2016-2017学年度八年级下期末数学试卷含答案
2016-2017学年八年级下册数学期末考试试卷(解析版)
2016-2017学年八年级下册数学期末考试试卷〔解析版〕一、选择题1.以下式子没有意义的是〔〕A. B. C. D.2.以下计算中,正确的选项是〔〕A. ÷ =B. 〔4 〕2=8C. =2D. 2 ×2 =23.刻画一组数据波动大小的统计量是〔〕A. 平均数B. 方差C. 众数D. 中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是〔〕A. 方差B. 平均数C. 中位数D. 众数5.关于正比例函数y=﹣2x,以下结论中正确的选项是〔〕A. 函数图象经过点〔﹣2,1〕B. y随x的增大而减小C. 函数图象经过第一、三象限D. 不管x取何值,总有y<06.以以下各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是〔〕A. 2,3,4B. ,,C. 1,,2D. 7,8,97.假设一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为〔〕cm.A. 10B. 11C. 12D. 138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是〔〕A. 24B. 26C. 30D. 489.在以下命题中,是假命题的是〔〕A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 有两组邻边相等的四边形是菱形10.已知平面上四点A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为〔〕A. B. ﹣1 C. 2 D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b〔k≠0〕中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如下图,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于以下结论:①∠GFI=90°;②GH=GI;③GI= 〔BC﹣DE〕;④四边形FGHI 是正方形.其中正确的选项是________〔请写出所有正确结论的序号〕.三、解答题17.计算:〔+ ﹣〕× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .〔1〕求AD的长.〔2〕求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级〔1〕班43名学生右眼视力的检查结果.视力人数 1 2 5 4 3 5 1 1 5 10 6〔1〕该班学生右眼视力的平均数是________〔结果保留1位小数〕.〔2〕该班学生右眼视力的中位数是________.〔3〕该班小鸣同学右眼视力是,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.〔1〕求OF的长.〔2〕求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A〔﹣30,0〕和点B〔0,15〕,直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.〔1〕求直线y=kx+b的解析式.〔2〕求△PBC的面积.年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价元/半小时,骑行单价最低可降至元/半小时〔比方,某用户邀请了3位好友,则骑行单价为元/半小时〕.B品牌共享单车计费方式为:元/半小时,不足半小时按半小时计算.〔1〕某用户准备选择A品牌共享单车使用,设该用户邀请好友x名〔x为整数,x≥0〕,该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.〔2〕假设有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图〔1〕的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图〔2〕,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图〔3〕中所示的AD处,折痕为AQ.根据以上的操作过程,完成以下问题:〔1〕求CD的长.〔2〕请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点〔P点不与C、D重合〕,过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.〔1〕求证:BP⊥DE.〔2〕求S1﹣S2关于x的函数解析式,并写出x的取值范围.〔3〕分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×〔﹣2〕=4,即图象经过点〔﹣2,4〕,不经过点〔﹣2,1〕,故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不管x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、〔〕2+〔〕2≠〔〕2,故不是直角三角形,B不符合题意;C、12+〔〕2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为〔x﹣1〕cm,由勾股定理得,x2=52+〔x﹣1〕2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为〔x-1〕cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是〔6,3〕,∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点〔6,3〕,最后将点〔6,3〕代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=〔+2〕〔﹣2〕=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点〔0,2〕,且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= 〔BC﹣DE〕,故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=〔BC-DE〕.三、<b >解答题</b>17.【答案】解:原式=〔6 + ﹣3 〕×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】〔1〕解:在Rt△ABD中,AD= =3〔2〕解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】〔1〕在Rt△ABD中,依据勾股定理可求得AD的长;〔2〕在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD〔AAS〕,∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】〔1〕〔2〕〔3〕解:不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:〔1〕该班学生右眼视力的平均数是×〔4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6〕,故答案为:;〔2〕由于共有43个数据,其中位数为第22个数据,即中位数为,〔3〕不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:〔1〕;〔2〕;〔3〕不能.【分析】〔1〕根据加权平均数公式求解即可;〔2〕首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;〔3〕根据小鸣同学右眼视力是,小于中位数,故此可得到问题的答案.21.【答案】〔1〕解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.〔2〕解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】〔1〕由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;〔2〕在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】〔1〕解:将点A〔﹣30,0〕、B〔0,15〕代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.〔2〕解:联立两直线解析式成方程组,,解得:,∴点P的坐标为〔20,25〕.当x=0时,y=x+5=5,∴点C的坐标为〔0,5〕,∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】〔1〕将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;〔2〕联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】〔1〕解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣,当x≥10且x为正整数时,,即y关于x的函数解析式是y=〔2〕解:由题意可得,当0≤x≤9时,1﹣>,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣<,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,<,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】〔1〕可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;〔2〕分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】〔1〕解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;〔2〕解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】〔1〕首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;〔2〕根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】〔1〕解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.〔2〕解:由题意S1﹣S2= 〔4+x〕•x﹣•〔4﹣x〕•x=x2〔0<x<4〕.〔3〕解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=〔4 ﹣4〕2=48﹣32 .【考点】正方形的性质【解析】【分析】〔1〕首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;〔2〕根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;〔3〕分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用〔2〕中结论进行计算即可.。
