sin(x+)的图象向左平移φ>0个单位,所得的图象对应的函数的解析式为y=2sin(x++φ),再根据所得图象关于y轴对称,可得+φ=kπ+,k∈z,可得:φ=kπ+,k∈z,则m的最小值为,故答案为:.16.已知函数y=cos2x+2cos(x+),则y的取值X围是[﹣3,].【考点】GL:三角函数中的恒等变换应用.【分析】利用二倍角,诱导公式化简,转化为二次函数即可求y的取值X围.【解答】解:函数y=cos2x+2cos(x+)=1﹣2sin2x﹣2sinx=1﹣2(sin2x+sinx+)+=﹣2(sinx+)2.当sinx=时,y可取得最大值为.当sinx=1时,y可取得最小值为sinx==﹣3.则y的取值X围是[﹣3,].故答案为:[﹣3,].三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在平面直角坐标系中,O为坐标原点,已知A(﹣2,0),B(0,﹣2),C(cosφ,sinφ),其中0<φ<π.(Ⅰ)若•=,求sin2φ的值;(Ⅱ)若|+|=,求与的夹角θ.【考点】9J:平面向量的坐标运算.【分析】(I)=(cosφ+2,sinφ),=(cosφ,si nφ+2),利用•=,可得cosφ+sinφ=,两边平方即可得出.(II)由|+|=,可得=,化为:cosφ=,0<φ<π.解答φ.利用cosθ=,即可得出.【解答】解:(I)=(cosφ+2,sinφ),=(cosφ,sinφ+2),•=,∴cosφ(cosφ+2)+sinφ(sinφ+2)=,∴cosφ+sinφ=,两边平方可得:sin2φ=﹣.(II)∵|+|=,∴=,化为:cosφ=,∵0<φ<π.∴φ=.∴C.∴cosθ===﹣,∴θ=.即与的夹角为.18.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为,.(Ⅰ)求sin(α﹣β)的值;(Ⅱ)求α+2β的值.【考点】GI:三角函数的化简求值;G9:任意角的三角函数的定义.【分析】(Ⅰ)由已知求出cosα,cosβ的值,再由平方关系求出sinα,sinβ的值,结合两角差的正弦求得sin(α﹣β)的值;(Ⅱ)由(Ⅰ)求出sin(α+β)、cos(α+β)的值,利用拆角配角思想求得sin(α+2β),结合角的X围求得α+2β的值.【解答】解:(Ⅰ)由已知可得,,∵α,β为锐角,∴sinα=,sinβ=.∴sin(α﹣β)=sinαcosβ﹣cosαsinβ=﹣=;(Ⅱ)sin(α+β)=sinαcosβ+cosαsinβ=+=,cos(α+β)==.∴sin(α+2β)=sin[(α+β)+β]=sin(α+β)cosβ+cos(α+β)sinβ==.又0<α+2β<,∴α+2β=.19.已知函数f(x)=sin2x+2sinxcosx+3cos2x+α的最大值与最小值之和为﹣2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求使得函数f(x)≥0成立的x的集合.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin (ωx+φ)的形式,结合三角函数的图象和性质,求出f(x)的最大值和最小值,可得a的值,即得到f(x)的解析式.(Ⅱ)函数f(x)≥0,结合三角函数的图象和性质,求解即可.【解答】解:函数f(x)=sin2x+2sinxcosx+3cos2x+α.化简可得:f(x)=cos2x+sin2x+cos2x++a=cos2x+sin2x+2+a=2sin(2x+)+2+a.(Ⅰ)∵sin(2x+)的最大值为1,最小值为﹣1.∴4+2a=﹣2,则 a=﹣3.∴函数f(x)的解析式为f(x)=2sin(2x+)﹣1.(Ⅱ)函数f(x)≥0,即2sin(2x+)﹣1≥0.得:sin(2x+).∴≤2x+≤.k∈Z.解得:kπ≤x≤,故得使得函数f(x)≥0成立的x的集合为{x|kπ≤x≤,k∈Z}.20.已知函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,0<φ<π),对于任意x ∈R满足f(﹣x)=f(x),且相邻两条对称轴间的距离为.(Ⅰ)求y=f(x)的解析式;(Ⅱ)求函数的单调减区间.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,相邻两条对称轴间的距离为.根据周期公式,可得ω,f(﹣x)=f(x),函数f(x)是偶函数,可得φ.即得f(x)的解析式;(Ⅱ)函数,将f(x)代入化简,求解函数y,结合三角函数的图象和性质,可得单调减区间.【解答】解:函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,0<φ<π),化简可得:f(x)=2sin(ωx+φ)(Ⅰ)∵f(﹣x)=f(x),即函数f(x)是偶函数.∴φ=,k∈Z.∵0<φ<π∴φ=.相邻两条对称轴间的距离为.即T=.∵T=.∴ω=2.故得f(x)=2f(x)=2sin(2x+)=2cos2x.(Ⅱ)函数,f(x)=2cos2x.∴y=2cos2x+2cos2(x+)=2cos2x﹣2sin2x=﹣2sin(2x﹣)令2x﹣,k∈Z.得:≤x≤∴函数y的单调减区间:[,],k∈Z.21.已知f(x)=(1+)sin2x﹣2sin(x+)sin(x﹣).(Ⅰ)若sinθ+cosθ=,其中,求f(θ)的值;(Ⅱ)当≤x时,求函数f(x)的值域.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)切化弦,利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,利用sinθ+cosθ=,其中,转化思想构造出f(θ),即可求解.(Ⅱ)当≤x时,求出内层函数的取值X围,结合三角函数的图象和性质,即得到f(x)的值域.【解答】解:函数f(x)=(1+)sin2x﹣2sin(x+)sin(x﹣).化简可得:f(x)=sin2x+2sin(x+)cos(x+)=sin2x+sinxcosx+sin2(x+)=cos2x+sin2x+cos2x═cos2x+sin2x+=sin(2x+).(Ⅰ)∴f(θ)=sin(2θ+).∵sinθ+cosθ=,其中,∴1+sin2θ=,即sin2θ=.∴cos2θ=.∴f(θ)=sin(2θ+)=(sin2θ+cos2θ)+=(Ⅱ)当≤x时,可得: 2x+≤.当2x+=时,f(x)取得最大值为=.当2x+=时,f(x)取得最大值为=0.故得当≤x时,函数f(x)的值域为[0,].22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<0)的图象上任意两点(x1,f(x1),(x2,f(x2)),且φ的终边过点(1,﹣),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(Ⅰ)求f(x)的解析式;(Ⅱ)若对于任意的x∈[0,],不等式mf(x)=2m≥f(x)恒成立,某某数m的取值X 围.【考点】H2:正弦函数的图象;GL:三角函数中的恒等变换应用.【分析】(1)由函数的图象经过定点求得φ,由函数的最大值和最小值求出ω,可得函数的解析式.(2)条件即等价于,利用正弦函数的定义域和值域求得函数1﹣的最大值,可得m的X围.【解答】解:(1)角φ的终边经过点,,∵,∴.由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3,∴.(2)当时,3x﹣∈[﹣,],sin(3x﹣)∈[﹣,],∴,于是,2+f(x)>0,即mf(x)+2m≥f(x),等价于,由,得的最大值为,所以,实数m的取值X围是.。

山东省济南市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

山东省济南市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形7.P是△ABC所在平面上一点,若,则P是△ABC的()A.外心 B.内心 C.重心 D.垂心8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]11.函数y=lncosx()的图象是()A.B.C.D.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上二、填空题(4*5=20分)13.cos =.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是.15.已知||=||=1,|+|=1,则|﹣|=.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||20.求函数的周期、对称轴、对称中心及单调递增区间.21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.2016-2017学年某某省某某外国语学校三箭分校高一(下)期中数学试卷参考答案与试题解析一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等【考点】G3:象限角、轴线角;2K:命题的真假判断与应用.【分析】通过特例判断A的正误,角所在象限判断B的正误;钝角的X围判断C的正误;角的终边判断D的正误;【解答】解:例如﹣390°是第一象限的角,它是负角,所以A不正确;﹣831°=﹣3×360°+249°所以﹣831°是第三象限角,所以B不正确;钝角一定是第二象限角,正确;终边与始边均相同的角一定相等,不正确,因为终边相同,角的差值是360°的整数倍.故选:C.2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量【考点】96:平行向量与共线向量;93:向量的模.【分析】利用平面向量的性质,决定向量的有大小和方向,结合共线向量的定义进行选择.【解答】解:对于A,若|,;错误;因为向量没有大小之分;对于B,,错误;因为两个向量方程可能不同;对于C,相等的向量大小和方向都相同;故正确;对于D,,则与可能是共线向量;故错误;故选:C.3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣【考点】G9:任意角的三角函数的定义.【分析】由题意可得,x=﹣4、y=3、r=|OP|=5,再由三角函数的定义求得结果.【解答】解:由题意可得,x=﹣4、y=3、r=|OP|=5,故sinα==,故选:A.4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)【考点】9J:平面向量的坐标运算.【分析】设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐标.【解答】解:设B(x,y),由得(x+1,y﹣5)=(6,9),故有,解得,故选 D.5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.【考点】GO:运用诱导公式化简求值.【分析】直接利用诱导公式化简所给式子的值,可得答案.【解答】解:cos(﹣225°)+sin(﹣225°)=cos225°﹣sin225°=cos﹣sin=﹣cos45°+sin45°=0.故选:C.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】由<0知∠BAC>90°,由此可知△ABC的形状.【解答】解:∵<0,∴,∴,∴△ABC为钝角三角形,故选C.7.P是△ABC所在平面上一点,若,则P 是△ABC的()A.外心 B.内心 C.重心 D.垂心【考点】9R:平面向量数量积的运算;9T:数量积判断两个平面向量的垂直关系.【分析】本题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法则,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.【解答】解:∵,则由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心故选D8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin,要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数【考点】H3:正弦函数的奇偶性;H1:三角函数的周期性及其求法.【分析】直接求出函数的周期,化简函数的表达式,为一个角的一个三角函数的形式,判定奇偶性,即可得到选项.【解答】解:因为:T==2,且f(x)=sin(πx﹣)﹣1=﹣cosπx﹣1,因为f(﹣x)=f(x)∴f(x)为偶函数.故选B.10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]【考点】H5:正弦函数的单调性.【分析】由条件利用正弦函数的减区间可得,由此求得实数ω的取值X围.【解答】解:∵ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则,求得≤ω≤,故选:A.11.函数y=lncosx()的图象是()A.B.C.D.【考点】35:函数的图象与图象变化.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上【考点】9B:向量加减混合运算及其几何意义.【分析】由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件+=2,根据题意考查方程+=2的解的情况,用排除法选出正确的答案即可.【解答】解:由已知不妨设A(0,0)、B(1,0)、C(c,0)、D(d,0),则(c,0)=λ(1,0),(d,0)=μ(1,0),∴λ=c,μ=d;代入+=2,得+=2;(*)若C是线段AB的中点,则c=,代入(*)得,d不存在,∴C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(*)得,c=d=1,此时C和D点重合,与已知矛盾,∴C错误.若C,D同时在线段AB的延长线上时,则λ>1.μ>1,∴1λ+1μ<2,这与1λ+1μ=2矛盾;∴C、D不可能同时在线段AB的延长线上,D正确.故选:D.二、填空题(4*5=20分)13.cos =.【考点】GO:运用诱导公式化简求值.【分析】直接由三角函数的诱导公式化简计算得答案.【解答】解:cos =cos=cos(25π+)=cos()=﹣cos=.故答案为:.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是三,四.【考点】G3:象限角、轴线角.【分析】对k分奇数与偶数讨论利用终边相同的角的集合的定义即可得出.【解答】解:当k=2n+1(n∈Z)时,α=(2n+1)π+,角θ的终边在第三象限.当k=2n(n∈Z)时,α=2nπ﹣,角θ的终边在第四象限.故答案为:三,四.15.已知||=||=1,|+|=1,则|﹣|=.【考点】9R:平面向量数量积的运算.【分析】法一、由已知求出,然后求出,开方后得答案;法二、由题意画出图形,然后求解直角三角形得答案.【解答】解:法一、由||=||=1,|+|=1,得,即,∴,则|﹣|=;法二、由题意画出图形如图,设,则图中A、B两点的距离即为|﹣|.连接AB后解直角三角形可得|AB|=.故答案为:.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.【考点】9V:向量在几何中的应用.【分析】根据向量加法的平行四边形法则,向量加减法的几何意义,以及向量的数乘运算即可得出,这样便可得出m+n的值.【解答】解:根据条件,====;又;∴.故答案为:.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.【考点】GH:同角三角函数基本关系的运用.【分析】(1)原式分子分母除以cosα,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值;(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值.【解答】解:(1)∵tanα=2,∴原式===;(2)∵tanα=2,∴原式===.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.【考点】GO:运用诱导公式化简求值.【分析】(1)根据诱导公式化简可得答案.(2)由cosα=,利用同角三角函数间的关系式可求解.【解答】解:(1)由f(α)=,==2sinα.(2)∵cosα=,∴当α在第一象限时,sinα==.∴f(α)=2sinα=1;∴当α在第四象限时,sinα=﹣=﹣.∴f(α)=2sinα=﹣1.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||【考点】9R:平面向量数量积的运算.【分析】(1)直接由已知结合数量积公式得答案;(2)由运算得答案;(3)展开多项式乘以多项式,代入数量积得答案;(4)求出,开方后得答案.【解答】解:∵||=2,||=3,||与||的夹角为120°,∴(1)=;(2)﹣=22﹣32=﹣5;(3)(2)()==2×22+5×(﹣3)﹣3×32=﹣34;(4)||==.20.求函数的周期、对称轴、对称中心及单调递增区间.【考点】H5:正弦函数的单调性;H3:正弦函数的奇偶性;H4:正弦函数的定义域和值域;H6:正弦函数的对称性.【分析】根据正弦函数的图象及性质求解即可.【解答】解:函数=﹣sin(2x+)+1.∴周期T=.令2x+=,得:x=kπ+,k∈Z即对称轴方程为:x=kπ+,k∈Z;令2x+=kπ,得:x=∴对称中心为(,1),k∈Z;由2x++2kπ得:≤x≤.∴单调递增区间为[,],k∈Z;综上得:周期T=π,对称轴方程为:x=kπ+,k∈Z;对称中心为(,1),k∈Z;单调递增区间为[,],k∈Z;21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.【考点】9F:向量的线性运算性质及几何意义.【分析】根据平面向量的线性运算,利用向量相等,列出方程组求出λ与μ的值.【解答】解:∵,是不共线的两个向量,且=3+4, =﹣2+5,∴λ+μ=λ(3+4)+μ(﹣2+5)=(3λ﹣2μ)+(4λ+5μ)=5﹣,∴,解得λ=1,μ=﹣1.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.【考点】HW:三角函数的最值.【分析】根据二倍角公式整理所给的函数式,得到关于正弦的二次函数,根据所给角x的X围,得到二次函数的定义域,根据对称轴与所给定义域之间的关系,分类求得函数的最大值.【解答】解:函数y=f(x)=cos2x+asinx+a+1=1﹣sin2x+asinx+a+1=﹣++a+2;∵函数f(x)的定义域为,∴sinx∈,∴当0≤≤1,即0≤a≤2时,f(x)的最大值是f(x)max=f()=+a+2;当<0,即a<0时,f(x)在sinx=0时取得最大值是f(x)max=f(0)=a+2;当>1,即a>2时,f(x)在sinx=1取得最大值是f(x)max=f()=a+1;综上可知:a<0时,f(x)max=a+1;0≤a≤2时,f(x)max=+a+2;a>2时,f(x)max=a+1.。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为.【答案】y-1=-(x-2).【解析】根据题意可知:直线l1的斜率为−1,所以l1的点斜式方程为y-1=-(x-2).【考点】两直线垂直的斜率关系.2.已知直角梯形中,是腰上的动点,则的最小值为__________.【答案】5【解析】以D为原点建系,设长为,,最小为5【考点】向量运算3.某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.【答案】(1)当t=时,Smin=10,此时v==30(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】(1)设相遇时小艇的航行距离为海里,则由余弦定理得,再由二次函数的性质求得最值;(2)根据题意,要用时最小,则首先速度最高,即为海里/小时,然后是距离最短,则,解得,再解得相应角.试题解析:(1)设相遇时小艇的航行距离为海里,则故当时,即小艇以海里/小时的速度航行,相遇小艇的航行距离最小(2)设小艇与轮船在处相遇.则,故∵,∴,即,解得又时,,故时,取得最小值,且最小值等于此时,在中,有,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时【考点】函数模型的选择与应用.4.已知点,,,,则向量在方向上的投影为__________.【答案】【解析】由题意可得,由于,所以,所以,应填答案。

高一下学期期中测试试题_必修3【人教A版】

高一下学期期中测试试题_必修3【人教A版】

一、填空题:本大题共4小题,每小题6分,共24分,把答案填在答题卷中的横线上 1、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17岁-18岁 的男生体重(kg ),得到频率分布直方 图如下图所示。

据图可得这100名学生中体重在 [)574,558、、的学生人数 是 。

2、右图为甲、乙两名篮球运动员每场比赛的得分情况的茎叶图,则甲运动员的得分的中位数是___________; 乙运动员的得分的中位数是___________甲、乙两名乙运动员发挥更稳定的是___________3、二进制数111.11转换成十进制数是_______三个数72,120,168的最大公约数是________。

4.右图给出的是计算11113521n ++++-的值的一个程序框图(其中n 的值由键盘输入),其中①处应填 ,②处应填二、解答题:解答应写出必要的文字说明、证明过程及演算步骤. 5、(12分)用秦九韶算法计算多项式65432()126016024019264f x x x x x x x =-+-+-+当x=2时的值。

6.(13分)有同一型号的汽车100辆,为了解这种汽车每蚝油1L 所行路程的情况,现从中随即抽出10辆在同一条件下进行蚝油1L 所行路程实验,得到如下样本数据(单位:km ):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,其分组如下: (1)完成上面频率分布表;(2)根据上表,在给定坐标系中画出频率分布直线图,并根据样本估计总体数据落在[12.95,13.95]中的概率;7、(13分).甲乙两人约定5:00到6:00在图书馆见面,甲只愿意等10分钟,乙愿意等20分钟,则他们见到的概率有多大? 8、(12分) 某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下的对应数据: (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =b x +a ;分组频数 频率 [12.45,12.95) [12.95,13.45) [13.45,13.95) [13.95,14.45)合计101.0(3)要使这种产品的销售额突破一亿元(含一亿元),则广告费支出至少为多少百万元?(精确到0.1). 参考公式:1221ˆni iiniix y nx ybx nx==-⋅=-∑∑,ˆa y bx=-.9、(本小题满分14分)小明、小华用4张扑克牌(分别是黑桃2、黑桃4,红桃5、红桃6)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1.直线l过点P(1,3),且与x、y轴正半轴所围成的三角形的面积等于6,则l的方程是( ) A.3x+y-6=0B.x+3y-10=0C.3x-y=0D.x-3y+8=0【答案】A【解析】设y=kx+b,由题意得k<0,b>0,且解得【考点】点斜式方程及三角形的面积.2.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为.【答案】y-1=-(x-2).【解析】根据题意可知:直线l1的斜率为−1,所以l1的点斜式方程为y-1=-(x-2).【考点】两直线垂直的斜率关系.3.已知扇形半径为,弧长为,则扇形面积是__________.【答案】【解析】扇形的半径 ,弧长,扇形的面积是 .故答案为.4.在中,若点满足,则()A.B.C.D.【答案】D【解析】.得,化简可得,即,故本题正确答案为5.的外接圆的圆心为O,若,则是的()A.外心B.内心C.重心D.垂心【答案】D【解析】因为,所以,即,也即;同理可得,,故是三角形的垂心,应选答案D。