2016-2017学年人教版八年级下册期末数学试卷及答案
2016-2017学年八年级下册期末数学试卷一、选择题:禅城区南庄中学﹒1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.56.如图,直线l1∥l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=()度.A.35 B.55 C.60 D.707.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°8.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b9.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.510.下列多项式中不能用公式分解的是()A.﹣a2﹣b2+2ab B.a2+a+C.﹣a2+25b2D.﹣4﹣b211.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段 C.射线 D.直线12.不等式x≥2的解集在数轴上表示为()A.B.C.D.13.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对14.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC15.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④16.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2 B.a2 C.a2 D.a217.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF18.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确19.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°20.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°二、填空题:21.在等腰△ABC中,两条边长分别为3和4,则等腰△ABC的周长等于;等腰三角形的一个角为100°,则它的底角为.22.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=.23.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).24.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=度.25.若,则=.26.已知=3,则=;分解因式:ab2﹣2ab+a=.27.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是.28.如果x<﹣2,则=;化简•的结果为.29.化简:÷(a﹣b)•=;计算:+﹣=.30.若等腰三角形腰长为4,腰上的高为2,则此等腰三角形的底角为度.三、解答题:(共55分)31.分解因式:(1)(a2+b2)2﹣4a2b2(2)(a﹣)a+1.32.解分式方程:+=1.33.解不等式组:,并指出它的所有整数解.34.先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.2016-2017学年八年级下册期末数学试卷参考答案与试题解析一、选择题:禅城区南庄中学﹒1.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°【考点】平行线的性质.【分析】由AE∥BD,根据两直线平行,同位角相等,即可求得∠CBD的度数,又由对顶角相等,即可得∠CDB的度数,由三角形内角和定理即可求得∠C的度数.【解答】解:∵AE∥BD,∴∠CBD=∠1=120°,∵∠BDC=∠2=40°,∠C+∠CBD+∠CDB=180°,∴∠C=20°.故选B.【点评】此题考查了平行线的性质与三角形内角和定理.注意两直线平行,同位角相等.3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定与性质.【专题】作图题.【分析】根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.4.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【考点】角平分线的性质;全等三角形的判定与性质.【专题】计算题;压轴题.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF 的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.6.如图,直线l1∥l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=()度.A.35 B.55 C.60 D.70【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠CAB的度数,再由直角三角形的性质求出∠PAB的度数,故可得出结论.【解答】解:∵直线l1∥l2被直线l3所截,∴∠CAB=180°﹣∠1﹣∠2=180°﹣35°﹣35°=110°,∵△ABP中,∠2=35°,∠P=90°,∴∠PAB=90°﹣35°=55°,∴∠3=∠CAB﹣∠PAB=110°﹣55°=55°.故选:B.【点评】本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同旁内角互补.7.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°【考点】平行线的性质.【专题】计算题.【分析】如图,过点D作c∥a.由平行线的性质进行解题.【解答】解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.8.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.9.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.5【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:中的分母含有字母是分式.故选A.【点评】本题主要考查分式的定义,π不是字母,不是分式.10.下列多项式中不能用公式分解的是()A.﹣a2﹣b2+2ab B.a2+a+C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】原式利用完全平方公式及平方差公式判断即可.【解答】解:A、原式=﹣(a﹣b)2,不合题意;B、原式=(a+)2,不合题意;C、原式=(﹣a+5b)(﹣a﹣5b),不合题意;D、原式不能用公式分解,符合题意,故选D【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.11.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段 C.射线 D.直线【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.【解答】解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选B.【点评】本题考查了不等式组的解集及在数轴上表示不等式的解集的知识,属于基础题.12.不等式x≥2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.13.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【考点】全等三角形的判定;矩形的性质.【专题】压轴题.【分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④【考点】作图—基本作图;线段垂直平分线的性质.【专题】几何图形问题.【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.【点评】本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.16.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2 B.a2 C.a2 D.a2【考点】全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;压轴题.【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.17.下列条件中能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF【考点】全等三角形的判定.【专题】推理填空题.【分析】全等三角形的判定方法有:SAS,ASA,AAS,SSS,而SSA,AAA都不能判定两三角形全等,根据以上内容判断即可.【解答】解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故本选项正确;故选D.【点评】本题考查了全等三角形的判定的应用,题目比较好,但是一道比较容易出错的题目,全等三角形的判定方法有:SAS,ASA,AAS,SSS.18.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】线段垂直平分线的性质;圆的认识;作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.19.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°【考点】翻折变换(折叠问题).【分析】根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【解答】解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题:21.在等腰△ABC中,两条边长分别为3和4,则等腰△ABC的周长等于10或11;等腰三角形的一个角为100°,则它的底角为40°,40°.【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.根据等腰三角形两底角相等列式计算即可得解.【解答】解:①3是腰长时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,②3是底边长时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,综上所述,这个等腰三角形的周长是10或11.∵等腰三角形的一个角为100°,∴100°的角是顶角,底角为(180°﹣100°)=40°.故答案为:10或11;40°,40°.【点评】本题考查了等腰三角形的性质,第二问难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.22.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=31°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2=∠EFD.【解答】解:∵AB∥CD,∴∠EFD=∠1=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案为:31°.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.23.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【考点】全等三角形的判定.【专题】开放型.【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.24.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A=60度.【考点】线段垂直平分线的性质.【专题】几何图形问题.【分析】根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°﹣∠B﹣∠ACB求出即可.【解答】解:∵DE是线段BC的垂直平分线,∴BE=CE,∴∠B=∠BCE=40°,∵CE平分∠ACB,∴∠ACB=2∠BCE=80°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.【点评】本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.25.若,则=.【考点】比例的性质.【专题】计算题.【分析】根据等比性质设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.【解答】设=m,∴x=3m,y=4m,z=5m,代入原式得:==.故答案为.【点评】本题主要考查了等比性质,比较简单.26.已知=3,则=2;分解因式:ab2﹣2ab+a=a(b﹣1)2.【考点】比例的性质;提公因式法与公式法的综合运用.【分析】把=3化为a=3b,代入所求是式子计算即可;先提公因式,再运用完全平方公式进行分解即可.【解答】解:∵=3,∴a=3b,∴==2,ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2,故答案为:2;a(b﹣1)2.【点评】本题考查的是比例的性质和因式分解的方法,正确运用比例的性质把比例式进行变形和掌握因式分解的方法是解题的关键.27.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是m<2.【考点】解一元一次不等式.【分析】因为系数化为1时不等号改变了方向,所以系数为负数,得到不等式求解.【解答】解:根据题意得m﹣2<0,∴m<2.故答案为m<2.【点评】此题考查不等式的性质3:不等式两边都乘以(或除以)同一个负数时,不等号的方向发生改变.28.如果x<﹣2,则=﹣x﹣2;化简•的结果为..【考点】二次根式的性质与化简;分式的乘除法.【分析】(1)先求得x+2<0,然后利用绝对值进行化简即可;(2)先将分式的分子分母进行分解,然后再约分、计算即可.【解答】解:(1)∵x<﹣2,∴x+2<0.∴=|x+2|=﹣x﹣2;(2)原式==.故答案为:﹣x﹣2;.【点评】本题主要考查的是二次根式的性质和分式的化简,掌握二次根式的性质和分式化简的方法和步骤是解题的关键.29.化简:÷(a﹣b)•=;计算:+﹣=1.【考点】分式的乘除法;分式的加减法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果;原式变形后利用同分母分式的加减法则计算即可得到结果.【解答】解:原式=••=;原式===1,故答案为:;1【点评】此题考查了分式的乘除法,以及分式的加减法,熟练掌握运算法则是解本题的关键.30.若等腰三角形腰长为4,腰上的高为2,则此等腰三角形的底角为15或75度.【考点】含30度角的直角三角形;等腰三角形的性质.【专题】分类讨论.【分析】分该三角形为钝角三角形和锐角三角形两种情况,再结合直角三角形的性质可求得等腰三角形的顶角,再根据等腰三角形的性质可求得底角.【解答】解:若该三角形为钝角三角形,如图1,AB=AC=4,过B作BD⊥AC,交AC的延长线于点D,∵BD=2,AB=4,∴∠BAD=30°,又AB=AC,∴∠ABC=∠C=15°,若该三角形为锐角三角形,如图2,AB=AC,过B作BD⊥AC交AC于点D,∵AB=4,BD=2,∴∠A=30°,又AB=AC,∴∠ABC=∠C==75°,综上可知该三角形的底角为15°或75°,故答案为:15或75.【点评】本题主要考查等有腰三角形、直角三角形的性质,求得顶角的度数是解题的关键.注意分类讨论思想的应用.三、解答题:(共55分)31.分解因式:(1)(a2+b2)2﹣4a2b2(2)(a﹣)a+1.【考点】因式分解-运用公式法.【专题】计算题.【分析】(1)原式利用平方差公式化简,再利用完全平方公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)原式=a2﹣a+1=(a﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.32.解分式方程:+=1.【考点】解分式方程.【专题】计算题.【分析】本题考查解分式方程的能力,因为3﹣x=﹣(x﹣3),所以可得方程最简公分母为(x﹣3),方程两边同乘(x﹣3)将分式方程转化为整式方程求解,要注意检验.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程有常数项的不要漏乘常数项.33.解不等式组:,并指出它的所有整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【解答】解:,解①得:x≥1,解②得:x<4.则不等式组的解集是:1≤x<4.则整数解是:1,2,3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.34.先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.【考点】分式的化简求值.【专题】探究型.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=(﹣)×=×=取a=﹣1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。
2016-2017年八年级下数学期末检测试卷及答案
1FED CB A(-1,1)1y(2,2)2yxyO 405060708090某班学生1~8月课外阅读数量705858427583本数2016-2017学年八年级数学(下)期末检测试卷(时间:120分钟满分:150分)一、选择题(本题共10小题,每小题4分,共40分)1.二次根式21、12 、30 、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子23xx--有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.1113,4,5222 C.3,4, 5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>28、在方差公式()()()[]2222121xxxxxxnSn-++-+-= 中,下列说法不正确的是()A. n是样本的容量B.nx是样本个体 C. x是样本平均数 D. S是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42 (C)中位数是58 (D)每月阅读数量超过40的有4个月MFEA第6题图第5题图第7题图BCADO15题图10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,每小题4分,共40分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2016-2017学年湘教版八年级下期末数学试卷含答案