点睛:解答本题的关键是如何借助三角形的外接圆的圆心这一有效信息,然后再运用向量的数量积公式进行合理地变形,最终逐一验证获证,,,由此可推断是三角形的垂心,从而使得问题简捷、巧妙获解。

6.已知直角梯形中,是腰上的动点,则的最小值为__________.【答案】5【解析】以D为原点建系,设长为,,最小为5【考点】向量运算7.已知实数满足则目标函数的最小值为.【答案】【解析】作出不等式组对应的平面区域,如图所示,由,得表示斜率为,纵截距为的一组平行直线,平移直线,当直线经过点时,此时直线截距最大,最小,由,得,此时最小值.【考点】简单的线性规划.8.已知平面向量与垂直,则=____________。

【答案】【解析】,又与垂直,所以,即.【考点】向量的坐标运算.【名师】本题考查向量的坐标运算,容易题;平面向量坐标运算主要是利用向量加、减、数乘及数量积的运算法则来进行求解的,若已知有向线段两端点的坐标,应先求向量的坐标。

江西省南昌十九中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

江西省南昌十九中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

某某省某某十九中2014-2015学年高一下学期期中数学试卷一、选择题:(本大题共12个小题,每题5分,共60分.每题只有一个正确答案)1.已知数列{a n}的通项,则a4•a3=()A.12 B.32 C.﹣32 D.482.已知△ABC中,a=4,b=4,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°3.如果a<b<0,那么下面一定成立的是()A.a﹣b>0 B.ac<bc C.D.a2>b24.△A BC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.由正数组成的等比数列{a n}满足:a4a8=9,则a5,a7的等比中项为()A.±3B.3 C.±9D.96.等差数列{a n}中,a1>0,S n是前n项和且S9=S18,则当n=()时,S n最大.A.12 B.13 C.12或13 D.13或147.不等式的解集是()A.(﹣2,1)B.(2,+∞)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,+∞)8.以下选项中正确的是()A.a=7,b=14,A=30°△ABC有两解B.a=9,c=10,A=60°△ABC无解C.a=6,b=9,A=45°△ABC有两解D.a=30,b=25,A=150°△ABC有一解9.△ABC各角的对应边分别为a,b,c,满足+≥1,则角A的X围是()A.(0,] B.(0,] C.[,π)D.[,π)10.在数列{a n}中,a1=3,a n+1=a n+ln(1+),则a n=()A.3+lnn B.3+(n﹣1)lnn C.3+nlnn D.1+n+lnn11.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为正偶数时,n的值可以是()A.1 B.2 C.5 D.3或1112.在锐角三角形ABC中,a,b,c分别为内角A,B,C的对边,若A=2B,给出下列命题:①<B<;②∈(,];③a2=b2+bc.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题:(本大题共4个小题,每题5分,共20分.请将答案填在横线上)13.已知等差数列{a n}的前n项和为S n,若a4=8﹣a6,则S9=.14.若不等式2kx2+kx﹣≥0的解集为空集,则实数k的取值X围是.15.△ABC中,角A,B,C的对边分别为a,b,c,已知b=8,c=6,A=,∠BAC的角平分线交边BC于点D,则|AD|=.16.数列{a n}的通项为a n=(﹣1)n•n•sin+1,前n项和为S n,则S100=.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.在△ABC中,A、B、C的对边分别是a,b,c,且bcosB是acosC,ccosA的等差中项.(1)求∠B的大小;(2)若a+c=,求△ABC的面积.19.已知数列{a n}的前n项和S n=10n﹣n2(n∈N*),又b n=|a n|(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.20.在△ABC中,a,b,c分别是内角A,B,C的对边,AB=5,cos∠ABC=.(Ⅰ)若BC=2,求sin∠ACB的值;(Ⅱ)若D是边AC中点,且BD=,求边AC的长.21.已知等比数列{a n}中各项均为正,有a1=2,a n+12﹣a n+1a n﹣2a n2=0,等差数列{b n}中,b1=1,点P(b n,b n+1)在直线y=x+2上.(1)求a2和a3的值;(2)求数列{a n},{b n}的通项a n和b n;(3)设=a n•b n,求数列{}的前n项和T n.22.已知数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,且a1=1.(1)求证:数列是等比数列;(2)求数列{a n}的前n项和S n;(3)设函数f(n)=b n﹣t•S n(n∈N*),若f(n)>0对任意的n∈N*都成立,某某数t的X 围.某某省某某十九中2014-2015学年高一下学期期中数学试卷一、选择题:(本大题共12个小题,每题5分,共60分.每题只有一个正确答案)1.已知数列{a n}的通项,则a4•a3=()A.12 B.32 C.﹣32 D.48考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:根据数列的通项公式,进行求解即可.解答:解:由通项公式得a4=4,a3=(﹣2)3=﹣8,则a4•a3=4×(﹣8)=﹣32,故选:C.点评:本题主要考查数列通项公式的应用,比较基础.2.已知△ABC中,a=4,b=4,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°考点:正弦定理.专题:解三角形.分析:△ABC中由条件利用正弦定理求得sinB的值,再根据及大边对大角求得B的值.解答:解:△ABC中,a=4,b=4,A=30°,由正弦定理可得,即=,解得sinB=.再由b>a,大边对大角可得B>A,∴B=60°或120°,故选D.点评:本题主要考查正弦定理的应用,以及大边对大角、根据三角函数的值求角,属于中档题.3.如果a<b<0,那么下面一定成立的是()A.a﹣b>0 B.ac<bc C.D.a2>b2考点:不等式比较大小.专题:不等式的解法及应用.分析:利用不等式的性质即可得出.解答:解:∵a<b<0,∴﹣a>﹣b>0,∴a2>b2.故选:D.点评:本题考查了不等式的性质,属于基础题.4.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:三角形的形状判断.专题:解三角形.分析:由正余弦定理结合已知条件可得角C为锐角,但A、B两角不确定,无法判断三角形的形状.解答:解:∵sin2A+sin2B>sin2C,∴由正弦定理可得a2+b2>c2,∴co sC=>0,∴角C为锐角,但A、B两角不确定,故无法判断三角形的形状,故选:D点评:本题考查三角形形状的判断,属基础题.5.由正数组成的等比数列{a n}满足:a4a8=9,则a5,a7的等比中项为()A.±3B.3 C.±9D.9考点:等比数列的性质.专题:等差数列与等比数列.分析:由等比数列{a n}的性质可得:a5•a7=a4a8=9,设a5,a7的等比中项为x,可得x2=9,解得x即可.解答:解:由正数组成的等比数列{a n}满足:a4a8=9,∴a5•a7=a4a8=9,设a5,a7的等比中项为x,则x2=9,解得x=±3.故选:A.点评:本题考查了等比数列的性质、等比中项,属于基础题.6.等差数列{a n}中,a1>0,S n是前n项和且S9=S18,则当n=()时,S n最大.A.12 B.13 C.12或13 D.13或14考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的前n项和公式化简S9=S18,求出a1与d的关系式,利用二次函数的性质求出S n最大时n的值.解答:解:设等差数列{a n}的公差是d,由S9=S18得,=,解得d=,∴S n=na1+=,∵a1>0,∴当n=时,即n=13或14时,S n最大,故选:D.点评:本题考查等差数列的前n项和公式,以及利用二次函数的性质求出S n最大,属于中档题.7.不等式的解集是()A.(﹣2,1)B.(2,+∞)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,+∞)考点:其他不等式的解法.专题:不等式的解法及应用.分析:不等式即>0,再用穿根法求得它的解集.解答:解:不等式,即>0,用穿根法求得它的解集为(﹣2,1)∪(2,+∞),故选:C.点评:本题主要考查用穿根法解分式不等式,体现了等价转化的数学思想,属于基础题.8.以下选项中正确的是()A.a=7,b=14,A=30°△ABC有两解B.a=9,c=10,A=60°△ABC无解C.a=6,b=9,A=45°△ABC有两解D.a=30,b=25,A=150°△ABC有一解考点:正弦定理.专题:解三角形.分析:根据正弦定理以及三角形的边角关系分别进行判断即可得到结论.解答:解:A.若△ABC中,a=7,b=14,A=30°,则sinB===1,可得B=90°,因此三角形有一解,得A错误;B.根据余弦定理得:b2=81+100﹣180cos60°=91,解得b=,能构成三角形,所以B错误;C.若△ABC中,a=6,b=9,A=45°,则sinB===,当B为锐角时满足sinB=的角B要小于45°,∴由a<b得A<B,可得B为钝角,三角形只有一解,故C错误;D.若△ABC中,a=30,b=25,A=150°,则sinB===,而B为锐角,可得角B只有一个解,因此三角形只有一解,得D正确;故选:D.点评:本题主要考查求三角形的解的个数.着重考查利用正弦定理解三角形、三角形大边对大角等知识,属于中档题.9.△ABC各角的对应边分别为a,b,c,满足+≥1,则角A的X围是()A.(0,] B.(0,] C.[,π)D.[,π)考点:余弦定理.专题:三角函数的求值.分析:已知不等式去分母后,整理得到关系式,两边除以2bc,利用余弦定理变形求出cosA 的X围,即可确定出A的X围.解答:解:由+≥1得:b(a+b)+c(a+c)≥(a+c)(a+b),化简得:b2+c2﹣a2≥bc,同除以2bc得,≥,即cosA≥,∵A为三角形内角,∴0<A≤,故选:A.点评:此题考查了余弦定理,以及余弦函数的性质,熟练掌握余弦定理是解本题的关键.10.在数列{a n}中,a1=3,a n+1=a n+ln(1+),则a n=()A.3+lnn B.3+(n﹣1)lnn C.3+nlnn D.1+n+lnn考点:数列递推式.专题:等差数列与等比数列.分析:把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.解答:解:∵a1=3,a n+1=a n+ln(1+)=a n+ln,∴a2=a1+ln2,a3=a2+ln,a4=a3+ln,…,a n=a n﹣1+ln,累加可得:a n=3+ln2+ln+ln+…+ln=3+lnn,故选:A点评:数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.11.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为正偶数时,n的值可以是()A.1 B.2 C.5 D.3或11考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的性质、等差中项的综合应用,化简=7+,要使得为正偶数,需 7+为正偶数,需为正奇数,由此求得正整数n的值.解答:解:由等差数列的前n项和公式可得=(n∈N*).要使得为正偶数,需 7+为正偶数,需为正奇数,故n=3,或11,故选D.点评:本题主要考查等差数列的性质、等差中项的综合应用以及分离常数法,数的整除性是传统问题的进一步深化,对教学研究有很好的启示作用.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,则有如下关系=.12.在锐角三角形ABC中,a,b,c分别为内角A,B,C的对边,若A=2B,给出下列命题:①<B<;②∈(,];③a2=b2+bc.其中正确的个数是()A.0 B.1 C.2 D.3考点:基本不等式.专题:计算题.分析:锐角三角形ABC中三个角都是锐角,得到2B及π﹣3B都是锐角,求出角B的X 围,利用正弦定理即余弦定理得出,a2=b2+c2﹣2bccosA解答:解:∵锐角三角形ABC中,∴,,;∴解得<B<;∵,∵<B<;∴,∴,∵a2=b2+c2﹣2bccosA,∵b2+c2﹣2bccosA﹣(b2+bc)=c2﹣2bccosA﹣bc=c(c﹣2bcosA﹣b)=c2R(sinC﹣2sinBcosA﹣sinB)=2Rc(sin3B﹣2sinBcos2B﹣sinB)=2Rc(sinBcos2B+cosBsin2B﹣2sinBcos2B﹣sinB)=2Rc(cosBsin2B﹣sinBcos2B﹣sinB)=0∴a2=b2+bc.∴①③对.故选:C.点评:本题考查锐角三角形的特点;考查三角形的正弦定理、余弦定理;属于一道中档题.二、填空题:(本大题共4个小题,每题5分,共20分.请将答案填在横线上)13.已知等差数列{a n}的前n项和为S n,若a4=8﹣a6,则S9=36.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知求得a5,代入S9=9a5得答案.解答:解:在等差数列{a n}中,由a4=8﹣a6,得a4+a6=8,即2a5=8,a5=4.则S9=9a5=9×4=36.故答案为:36.点评:本题考查了等差数列的前n项和,项数为奇数的等差数列的前n项和等于中间项乘以项数,是基础题.14.若不等式2kx2+kx﹣≥0的解集为空集,则实数k的取值X围是(﹣3,0].考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:根据题意,讨论k=0与k≠0时,不等式解集为空集的k满足的条件是什么,求出k的取值X围即可.解答:解:根据题意,得;当k=0时,不等式化为﹣≥0,解集为空集,满足题意;当k≠0时,应满足,即,解得,∴﹣3<k<0;综上,k的取值X围是(﹣3,0].故答案为:(﹣3,0].点评:本题考查了不等式恒成立的应用问题,解题时应结合二次函数的图象与性质进行解答,是基础题目.15.△ABC中,角A,B,C的对边分别为a,b,c,已知b=8,c=6,A=,∠BAC的角平分线交边BC于点D,则|AD|=.考点:解三角形.专题:解三角形.分析:由题意和余弦定理可得BC,进而由角平分线性质定理可得BD,然后由余弦定理可得关于AD的一元二次方程,解方程验证可得.解答:解:由题意和余弦定理可得BC==2,由角平分线性质定理可得BD:DC=6:8,∴BD=BC=,再由余弦定理可得BD2=36+AD2﹣12AD×,∴()2=36+AD2﹣6AD,整理可得AD2﹣6AD+=0,解关于AD的一元二次方程可得AD=,∴AD=,或AD=(不满足三角形三边关系,舍去)故答案为:.点评:本题考查解三角形,涉及余弦定理和一元二次方程的解法,属中档题.16.数列{a n}的通项为a n=(﹣1)n•n•sin+1,前n项和为S n,则S100=150.考点:数列的求和.专题:等差数列与等比数列.分析:n为偶数时,sin=0;n=4k+1,k∈Z时,sin=1;n=4k+3,k∈Z时,sin=﹣1;由此利用数列的周期性能求出S100.解答:解:∵n为偶数时,sin=0∴a n=nsin+1=1,n为奇数时,若n=4k+1,k∈Z,则sin=sin(2kπ+)=1,∴a n=﹣n+1,若n=4k+3,k∈Z,则sin=sin(2kπ+)=﹣1,∴a n=n+1,∴不妨以四项为一个整体∴a4k+1+a4k+2+a4k+3+a4k+4=﹣(4k+1)+1+1+(4k+3)+1+1=6∴S100==150.故答案为:150.点评:本题考查数列的前100项和的求法,解题时要认真审题,注意三角函数的周期性的合理运用.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)设出数列{a n}的公差,由已知条件列式求出公差,则数列{a n}的通项公式可求;(Ⅱ)把数列{a n}的通项公式代入b n=,整理后利用裂项相消法求数列{b n}的前n项和S n.解答:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2﹣(2+d)(3+3d),解得d=2,或d=﹣1,当d=﹣1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,解答此题的关键是对数列{b n}的通项进行裂项,是中档题.18.在△ABC中,A、B、C的对边分别是a,b,c,且bcosB是acosC,ccosA的等差中项.(1)求∠B的大小;(2)若a+c=,求△ABC的面积.考点:数列与三角函数的综合;解三角形.专题:综合题.分析:(1)利用等差中项的性质,知acosC+ccosA=2bcosB,由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,由此结合三角函数的性质能够求出∠B.(2)由(1)知B=,利用余弦定理得到=,再利用三角形面积公式,能求出△ABC的面积.解答:解:(1)∵bcosB是acosC,ccosA的等差中项,∴acosC+ccosA=2bcosB,由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,即sin(A+C)=2sinBcosB,∵A+C=π﹣B,0<B<π,∴sin(A+C)=sinB≠0,∴cosB=,B=.(2)由B=,得=,即,∴ac=2,∴.点评:本题考查等差中项,正弦定理、余弦定理、三角形面积等公式的应用,解题时要认真审题,注意三角函数恒等变换的灵活运用.19.已知数列{a n}的前n项和S n=10n﹣n2(n∈N*),又b n=|a n|(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)数列{a n}的前n项和S n=10n﹣n2(n∈N*),当n=1时,a1=S1=9,当n≥2时,a n=S n﹣S n﹣1,即可得出.(2)由a n=11﹣2n≥0,解得n≤5.可得b n=|a n|=.当n≤5时,T n=S n.当n≥6时,T n=2S5﹣S n,即可得出.解答:解:(1)∵数列{a n}的前n项和S n=10n﹣n2(n∈N*),∴当n=1时,a1=S1=9,当n≥2时,a n=S n﹣S n﹣1=10n﹣n2﹣[10(n﹣1)﹣(n﹣1)2]=11﹣2n.当n=1时上式也成立,∴a n=11﹣2n.(2)由a n=11﹣2n≥0,解得n≤5.∴b n=|a n|=.∴当n≤5时,T n=S n=10n﹣n2.当n≥6时,T n=2S5﹣S n=2×(10×5﹣52)﹣(10n﹣n2)=n2﹣10n+50.∴T n=.点评:本题考查了等差数列的通项公式及其前n项和公式、递推式的应用、含绝对值数列的求和,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.20.在△ABC中,a,b,c分别是内角A,B,C的对边,AB=5,cos∠ABC=.(Ⅰ)若BC=2,求sin∠ACB的值;(Ⅱ)若D是边AC中点,且BD=,求边AC的长.考点:余弦定理的应用.专题:解三角形.分析:(Ⅰ)直接利用余弦定理求出AC,然后利用正弦定理求sin∠ACB的值;(Ⅱ)以BA,BC为邻边作如图所示的平行四边形ABCE,如图,若D是边AC中点,且BD=,在△BCE中,由余弦定理求出CB,在△ABC中,利用余弦定理求边AC的长.解答:解:(Ⅰ),BC=2,由余弦定理:AC2=BA2+BC2﹣2BA•BC•cos∠ABC=52+22﹣2×5×2×=25,∴AC=5.…又∠ABC∈(0,π),所以,由正弦定理:,得.…(Ⅱ)以BA,BC为邻边作如图所示的平行四边形ABCE,如图,则,BE=2BD=7,CE=AB=5,在△BCE中,由余弦定理:BE2=CB2+CE2﹣2CB•CE•cos∠BCE.即,解得:CB=4.…在△ABC中,,即.…点评:本题考查余弦定理以及正弦定理的应用,三角形的解法,考查计算能力.21.已知等比数列{a n}中各项均为正,有a1=2,a n+12﹣a n+1a n﹣2a n2=0,等差数列{b n}中,b1=1,点P(b n,b n+1)在直线y=x+2上.(1)求a2和a3的值;(2)求数列{a n},{b n}的通项a n和b n;(3)设=a n•b n,求数列{}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)由已知条件推导出,,由此能求出a2和a3的值.(2)由已知条件推导出数列{a n}是以2为首项、2为公比的等比数列,从而得到;数列{b n}是以1为首项,以2为公差的等差数列,从而得到b n=2n﹣1.(3)由(1)得,由此利用错位相减求和法能求出T n.解答:解:(1)∵,∴,又a1=2,解得a2=4,或a2=﹣2(舍)…,解得a3=8,或a3=﹣4(舍),…(2)∵,∴(a n+1+a n)(a n+1﹣2a n)=0,∵{a n}中各项均为正,∴,又a1=2,∴数列{a n}是以2为首项、2为公比的等比数列,∴,…∵点P(b n,b n+1)在直线y=x+2上,∴b n+1=b n+2,又b1=1,∴数列{b n}是以1为首项,以2为公差的等差数列,∴b n=2n﹣1.…(3)由(1)得∴T n=a1•b1+a2•b2+…+a n•b n=1×2+3×22+5×23+…+(2n﹣1)2n,∴2T n=1×22+3×23+…+(2n﹣3)2n+(2n﹣1)2n+1…∴﹣T n=1×2+(2×22+2×23+…+2×2n)﹣(2n﹣1)2n+1,…即:﹣T n=1×2+(23+24+…+2n+1)﹣(2n﹣1)2n+1,∴T n=(2n﹣3)2n+1+6…点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.22.已知数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,且a1=1.(1)求证:数列是等比数列;(2)求数列{a n}的前n项和S n;(3)设函数f(n)=b n﹣t•S n(n∈N*),若f(n)>0对任意的n∈N*都成立,某某数t的X 围.考点:数列的求和;等比数列的通项公式;等比关系的确定.专题:等差数列与等比数列.分析:(1)由数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,可得,变形为,即可证明;(2)对n分类讨论,利用等比数列的前n项和公式即可得出;(3)利用(1)的结论对n的奇偶情况分类讨论,利用数列的单调性即可得出.解答:(1)证明:∵数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,∴,∴,∵,∴,∴是首项为,公比为﹣1的等比数列.∴.(2)解:由(1)得=.(3)解:∵b n=a n•a n+1,∴,∵b n﹣t•S n>0,∴.∴当n为奇数时,,∴对任意的n为奇数都成立,∴t<1.∴当n为偶数时,,∴,∴对任意的n为偶数都成立,∴.综上所述,实数t的取值X围为t<1.点评:本题考查了递推式的应用、等比数列的通项公式与前n项和公式,考查了分类讨论思想方法、推理能力与计算能力,属于难题.。