2016-2017学年八年级(下)期末数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.直线y=x﹣1的图象经过()A.第二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第一、二、三象限2.下列说法中正确的是()A.已知a,b,c是三角形的三边长,则a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在Rt△ABC中,若∠C=90°,则三角形对应的三边满足a2+b2=c2D.在Rt△ABC中,若∠A=90°,则三角形对应的三边满足a2+b2=c23.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.4.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.5.有以下4个命题:①两条对角线互相平分的四边形是平行四边形②两条对角线相等的四边形是菱形③两条对角线互相垂直的四边形是正方形④两条对角线相等且互相垂直的四边形是正方形则其中正确命题的个数为()A.1 B.2 C.3 D.46.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.八年级某班50位同学中,1月份出生的频率是0.30,那么这个班1月份出生的同学有()A.15 B.14 C.13 D.128.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.二、填空题(本题共8个小题,每小题3分,共24分)9.已知△ABC的三边长分别为1,,2,则△ABC是三角形.10.如图,△ABC中,∠C=90°,AD平分∠BAC,CD=,BC=12,AB=13,则△ADB的面积是.11.如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于.12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.13.有三个内角是直角的四边形是,对角线互相垂直平分的四边形是.14.在▱ABCD中,∠A+∠C=120°,则∠B=.15.若点M(a﹣2,2a+3)是y轴上的点,则a的值为.16.若直线y=2x﹣1和直线y=m﹣x的交点在第三象限,则m的取值范围是.三、解答题(本题共7个小题,共52分,解答应写出文字说明、证明过程或演算步骤)17.已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF,求证:AF=CE.18.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当x=﹣时,求y的值.19.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?20.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?21.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.22.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.23.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.直线y=x﹣1的图象经过()A.第二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第一、二、三象限【考点】一次函数图象与系数的关系.【分析】由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.【解答】解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选C.【点评】本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.2.下列说法中正确的是()A.已知a,b,c是三角形的三边长,则a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在Rt△ABC中,若∠C=90°,则三角形对应的三边满足a2+b2=c2D.在Rt△ABC中,若∠A=90°,则三角形对应的三边满足a2+b2=c2【考点】勾股定理.【分析】根据勾股定理对各选项进行逐一分析即可.【解答】解:A、三角形的形状不能确定,故本选项错误;B、在直角三角形中,两直角的边平方的和等于斜边长的平方,故本选项错误;C、在Rt△ABC中,若∠C=90°,则三角形对应的三边满足a2+b2=c2,故本选项正确;D、在Rt△ABC中,若∠A=90°,则三角形对应的三边满足c2+b2=a2,故本选项错误.故选C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.【考点】角平分线的性质;三角形的面积;勾股定理.【专题】压轴题.【分析】根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D 到AB的长,再利用△ABD的面积列式计算即可得解.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD•,解得BD=.故选A.【点评】本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.4.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【考点】正比例函数的图象.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.5.有以下4个命题:①两条对角线互相平分的四边形是平行四边形②两条对角线相等的四边形是菱形③两条对角线互相垂直的四边形是正方形④两条对角线相等且互相垂直的四边形是正方形则其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】正方形的判定;平行四边形的判定;菱形的判定.【专题】证明题;压轴题.【分析】根据平行四边形的判定对角线互相平分的四边形是平行四边形菱形的判定对角线互相垂直平分的四边形是菱形正方形的判定对角线互相垂直平分且相等的四边形是正方形进行验证.【解答】解:A、两条对角线互相平分的四边形是平行四边形,属于平行四边形的判定定理,成立.B、两条对角线相等的四边形有可能是等腰梯形,不成立.C、两条对角线互相垂直的四边形有可能是一般四边形,不成立.D、两条对角线相等且互相垂直的四边形有可能是等腰梯形,不成立.故选A.【点评】本题考查特殊平行四边形的判定,有很多选项可用等腰梯形做反例来推翻其不成立.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【专题】压轴题;数形结合.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA 的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).【点评】本题考查了等腰三角形的判定,利用数形结合求解更形象直观.7.八年级某班50位同学中,1月份出生的频率是0.30,那么这个班1月份出生的同学有()A.15 B.14 C.13 D.12【考点】频数与频率.【分析】根据频率的求法,频率=.计算可得答案.【解答】解:50×0.30=15故选A.【点评】本题主要考查了频率的计算公式,是需要识记的内容.8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .【考点】动点问题的函数图象.【分析】根据动点从点A 出发,首先向点D 运动,此时y 不随x 的增加而增大,当点P 在DC 上运动时,y 随着x 的增大而增大,当点P 在CB 上运动时,y 不变,据此作出选择即可.【解答】解:当点P 由点A 向点D 运动,即0≤x ≤4时,y 的值为0;当点P 在DC 上运动,即4<x ≤8时,y 随着x 的增大而增大;当点P 在CB 上运动,即8<x ≤12时,y 不变;当点P 在BA 上运动,即12<x ≤16时,y 随x 的增大而减小.故选B .【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.二、填空题(本题共8个小题,每小题3分,共24分)9.已知△ABC 的三边长分别为1,,2,则△ABC 是 直角 三角形.【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:∵12+()2=22, ∴△ABC 是直角三角形.故答案为:直角.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.如图,△ABC中,∠C=90°,AD平分∠BAC,CD=,BC=12,AB=13,则△ADB的面积是.【考点】角平分线的性质.【分析】过D作DE⊥AB于E,根据角平分线性质求出DE,根据三角形的面积公式求出即可.【解答】解:过D作DE⊥AB于E,∵△ABC中,∠C=90°,AD平分∠BAC,CD=,∴CD=DE=,∵AB=13,∴△ADB的面积是×AB×DE=×13×=,故答案为:.【点评】本题考查了角平分线性质和三角形的面积的应用,能求出△ADB的高是解此题的关键,注意:角平分线上的点到角两边的距离相等.11.如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于﹣2.【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】把点的坐标代入函数解析式,就可以求出k的值.【解答】解:∵图象经过点(1,﹣2),∴1×k=﹣2,解得:k=﹣2.故答案为:﹣2.【点评】本题主要考查函数图象经过点的意义,经过点,说明点的坐标满足函数解析式.12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.有三个内角是直角的四边形是矩形,对角线互相垂直平分的四边形是菱形.【考点】菱形的判定;矩形的判定.【分析】分别根据矩形和菱形的判定方法求解.【解答】解:有三个内角是直角的四边形是矩形,对角线互相垂直平分的四边形是菱形.故答案为矩形,菱形.【点评】本题考查了菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).也考查了矩形的判定.14.在▱ABCD中,∠A+∠C=120°,则∠B=120°.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得平行四边形的对角相等,邻角互补,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=120°,∴∠A=60°,∴∠B=120°.故答案为:120°.【点评】此题考查了平行四边形的性质.注意平行四边形的对角线相等,邻角互补是解题关键.15.若点M(a﹣2,2a+3)是y轴上的点,则a的值为2.【考点】点的坐标.【分析】根据y轴上点的横坐标为0列方程求解即可.【解答】解:∵点M(a﹣2,2a+3)是y轴上的点,∴a﹣2=0,解得a=2.故答案为:2.【点评】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.16.若直线y=2x﹣1和直线y=m﹣x的交点在第三象限,则m的取值范围是m<﹣1.【考点】两条直线相交或平行问题.【分析】首先把y=2x﹣1和y=m﹣x,组成方程组,求解,x和y的值都用m来表示,根据题意交点坐标在第三象限表明x、y都小于0,即可求得m的取值范围.【解答】解:∵,∴解方程组得:,∵直线y=2x﹣1和直线y=m﹣x的交点在第三象限,∴x<0,y<0,∴m<﹣1,m<0.5,∴m<﹣1.故答案为:m<﹣1.【点评】本题主要考查两直线相交的问题,关键在于解方程组求出x和y关于m的表达式,根据在第三象限的点坐标性质解不等式即可.三、解答题(本题共7个小题,共52分,解答应写出文字说明、证明过程或演算步骤)17.已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF,求证:AF=CE.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.【解答】证明:在平行四边形ABCD中,∵AD∥BC,AD=BC,∴∠ACB=∠CAD.又∵BE∥DF,∴∠BEC=∠DFA,在△BEC与△DFA中,,∴△BEC≌△DFA,∴CE=AF.【点评】此题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.18.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当x=﹣时,求y的值.【考点】待定系数法求一次函数解析式.【分析】(1)可设y﹣3=kx,把已知条件代入可求得k的值,整理可求得y与x的关系式;(2)把x的值代入(1)中所求得关系式,可求得y的值.【解答】解:(1)∵y﹣3与x成正比例,∴设y﹣3=kx,把x=2,y=7,代入可得7﹣3=2k,解得k=2,∴y﹣3=2x,即y=2x+3,∴y与x的关系式为y=2x+3;(2)∵y=2x+3,∴当x=﹣时,y=2×(﹣)+3=﹣1+3=2,即当x=﹣时,y的值为2.【点评】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.19.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过20t的家庭数,即可得出1000户家庭超过20t的家庭数.【解答】解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08,故表格从上往下依次是:12户和0.08;(2)×100%=68%;(3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.【点评】此题主要考查了利用样本估计总体以及频数分布直方图与条形图综合应用,根据已知得出样本数据总数是解题关键.20.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【考点】一次函数的应用.【分析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.【解答】解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.【点评】本题考查了一次函数的应用,观察图象提供的信息,利用待定系数法求函数解析式是本题考查了的重点.21.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【分析】(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO 是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;=AC•BD=×2×2=2(cm2).(2)S菱形ABCD【点评】此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.22.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;(2)利用角平分线性质证明∴△ADC≌△ADE,AC=AE,再将线段AB进行转化.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点评】本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.23.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.【考点】平行四边形的判定;全等三角形的判定与性质;等边三角形的性质.【专题】证明题.【分析】(1)在△ACD和△CBF中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF=30°,即为∠DCF=30°,在△BCF中,∠CFB=90°,即F为AB的中点,又因为△ACD≌△CBF,所以点D为BC的中点.【解答】证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,在△ACD和△CBF中,,所以△ACD≌△CBF(SAS);(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=×60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.第21页(共21页)。
2016-2017学年八年级下册期末复习数学试卷(含答案)
八年级下册期末复习数学试卷温馨提示:本卷满分120分,考试时间120分钟.一.选择题(共10小题,满分30分,每小题3分)1.化简的结果是()A.5 B.﹣5 C.±5 D.252.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4 B.4.5 C.5 D.63.如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是()A.矩形B.菱形C.矩形或菱形D.正方形(第3题) (第7题) (第9题)4.反比例函数y=与一次函数y=﹣kx﹣k在同一直角坐标系中的图象可能是()A.B.C.D.5.已知矩形ABCD中,AB=2﹣,BC=+1,则矩形ABCD的面积是()A.5B.4﹣C.5﹣4D.5+46.已知x1,x2是一元二次方程x2﹣6x﹣15﹣0的两个根,则x1+x2等于()A.﹣6 B.6 C.﹣15 D.157.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交ADA.10 B.12 C.16 D.188.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.设这种药品成本的年平均下降率为x,则x为()A.3% B.6% C.8% D.10%9.如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6 B.12 C.24 D.3610.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF 长度的最大值为()A.3 B.4 C.4.5 D.5(第10题) (第14题) (第16题)二.填空题(共6小题,满分24分,每小题4分)11.数据1,2,3,4,5的方差为.12.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.13.无论x取何值,二次三项式﹣3x2+12x﹣11的值不超过.14.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是.16.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人三.解答题(共8小题,满分66分)17.(6分)计算:÷+(2﹣)0﹣(﹣1)2014+|﹣2|+(﹣)﹣2.18.(6分)解方程:(4x﹣2)(x+3)=x2+3x.19.(8分)已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.20.(8分)解方程组:.21.(8分)已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.22.(10分)为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有人,扇形统计图中,“B组”所对应的圆心角的度数为;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?23.(10分)如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.24.(10分)如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.化简的结果是()A.5 B.﹣5 C.±5 D.25解:原式=|﹣5|=5.故选A.2.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4 B.4.5 C.5 D.6选C3.