山东省泰安一中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

山东省泰安一中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

某某省某某一中2014-2015学年高一下学期期中数学试卷一、选择题(每小题5分,共50分)1.计算sin(﹣960°)的值为()A.﹣B.C.D.﹣2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60 D.13.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限4.设向量=(1,2),=(﹣2,1),则下列结论中不正确的是()A.|﹣|=|+| B.(﹣)⊥(+) C.||=|| D.∥5.将函数y=sin(2x﹣)的图象向右平移个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到函数解析式为()A.y=sin(x﹣)B.y=cosx C.y=﹣cosx D.y=﹣sinx6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.cos42°sin12°﹣sin42°cos12°D.7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=,=,则=()A.B.C.D.8.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1C.φ=D.B=49.对于,下列选项中正确的是()A.f(x)关于直线对称B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最大值为110.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形二、填空题(每小题5分,共25分,请在答题纸上作答)11.已知是夹角为的两个单位向量,向量,若,则实数k的值为.12.求值:=.13.若α∈(,π),cos2α=sin(﹣α),则sin2α的值为.14.有下列说法:①已知α为第二象限角,则为第一或第三象限角;②已知λ为实数,为平面内任一向量,则的模为;③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;④已知O为△ABC所在平面内一点,且,则点O是△ABC的重心.则正确的序号是.15.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.若,则AB的长为.三、解答题(共75分,请在答题纸上作答)16.已知向量.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;(Ⅱ)若,某某数的值.17.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.18.已知,,且.求:(Ⅰ) cos(2α﹣β)的值.(Ⅱ)β的值.19.已知A,B,C是△ABC的三个内角.(Ⅰ)已知,,且,求∠C的大小;(Ⅱ)若向量,且||=,求证:tanAtanB为定值,并求这个定值.20.如图,已知OPQ是半径为圆心角为的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.(Ⅰ)若Rt△CBO的周长为,求的值.(Ⅱ)求的最大值,并求此时α的值.21.已知函数ωx﹣2,(ω>0),其图象与x轴相邻两个交点的距离为.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求使得f(x)≥﹣的x的取值集合;(Ⅲ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),当m取得最小值时,求g(x)在上的单调递增区间.某某省某某一中2014-2015学年高一下学期期中数学试卷一、选择题(每小题5分,共50分)1.计算sin(﹣960°)的值为()A.﹣B.C.D.﹣考点:运用诱导公式化简求值.专题:三角函数的求值.分析:把要求的式子利用诱导公式化为sin60°,从而求得结果.解答:解:sin(﹣960°)=﹣sin960°=﹣sin(360°×2+240°)=﹣sin240°=sin60°=;故选:C.点评:本题主要考查利用诱导公式进行化简求值,属于基础题.2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60 D.1考点:弧长公式.专题:计算题.分析:根据题意可以利用扇形弧长公式l扇形直接计算.解答:解:根据题意得出:60°=l扇形=1×=,半径为1,60°的圆心角所对弧的长度为.故选A.点评:此题主要考查了扇形弧长的计算,注意掌握扇形的弧长公式是解题关键.3.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限考点:象限角、轴线角;二倍角的正弦.专题:计算题.分析:由sin2α<0,确定2α的象限,确定α的象限X围,根据cosα﹣sinα<0,判定α的具体象限.解答:解:∵sin2α<0,∴2α在第三、四象限或y的负半轴.2kπ+π<2α<2kπ+2π,k∈Z,∴kπ+<α<kπ+π,k∈Z∴α在第二、四象限.又∵cosα﹣sinα<0,∴α在第二象限.故选:B.点评:本题考查象限角、轴线角,二倍角的正弦,考查分析问题解决问题的能力,是基础题.4.设向量=(1,2),=(﹣2,1),则下列结论中不正确的是()A.|﹣|=|+| B.(﹣)⊥(+) C.||=|| D.∥考点:平面向量数量积的运算.专题:平面向量及应用.分析:由于已知给出了向量的坐标,所以可以利用坐标运算进行选择.解答:解:由已知﹣=(3,1),+=(﹣1,3),所以|﹣|=|+|=;故A正确;并且3×(﹣1)+1×3=0,所以(﹣)⊥(+)正确;||==||,故C正确;故:选D点评:本题考查了向量的坐标运算,包括加减运算、模的计算.5.将函数y=sin(2x﹣)的图象向右平移个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到函数解析式为()A.y=sin(x﹣)B.y=cosx C.y=﹣cosx D.y=﹣sinx考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据三角函数图象变换的公式,结合诱导公式进行化简,可得两次变换后所得到的图象对应函数解析式.解答:解:设f(x)=sin(2x﹣),可得y=f(x)的图象向右平移,得到f(x﹣)=sin[2(x﹣)﹣]=sin(2x﹣)的图象,再将所得的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得f(x﹣)=sin (x﹣)=﹣cosx的图象.∴函数y=sin(2x﹣)的图象按题中的两步变换,最终得到的图象对应函数解析式为y=﹣cosx,故选:C.点评:本题给出三角函数图象的平移和伸缩变换,求得到的图象对应的函数解析式.着重考查了三角函数图象的变换公式和诱导公式等知识,属于基础题.6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.cos42°sin12°﹣sin42°cos12°D.考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦.专题:计算题;三角函数的求值.分析:利用两角和与差的三角函数公式,分别计算,即可得出结论.解答:解:sin15°cos15°=sin30°=;cos2﹣sin2=cos=;cos42°sin12°﹣sin42°cos12°=﹣sin30°=﹣;=tan45°=.故选:D.点评:本题考查两角和与差的三角函数公式,考查学生的计算能力,正确运用公式是关键.7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=,=,则=()A.B.C.D.考点:平面向量的基本定理及其意义.专题:计算题;压轴题.分析:根据两个三角形相似对应边成比例,得到DF与FC之比,做FG平行BD交AC于点G,使用已知向量表示出要求的向量,得到结果.解答:解:∵由题意可得△DEF∽△BEA,∴==,再由AB=CD可得=,∴=.作FG平行BD交AC于点G,∴=,∴===.∵=+=+=+==,∴=+=+,故选B.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的,本题属于中档题.8.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1C.φ=D.B=4考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.解答:解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力.9.对于,下列选项中正确的是()A.f(x)关于直线对称B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最大值为1考点:三角函数的最值;余弦定理.专题:三角函数的求值.分析:利用三角恒等变换化简函数的解析式,再利用余弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.解答:解:对于=+﹣1=cos(2x﹣)﹣cos(2x+)=cos(2x﹣)+cos(2x﹣)=cos(2x﹣),令x=,求得f(x)=0,不是最值,故f(x)的图象不关于直线对称,故A不正确.由于不满足f(﹣x)=f(x),故函数不是偶函数,故B不正确.函数的最小正周期为=π,故C不正确.函数的最大值为1,故D正确,故选:D.点评:本题主要考查三角恒等变换,余弦函数的图象和性质,属于基础题.10.在△A BC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形考点:三角形的形状判断.专题:解三角形;平面向量及应用.分析:将转化为以与为基底的关系,即可得到答案.解答:解:.设||=c,||=a,||=b,则,即有:c+a+b=,∵=﹣,=﹣,∴c+a+b=c﹣a+b(﹣)=即c+b﹣(a+b)=,∵P是BC边中点,∴=(+),∴c+b﹣(a+b)(+)=,∴c﹣(a+b)=0且b﹣(a+b)=0,∴a=b=c.故选:A.点评:本题考查三角形的形状判断,突出考查向量的运算,考查化归思想与分析能力,属于中档题.二、填空题(每小题5分,共25分,请在答题纸上作答)11.已知是夹角为的两个单位向量,向量,若,则实数k的值为.考点:数量积表示两个向量的夹角;平行向量与共线向量.专题:平面向量及应用.分析:由题意可得是平面向量的一个基底,再由平面内两个向量共线的条件可得,由此解得k的值.解答:解:由题意可得=0,且是平面向量的一个基底.∵向量,且,∴,解得 k=﹣,故答案为﹣.点评:本题主要考查平面内两个向量共线的条件,基底的定义,属于中档题.12.求值:=1.考点:两角和与差的正弦函数;三角函数的化简求值.专题:三角函数的求值.分析:由条件利用三角函数的恒等变换化简可得结果.解答:解:=sin40°•=sin40°•===1,故答案为:1.点评:本题主要考查三角函数的恒等变换及化简求值,属于基础题.13.若α∈(,π),cos2α=sin(﹣α),则sin2α的值为﹣.考点:二倍角的正弦;二倍角的余弦.专题:三角函数的求值.分析:由条件利用两角和的正弦公式、二倍角公式求得,cosα﹣sinα,或cosα+sinα的值,由此求得sin2α的值.解答:解:∵α∈(,π),且cos2α=sin(﹣α),∴cos2α﹣sin2α=(sinα﹣cosα),∴cosα+sinα=﹣,或者sinα﹣cosα=0(因α∈(,π),舍去)∴两边平方,可得:1+sin2α=,∴从而可解得:sin2α=﹣.故答案为:﹣.点评:本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,属于中档题.14.有下列说法:①已知α为第二象限角,则为第一或第三象限角;②已知λ为实数,为平面内任一向量,则的模为;③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;④已知O为△ABC所在平面内一点,且,则点O是△ABC的重心.则正确的序号是①③.考点:命题的真假判断与应用.专题:综合题;简易逻辑.分析:对四个选项分别进行判断,即可得出结论.解答:解:①∵角α的终边在第二象限,∴2kπ+<α<2kπ+π,k∈Z,∴kπ+<<kπ+,当k为偶数时,2nπ+<<2nπ+,n∈Z,得是第一象限角;当k为奇数时,(2n+1)π+<<(2n+1)π+,n∈Z,得是第三象限角,故正确;②已知λ为实数,为平面内任一向量,则的模为||,故不正确;③△ABC中,若tanA•tanC>1,则cos(A+C)<0,∴B为锐角,tanA•tanC>1,∴A,C为锐角,∴△ABC为锐角三角形,故不正确;④已知O为△ABC所在平面内一点,且,则点O是△ABC的垂心,故不正确.故答案为:①③.点评:本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合性强.15.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.若,则AB的长为6.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知将所求利用平行四边形的边对应的向量表示,得到关于AB 的方程解之.解答:解:因为平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.===4+=1,解得AB=6;故答案为:6.点评:本题考查了平面向量的平行四边形法则以及数量积的运算;注意向量的夹角与平行四边形内角关系;属于基础题三、解答题(共75分,请在答题纸上作答)16.已知向量.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;(Ⅱ)若,某某数的值.考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6﹣3,﹣3+4)=(2﹣m,﹣6﹣n),求出m,n,可得D点坐标;(Ⅱ)利用,可得(3,﹣4)=x(6,﹣3)+y(2,﹣6),所以,求出x,y,即可某某数的值.解答:解:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6﹣3,﹣3+4)=(2﹣m,﹣6﹣n),所以2﹣m=3,﹣6﹣n=1,所以m=﹣1,n=﹣7,所以D(﹣1,﹣7);(Ⅱ)因为,所以(3,﹣4)=x(6,﹣3)+y(2,﹣6),所以,所以x=,y=,所以=.点评:本题考查向量的线性运算,考查平面向量基本定理,考查学生分析解决问题的能力,属于中档题.17.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.考点:平面向量数量积的运算;数量积表示两个向量的夹角.专题:平面向量及应用.分析:(Ⅰ)将已知等式展开转化为两个向量的模压机数量积的计算问题,利用数量积公式求θ;(Ⅱ)根据投影的定义,利用数量积公式解答.解答:解:(Ⅰ)因为,,.所以,即16﹣8cosθ﹣3=9,所以cosθ=,因为θ∈[0,π],所以;(Ⅱ)由(Ⅰ)可知,所以==5,||=,所以向量在方向上的投影为:.点评:本题考查了平面向量的数量积公式的运用求向量的夹角以及一个向量在另一个向量的投影;关键是熟练掌握数量积公式以及几何意义.18.已知,,且.求:(Ⅰ) cos(2α﹣β)的值.(Ⅱ)β的值.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)由α,β的X围求出α﹣β的X围,由题意和平方关系求出sinα和cos (α﹣β),由两角和的余弦公式求出cos(2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cosβ=cos[α﹣(α﹣β)]的值,再由β的X围求出β的值.解答:解:(Ⅰ)解:∵,∴α﹣β∈(,),∵,,∴sinα==,cos(α﹣β)==,∴cos(2α﹣β)=cos[(α﹣β)+α]=cos(α﹣β)cosα﹣sin(α﹣β)sinα=×﹣×=,(Ⅱ)由(Ⅰ)得,cosβ=cos[α﹣(α﹣β)]=cos(α﹣β)cosα+sin(α﹣β)sinα=×+×=,又∵,∴β=.点评:本题考查两角和与差的余弦公式,同角三角函数的基本关系的应用,注意角之间的关系以及三角函数值的符号,属于中档题.19.已知A,B,C是△ABC的三个内角.(Ⅰ)已知,,且,求∠C的大小;(Ⅱ)若向量,且||=,求证:tanAtanB为定值,并求这个定值.考点:三角形中的几何计算.专题:平面向量及应用.分析:(Ⅰ)由已知,,且,可得=0,进而由两角和的正切公式和诱导公式可得tanC=,进而得到∠C的大小;(Ⅱ)由向量,且||=,可得|2==,利用倍角公式和两角和与差的余弦公式,可得cosAcosB=3sinAsinB,再由同角三角函数的基本关系公式,可得tanAtanB=.解答:解:(Ⅰ)∵,,且,∴==0,即,即=tan(A+B)=﹣,即tanC=tan[π﹣(A+B)]=﹣tan(A+B)=,又由C为△ABC的内角.∴C=60°证明:(Ⅱ)∵向量,∴||2===1+cos(A+B)+﹣cos(A﹣B),即cos(A+B)﹣cos(A﹣B)=0,即2cos(A+B)=cos(A﹣B),即2(cosAcosB﹣sinAsinB)=cosAcosB+sinAsinB,即cosAcosB=3sinAsinB,即tanAtanB=点评:本题考查的知识点是向量的数量积公式,两角和与差三角函数公式,同角三角函数的基本关系公式,是三角函数与向量的综合应用,难度中档.20.如图,已知OPQ是半径为圆心角为的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.(Ⅰ)若Rt△CBO的周长为,求的值.(Ⅱ)求的最大值,并求此时α的值.考点:扇形面积公式;平面向量数量积的运算.专题:三角函数的求值.分析:(Ⅰ)由条件利用直角三角形中的边角关系求出三角形的周长,利用三角函数的倍角公式进行化简进行求解.(Ⅱ)结合向量的数量积公式,结合三角函数的带动下进行求解.解答:解:(Ⅰ)BC=OCsinα=sinα,OB=OCcosα=cosα,则若Rt△CBO的周长为,则+sinα+cosα=,sinα+cosα=,平方得2sinαcosα=,即==,解得tanα=3(舍)或tanα=.则====.(Ⅱ)在Rt△OBC中,BC=OCsinα=sinα,OB=OCcosα=cosα,在Rt△ODA中,OA=DAtan=BC=si nα,∴AB=OB﹣OA=(cosα﹣cosα),则=(cosα﹣cosα)•sinα=∵,∴,∴当,即时,有最大值.点评:本题主要考查两个向量的数量积的定义,三角恒等变换,正弦函数的定义域和值域,考察学生的运算和推理能力.21.已知函数ωx﹣2,(ω>0),其图象与x轴相邻两个交点的距离为.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求使得f(x)≥﹣的x的取值集合;(Ⅲ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),当m取得最小值时,求g(x)在上的单调递增区间.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数线;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)由三角函数恒等变换化简函数解析式可得f(x)=sin(2ωx+),由题意可得函数y=f(x)的周期T,利用周期公式可求ω,即可得解.(Ⅱ)由已知求得sin(2x+),利用正弦函数的图象和性质可得2kπ≤2x+≤2kπ+,或2kπ+≤2x+≤2kπ+2π,k∈Z,从而解得x的取值集合.(Ⅲ)先由题意求得g(x)=sin(2x+2m+),由图象经过点(﹣,0),可得sin[2(﹣)+2m+]=0,求得当k=0时,m取得最小值,g(x)=sin(2x+),由﹣≤x≤,求得≤2x+≤,利用正弦函数的单调性即可得解.解答:(本题满分14分)解:(Ⅰ)由已知ωx﹣2=sin2ωx﹣cos2ωx﹣4×+2==sin(2ωx+),由题意可得函数y=f(x)的周期T=π=,解得:ω=1.∴f(x)=sin(2x+)…4分(Ⅱ)∵f(x)=sin(2x+)≥﹣,可得:sin(2x+),∴2kπ≤2x+≤2kπ+,或2kπ+≤2x+≤2kπ+2π,k∈Z,∴可解得x的取值集合为:{x/k≤x≤kπ}∪{x/k≤x≤k},k∈Z…6分(Ⅲ)将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象,则g(x)=sin(2x+2m+),∵图象经过点(﹣,0),∴sin[2(﹣)+2m+]=0,即sin(2m﹣)=0,∴2m﹣=kπ(k∈Z),m=,∵m>0,∴当k=0时,m取得最小值,此时最小值为,此时g(x)=sin(2x+),若﹣≤x≤,则≤2x+≤,当≤2x+≤,即﹣≤x≤﹣时,g(x)单调递增;当≤2x+≤,即≤x≤时,g(x)单调递增;∴g(x)在上的单调递增区间为:[﹣,﹣]和[,]…12分点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,三角函数恒等变换的应用,属于基本知识的考查.。