如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是()A.矩形B.菱形C.矩形或菱形D.正方形解:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即有是一个角为直角的菱形;正方形、矩形和菱形都是特殊的平行四边形,故图中阴影部分表示的图形是正方形.故选:D.4.反比例函数y=与一次函数y=﹣kx﹣k在同一直角坐标系中的图象可能是()A.B.C.D.∴反比例函数y=的图象在第一、三象限,一次函数y=﹣kx﹣k的图象经过第二、三、四象限;当k<0时,∵k<0,﹣k>0,∴反比例函数y=的图象在第二、四象限,一次函数y=﹣kx﹣k的图象经过第一、二、三象限.故选C.5.已知矩形ABCD中,AB=2﹣,BC=+1,则矩形ABCD的面积是()A.5B.4﹣C.5﹣4D.5+4解:∵矩形ABCD中,AB=2﹣,BC=+1,∴矩形ABCD的面积是:(2﹣)×(+1)=6+2﹣2﹣=5.故选:A.6.已知x1,x2是一元二次方程x2﹣6x﹣15﹣0的两个根,则x1+x2等于()A.﹣6 B.6 C.﹣15 D.15解:∵x1,x2是一元二次方程x2﹣6x﹣15﹣0的两个根,∴x1+x2=﹣=6.故选B.7.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD 于点F.若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.18解:如图所示:∵四边形ABCD是平行四边形,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:D.8.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.设这种药品成本的年平均下降率为x,则x为()A.3% B.6% C.8% D.10%解:设这种药品成本的年平均下降率为x,则今年的这种药品的成本为100(1﹣x)2万元,根据题意得,100(1﹣x)2=81,解得x1=1.9(舍去),x2=0.1=10%.答:这种药品成本的年平均下降率为10%.故选D.9.如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6 B.12 C.24 D.36解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D,y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故选B.10.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.5解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RTABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.二.填空题(共6小题,满分24分,每小题4分)11.数据1,2,3,4,5的方差为2.解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故填2.12.若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.13.无论x取何值,二次三项式﹣3x2+12x﹣11的值不超过1.解:∵﹣3x2+12x﹣11=﹣3(x2﹣4x+4)+12﹣11=﹣3(x﹣2)2+1≤1,∴二次三项式﹣3x2+12x﹣11的值不超过1.故答案为:1.14.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是3.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(﹣1,﹣3).解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).16.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2m.解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.三.解答题(共8小题,满分66分)17.计算:÷+(2﹣)0﹣(﹣1)2014+|﹣2|+(﹣)﹣2.解:原式=+1﹣1+2﹣+4=2+1﹣1+2﹣+4=8﹣.18.解方程:(4x﹣2)(x+3)=x2+3x.解:方程化为(4x﹣2)(x+3)﹣x(x+3)=0,(x+3)(4x﹣2﹣x)=0,x+3=0或4x﹣2﹣x=0,所以x1=﹣3,x2=.19.已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.解:设方程的两个根分别为α、β,∴α+β=3,αβ=m﹣3.∵+===1,∴m=6,经检验,m=6是分式方程=1的解.∵方程x2﹣3x+m﹣3=0有两个实数根,∴△=(﹣3)2﹣4(m﹣3)=21﹣4m≥0,∴m≤,∴m=6舍去.∴m无实数根.20.解方程组:.解:由①得:x﹣2y=2或x﹣2y=﹣2.原方程可化为,解得,原方程的解是,.21.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.解:依题意有n﹣3=4,解得n=7,设最短边为x,则7x+1+2+3+4+5+6=56,解得x=5.故这个多边形的各边长是5,6,7,8,9,10,11.22.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有120人,扇形统计图中,“B组”所对应的圆心角的度数为72°;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?解:(1)这次被抽查的学生数=72÷60%=120(人),“B组”所对应的圆心角的度数为:360°×=72°.故答案为120,72°;(2)C组的人数为:120×10%=12;条形统计图如下:(3)这餐晚饭有剩饭的学生人数为:2500×(1﹣60%﹣10%)=750(人),750×10=7500(克)=7.5(千克).答:这餐晚饭将浪费7.5千克米饭.23.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.(1)证明:∵CF=BE,∴CF+EC=BE+E C.即EF=B C.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)解:∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB•AF=BF•AE.∴AE===.24.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.解:(1)∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴k=20,∴反比例函数的解析式为:y=;。
山东省2016-2017学年八年级下学期期末考试数学试题
绝密★启用前 试卷类型:A2016—2017学年第二学期期末学业水平检测八年级数学试题温馨提示:1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页。
满分120分。
考试用时120分钟。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
4. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第 Ⅰ 卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分. 1.下列图形是中心对称图形的是2.下列条件中不能确定四边形ABCD 是平行四边形的是 A .AB=CD ,AD ∥BCB .AB=CD ,AB ∥CDC .AB ∥CD ,AD ∥BC D .AB=CD ,AD =BC 3.下列各组数据中的三个数,可构成直角三角形的是 A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6 4.若y =kx -4的函数值y 随x 的增大而增大,则k 的值可能是下列的A .-2B .-21C .0D .25.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=10,BC=5,则DE :EC 的值 A .1:1 B .1:2C . 2:3D .3:46.已知一组数据为:10,8,10,12,10.其中中位数、平均数和众数的大小关系是 A .众数=中位数=平均数 B . 中位数<众数<平均数C .平均数>中位数>众数D . 平均数<中位数<众数7.小明的爸爸早晨出去散步,从家走了20分到达距离家800米的公园,他在公园休息了10分,然后用30分原路返回家中,那么小明的爸爸离家的距离S (单位:米)与离家的时间t (单位:分)之间的函数关系图象大致是8.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了( )步路(假设2步为1m ),却踩伤了花草.A .4B .6C .7D .89.两个一次函数1y ax b=+与2y bx a=+,它们在同一直角坐标系中的图象可能是10.如图,△ODC 是由△OAB 绕点O 顺时针旋转30°后得到的图形,若点D 恰好落在AB 上,则∠ADO 的度数是A .30°B .55°C .65°D .75°11.某工厂共有60名员工,他们的月工资方差是s2,现在给每个员工的月工资增加300元,那么他们的新工资的方差( ).A .变为s2+300B .不变C .变大了D .变小了12.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PMN 的面积;③△PAB 的周长;④∠APB 的大小;⑤直线MN ,AB 之间的距离.其中会随点P 的移动而不改变的是A .①②③B .①②⑤C .②③④D .②④⑤第 Ⅱ 卷(非选择题 共84分)二、填空题:本大题共6个小题,每小题4分,满分24分.13.若点A(-3,n)在x 轴上,则点B(n -1,n +1)关于原点对称的点的坐标为___________.14.一次函数y=﹣2x+25的图象与y 轴的交点坐标是___________________.15.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l1、l2、l3分别通过A 、B 、C 三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt △ABC 的面积为___________. 16.如图在Rt △AB C 中,∠ACB=90°,CD 垂直AB 于点D ,∠ACD=4∠BCD ,E 是斜边AB 的中点,∠ECD= ________.17.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=4,则AE 的长为_____________.18.已知点A(1,5),B(3,1),点M在x轴上,当AM+BM最小时,点M的坐标为________.三、解答题,共7个小题,满分60分.19.(本题满分8分) 一次函数y=kx-5的图象经过点(-3,-2),则(1)求这个函数表达式;(2)判断(-5,-3)是否在此函数的图象上;20.(本题满分8分)已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.21.(本小题满分8分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.22. (本题满分8分)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.23. (本题满分8分)今年我市九年级学业水平考试结束后,乐乐查到了自己的成绩,如下图(单位:分):(1)请写出上图中所列数据的中位数和众数;(2)我市规定:高中阶段招生录取成绩以分数形式呈现,按学业考试所有考试科目得分折合计算,其中语文、数学、英语按学业考试成绩100%计入,理科综合按150分(物理按65%、化学按45%、生物按40%)、文科综合按150分(思想品德按60%、历史按55%、地理按35%)、体育按50%、信息技术和理化实验技能操作各按20%计入。
2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)
第5题图 2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )8. 下列说法中,正确的是( )设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)(1)因式分解 m 3n -9mn . (2)计算 2111a a a a -++-20. (本小题满分8分)(1)解方程 )12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt △ABC 中,∠C =90°,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连结DE .(1)证明DE ∥CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形.一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′25x1=即正方形的边长为中,,=AC= AC=2016—2017学年期末测试八年级数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。
2016--2017学年八年级(下)期末数学试卷新人教版及解析
2016--2017学年八年级(下)期末数学试卷一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.(3分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.(3分)若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2C.y1<y2D.y1≤y24.(3分)如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差6.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)二、填空题(每题3分,共24分)7.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.8.(3分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是.9.(3分)计算:﹣=.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.11.(3分)如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为.12.(3分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.13.(3分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P 是对角线AC上的一个动点,则PE+PB的最小值是.三、解答题(本大题共2小题,每题5分,共10分)15.(5分)计算:﹣+.16.(5分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.四、解答题(本大题共2小题,每题6分,共12分)17.(6分)已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标.18.(6分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?五、解答题(本大题共2小题,每小题8分,共16分)19.(8分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.20.(8分)在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+3.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线L与正方形有两个交点时,直接写出k的取值范围.六、解答题(本大题共2小题,每小题10分,共20分)21.(10分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF 和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.22.(10分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/件)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?参考答案与试题解析1.解:由题意得,x﹣2≥0,解得x≥2.故选C.2.解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.3.解:把A(﹣,y1)、B(1,y2)分别代入y=x+4得y1=﹣+4=,y2=1+4=5,所以y1<y2.故选C.4.解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.5.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.6.解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.7.解:由题意得:平移后的解析式为:y=2x﹣2=2x﹣2,即.所得直线的表达式是y=2x﹣2.故答案为:y=2x﹣2.8.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故答案为:x>2.9.解:=2﹣=.故答案为:.10.解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.11.解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故答案为:2.12.解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.13.解:由题意,得k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案为y=x+314.解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.解:﹣+=3﹣4+=0.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:(1)由题意可得2k﹣4=﹣3,解得k=,∴一次函数解析式为y=x﹣4;(2)把该函数图象向上平移6个单位可得y=x﹣4+6=x+2,令y=0可得x+2=0,解得x=﹣4,∴平移后图象与x轴的交点坐标为(﹣4,0).17.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50 个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).18.解:(1)证明:如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.19.解:(1)如图,过D点作DE⊥y轴,则∠AE D=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,∴∠2=∠3.又∵∠AOB=∠AED=90°,在△AED和△BOA中,,∴△AED≌△BOA,∴DE=AO=4,AE=OB=3,∴OE=7,∴D点坐标为(4,7),把D(4,7)代入y=kx+3,得k=1;(2)当直线y=kx+3过B点时,把(3,0)代入得:0=3k+3,解得:k=﹣1.所以当直线l与正方形有两个交点时,k的取值范围是k>﹣1.21.(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.22.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
北师大版2016-2017学年八年级数学(下册)期末测试卷及答案