浙江省瑞安市龙翔高级中学2013-2014学年高一数学下学期期中试题(无答案)新人教A版

浙江省瑞安市龙翔高级中学2013-2014学年高一数学下学期期中试题(无答案)新人教A版

浙江省瑞安市龙翔高级中学2013-2014学年高一数学下学期期中试题(无答案)新人教A 版一 选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个备选项中,只有一项是符合题目要求的) 1.sin 27cos 63cos 27sin 63︒︒+︒︒=( ) A.1 B.1- C.22D.22-2.已知等差数列{}n a 中,3a =9,9a =3,则公差d 的值为( )A.21-B.21C.1-D.1 3在边长为1的等边三角形ABC 中,=→∙→AC AB ( )A .21 B .21- C .23 D .23-4.等差数列{}n a 满足:296a a a +=,则=5a ( ) A .2- B .0C .1D .25.在△ABC 中,已知2,45a b B ===︒,则角A=( )A .30︒或150︒B .60︒或120︒C .60︒D .30︒ 6.已知向量(2,4)a =与向量(4,)b y =-垂直,则y =( ) A .2- B .8- C .8 D .2 7.()=15cos 15sinA.21 B.41 C. 23 D.438.已知数列{a n }的前n 项和S n =312n a n +=+,则( ) A .201B .241C .281D .3219.若三角形的三条边长分别为3,4,5,则将每条边长增加相同的长度后所得到的新三角形为( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定 10在ABC ∆中,3sin 5A =,135cos -=B ,则cos C =( )A .1665或5665B .16566565-或-C .6556D .6556-二.填空题(本大题共7小题,每小题3分,共21分) 11在公差为2的等差数列{}n a 中,123=a ,则=8a ________ 12已知||3a =,||23b =,3=→∙→b a ,则a 与b 的夹角是_______ 13求值()=+- 15sin 15cos 15sin 15cos ____________14已知向量(3,4)a =,(sin ,cos )b αα=,且 a //b ,则tan α=_________ 15在等差数列{}n a 中,n S 表示其前n 项和,若10103=+a a ,则12S =_________ 16ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若ab c b a 3222=-+,则角C=________17.已知等差数列{}n a 的前n 项和为n S ,且01413<S S , 若01<+t t a a ,则t = .三.解答题(本大题共4小题,共39分,解答须写出文字说明、证明过程和演算步骤)18.(本题满分9分)已知4cos 5α=-,α为第二象限角. (1)求⎪⎭⎫⎝⎛+4sin πα的值. (2)求α2cos 的值 19(本题满分10分)在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知45,60==B A ,2=b , (1)求a (2)求三角形的面积S20.(本题满分10分)已知等差数列{}n a 中,113-=a ,2061-=+a a (1)求数列{}n a 的通项公式(2)求数列{}n a 的前n 项和n S ,并判断当n 取何值时,n S 有最小值 21(本题满分10分)已知函数.1cos cos sin 3)(2+-=x x x x f (1)求函数)(x f 的最小正周期; (2)若65)(=θf ,θππθ2sin )1273(,求,∈的值.附加题(本题满分10分,计入总分)ABC ∆中,c b a ,,分别是角A,B,C 的对边,b B a 3sin 2=(1)求A (2)若1=a ,ABC ∆的面积32=S ,求22c b +龙翔高中2013——2014学年第二学期期中考试高一数学一、选择题:(每小题4分,共40分) 二、填空题:(每小题3分,共21分)11.___________________ 12.________ _____________13._____ ______________ 14._____________________15.___________________ 16._____________________17.___________________三、解答题:18.(本小题满分9分)已知4cos 5α=-,α为第三象限角. (1)求⎪⎭⎫⎝⎛+4sin πα的值. (2)求α2cos 的值19.(本小题满分10分)在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知45,60==B A ,2=b , (1)求a 的值; (2)求三角形的面积S20.(本小题满分10分)已知等差数列{}n a 中,113-=a ,2061-=+a a (1)求数列{}n a 的通项公式(2)求数列{}n a 的前n 项和n S ,并判断当n 取何值时,n S 有最小值21(本小题满分10分)已知函数.1cos cos sin 3)(2+-=x x x x f (1)求函数)(x f 的最小正周期; (2)若65)(=θf ,θππθ2sin )1273(,求,∈的值.。

人教版高一年级下学期期中考试数学试卷与答案解析(共三套)

人教版高一年级下学期期中考试数学试卷与答案解析(共三套)

人教版高一年级下学期期中考试数学试卷(一)(本卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A 版第二册:第六章 平面向量及其应用、第七章 复数、第八章 立体几何初步一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知平面向量)4(-=,m a ,)31(+-=m b ,,若存在实数0<λ,使得b a λ=,则实数m 的值为( )。

A 、4-B 、512- C 、1-D 、12.下列说法中错误的是( )。

A 、两条平行线段在直观图中对应的两条线段仍然平行B 、平行于坐标轴的线段长度在直观图中仍然保持不变C 、平行于坐标轴的线段在直观图中仍然平行于坐标轴D 、斜二测坐标系取的角可能是 1353.在下列命题中,正确命题的个数为( )。

①两个复数不能比较大小;②若i x x x )23()1(22+++-是纯虚数,则实数1±=x ;③z 是虚数的一个充要条件是R z z ∈+;④若a 、b 是两个相等的实数,则i b a b a )()(++-是纯虚数;⑤R z ∈的一个充要条件是z z =;⑥1||=z 的充要条件是z z 1=。

A 、1B 、2C 、3D 、4 4.设α、β是两个不同的平面,则β⊥α的充要条件是( )。

A 、平面α内任意一条直线与平面β垂直B 、平面α、β都垂直于同一条直线C 、平面α、β都垂直于同一平面D 、平面α内存在一条直线与平面β垂直5.如图,在长方体D C B A ABCD ''''-中,用截面截下一个棱锥D D A C ''-,则棱锥D D A C ''-的体积与剩余部分的体积之比为( )。

湖南省娄底市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

湖南省娄底市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

某某省某某市2014-2015学年高一下学期期中数学试卷一、选择题(每小题4分,每小题只有一个正确选项)1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为()A.2 B.5 C.15 D.802.某校高中生共有900人,其中2014-2015学年高一年级有300人,2014-2015学年高二年级有200人,2015届高三年级有400人,现采用分层抽样方法抽取一个容量为45的样本,则2014-2015学年高一、2014-2015学年高二、2015届高三年级抽取的人数分别为()A.10,15,20 B.15,15,15 C.20,5,20 D.15,10,203.下列给出的赋值语句中正确的是()A.3=A B.M=﹣M C.B=A=2 D.x+y=04.把77化成四进制数的末位数字为()A.4 B.3 C.2 D.15.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有一个白球;都是红球6.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与307.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时,v3的值为()A.27 B.86 C.262 D.7898.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x 1 2 4 5y 1 1.5 5.5 8若由资料可知y对x呈线性相关关系,则y与x的线性回归方程=bx+a必过的点是()A.(2,2)B.(1,2)C.(3,4)D.(4,5)9.阅读如图所示的程序框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是()A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,2110.在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6X卡片,今从每个袋中各取一X卡片,则两数之和等于9的概率为()A.B.C.D.二、填空题(每小题4分)11.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.12.已知{x1,x2,x3,…x n}的平均数为a,方差为b,则3x1+2,3x2+2,…,3x n+2的平均数是.13.如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为.14.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有条鱼.15.已知样本9,10,11,x,y的平均数是10,标准差是,则xy=.三、解答题16.用辗转相除法求884与1071的最大公约数(写出过程)17.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:甲27 38 30 37 35 31乙33 29 38 34 28 36请判断:谁参加这项重大比赛更合适,并阐述理由.18.某校从参加2014-2015学年高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.19.假设你家订了一份报纸,送报人可能在早上6点﹣8点之间把报纸送到你家,你每天离家去工作的时间在早上7点﹣9点之间,求你离家前不能看到报纸(称事件A)的概率是多少?20.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若由资料知y对x呈线性相关关系.(1)请画出上表数据的散点图;(2)请根据最小二乘法求出线性回归方程=bx+a的回归系数a,b;(3)估计使用年限为10年时,维修费用是多少?21.甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率.(1)取出的2个球都是白球;(2)取出的2个球中至少有1个白球.某某省某某市2014-2015学年高一下学期期中数学试卷一、选择题(每小题4分,每小题只有一个正确选项)1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为()A.2 B.5 C.15 D.80考点:频率分布直方图.专题:计算题.分析:由样本容量是20,某组的频率为0.25,由此直接计算能求出该组的频数.解答:解:由题设知该组的频数:20×0.25=5.故选B.点评:本题考查频数的性质和应用,解题时要注意样本容量、频数和频率之间相互关系的灵活运用.2.某校高中生共有900人,其中2014-2015学年高一年级有300人,2014-2015学年高二年级有200人,2015届高三年级有400人,现采用分层抽样方法抽取一个容量为45的样本,则2014-2015学年高一、2014-2015学年高二、2015届高三年级抽取的人数分别为()A.10,15,20 B.15,15,15 C.20,5,20 D.15,10,20考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.解答:解:根据题意得,用分层抽样在各层中的抽样比为=,则在2014-2015学年高一年级抽取的人数是300×=15人,2014-2015学年高二年级抽取的人数是200×=10人,2015届高三年级抽取的人数是400×==20人,故选:D.点评:本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.3.下列给出的赋值语句中正确的是()A.3=A B.M=﹣M C.B=A=2 D.x+y=0考点:赋值语句.专题:阅读型.分析:本题根据赋值语句的定义直接进行判断.解答:解:根据题意,A:左侧为数字,故不是赋值语句B:赋值语句,把﹣M的值赋给MC:连等,不是赋值语句D:不是赋值语句,是等式,左侧为两个字母的和.点评:本题考查赋值语句,通过对赋值语句定义的把握直接进行判断即可.属于基础题.4.把77化成四进制数的末位数字为()A.4 B.3 C.2 D.1考点:排序问题与算法的多样性.专题:计算题.分析:利用“除k取余法”是将十进制数除以5,然后将商继续除以4,直到商为0,然后将依次所得的余数倒序排列即可得到答案.解答:解:∵77÷4=19 (1)19÷4=4 (3)4÷4=1 01÷4=0 (1)故77(10)=1031(4)末位数字为1.故选D.点评:本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.5.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有一个白球;都是红球考点:互斥事件与对立事件.分析:由题意知所有的实验结果为:“都是白球”,“1个白球,1个红球”,“都是红球”,再根据互斥事件的定义判断.解答:解:A、“至少有1个白球”包含“1个白球,1个红球”和“都是白球”,故A不对;B、“至少有1个红球”包含“1个白球,1个红球”和“都是红球”,故B不对;C、“恰有1个白球”发生时,“恰有2个白球”不会发生,且在一次实验中不可能必有一个发生,故C对;D、“至少有1个白球”包含“1个白球,1个红球”和“都是白球”,与都是红球,是对立事件,故D不对;故选C.点评:本题考查了互斥事件和对立事件的定义的应用,一般的做法是找出每个时间包含的试验结果再进行判断,是基础题.6.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与30考点:众数、中位数、平均数;茎叶图.专题:图表型.分析:由茎叶图写出所有的数据从小到大排起,找出出现次数最多的数即为众数;找出中间的数即为中位数.解答:解:由茎叶图得到所有的数据从小到大排为:12,14,20,23,25,26,30,31,31,41,42∴众数和中位数分别为31,26故选B点评:解决茎叶图问题,关键是将图中的数列出;求数据的中位数时,中间若是两个数时,要求其平均数.7.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时,v3的值为()A.27 B.86 C.262 D.789考点:算法思想的历程.专题:计算题.分析:根据秦九韶算法求多项式的规则变化其形式,得出结果即可解答:解:f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x=(((((7x+6)x+5)x+4)x+3)x+2)x+1)x故v3=((7x+6)x+5)x+4当x=3时,v3=((7×3+6)×3+5)×3+4=262故选C.点评:本题考查排序问题与算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键8.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x 1 2 4 5y 1 1.5 5.5 8若由资料可知y对x呈线性相关关系,则y与x的线性回归方程=bx+a必过的点是()A.(2,2)B.(1,2)C.(3,4)D.(4,5)考点:线性回归方程.专题:计算题.分析:根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.解答:解:∵,==4,∴这组数据的样本中心点是(3,4)∵线性回归方程过样本中心点,∴线性回归方程一定过点(3,4)故选C点评:本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.9.阅读如图所示的程序框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是()A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,21考点:设计程序框图解决实际问题.专题:操作型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是按顺序交换变量a,b,c的值.模拟程序的执行过程,易得答案.解答:解:由流程图知,a赋给x,x赋给b,所以a的值赋给b,即输出b为21,c的值赋给a,即输出a为75.b的值赋给a,即输出c为32.故输出的a,b,c的值为75,21,32故选A点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6X卡片,今从每个袋中各取一X卡片,则两数之和等于9的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题.分析:首先计算从两个袋中各取一X卡片的取法数目,再列举其中和为9的情况,可得其数目,由等可能事件的概率公式,计算可得答案.解答:解:从两个袋中各取一X卡片,每个袋中有6X卡片,即有6种取法,则2X卡片的取法有6×6=36种,其中和为9的情况有(3,6),(6,3),(4,5),(5,4),共4种情况,则两数之和等于9的概率为=,故选C.点评:本题考查等可能事件的概率的计算,解题时注意取出的卡片有顺序,即(3,6)与(6,3)是不同的取法.二、填空题(每小题4分)11.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.考点:简单随机抽样.分析:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.解答:解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175点评:抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.12.已知{x1,x2,x3,…x n}的平均数为a,方差为b,则3x1+2,3x2+2,…,3x n+2的平均数是3a+2.考点:众数、中位数、平均数.专题:计算题.分析:根据所给的这组数据的平均数,写出求平均数的公式形式,把要求平均数的数据,代入求平均数的公式,根据上面写出的式子,得到结果.解答:解:∵x1,x2,x3,…x n的平均数为a,∴∴==3a+2∴3x1+2,3x2+2,…,3x n+2的平均数是3a+2,故答案为:3a+2点评:本题考查平均数的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.13.如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为.考点:几何概型;扇形面积公式.分析:先令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=,从而结合几何概型的计算公式即可求得黄豆落在阴影区域内的概率.解答:解:令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=则黄豆落在阴影区域外的概率P=1﹣=.故答案为:.点评:本小题主要考查扇形面积公式、几何概型等基础知识,考查运算求解能力,考查数形结合思想.关键是要求出阴影部分的面积及正方形的面积.属于基础题.14.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有750条鱼.考点:收集数据的方法.专题:计算题.分析:由题意可得:池塘中有标记的鱼的概率为.因为池塘内具有标记的鱼一共有30条鱼,所有可以估计该池塘内共有750条鱼.解答:解:由题意可得:从池塘内捞出50条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:.又因为池塘内具有标记的鱼一共有30条鱼,所有可以估计该池塘内共有条鱼.故答案为750.点评:解决此类问题的关键是正确的把实际问题转化为数学问题,利用概率的知识解决问题.15.已知样本9,10,11,x,y的平均数是10,标准差是,则xy=96.考点:众数、中位数、平均数.分析:标准差是,则方差是2,根据方差和平均数,列出方程解出x、y的值.注意运算正确.解答:解:∵标准差是,则方差是2,平均数是10,∴(9+10+11+x+y)÷5=10 ①[1+0+1+(x﹣10)2+(y﹣10)2]=2 ②由两式可得:x=8,y=12∴xy=96,故答案为:96.点评:这个知识点是初中学过的,它和高中所学的有密切关系,区别随机变量的期望与相应数值的算术平均数.期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数.三、解答题16.用辗转相除法求884与1071的最大公约数(写出过程)考点:用辗转相除计算最大公约数.专题:简易逻辑.分析:用辗转相除法求884与1071的最大公约数,写出1071=884×1+187,…34=17×2,得到两个数字的最大公约数.解答:(本题满分8分)解:1071=884×1+187,884=187×4+136,187=136×1+51,136=51×2+3451=34×1+17,34=17×2,∴884与1071的最大公约数为17.点评:本题考查辗转相除法,这是算法案例中的一种题目,本题解题的关键是解题时需要有耐心,认真计算,不要在数字运算上出错,本题是一个基础题.17.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:甲27 38 30 37 35 31乙33 29 38 34 28 36请判断:谁参加这项重大比赛更合适,并阐述理由.考点:众数、中位数、平均数;极差、方差与标准差.专题:计算题.分析:先做出甲和乙的速度的平均数,甲和乙的速度的平均数相同,需要再比较两组数据的方差,选方差较小运动员参加比赛比较好.解答:解:S甲=,( 4分)S乙=,S甲>S乙乙参加更合适点评:本题考查两组数据的平均数和方差,对于两组数据,通常要求的是这组数据的方差和平均数,用这两个特征数来表示分别表示两组数据的特征.18.某校从参加2014-2015学年高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.考点:频率分布直方图.专题:计算题;图表型.分析:(1)在频率分直方图中,小矩形的面积等于这一组的频率,根据频率的和等于1建立等式解之即可;(2)60及以上的分数所在的第三、四、五、六组,从而求出抽样学生成绩的合格率,再利用组中值估算抽样学生的平均分即可.解答:解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:f4=1﹣(0.025+0.015*2+0.01+0.005)*10=0.3(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75%利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71.点评:本题主要考查了频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.19.假设你家订了一份报纸,送报人可能在早上6点﹣8点之间把报纸送到你家,你每天离家去工作的时间在早上7点﹣9点之间,求你离家前不能看到报纸(称事件A)的概率是多少?考点:几何概型.分析:根据题意,设送报人到达的时间为X,小王离家去工作的时间为Y;则(X,Y)可以看成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件A所构成的区域及其面积,由几何概型公式,计算可得答案.解答:解:如图,设送报人到达的时间为X,小王离家去工作的时间为Y,记小王离家前不能看到报纸为事件A;则(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(X,Y)|6≤X≤8,7≤Y≤9}一个正方形区域,面积为SΩ=4,事件A所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}即图中的阴影部分,面积为S A=0.5.这是一个几何概型,所以P(A)===0.125.答:小王离家前不能看到报纸的概率是0.125.点评:本题考查几何概型的计算,解题的关键在于设出X、Y,将(X,Y)以及事件A在平面直角坐标系中表示出来.20.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若由资料知y对x呈线性相关关系.(1)请画出上表数据的散点图;(2)请根据最小二乘法求出线性回归方程=bx+a的回归系数a,b;(3)估计使用年限为10年时,维修费用是多少?考点:线性回归方程.专题:数系的扩充和复数.分析:(1)根据表格中的数据画出散点图即可;(2)求出x与y的平均数,表示出,,求出ξ,根据=﹣ξ,计算即可得到结果;(3)把x=10代入(2)中结果计算即可得到结果.解答:解:(1)做出图象,如图所示:;(2)由上表得:==4,==5,=2×2.2+3×3.8+4×5.5+5×6.5+6×7=112.3,=22+32+42+52+62=90,∴ξ===1.23,则=﹣ξ=1.23x+0.08;(3)由(2)得:=1.23x+0.08,把x=10代入得:ξ=1.23×10+0.08=12.38,则使用年限为10年时,维修费用是大概为12.38万元.点评:此题考查了线性回归方程,弄清线性回归方程的意义是解本题的关键.21.甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率.(1)取出的2个球都是白球;(2)取出的2个球中至少有1个白球.考点:等可能事件的概率.专题:计算题.分析:用列举法列举出符合题意的各种情况的个数,再根据概率公式解答,比较即可.解答:解:(1)设红色球为1,两个白色球分别为2,3,列举所有等可能的结果:(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,3),(3,1),(3,2)共9种;取出的2个球都是白球有:4种,故取出的2个球都是白球的概率为;(2)取出的2个球中至少有1个白球有:8种,故取出的2个球中至少有1个白球的概率为:.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。

广西桂林市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

广西桂林市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

2016-2017学年某某某某市高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.如果cosθ<0,且tanθ<0,则θ是()A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角2.空间的点M(1,0,2)与点N(﹣1,2,0)的距离为()A. B.3 C. D.43.圆C1:x2+( y﹣1)2=1和圆C2:(x﹣3)2+(y﹣4)2=25的位置关系为()A.相交 B.内切 C.外切 D.内含4.函数y=tan()在一个周期内的图象是()A.B.C.D.5.要得到函数y=sin2x的图象,只需将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.在△ABC中,∠C=90°,0°<A<45°,则下列各式中,正确的是()A.sinA>sinB B.tanA>tanB C.cosA<sinA D.cosB<sinB7.过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为()A.17 B.18 C.19 D.208.已知=,则sin2α的值为()A.B.﹣ C.D.﹣9.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣)2+(y﹣)2=2C.(x+1)2+(y+1)2=1 D.(x+)2+(y+)2=210.已知函数(x∈R),则下列结论正确的是()A.函数f(x)是最小正周期为π的奇函数B.函数f(x)的图象关于直线对称C.函数f(x)在区间上是增函数D.函数f(x)的图象关于点对称11.若实数x,y满足,则的取值X围为()A. B.C. D.12.过直线y=2x上一点P作圆M:的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=2x对称时,则∠APB等于()A.30° B.45° C.60° D.90°二、填空题:本大题共4小题,每小题5分,共20分.13.化简=.14.点P(x,y)是﹣60°角终边与单位圆的交点,则的值为.15.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点恰有3个,则正实数a的值为.16.已知函数f(x)=2sinx,g(x)=2cosx,直线x=m与f(x),g(x)的图象分别交M,N两点,则|MN|的最大值为.三、解答题:本大题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.化简下列各式:(1)sin(3π+α)+tan(α﹣π)sin(+α)(2).18.求圆心在直线2x+y=0上,且与直线x+y﹣1=0相切于点P(2,﹣1)的圆的方程.19.已知α,β均为锐角,sinα=,cos(α+β)=,求(1)sinβ,(2)tan(2α+β)20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)求f(x)在[0,]上的最大、最小值及相应的x的值.21.已知f(x)=2cosx(sinx+cosx)﹣1(1)求函数f(x)的单调递减区间;(2)若y=f(x+φ)关于直线x=对称,求|φ|的最小值;(3)当x∈[0,]时,若方程|f(x)|﹣m=0有4个不同的实数解,某某数m的取值X 围.22.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.2016-2017学年某某某某中学高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.如果cosθ<0,且tanθ<0,则θ是()A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角【考点】GC:三角函数值的符号.【分析】根据cosθ<0,在二,三象限,且tanθ<0,在二,四象限,综合可得答案.【解答】解:∵cosθ<0,在二,三象限,且tanθ<0,在二,四象限,综合可得:θ在第二象限的角.故选:B.2.空间的点M(1,0,2)与点N(﹣1,2,0)的距离为()A. B.3 C. D.4【考点】JI:空间两点间的距离公式.【分析】直接利用空间两点间的距离公式,即可得出结论.【解答】解:∵M(1,0,2)与点N(﹣1,2,0),∴|MN|==2.故选C.3.圆C1:x2+( y﹣1)2=1和圆C2:(x﹣3)2+(y﹣4)2=25的位置关系为()A.相交 B.内切 C.外切 D.内含【考点】JA:圆与圆的位置关系及其判定.【分析】分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.【解答】解:圆C1:x2+( y﹣1)2=1和圆C2:(x﹣3)2+(y﹣4)2=25的圆心坐标分别为(0,1)和(3,4),半径分别为r=1和R=5,∵圆心之间的距离d=,R+r=6,R﹣r=4,∴R﹣r<d<R+r,则两圆的位置关系是相交.故选:A.4.函数y=tan()在一个周期内的图象是()A.B.C.D.【考点】HC:正切函数的图象.【分析】先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan ()的最小正周期为2π,排除B.【解答】解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D∵y=tan()的周期T==2π,故排除B故选A5.要得到函数y=sin2x的图象,只需将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】先把y=sin(2x+)整理为sin2(x+);再根据图象平移规律即可得到结论.(注意平移的是自变量本身,须提系数).【解答】解:因为:y=sin(2x+)=sin2(x+).根据函数图象的平移规律可得:须把函数y=sin2(x+)相右平移个单位得到函数y=sin2x的图象.故选:D.6.在△ABC中,∠C=90°,0°<A<45°,则下列各式中,正确的是()A.sinA>sinB B.tanA>tanB C.cosA<sinA D.cosB<sinB【考点】HP:正弦定理.【分析】先确定0°<A<B<90°,再利用正弦函数,正切函数的单调性,即可得到结论.【解答】解:∵△ABC中,∠C=90°,∴A=90°﹣B,∵0°<A<45°,∴0°<A<B<90°∴sinB>sinA,故A错误,tanB>tanA,故B错误,∴sinB>sin(90°﹣B),sinB>cosB,故D正确,∴sin(90°﹣A)>sinA,cosA>sinA,故C错误,故选:D.7.过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为()A.17 B.18 C.19 D.20【考点】J5:点与圆的位置关系.【分析】圆x2+y2﹣2x﹣4y﹣20=0的圆心C(1,2),半径r=5,设点A(1,﹣1),|AC|=3<r,从而点A在圆内,进而最大弦长为2r=10,最小弦长为:2.由此能求出结果.【解答】解:圆x2+y2﹣2x﹣4y﹣20=0的圆心C(1,2),半径r==5,设点A(1,﹣1),|AC|==3<r,∴点A在圆内,∴最大弦长为2r=10,最小弦长为:2=2=8.∴过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为:10+8=18.故选:B.8.已知=,则sin2α的值为()A.B.﹣ C.D.﹣【考点】GI:三角函数的化简求值.【分析】根据二倍角公式和根据同角三角函数关系式即可求解.【解答】解:由=,可得:2cos2α=cos()得:4cos22α=cos2()∵cos2()=2cos2()﹣1,即1﹣sin2α=2cos2()∴8cos22α=1﹣sin2α由cos22α+sin22α=1.∴8(1﹣sin22α)=1﹣sin2α解得:sin2α=.故选:B.9.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣)2+(y﹣)2=2C.(x+1)2+(y+1)2=1 D.(x+)2+(y+)2=2【考点】JA:圆与圆的位置关系及其判定.【分析】先确定公共弦的方程,再求出公共弦为直径的圆的圆心坐标、半径,即可得到公共弦为直径的圆的圆的方程.【解答】解:∵圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0,∴两圆相减可得公共弦方程为l:2x﹣2y=0,即x﹣y=0又∵圆C1:x2+y2+4x+1=0的圆心坐标为(﹣2,0),半径为;圆C2:x2+y2+2x+2y+1=0的圆心坐标为(﹣1,﹣1),半径为1,∴C1C2的方程为x+y+2=0∴联立可得公共弦为直径的圆的圆心坐标为(﹣1,﹣1),∵(﹣2,0)到公共弦的距离为:,∴公共弦为直径的圆的半径为:1,∴公共弦为直径的圆的方程为(x+1)2+(y+1)2=1故选:C.10.已知函数(x∈R),则下列结论正确的是()A.函数f(x)是最小正周期为π的奇函数B.函数f(x)的图象关于直线对称C.函数f(x)在区间上是增函数D.函数f(x)的图象关于点对称【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】将函数f(x)化简,根据三角函数的图象和性质判断即可.【解答】解:函数=﹣cos2(x﹣)=﹣cos(2x﹣).最小正周期T=,f(﹣x)=﹣cos(﹣2x﹣)=﹣cos(2x+)≠﹣f(x),不是奇函数,A不对.当x=时,即f()=﹣cos(2×﹣)=﹣,不是最值,B不对.由f(x)在≤2x﹣是单调递减,可得:.∴函数f(x)在区间上是减函数,C不对.当x=﹣时,即f(﹣)=﹣cos(﹣2×﹣)=﹣cos=0.函数f(x)的图象关于点对称.D对.故选:D.11.若实数x,y满足,则的取值X围为()A. B.C. D.【考点】J9:直线与圆的位置关系.【分析】设过原点的右半个圆的切线方程为y=kx﹣2,再根据圆心(0,0)到切线的距离等于半径,求得k的值,可得的取值X围.【解答】解:由题意可得,表示右半个圆x2+y2=1上的点(x,y)与原点(0,﹣2)连线的斜率,设k=,故此圆的切线方程为y=kx﹣2,再根据圆心(0,0)到切线的距离等于半径,可得r==1,平方得k2=3求得k=±,故的取值X围是[,+∞),故选:D.12.过直线y=2x上一点P作圆M:的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=2x对称时,则∠APB等于()A.30° B.45° C.60° D.90°【考点】J7:圆的切线方程.【分析】连接PM、AM,根据圆的性质和轴对称知识,得当切线l1,l2关于直线l对称时,直线l⊥PM,且PM平分∠APB.因此计算出圆的半径和点M到直线l的距离,在Rt△PAM中利用三角函数定义算出∠APM的度数,从而得到∠APB的度数.【解答】解:连接PM、AM,可得当切线l1,l2关于直线l对称时,直线l⊥PM,且射线PM恰好是∠APB的平分线,∵圆M的方程为(x﹣3)2+(y﹣2)2=,∴点M坐标为(3,2),半径r=,点M到直线l:2x﹣y=0的距离为PM==,由PA切圆M于A,得Rt△PAM中,sin∠APM==,得∠APM=30°,∴∠APB=2∠APM=60°.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.化简=.【考点】9B:向量加减混合运算及其几何意义.【分析】利用向量的减法运算即可得出.【解答】解:原式==.故答案为.14.点P(x,y)是﹣60°角终边与单位圆的交点,则的值为.【考点】G9:任意角的三角函数的定义.【分析】直接利用任意角的三角函数,求解即可.【解答】解:角﹣60°的终边为点P(x,y),可得:tan(﹣60°)=.故答案为:.15.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点恰有3个,则正实数a的值为.【考点】JE:直线和圆的方程的应用.【分析】由题意可得圆心(0,0)到直线l:x+y=a的距离d满足d=1,根据点到直线的距离公式求出d,再解绝对值方程求得实数a的值.【解答】解:因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d=1,即d==1,解得a=±.(﹣舍去).故答案为:.16.已知函数f(x)=2sinx,g(x)=2cosx,直线x=m与f(x),g(x)的图象分别交M,N两点,则|MN|的最大值为 4 .【考点】H1:三角函数的周期性及其求法.【分析】依题意可设M(m,2sinm),N(m,2cosm),|MN|=|2sinm﹣2cosm|,利用辅助角公式即可.【解答】解:直线x=m与和f(x)=2sinx,g(x)=2cosx,的图象分别交于M,N两点,设M(m,2sinm ),N(m,2cosm),则|MN|=|2sinm﹣2cosm|=4|sin(m﹣)|当且仅当m=,k∈z时,等号成立,则|MN|的最大值4,故答案为:4.三、解答题:本大题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.化简下列各式:(1)sin(3π+α)+tan(α﹣π)sin(+α)(2).【考点】GI:三角函数的化简求值.【分析】(1)直接利用诱导公式化简即可;(2)把1=tan替换,根据正切的和与差公式可得答案.【解答】解:(1)sin(3π+α)+tan(α﹣π)sin(+α)原式=﹣sinα+tanα•cosα=﹣sinα+=0;(2).原式==tan(45°﹣15°)=tan30°=.18.求圆心在直线2x+y=0上,且与直线x+y﹣1=0相切于点P(2,﹣1)的圆的方程.【考点】J9:直线与圆的位置关系.【分析】根据圆心到直线2x+y=0上,设圆心Q为(a,﹣2a),由题意得到圆心到直线的距离等于|PQ|,列出关于a的方程,求出方程的解得到a的值,确定出圆心坐标与半径,写出圆的标准方程即可.【解答】解:设圆心Q为(a,﹣2a),根据题意得:圆心到直线x+y﹣1=0的距离d=|PQ|,即=,解得:a=1,∴圆心Q(1,﹣2),半径r=,则所求圆方程为(x﹣1)2+(y+2)2=2.19.已知α,β均为锐角,sinα=,cos(α+β)=,求(1)sinβ,(2)tan(2α+β)【考点】GR:两角和与差的正切函数;GL:三角函数中的恒等变换应用.【分析】(1)由已知利用同角三角函数基本关系式可求cosα,sin(α+β)的值,利用两角差的正弦函数公式即可计算得解.(2)由(1)可求tanα,tan(α+β),进而利用两角和的正切函数公式即可计算得解.【解答】(本题满分为12分)解:(1)∵α均为锐角,sinα=,得cosα=,又∵α+β∈(0,π),cos(α+β)=,可得:sin(α+β)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴sinβ=sin(α+β﹣α)=sin(α+β)cosα﹣cos(α+β)sinα=﹣=…6分(2)∵tanα=,tan(α+β)=,…9分∴tan(2α+β)===…12分20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)求f(x)在[0,]上的最大、最小值及相应的x的值.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;HW:三角函数的最值.【分析】(1)由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值2,求出φ,即可得到函数的解析式.(2)由x的X围,可求2x﹣的X围,利用正弦函数的图象和性质即可得解.【解答】(本小题满分12分)解:(1)由图象可知,A=2,…周期T= [﹣(﹣)]=π,∴=π,ω>0,则ω=2,…从而f(x)=2sin(2x+φ),代入点(,2),得sin(+φ)=1,则+φ=+2kπ,k∈Z,即φ=﹣+2kπ,k∈Z,…又|φ|<,则φ=﹣,…∴f(x)=2sin(2x﹣).…(2)∵x∈[0,],则 2x﹣∈[﹣,],…∴当2x﹣=,即x=时,f(x)max=2,…当2x﹣=﹣,即x=0时,f(x)min=﹣.…21.已知f(x)=2cosx(sinx+cosx)﹣1(1)求函数f(x)的单调递减区间;(2)若y=f(x+φ)关于直线x=对称,求|φ|的最小值;(3)当x∈[0,]时,若方程|f(x)|﹣m=0有4个不同的实数解,某某数m的取值X 围.【考点】H5:正弦函数的单调性;54:根的存在性及根的个数判断.【分析】(1)利用降幂公式与辅助角公式化简,再由复合函数的单调性求得函数f(x)的单调递减区间;(2)求出f(x+φ),由y=f(x+φ)关于直线x=对称,可得2φ+=kπ,k∈Z,得φ=,k∈Z.进一步求得|φ|的最小值;(3)画出|f(x)|在[0,]上的图象,数形结合得答案.【解答】解:(1)f(x)=2cosx(sinx+cosx)﹣1===.由,k∈Z,得,k∈Z.∴函数f(x)在R上的单调递减区间是[],k∈Z;(2)f(x+φ)=2sin[2(x+φ)+]=2sin(2x+2φ+),∵x=是f(x+φ)的对称轴,∴2φ+=kπ,k∈Z,即φ=,k∈Z.∴|φ|的最小值为;(3)|f(x)|在[0,]上的图象如下:当直线y=m与函数y=|f(x)|的图象有4个不同交点时,就是方程|f(x)|﹣m=0有4个不同的实数根,由图可知,m的取值X围是∅.22.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.【考点】JE:直线和圆的方程的应用.【分析】(1)设曲线E上任意一点坐标为(x,y),由题意,,由此能求出曲线E的方程.(2)由题知l1⊥l2,且两条直线均恒过点N(1,0),设曲线E的圆心为E,则E(2,0),线段CD的中点为P,则直线EP:y=x﹣2,设直线CD:y=﹣x+t,由此利用圆的几何性质,能求出线CD的方程.【解答】(1)解:设曲线E上任意一点坐标为(x,y),由题意,,…整理得x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,∴曲线E的方程为(x﹣2)2+y2=3.…(2)解:由题知l1⊥l2,且两条直线均恒过点N(1,0),…设曲线E的圆心为E,则E(2,0),线段CD的中点为P,则直线EP:y=x﹣2,设直线CD:y=﹣x+t,由,解得点,…由圆的几何性质,,…而,|ED|2=3,,解之得t=0,或t=3,…∴直线CD的方程为y=﹣x,或y=﹣x+3.…。

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1. y=ax+b(a+b=0,ab≠0)的图象可能是下列图中的 ()【答案】D【解析】因为ab≠0,所以排除选项C;又a+b=0,所以斜率与截距互为相反数,显然,D选项符合,故选D.【考点】直线方程的图象.2.若,则等于()A.B.C.D.【答案】B【解析】由题,两边平方得,两边同时除以并化简得,解得故本题正确答案为3.已知,且满足,那么的最小值为()A.B.C.D.【答案】B【解析】由题意得,当且仅当,即时等号的成立的,所以的最小值为,故选B.【考点】基本不等式的应用.4.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,分别为14,18,则输出的()A.0B.2C.4D.14【答案】B【解析】由a=14,b=18,a<b,则b变为18-14=4,由a>b,则a变为14-4=10,由a>b,则a变为10-4=6,由a>b,则a变为6-4=2,由a<b,则b变为4-2=2,由a=b=2,则输出的a=2【考点】程序框图5.已知为平面内两个不共线向量,,若M、N、P三点共线,则()A.B.C.D.【答案】B【解析】因为,所以,由题设可得,解之得,应选答案B。

6.执行如图所示的程序框图,输出的结果是()A.55B.65C.78D.89【答案】A【解析】第一次执行循环体时,,满足判断框的条件,第二次执行循环体时,,满足判断框的条件,第三次执行循环体时,,满足判断框的条件,第四次执行循环体时,,满足判断框的条件,第五次执行循环体时,,满足判断框的条件,第六次执行循环体时,,满足判断框的条件,第七次执行循环体时,,,满足判断框的条件,第八次执行循环体时,,不满足判断框的条件,退出循环体,输出,故答案为A.【考点】程序框图的应用.7.设向量,满足及.(1)求,夹角的大小;(2)求的值.【答案】(1) .(2)|3a+b|=.【解析】(1)根据(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,可得a·b=,再根据数量积的定义可求出cos θ=,进而得到夹角.(2)先求(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,从而得到|3a+b|=.(1)设a与b夹角为θ,(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,而|a|=|b|=1,∴a·b=,∴|a||b|cos θ=,即cos θ=又θ∈[0,π],∴a,b所成的角为.(2)(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,∴|3a+b|=..【考点】考查了向量的数量积,以及利用数量积求模,夹角等知识.点评:掌握数量积的定义:,求模可利用: 来求解.8.四边形中,,,.(1)若,试求与满足的关系式;(2)满足(1)的同时又有,求,的值及四边形的面积.【答案】(1)(2)或【解析】(1)两向量平行的坐标关系可得表达式;(2)由结合上题结论,可得方程组,求出、的值,可得,长度,易求四边形面积.解:(1)由,① 5分(2) ,,②解①②得或(舍),, 10分由知:. 12分【考点】两向量平行,垂直时的坐标关系.9.执行如图的程序框图,若输出的,则输入整数的最小值是()A.15B.14C.7D.8【答案】C【解析】初始值:成立,运行第一次成立,运行第二次成立,运行第三次成立,运行第四次不成立,循环终止,输出输入整数的最大值是15.故选A.【考点】循环结构.10.已知向量,若与平行,则实数= .【答案】【解析】由题意得:,解得:.【考点】1.向量平行;11.设,,,点是线段上的一个动点,,若,则实数的取值范围是()A.B.C.D.【答案】B【解析】,,,,解得,因为点是线段上的一个动点,所以,即满足条件的实数的取值范围是.【考点】向量的线性运算性质及几何意义12.过点且在坐标轴上的截距相等的直线的一般式方程是________【答案】或【解析】当直线过原点时,斜率等于,故直线的方程为,即,当直线不过原点时,设直线的方程为,把代入直线的方程得,故求得的直线方程为综上,满足条件的直线方程为或,故答案为或.13.若直线与直线互相平行,则实数________.【答案】2【解析】由题意得14.在中,求的值。

高一数学下学期期中试卷(实验班,含解析)-人教版高一全册数学试题

高一数学下学期期中试卷(实验班,含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市余姚中学高一(下)期中数学试卷(实验班)一.选择题:本大题共8小题,每小题5分,共40分.1.关于直线l:x+1=0,以下说法正确的是()A.直线l倾斜角为0 B.直线l倾斜角不存在C.直线l斜率为0 D.直线l斜率不存在2.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系是()A.平行 B.重合 C.垂直 D.相交但不垂直3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面4.在直角坐标系中,已知两点M(4,2),N(1,﹣3),沿x轴把直角坐标平面折成直二面角后,M,N两点的距离为()A. B. C. D.5.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则线段AB的中点M到原点的距离的最小值为()A.2 B.3 C.3 D.46.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列7.如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A.f(x)是关于x的增函数B.f(x)是关于x的减函数C.f(x)关于x先递增后递减 D.关于x先递减后递增8.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[,],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值X围是()A.[,1] B.[,1] C.[,] D.[,]二.填空题:本大题共7小题,共36分9.已知圆C的方程为x2+y2﹣6x﹣8y=0,则圆心C的坐标为;过点(3,5)的最短弦的长度为.10.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.11.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为.12.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于;点A坐标(p,q),曲线C方程:y=,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值X围为.13.已知三个球的半径R1,R2,R3满满足R1+R3=2R2,记它们的表面积分别为S1,S2,S3,若S1=1,S3=9,则S2=.14.已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为.15.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号).三.解答题:本大题共5小题,总共74分.16.已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2.(Ⅰ)求直线l方程;(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值X围.17.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC面积的最大值.18.设常数a∈R,函数f(x)=(a﹣x)|x|.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,某某数m的取值X围.19.如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,,F 为线段DE上的一点.(Ⅰ)求证:平面AED⊥平面ABCD;(Ⅱ)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.20.已知数列{a n}中,a1=1,a2=,且a n+1=(n=2,3,4…).(1)求数列{a n}的通项公式;(2)求证:对一切n∈N*,有a k2<.2015-2016学年某某省某某市余姚中学高一(下)期中数学试卷(实验班)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共40分.1.关于直线l:x+1=0,以下说法正确的是()A.直线l倾斜角为0 B.直线l倾斜角不存在C.直线l斜率为0 D.直线l斜率不存在【考点】直线的斜率;直线的倾斜角.【分析】根据直线方程判断即可.【解答】解:直线l:x+1=0,即x=﹣1,直线和x轴垂直,故直线l的斜率不存在,故选:D.2.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系是()A.平行 B.重合 C.垂直 D.相交但不垂直【考点】正弦定理的应用;直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】要寻求直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系,只要先求两直线的斜率,然后由斜率的关系判断直线的位置即可.【解答】解:由题意可得直线sinA•x+ay+c=0的斜率,bx﹣sinB•y+sinC=0的斜率∵k1k2===﹣1则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0垂直故选C.3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.4.在直角坐标系中,已知两点M(4,2),N(1,﹣3),沿x轴把直角坐标平面折成直二面角后,M,N两点的距离为()A. B. C. D.【考点】点、线、面间的距离计算.【分析】设一、二象限所在的半平面为α,三、四象限所在的半平面为β,可得α⊥β.作MC⊥x轴于点C,连结NC、MN,可得MC⊥平面β,Rt△MNC中算出直角边CM、之长,再利用勾股定理算出MN长,即得M,N两点的距离.【解答】解:过点M作MC⊥x轴于点C,连结NC、MN设一、二象限所在的半平面为α,三、四象限所在的半平面为β,∵α﹣l﹣β是直二面角,α∩β=l,MC⊥l∴MC⊥平面β∵C的坐标(4,0),得MC==3∴Rt△MNC中,MN===故选:C5.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则线段AB的中点M到原点的距离的最小值为()A.2 B.3 C.3 D.4【考点】两点间的距离公式;中点坐标公式.【分析】根据题意可推断出M点的轨迹为平行于直线l1、l2且到l1、l2距离相等的直线l进而根据两直线方程求得M的轨迹方程,进而利用点到直线的距离求得原点到直线的距离为线段AB的中点M到原点的距离的最小值为,求得答案.【解答】解:由题意知,M点的轨迹为平行于直线l1、l2且到l1、l2距离相等的直线l,故其方程为x+y﹣6=0,∴M到原点的距离的最小值为d==3.故选C6.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列【考点】等比数列的性质.【分析】根据等比中项的性质得:sin2B=sinAsinC,由正弦定理得b2=ac,则三边a,b,c 成等比数列.【解答】解:因为sinA、sinB、sinC依次成等比数列,所以sin2B=sinAsinC,由正弦定理得,b2=ac,所以三边a,b,c依次成等比数列,故选:B.7.如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A.f(x)是关于x的增函数B.f(x)是关于x的减函数C.f(x)关于x先递增后递减 D.关于x先递减后递增【考点】空间点、线、面的位置;棱锥的结构特征.【分析】由PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,利用x表示PA,PB,PC,由余弦定理得到关于x的解析式,进一步利用x表示tanθ,利用基本不等式求最值;然后判断选项.【解答】解:∵PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,PD=x,∠BPC=θ,∴可求得:AC=,AB=,PA=,PC=,BP=,∴在△PBC中,由余弦定理知:cosθ==∴tan2θ=﹣1=﹣1=,∴tanθ==≤=(当且仅当x=时取等号);所以f(x)关于x先递增后递减.故选:C.8.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[,],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值X围是()A.[,1] B.[,1] C.[,] D.[,]【考点】点、线、面间的距离计算.【分析】取平面DEA⊥平面α位置考虑,在△ADE中,求出cos∠DAE,再考虑特殊位置,可得结论.【解答】解:取平面DEA⊥平面α位置考虑即可.如图所示,在△ADE中,AD=2,DE=AE=,∴cos∠DAE==,棱AD与平面α所成的角为时,sin∠EAN=sin(﹣∠DAE)==,∴EN=()=或sin∠EAN=sin(+∠DAE)=∴EN=()=∴棱BC的中点E到平面α的距离的取值X围是[,].故选:C.二.填空题:本大题共7小题,共36分9.已知圆C的方程为x2+y2﹣6x﹣8y=0,则圆心C的坐标为(3,4);过点(3,5)的最短弦的长度为.【考点】直线与圆的位置关系.【分析】由圆C的方程为x2+y2﹣6x﹣8y=0,能求出圆C的圆心C的坐标和半径r,再求出(3,5),C(3,4)两点间的距离d,从而得到过点(3,5)的最短弦的长度为:2.【解答】解:∵圆C的方程为x2+y2﹣6x﹣8y=0,∴圆C的圆心C(3,4),圆心的半径r==5,∵过点(3,5)、C(3,4)的直线的斜率不存在,∴过点(3,5)的最短弦的斜率k=0,(3,5),C(3,4)两点间的距离d=1,∴过点(3,5)的最短弦的长度为:2=2=4.故答案为:(3,4),.10.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由一个半球去掉后得到的几何体.【解答】解:由三视图可知:该几何体是由一个半球去掉后得到的几何体.∴该几何体的体积==cm3,表面积=++=cm2.故答案分别为:;.11.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为 2 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到k的值.然后即可得到结论.【解答】解:若k=1,则不等式组对应的平面区域如图:则A(1,﹣1),B(1,3),由得,即C(,),不等式组所表示的平面区域的面积为S=×4×(﹣1)=2×=,由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,则由图象可知当直线y=﹣3x+z经过点C时,直线y=﹣3x+z的截距最大,此时z最大,为3x+y=7由,解得,即A(2,1),此时A在kx﹣y﹣k﹣1=0上,则2k﹣1﹣k﹣1=0,得k=2.故答案为:;2;12.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于9 ;点A 坐标(p,q),曲线C方程:y=,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值X围为{}∪(,1] .【考点】二次函数的性质.【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.求出直线与圆相切时,直线的斜率,过(﹣1,0)、(1,0)直线的斜率,即可得出结论.【解答】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:a=4,b=1;解②得:a=1,b=4.∴p=a+b=5,q=1×4=4,则p+q=9.点A坐标(5,4),直线的方程设为y﹣4=k(x﹣5),即kx﹣y﹣5k+4=0曲线C方程:y=表示一个在x轴上方的圆的一半,圆心坐标为(0,0),圆的半径r=1.由圆心到直线的距离d==1,可得k=,过(﹣1,0)、(5,4)直线的斜率为=,过(1,0)、(5,4)直线的斜率为1,∴直线l的斜率取值X围为{}∪(,1].故答案为:9,{}∪(,1].13.已知三个球的半径R1,R2,R3满满足R1+R3=2R2,记它们的表面积分别为S1,S2,S3,若S1=1,S3=9,则S2= 4 .【考点】球的体积和表面积.【分析】表示出三个球的表面积,求出三个半径,利用R1+R3=2R2,得出+=2,代入计算可得结论.【解答】解:因为S1=4πR12,所以R1=,同理:R2=,R3=,由R1+R3=2R2,得+=2,因为S1=1,S3=9,所以2=1+3,所以S2=4.故答案为:4.14.已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为3﹣2.【考点】分段函数的应用.【分析】作出函数f(x)的图象,由a<b<1且f(a)=f(b),可求得(a﹣1)2+(b﹣1)2=8,a<﹣1,0<b<1,利用直线和圆的位置关系,结合线性规划的知识进行求解即可.【解答】解:作出f(x)的图象如图,由图可知,f(x)的对称轴为:x=1.∵a<b<1且f(a)=f(b),∴a<﹣1,﹣1<b<1,则|a2﹣2a﹣3|=|b2﹣2b﹣3|,即a2﹣2a﹣3=﹣(b2﹣2b﹣3),则(a﹣1)2+(b﹣1)2=8,a<﹣1,﹣1<b<1,则(a,b)的轨迹是圆上的一个部分,(黑色部分),由u=2a+b得b=﹣2a+u,平移b=﹣2a+u,当直线b=﹣2a+u和圆在第三象限相切时,截距最小,此时u最小,此时圆心(1,1)到直线2a+b﹣u=0的距离d=,即|u﹣3|=2,得u=3﹣2或u=3+2(舍),故答案为:3﹣215.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是BC (写出所有真命题的代号).【考点】命题的真假判断与应用;过两条直线交点的直线系方程.【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n 边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.三.解答题:本大题共5小题,总共74分.16.已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2.(Ⅰ)求直线l方程;(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值X围.【考点】圆方程的综合应用;直线与圆的位置关系.【分析】(Ⅰ)分斜率存在和斜率不存在两种情况,分别由条件利用点到直线的距离公式,弦长公式求出斜率,可得直线l的方程.(Ⅱ)利用 x02+y02的几何意义.求解圆心与坐标原点的距离,转化求解即可.【解答】解:(Ⅰ)当直线L的斜率存在时,设直线L的方程为y﹣3=k(x﹣2),即kx﹣y+3﹣2k=0,作MC⊥AB于C,在直角三角形MBC中,BC=,MB=2,所以MC=1,又因为MC==1,解得k=,所以直线方程为3x﹣4y+6=0.当直线斜率不存在时,其方程为x=2,圆心到此直线的距离也为1,所以也符合题意,综上可知,直线L的方程为3x﹣4y+6=0或x=2.(Ⅱ)圆M:(x﹣1)2+(y﹣1)2=4,Q(x0,y0)为圆M上的点,x02+y02的几何意义是圆的上的点与坐标原点距离的平方,圆心到原点的距离为:,圆的半径为2,x02+y02的取值X围:[0,],即[0,6+4].17.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利用余弦定理化简已知等式可得,又△ABC不是直角三角形,解得bc=4,又b+c=5,联立即可解得b,c的值.(Ⅱ)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得,可求,利用三角形面积公式即可得解三角形面积的最大值.【解答】(本题满分14分)解:(Ⅰ)∵,∴,∴,∵△ABC不是直角三角形,∴bc=4,又∵b+c=5,∴解得或…(Ⅱ)∵,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,∴,∴,所以.∴△ABC面积的最大值是,当时取到…18.设常数a∈R,函数f(x)=(a﹣x)|x|.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,某某数m的取值X围.【考点】函数单调性的判断与证明;函数的最值及其几何意义.【分析】(Ⅰ)a=1时,便可得出,从而可根据二次函数的单调性,即可分别求出x≥0和x<0时f(x)的单调区间,从而得出f(x)的单调区间;(Ⅱ)可由f(x)为奇函数得到a=0,从而得到f(x)=﹣x|x|,进一步求得f[f(x)]=x3|x|,从而可由mx2+m>f[f(x)]得到对于任意x∈[﹣2,2]恒成立,可由x∈[﹣2,2]得出,这样便可得出实数m的取值X围.【解答】解:(Ⅰ)当a=1时,;当x≥0时,,∴f(x)在内是增函数,在内是减函数;当x<0时,,∴f(x)在(﹣∞,0)内是减函数;综上可知,f(x)的单调增区间为,单调减区间为(﹣∞,0),;(Ⅱ)∵f(x)是奇函数,∴f(﹣1)=﹣f(1);即(a+1)•1=﹣(a﹣1)•1;解得a=0;∴f(x)=﹣x|x|,f[f(x)]=x3|x|;∴mx2+m>f[f(x)]=x3|x|,即对所有的x∈[﹣2,2]恒成立;∵x∈[﹣2,2],∴x2+1∈[1,5];∴;∴;∴实数m的取值X围为.19.如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,,F 为线段DE上的一点.(Ⅰ)求证:平面AED⊥平面ABCD;(Ⅱ)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)推导出AE⊥CD,AD⊥CD,从而CD⊥面AED,由此能证明平面AED⊥平面ABCD.(Ⅱ)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG 交BC于N,连结FN,推导出∠EHG就是二面角E﹣BC﹣D的平面角,∠FNM就是二面角F﹣BC﹣D的平面角,由此能求出DF的长.【解答】证明:(Ⅰ)∵AE⊥面CDE,CD⊂面CDE,∴AE⊥CD,又∴是矩形,∴AD⊥CD,∴CD⊥面AED,又∵CD⊂面ABCD,∴平面AED⊥平面ABCD.解:(Ⅱ)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG交BC于N,连结FN,∵,∴且EG⊥AD,∵平面AED⊥平面ABCD,∴EG⊥面ABCD,GH⊥BC,∴EH⊥BC,∴∠EHG就是二面角E﹣BC﹣D的平面角,同理∠FNM就是二面角F﹣BC﹣D的平面角,由题意得∠EHG=2∠FNM,而,∴,∴,∴.20.已知数列{a n}中,a1=1,a2=,且a n+1=(n=2,3,4…).(1)求数列{a n}的通项公式;(2)求证:对一切n∈N*,有a k2<.【考点】数列递推式;数列的求和.【分析】(1)当n≥2时, =,从而=﹣(),进而得到=﹣(1﹣),由此能求出a n=,n∈N*.(2)当k≥2时, =,由此利用裂项求和法能证明对一切n∈N*,有a k2<.【解答】(1)解:∵a1=1,a2=,且a n+1=(n=2,3,4…),∴当n≥2时, =,两边同时除以n,得,∴=﹣(),∴=﹣=﹣(1﹣)∴=﹣(1﹣),n≥2,∴,∴a n=,n≥2,当n=1时,上式成立,∴a n=,n∈N*.(2)证明:当k≥2时, =,∴当n≥2时,=1+<1+ [()+()+…+()]=1+<1+=,又n=1时,,∴对一切n∈N*,有a k2<.。

黑龙江省牡丹江市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

黑龙江省牡丹江市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

某某省某某市2016-2017学年高一数学下学期期中试卷一、选择题(每小题5分共60分)1.已知数列{a n}是等差数列,a2=3,a6=7,则a11的值为()A.11 B.12 C.13 D.102.在等比数列{a n}中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.83.在△ABC中,已知三边a=3,b=5,c=7,则三角形ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定4.△ABC的三个内角A,B,C所对的边分别为a,b,c,若A=45°,B=75°,c=3,则a=()A.2 B.2 C.2 D.35.数列{a n}中,a1=1,a n+1=2a n+2,则a7的值为()A.94 B.96 C.190 D.1926.已知数列{a n}满足a1>0, =,则数列{a n}是()A.递增数列 B.递减数列 C.摆动数列 D.不确定7.已知S n为等差数列{a n}的前n项和,若S1=1,,则的值为()A.B.C.D.48.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解9.对于实数a,b,c,有以下命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若,则a>0,b<0.其中真命题的个数是()A.2 B.3 C.4 D.510.在△ABC中,有下列结论:①若a2=b2+c2+bc,则∠A为60°;②若a2+b2>c2,则△ABC为锐角三角形;③若A:B:C=1:2:3,则a:b:c=1:2:3,④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值X围为(2,2)其中正确的个数为()A.1 B.2 C.3 D.411.不等式|2a﹣b|+|a+b|≥|a|(|x﹣1|+|x+1|)对于任意不为0的实数a,b恒成立,则实数x的X围为()A. B.C.D.12.若数列{a n}满足(n∈N*,d为常数),则称{a n}为“调和数列”,已知正项数列为“调和数列”,且x1+x2+…+x20=200,则的最小值为()A.B.10 C.D.5二、填空题(每小题5分共20分)13.已知正实数a,b满足ab=1,则2a+b的最小值为.14.函数x2+y2=2,则3x+4y的最大值是.15.已知数列{a n}的前n项和为S n,且a1=1,a n+1=3S n(n≥1,n∈N*)第k项满足750<a k<900,则k等于.16.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为.三、解答题17.解关于x的不等式x2﹣(a+1)x+a≥0(a∈R).18.已知x>0,y>0,求证:.19.设函数f(x)=|2x+1|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)∀x∈R,使f(x)≥t2﹣t,某某数t的取值X围.20.已知数列{a n}为等差数列,且a1=1,a5=5,等比数列{b n}的前n项和.(1)求数列{a n},{b n}的通项公式;(2)若=a n b n(n=1,2,3,…),T n为数列{}的前n项和,求T n.21.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若,(1)求A;(2)若b=2,求c边长;(3)若b+c=4,求△ABC的面积.22.已知数列{a n}的前n项和为S n,且(1)求数列{a n}的通项公式;(2)设,数列{}的前n项和为T n,求使不等式对一切n ∈N*都成立的正整数k的最大值;(3)设,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.2016-2017学年某某省某某一中高一(下)期中数学试卷参考答案与试题解析一、选择题(每小题5分共60分)1.已知数列{a n}是等差数列,a2=3,a6=7,则a11的值为()A.11 B.12 C.13 D.10【考点】84:等差数列的通项公式.【分析】利用等差数列通项公式求出首项和公差,由此能求出a11的值.【解答】解:∵等差数列,a2=3,a6=7,∴,解得a1=2,d=1.∴a11=a1+10d=2+10=12.故选:B.2.在等比数列{a n}中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.8【考点】88:等比数列的通项公式.【分析】题目给出了a2=8,a5=64,直接利用等比数列的通项公式求解q.【解答】解:在等比数列{a n}中,由,又a2=8,a5=64,所以,,所以,q=2.故选A.3.在△ABC中,已知三边a=3,b=5,c=7,则三角形ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】HR:余弦定理.【分析】由题意可得,c边为最大边,由于cosC==﹣,可得C=120°,可得三角形ABC是钝角三角形.【解答】解:△ABC中,∵已知三边a=3,b=5,c=7,∴c边为最大边,由于cosC===﹣,∴C=120°,故三角形ABC是钝角三角形,故选:C.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,若A=45°,B=75°,c=3,则a=()A.2 B.2 C.2 D.3【考点】HP:正弦定理.【分析】先根据三角形的内角和定理求出C,再根据正弦定理代值计算即可.【解答】解:∵A=45°,B=75°,∴C=180°﹣A﹣B=120°由正弦定理可得=,即a===2,故选:B.5.数列{a n}中,a1=1,a n+1=2a n+2,则a7的值为()A.94 B.96 C.190 D.192【考点】8H:数列递推式.【分析】a n+1=2a n+2,变形为a n+1+2=2(a n+2),利用等比数列的通项公式即可得出.【解答】解:∵a n+1=2a n+2,∴a n+1+2=2(a n+2),∴数列{a n+2}是等比数列,首项为3,公比为2,∴a n+2=3•2n﹣1,∴a7=3×26﹣2=190.故选:C.6.已知数列{a n}满足a1>0, =,则数列{a n}是()A.递增数列 B.递减数列 C.摆动数列 D.不确定【考点】8H:数列递推式.【分析】先利用累乘法表示出数列{a n}的通项公式,再根据函数性质求出数列{a n}的通项公式,再判断即可.【解答】解:∵,∴.上面的n﹣1个式子相乘,得.∴.∵,∴由指数函数的性质知,数列{a n}是递减数列.故选B.7.已知S n为等差数列{a n}的前n项和,若S1=1,,则的值为()A.B.C.D.4【考点】8F:等差数列的性质.【分析】根据首项等于S1,得到首项的值,利用等差数列的前n项和公式化简,即可求出公差d的值,然后再利用等差数列的前n项和公式化简所求的式子,把求出的首项和公差代入即可求出值.【解答】解:由S1=a1=1,,得到=4,解得d=2,则===.故选A8.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解【考点】HX:解三角形.【分析】利用正弦定理分别对A,B,C,D选项进行验证.【解答】解:A项中sinB=•sinA=1,∴B=,故三角形一个解,A项说法错误.B项中sinC=sinB=,∵0<C<π,故C有锐角和钝角两种解.C项中b==,故有解.D项中sinB=•sinA=,∵A=150°,∴B一定为锐角,有一个解.故选:D.9.对于实数a,b,c,有以下命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若,则a>0,b<0.其中真命题的个数是()A.2 B.3 C.4 D.5【考点】2K:命题的真假判断与应用.【分析】利用反例判断前2个命题的真假,利用不等式的性质说明后2个命题的真假即可.【解答】解:①若a>b,则ac<bc;当c>0时不成立;②若ac2>bc2,则a>b;不等式成立;③若a<b<0,可得a2>ab,ab>b2;所以a2>ab>b2;原命题是真命题;④若,则a>0,b<0.显然成立,因为a,b同号时,,不成立;原命题是真命题.故选:B.10.在△ABC中,有下列结论:①若a2=b2+c2+bc,则∠A为60°;②若a2+b2>c2,则△ABC为锐角三角形;③若A:B:C=1:2:3,则a:b:c=1:2:3,④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值X围为(2,2)其中正确的个数为()A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】①,由余弦定理可得cosaA,即可判定;②,若a2+b2>c2,只能判定C为锐角,不能判定△ABC为锐角三角形;③,由正弦定理得a:b:c=sinA:sinB:sinC≠A:B:C;④,由题意判断出三角形有两解时,A的X围,通过正弦定理及正弦函数的性质推出a的X围即可.【解答】解:对于①,由余弦定理得cosA=,∴A=120°,故错;对于②,若a2+b2>c2,只能判定C为锐角,不能判定△ABC为锐角三角形,故错;对于③,由正弦定理得a:b:c=sinA:sinB:sinC≠A:B:C,故错;对于④,解:由AC=b=2,要使三角形有两解,就是要使以C为圆心,半径为2的圆与BA有两个交点,当A=90°时,圆与AB相切;当A=45°时交于B点,也就是只有一解,∴45°<A<135°,且A≠90°,即<sinA<1,由正弦定理以及asinB=bsinA.可得:a==2sinA,∵2sinA∈(2,2).∴a的取值X围是(2,2).故正确.故选:A11.不等式|2a﹣b|+|a+b|≥|a|(|x﹣1|+|x+1|)对于任意不为0的实数a,b恒成立,则实数x的X围为()A. B.C. D.【考点】R5:绝对值不等式的解法.【分析】由绝对值不等式的性质可得|2a﹣b|+|a+b|≥3|a|,再由所给的条件可得3|a|≥|a|(|x﹣1|+|x+1|),即3≥|x﹣1|+|x+1|.再根据绝对值的意义求得3≥|x﹣1|+|x+1|的解集.【解答】解:由绝对值不等式的性质可得|2a﹣b|+|a+b|≥|2a+b+(a﹣b)|=3|a|,再由不等式|2a﹣b|+|a+b|≥|a|(|x﹣1|+|x﹣1|)恒成立,可得3|a|≥|a|(|x﹣1|+|x+1|),故有3|a|≥|a|(|x﹣1|+|x﹣1|),即3≥|x﹣1|+|x+1|.而由绝对值的意义可得|x﹣1|+|x+1|表示数轴上的x对应点到1和﹣1对应点的距离之和,而﹣和对应点到1和﹣1对应点的距离之和正好等于3,故3≥|x﹣1|+|x+1|的解集为,故选:D.12.若数列{a n}满足(n∈N*,d为常数),则称{a n}为“调和数列”,已知正项数列为“调和数列”,且x1+x2+…+x20=200,则的最小值为()A.B.10 C.D.5【考点】8H:数列递推式.【分析】结合调和数列的定义可得:x n+1﹣x n=t,(n∈N*,t为常数),从而数列{x n}是等差数列.由等差数列的性质可得x3+x18=x1+x20=20,从而20≥2,由此能求出的最小值.【解答】解:∵数列{a n}满足(n∈N*,d为常数),则称{a n}为“调和数列”,正项数列为“调和数列”,∴结合调和数列的定义可得:x n+1﹣x n=t,(n∈N*,t为常数),∴数列{x n}是等差数列.∵x1+x2+x3+…+x20=200,∴结合等差数列的性质可得:x1+x2+x3+…+x20=10(x1+x20)=200,∴x3+x18=x1+x20=20,∴20≥2,即x3x18≤100.∴==≥=,当且仅当x3=x18=10时,取等号,∴的最小值为.故选:C.二、填空题(每小题5分共20分)13.已知正实数a,b满足ab=1,则2a+b的最小值为2.【考点】7F:基本不等式.【分析】利用基本不等式的性质即可得出.【解答】解:∵正实数a,b满足ab=1,∴2a+b≥2=2,当且仅当a=,b=时取等号.∴2a+b的最小值为2.故答案为:14.函数x2+y2=2,则3x+4y的最大值是5.【考点】J9:直线与圆的位置关系.【分析】令z=3x+4y,可得直线的截距式方程,求出在y轴上的截距,当直线和圆x2+y2=2相切时,截距取得最值,z取得最值.根据直线和圆相切,圆心到直线的距离等于半径,求出z 的值,从而得到z的最大值.【解答】解:令z=3x+4y,即y=﹣+,故直线y=﹣+在y轴上的截距为,故当直线y=﹣+在y轴上的截距最大时,z最大.根据题意可得,当直线和圆x2+y2=2相切时,取得最值.由=可得z=±5,故z的最大值为5.故答案为:15.已知数列{a n}的前n项和为S n,且a1=1,a n+1=3S n(n≥1,n∈N*)第k项满足750<a k<900,则k等于 6 .【考点】8H:数列递推式.【分析】由a n+1=3S n,当n≥2时,可得a n=3S n﹣1,两式相减可得a n+1=4a n.数列{a n}是从第二开始的等比数列,a2=3.利用通项公式即可得出.【解答】解:由a n+1=3S n,当n≥2时,可得a n=3S n﹣1,∴a n+1﹣a n=3a n,∴a n+1=4a n.∴数列{a n}是从第二开始的等比数列,a2=3.∴a n=3×4n﹣2(n≥2).∵第k项满足750<a k<900,a5=192,a6=768,a7=3172.∴k=6.故答案为:6.16.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为.【考点】HU:解三角形的实际应用.【分析】根据已知条件求得∠CMA,进而可推断出△MBC与△MBA面积相等,利用三角形面积公式可求得CM和AM的关系,进而在△MAC中利用余弦定理求得a,最后根据三角形面积公式求得答案.【解答】解:已知AB=BC=2,∠AMB=45°,∠CMB=30°,∴∠CMA=75°易见△MBC与△MBA面积相等,∴AMsin45°=CMsin30°即CM=AM,记AM=a,则CM=a,在△MAC中,AC=4,由余弦定理得:16=3a2﹣2a2cos75°,∴a2=,记M到AC的距离为h,则a2sin75°=2h得h=,∴塔到直路ABC的最短距离为:.故答案为:.三、解答题17.解关于x的不等式x2﹣(a+1)x+a≥0(a∈R).【考点】74:一元二次不等式的解法.【分析】把不等式化为(x﹣1)(x﹣a)≥0,求出不等式对应方程的实数根,讨论a的取值,写出不等式的解集即可.【解答】解:关于x的不等式x2﹣(a+1)x+a≥0化为(x﹣1)(x﹣a)≥0,不等式对应方程的实数根为a和1;当a>1时,不等式的解集为(﹣∞,1]∪∪,解得m=,矛盾;综上所述,不存在满足条件的m.。

高一上学期期中数学试卷(新题型:19题)(提高篇)(原卷版)

高一上学期期中数学试卷(新题型:19题)(提高篇)(原卷版)

2024-2025学年高一上学期期中数学试卷(提高篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效;4.测试范围:必修第一册第一章、第二章、第三章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.(5分)(23-24高一上·江苏徐州·期中)设全集UU=R,集合AA={xx|4<xx−2<8},BB={xx|2+aa<xx< 1+2aa},若AA∪BB=AA,则aa的取值范围是()A.(−∞,1]B.�−∞,92�C.�4,92�D.(−∞,1]∪�4,92�2.(5分)(23-24高一上·重庆·期中)下面命题正确的是()A.已知xx∈R,则“xx>1”是“1xx<1”的充要条件B.命题“若∃xx0≥1,使得xx02<2”的否定是“∀xx<1,xx2≥2”C.已知xx,yy∈R,则“|xx|+|yy|>0”是“xx>0”的既不充分也不必要条件D.已知aa,bb∈R,则“aa−3bb=0”是“aa bb=3”的必要不充分条件3.(5分)(23-24高一上·吉林四平·期中)已知2≤2xx+3yy≤6,−3≤5xx−6yy≤9,则zz=11xx+3yy的取值范围是()A.�zz|53≤zz≤893�B.�zz|53≤zz≤27�C.�zz|3≤zz≤893�D.{zz|3≤zz≤27}4.(5分)(23-24高一上·浙江温州·期中)若幂函数ff(xx)的图象经过点�√2,12�,则下列判断正确的是()A.ff(xx)在(0,+∞)上为增函数B.方程ff(xx)=4的实根为±2C.ff(xx)的值域为(0,1)D.ff(xx)为偶函数5.(5分)(23-24高二下·浙江·期中)关于xx的不等式(aa−1)xx2−aaxx+aa+1≥0的解集为RR,则实数aa的取值范围是()A.aa>1B.aa≥2√33C.−2√33≤aa≤2√33D.aa≤−2√33或aa≥2√336.(5分)(23-24高一上·江苏苏州·期中)给定函数ff(xx)=xx2−2,gg(xx)=−12xx+1,用MM(xx)表示函数ff(xx),gg(xx)中的较大者,即MM(xx)=max{ff(xx),gg(xx)},则MM(xx)的最小值为()A.0 B.7−√178C.14D.27.(5分)(23-24高一上·河北邯郸·期中)若aa>bb,且aabb=2,则(aa−1)2+(bb+1)2aa−bb的最小值为()A.2√5−2B.2√6−4C.2√5−4D.2√6−28.(5分)(23-24高一上·云南昆明·期中)已知函数ff(xx)的定义域为R,对任意实数xx,yy满足ff(xx+yy)= ff(xx)+ff(yy)+12,且ff(12)=0,当xx>12时,ff(xx)>0.给出以下结论:①ff(0)=−12;②ff(−1)=32;③ff(xx)为R上的减函数;④ff(xx)+12为奇函数. 其中正确结论的序号是()A.①②④B.①②C.①③D.①④二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

2023学年人教版高一数学下学期期中期末必考题精准练04 解三角形(解析版)

2023学年人教版高一数学下学期期中期末必考题精准练04  解三角形(解析版)

必考点04 解三角形题型一 利用正余弦定理解三角形例题1[在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)求AB 边上的高CD 的长.【解析】(1)由题意得,b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a=3或a =-2(舍去).所以a =3. (2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°.即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314.即AB 边上的高CD =15314.例题1(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .[【解析】(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 【解题技巧提炼】1.已知△ABC 中的某些条件(a ,b ,c 和A ,B ,C 中至少含有一条边的三个条件)求边长时可用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin C sin A ,a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .2.已知△ABC 的外接圆半径R 及角,可用公式a =2R sin A ,b =2R sin B ,c =2R sin C . [提醒] 已知△ABC 的两边及其一边的对角求边时可用正弦定理,但要对解的个数作出判断,也可用余弦定理解一元二次方程求得.涉及解三角形中的最值(范围)问题时若转化为边求解可利用基本不等式或二次函数;若转化为角求解可利用三角函数的有界性、单调性.1.已知△ABC 中某些条件求角时,可用以下公式sin A =a sin Bb ,sin B =b sin Aa,sin C =c sin Aa ,cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab . 2.已知△ABC 的外接圆半径R 及边,可用公式sin A =a 2R ,sin B =b 2R ,sin C =c2R. [提醒] (1)注意三角形内角和定理(A +B +C =π)的应用. (2)解三角形中经常用到两角和、差的三角函数公式.题型二 判断三角形形状例题1设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定【答案】B 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A=1,故A =π2,因此△ABC 是直角三角形.例题2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等边三角形 D .钝角三角形【答案】C【解析】因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. 【解题技巧提炼】[解题技法]1.判定三角形形状的2种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型三 三角形面积问题例题1△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】(1)由题设及正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C2=sinB由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,所以sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知,A +C =120°,所以30°<C <90°, 故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 【解题技巧提炼】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.题型四 解三角形的实际应用例题1如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m. 【答案】900【解析】由已知,得∠QAB =∠P AB -∠P AQ =30°. 又∠PBA =∠PBQ =60°,所以∠AQB =30°,所以AB =BQ . 又PB 为公共边,所以△P AB ≌△PQB ,所以PQ =P A . 在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, 所以P ,Q 两点间的距离为900 m.例题2如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m. [【答案】6002[【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC32,解得AC =6006(m).在△ACD 中,因为tan ∠DAC =DC AC =33,所以DC =6006×33=6002(m). 例题3游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________. [【答案】513[【解析】依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC=1-⎝⎛⎭⎫12132=513.【解题技巧提炼】测量距离问题的2个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.测量高度问题的基本思路高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求解的高度(某线段的长度)纳入到一个可解的三角形中,使用正、余弦定理或其他相关知识求出该高度.测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.题型五 正余弦定理在平面几何中的应用例题1如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长. 【解析】设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得EC sin ∠EDC =CD sin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin∠CED =217. (2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,cos ∠AEB =EA BE =2BE =714,所以BE =47. 【解题技巧提炼】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.题型六 解三角形与三角函数的综合问题例题1已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.【解析】(1)f (x )=cos 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.【解题技巧提炼】解三角形与三角函数综合问题的一般步骤题型一 利用正余弦定理解三角形1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3 C.2π3 D.5π6【答案】A【解析】∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sinB .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.【解析】(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A =3×(3+22)32×6=1+263.题型二 判断三角形形状1.在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【答案】A【解析】已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.2.[在△ABC 中,已知sin A +sin C sin B =b +c a 且还满足①a (sin A -sin B )=(c -b )(sin C +sin B );②b cos A +a cos B =c sin C 中的一个条件,试判断△ABC 的形状,并写出推理过程. 【解析】由sin A +sin C sin B =b +c a 及正弦定理得a +c b =b +ca ,即ac +a 2=b 2+bc ,∴a 2-b 2+ac -bc =0, ∴(a -b )(a +b +c )=0,∴a =b . 若选①△ABC 为等边三角形.由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.∴△ABC 为等边三角形. 若选②△ABC 为等腰直角三角形,因b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2c 22c =c =c sin C ,∴sin C =1,∴C =90°,∴△ABC 为等腰直角三角形.题型三 三角形面积问题1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 【答案】63【解析】由余弦定理得b 2=a 2+c 2-2ac cos B . 又∵ b =6,a =2c ,B =π3,∴ 36=4c 2+c 2-2×2c 2×12,∴ c =23,a =43,∴ S △ABC =12ac sin B =12×43×23×32=6 3.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.【解析】(1)由已知及正弦定理得(2sin B -sin A )·cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.题型四 解三角形的实际应用1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的 3 倍,甲船为了尽快追上乙船,朝北偏东θ方向前进,则θ=( )A .15°B .30°C .45°D .60°【答案】B【解析】设两船在C 处相遇,则由题意得∠ABC =180°-60°=120°,且AC BC=3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进.2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【答案】103【解析】如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 3.为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 的同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =________ m. 【答案】202+1【解析】如图,过点E 作EF ⊥AB ,垂足为F ,则EF =BC ,BF =CE =1,∠AEF =30°.在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD=40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=20 2. 所以AB =AF +BF =202+1(m).题型五 正余弦定理在平面几何中的应用1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 【答案】66【解析】设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC中,BD sin C =BC sin ∠BDC ,sin C =BD ·sin ∠BDC BC =66.2.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2. (1)求AD 的长; (2)求△CBD 的面积.【解析】(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD=255,又∠BCD =2∠ABD ,在平面四边形ABCD 中,∠BCD ∈(0,π),所以∠ABD ∈⎝⎛⎭⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =cos ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54,所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58. 题型六 解三角形与三角函数的综合问题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.【解析】(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z ),得x =k π+5π12(k ∈Z ),即当x =k π+5π12(k ∈Z )时,f (x )取得最大值1.一、单选题1.如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .()2021-千米 B .()4021-千米C .)201D .)401【答案】D【解析】在ABC 中,135AOB ∠=︒, 设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα==︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.某生态公园有一块圆心角为π3的扇形土地,打算种植花草供游人欣赏,如图所示,其半径100OA =米.若要在弧AB 上找一点C ,沿线段AC 和BC 铺设一条观光道路,则四边形OACB 面积的最大值为( )A .2500平方米B .25003平方米C .5000平方米D .50003平方米【答案】C【解析】连接OC ,2211sin sin 22OAC OCB OACB OA S S AOC OA CS BO =⋅∠+∠+⋅=四边形△△2π1sin sin 23OA AOC AOC ⎡⎤⎛⎫=∠+-∠ ⎪⎢⎝⎭⎣⋅⎥⎦15000(sin )322cos AOC AOC +=∠∠π5000sin 50003AOC ⎛⎫=∠+≤ ⎪⎝⎭,当π6AOC ∠=时,等号成立. 所以四边形OACB 面积的最大值为5000.故选:C3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,1c =,则B C +=( )A .90°B .120°C .60°D .150°【答案】C【解析】因为a =2b =,1c =, 所以2221471cos 22122c b a A bc +-+-===-⨯⨯,由0180A <<︒︒,则120A =︒,18060B C A ∴+=︒-=︒故选:C4.已知某圆锥的轴截面是腰长为3的等腰三角形,且该三角形顶角的余弦值等于19,则该圆锥的表面积等于( ) A .4π B .6π C .10π D .203π【答案】C【解析】设圆锥的底面半径为r ,则()2221233162339r -⨯=+⨯⨯=,解得2r =,故该圆锥的表面积等于12234102πππ⨯⨯⨯+=.故选:C.5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cA b<,则ABC 必为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰三角形【答案】A【解析】因为cos cA b <,由正弦定理可得sin cos sin C A B<,即sin cos sin C A B <, 又因为sin sin()sin cos cos sin C A B A B A B =+=+,所以sin cos cos s co si in s n A B A B A B +<,即sin cos 0A B <,因为,(0,)A B π∈,所以sin 0,0cos A B ><,所以(,)2B ππ∈,所以ABC 为钝角三角形.故选:A. 二、多选题6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( ) A .sin sin sin 234A B C =:::: B .ABC 是锐角三角形C .ABC 的最大内角是最小内角的2倍D .ABC 内切圆半径为12 【答案】BCD 【解析】A 选项,∵sin sin sin a b cA B C==,2a =、3b =、4c =,∵sin sin sin 234A B C =::::,对,B 选项,由于a b c <<,则ABC 中最大角为角C ,∵222222234cos 02223a b c C ab +-+-==<⨯⨯,∵2C π>,∵ABC 是钝角三角形,错,C 选项,假设ABC 的最大内角是最小内角的2倍,则2C A =, 即sin sin22sin cos C A A A ==⋅,又sin sin 12A C =::,即sin 2sin cos 12A A A ⋅=::,cos 1A =,不符合题意,错,D 选项,∵22222224311cos 222416a c b B ac +-+-===⨯⨯,∵sin B ==,∵11sin 2422ABCSac B =⋅=⨯⨯设ABC 的内切圆半径为r ,则()()1123422ABCS a b c r r =++⋅=⨯++⨯=∵r =故选:BCD.7.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=( ) A .若π3A =,1c =,则1a =B .若π3A =,1c =,则ABC 的面积为πC .若2b =,则A 的最大值为π3D .若2b =,则ABC 周长的取值范围为()4,12【答案】ACD【解析】因为sin sin 2sin B C A +=,所以2b c a +=. 对于A ,B ,若1c =,则21b a =-,22223421cos 2422b c a a a A bc a +--+===-,解得1a =,ABC 的面积1sin 2S bc A ==,A 正确,B 错误. 对于C ,若2b =,则22c a =-,222238831cos 12128881b c a a a A a bc a a +--+⎛⎫===-++- ⎪--⎝⎭312182⎡⎤≥-=⎢⎥⎣⎦,当且仅当2a =时,等号成立,所以A 的最大值为π3,C 正确.对于D ,若2b =,则根据三边关系可得,,a c b a b c +>⎧⎨+>⎩即222,222,a a a a +->⎧⎨+>-⎩解得443a <<,则4312a <<,ABC 的周长为3a b c a ++=,故ABC 周长的取值范围为()4,12,D 正确.故选:ACD 三、填空题8.在ABC 中,D 为BC 的中点,若4AB =,2AC =,AD =BC =______.【答案】【解析】法一:设BD x =,因为180ADB ADC ∠+∠=︒,所以cos cos 0ADB ADC ∠+∠=,由余弦定理,得22222222BD AD AB DC AD AC BD AD DC AD+-+-+=⋅⋅220=,所以x BC =法二:由D 为BC 的中点,得()12AD AB AC =+,所以()222124AD AB AB AC AC =+⋅+,即()1816242cos 44BAC =+⨯⨯∠+,所以3cos 4BAC ∠=,所以22232cos 16424284BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,所以BC =故答案为:9.如图所示,OA 是一座垂直与地面的信号塔,O 点在地面上,某人(身高不计)在地面的C 处测得信号塔顶A 在南偏西70°方向,仰角为45°,他沿南偏东50°方向前进20m 到点D 处,测得塔顶A 的仰角为30°,则塔高OA 为______m .【答案】20【解析】设塔高m OA x =,由题意得在直角AOC △中,45ACO ∠=︒,所以m OA OC x ==,由题意得在直角AOD △中,30ADO ∠=︒,所以m OD =, 由题意得在OCD 中,120,20m OCD CD ∠=︒=, 所以由余弦定理得2222cos OD OC CD OC CD OCD =+-⋅∠,所以22134002202x x x ⎛⎫=+-⋅⋅- ⎪⎝⎭,化简得2102000--=x x ,解得20x 或10x =-(舍去),所以塔高OA 为20m ,故答案为:20 四、解答题10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1a b c ===. (1)求sin ,sin ,sin A B C 中的最大值; (2)求AC 边上的中线长. 【解析】(1)521>,故有sin sin sin b a c B A C >>⇒>>,由余弦定理可得cos B =又(0,)B π∈,34B π∴=,故sin B(2)AC 边上的中线为BD ,则1()2BD BA BC =+,2222223(2)()2cos 121cos 14BD BA BC c a ca B π∴=+=++=++⨯=, 1||2BD ∴=,即AC 边上的中线长为12.11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B a =+.(1)求角B 的值;(2)若8c =,ABC 的面积为BC 边上中线AD 的长.【解析】(1)sin sin cos sin B A A B A =+,()0,πA ∈,sin 0A ≠cos 1B B =+,则π1sin 62B ⎛⎫-= ⎪⎝⎭,()0,πB ∈,π3B ∴=;(2)1sin 2S ac B ==8c =,10a ∴=,由余弦定理22212cos 6425404922a AD c ac B ⎛⎫=+-⨯=+-= ⎪⎝⎭,得249AD =,7AD ∴=,12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )()sin a b B A b c C +-=-.(1)求A ;(2)若2a =,求ABC 面积的最大值.【解析】(1)由正弦定理及()(sin sin )()sin a b B A b c C +-=-, 得()()()b a b a b c c -+=-,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, ∵0A π<<,可得3A π=.(2)由余弦定理得222222cos a b c bc A b c bc =+-=+-, 因为222b c bc +≥, 所以22a bc bc ≥-,即24bc a ≤=,当且仅当2b c ==时取等号,∵11sin 422ABC S bc A =≤⨯=△ABC13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量()7,1m =,()cos ,1n C =,(),2cos p b B =,且0m n ⋅=.(1)求sin C 的值;(2)若8c =,//m p ,求B 的大小.【解析】(1)因为()7,1m =,()cos ,1n C =,且0m n ⋅=,所以7cos 10C +=,即1cos 7C =-,因为0C π<<,所以sin C ==. (2)因为()7,1m =,(),2cos p b B =,//m p ,所以14cos b B =, 在ABC 中,由正弦定理得sin sin c Bb C=,又8c =,sin C =b B ,14cos B B =,即tan B =0B π<<,所以3B π=.14.已知向量()2sin ,2cos 1m x x =-,()2cos ,1n x =,()f x m n =⋅.(1)求函数()y f x =的最小正周期;(2)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()1f A =,a =ABC 的面积的最大值.【解析】(1)()22sin cos 2cos 1f x m n x x x =⋅=+-,sin 2cos 224x x x π⎛⎫=+=+ ⎪⎝⎭,则其最小正周期22T ππ==; (2)由()214f A A π⎛⎫=+= ⎪⎝⎭,且()0,A π∈,所以4A π=,由余弦定理得2222cos a b c bc A =+-,即(2222b c bc =+≥,所以2bc ≤=b c =时取等号,所以ABC 的面积21sin 244S bc π==≤,15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A C B A C +=+. (1)求B ;(2)若点M 在AC 上,且满足BM 为ABC ∠的平分线,2,cos BM C ==BC 的长. 【解析】(1)在ABC 中,222sin sin sin sin sin A C B A C +=+,由正弦定理得:222a c b ac +=+.由余弦定理得:2221cos 22a cb B ac +-==. 因为()0,B π∈,所以3B π=.(2)因为()cos 0,C C π=∈,所以sin C = 因为3B π=,BM 为ABC ∠的平分线,所以6MBC π∠=.所以[]sin sin BMC MBC C π∠=-∠-∠()sin MBC C =∠+∠sin cos cos sin MBC C MBC C =∠∠+∠∠12==.在MBC △中,由正弦定理得:sin sin MB BC C BMC =∠=BC = 16.在ABC 中,角A 、B 、C 的对边分别是a 、b 、c,且)cos b c aC C +=+. (1)求角A ;(2)若2a =,ABCb c +的值.【解析】(1)由)cos b c a C C +=+及正弦定理得sin sin sin cos sin B C A C A C +=,又()sin sin sin cos cos sin B A C A C A C =+=+,所以cos sin sin sin A C C A C +=,又sin 0C ≠cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭,可得1sin 62A π⎛⎫-= ⎪⎝⎭, 因为0A π<<,则5666A πππ-<-<,所以,66A ππ-=,因此,3A π=. (2) 解:由余弦定理,得2222cos 3a b c bc π=+-,即()234b c bc +-=,又1sin 2ABC bc S A ==4bc =,所以4b c +=.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin 2sin 2cos 02A A A ++=.(1)求A ;(2)若cos cos 2b C c B +=,求ABC 面积的最大值. 【解析】(1)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , 且2sin 2sin 2cos 2sin cos sin cos 102AA A A A A A ++=+++=,2(sin cos )(sin cos )0A A A A ∴+++=, 即(sin cos )(sin cos 1)0A A A A +++=, sin cos 1A A +>-,sin cos 0A A ∴+=,所以tan 1A =-, 又()0,A π∈,34A π∴=; (2)ABC 中,由正弦定理可得sin sin a b A B =,sin b B ∴==⋅,同理可得,sin c C =⋅,cos cos 2b C c B +=,∴sin cos sin cos 2B C C B ⋅⋅+⋅⋅=,∴sin()2B C ⋅+=sin 24π⋅=,2a ∴=,由余弦定理可得22424cos 22b c bc A bc bc+--=-=, 当且仅当b c =时,取等号,422bc ∴+,即bcABC ∴面积⋅⋅=≤1sin 2bc A 1=-,所以ABC 1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省长阳一中 高一数学下学期期中试题
考试时间 120分钟 试卷总分:150 分 一、选择题:
1.已知,a b 为非零实数,且a b >,则下列不等式必然成立的是
A .22a b >
B .
11
a b
< C .22a b > D . ||||a b >
二、数列
,4
31,321,211⨯⨯⨯的一个通项公式是 A .
)1(1-n n B .)1(1+n n C .)
2)(1(1
++n n D .以上都不对
3.在ABC ∆中,已知222a b c bc =++,则角A 为
( )
A .
3
π B .
6
π C .
23
π D .
3π或23
π 4.已知实数x ,y 知足不等式组20
20350x y x y x y -≥⎧⎪
+≥⎨⎪+-≤⎩
,则2x+y 的最大值是
A .0
B .3
C .4
D .5
五、已知数列
,12,,5,3-n 则17是它的
A. 第8项
B. 第9项
C. 第10项
D. 第11项
6.在等比数列{}n a 中,若4a ,8a 是方程0342=+-x x 的两根,则6a 的值是( )
D .3± 7. 下列各式中,对任何实数x 都成立的一个式子是( )
A .2
lg(1)lg 2x x +≥
B .1
2x x
+
≥ C .
11
1
2<+x D .x x 212≥+
八、若一个等差数列的前3项的和为36-,第2,3, 4项的和为33-,n S 是这个数列的
前n 项和,
则当n S 最小时的n =( ) A .13 B .14 C .12或13 D .13或14
9、在ΔABC 中,
B
A
b
a tan tan 2
2=
,则ΔABC 是 ( )
A .等边三角形
B .直角三角形
C .等腰三角形
D .等腰或直角
三角形
10、黄金的价钱由上午的盎司
元1
p 变成下午的盎司元2p ,某操盘手打算分上、下午两次买入必然数量的黄金,在不考虑价钱起落的前提下他有两种方案:方案甲:两次等重量
买入。

方案乙:两次买入所花的钱数相同。


A .方案甲较为划算
B .方案乙较为划算
C .21P P <时方案乙较为划算
D .21P P >时甲方案较为划算
二、填空题:
11.已知集合{}
2|60A x x x =--<,{}
2|280B x x x =+->,则A
B =________.
1二、已知数列{n a }中,{}n n S a 是数列的前n 项和,
522++=n n S n ,则数列{n a }的通项
n a =_________;
13.设甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角
为30°,则乙楼的高是 14、已知0,0>>y x ,且12=+y x ,则
y
x 1
1+的最小值为__________; 15.已知数列{a n }前四项依次为:12,13+23,14+24+34,15+25+35+45,…,那么数列b n =1
a n a n +1
前n 项的和为_____。

16.在各项均为正数的等比数列n a 中,若3
5a ,则152a a 的最小值是 。

17.观察下列的图形中小正方形的个数,则第n 个图中有 个小正方形.
三、解答题:
1八、 (12分)已知:ab a x b ax x f ---+=)8()(2
,当)2,3(-∈x 时,0)(>x f ; 当),2()3,(+∞--∞∈ x 时,0)(<x f (1)求)(x f y =的解析式
(2)c 为何值时,02
≤++c bx ax 的解集为R.
1九、(12分)在△ABC 中,内角A 、B 、C 的对边的边长别离是a 、b 、c 。

已知 c = 2,C =
3
π。

(1)若△ABC 的面积等于3,求a 、b 值 (2)若sinB=2sinA ,求△ABC 的面积
20、(本小题满分12分)
某化工厂拟建一座平面图形为矩形且面积为162平方米的三级污水处置池,池的深度必然(平面图如图所示).若是池周围围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2
,水池所有墙的厚度忽略不计,试设计污水处置
池的长和宽,使总造价最低,并求出最低总造价。

2一、(本小题满分13分)在等差数列{}
n a 中,
2723
a a +=-,
3829
a a +=-.
(Ⅰ)求数列{}
n a 的通项公式;
(Ⅱ)设数列{}n n a b +是首项为1,公比为c 的等比数列,求
{}
n b 的前n 项和
n
S .
22.、(本题满分14分)已知数列
{}n a 的首项1
1a
=,前n 项之和n S 知足关系式:
13(23)3(0,)n n tS t S t t n N *+-+=>∈.
(1)求证:数列{}n a 是等比数列;
(2)设数列{}n a 的公比为()f t ,数列{}n b 知足11
(),()n n
b f n N b *
+=∈,且11b =.
(i )求数列{}n b 的通项n b ;
(ii )设12233445212221T n n n n n b b b b b b b b b b b b -+=-+-+
+-,求n T .。

相关文档
最新文档