2016-2017学年八年级(下)期末数学试卷一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b23.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=04.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.85.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=39.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.12.函数的自变量x的取值范围是.13.若=,则=.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.17.先化简,再求值已知:,求的值.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=.22.若关于x的分式方程﹣1=无解,则m的值.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.参考答案与试题解析一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选D.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.3.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.4.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选D.【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【考点】规律型:图形的变化类.【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=3【考点】一元二次方程的解.【专题】压轴题.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=0代入方程式即可解.【解答】解:关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,把x=0代入得到m2﹣2m﹣3=0,解得m=3或﹣1,因为m+1≠0,则m≠﹣1,因而m=3.故本题选D.【点评】本题主要考查了方程的根的定义,就是能使方程左右两边相等的未知数的值,本题特别要注意一元二次方程的二次项系数不等于0.9.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对【考点】相似三角形的判定.【分析】已知平行四边形的对边平行,平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似.【解答】解:∵AD∥BC∴△ADG∽△ECG,△ADG∽△EBA,△ABC∽△CDA,△EGC∽△EAB;所以共有四对故选C.【点评】本题考虑平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似,注意要找全,不可漏掉任何一个.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式,将已知代入求出即可.【解答】解:∵2x﹣y=,xy=2,∴2x2y﹣xy2=xy(2x﹣y)=2×=.故答案为:.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.函数的自变量x的取值范围是x>2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.若=,则=.【考点】比例的性质.【分析】根据比例的性质,即可解答.【解答】解:∵,∴7m=11n,∴,故答案为:.【点评】本题考查了比例的性质,解决本题的关键是熟记比例的性质.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=±4.【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,求出m的值即可.【解答】解:∵关于x的方程x2﹣mx+4=0有两个相等实根,∴△=(﹣m)2﹣4×4=0,解得m=±4.故答案为:±4.【点评】本题考查的是根的判别式,根据题意得出关于m的方程是解答此题的关键.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为81.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】压轴题.【分析】作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD 的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.【解答】解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,∵正方形ABCD,∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,∴PE=PF,∴四边形AEPF是正方形,∴AE=PE=PF=AF,∵AP=2,由勾股定理得:AE2+PE2=,∴AE=PE=PF=AF=2,∴PG=BF,且∠PFB=∠PGQ=90°;∵∠FBP+∠FPB=90°,∴∠FBP=∠GPQ,在△PQG和△BPF中,∴△PQG≌△BPF,则QG=PF=2,∴AB=BC=CD=2+2+5=9,则大正方形的边长是9,即面积是81;故答案为81.【点评】此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.【考点】解一元一次不等式组;因式分解-提公因式法;解一元二次方程-公式法;一元一次不等式组的整数解.【分析】(1)利用提公因式法分解,然后利用公式法即可分解;(2)利用求根公式即可求解;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:(1)原式=4a(a﹣1)2+(a﹣1)=(a﹣1)【4a(a﹣1)+1】=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2;(2)∵a=2,b=4,c=﹣1,b2﹣4ac=16+8=24>0,∴x=,则x1=,x2=;(3),解①得x<,解②得:x≥﹣5.则不等式组的解集是﹣5≤x<.则整数解是:﹣5,﹣4,﹣3,﹣2,﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.17.先化简,再求值已知:,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再=,设x=2k,y=3k(k≠0),再代入进行计算即可.【解答】解:原式=[﹣]×=×==;解法一:∵=,不妨设x=2k,y=3k(k≠0),∴原式==;解法二:=∵=,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【专题】作图题.【分析】(1)根据关于原点对称的点的坐标特征,画出点A、B、C的对应点A′、B′、C′,即可得到△A′B′C′;(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A″,B″、C″,即可得到△A″B″C″;(3)分类讨论:分别以AB、BC和AC为对角线作出平行四边形,然后写出第四个顶点D的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所作,点B的对应点B″的坐标的坐标为(0,﹣6);(3)如图,四边形ABCD′、四边形ADBC和四边形ABD″C为所作,第四个顶点D的坐标为(3,3)或(﹣7,3)或(﹣5,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的性质.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.【考点】菱形的性质.【专题】计算题.【分析】(1)菱形的四边相等,周长是20,则边长为5;根据菱形对角线互相垂直平分,可得OC= AC,OD=3.运用勾股定理求出OC便可求出AC.(2)利用等积法求解:S△ABD=AB•DE=BD•OA.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=.∵BD=6,∴OD=3.在Rt△DOC中==4.∴AC=2OC=8.(2)∵S△ABD=AB•DE=BD•OA,∴5•DE=6×4∴DE=.【点评】此题考查了菱形的性质:对角线互相垂直平分;四边相等.问题(2)亦可运用菱形面积的两种表达式求解.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【考点】菱形的判定;矩形的判定.【分析】(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得OE=OC,同理可证OC=OF,则可证得OE=OF=OC;(2)根据平行四边形的判定以及矩形的判定得出即可.(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直,进而分析求出即可.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.【点评】本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=15.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a变形后求出a+=3,两边平方求出a2+的值,原式第一个因式利用平方差公式化简,变形后将各自的值代入计算即可求出值.【解答】解:∵a2﹣3a+1=0,∴a+=3,两边平方得:(a+)2=a2++2=9,即a2+=7,则原式=(a+)(a﹣)2=3(a2+﹣2)=15.故答案为:15.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.【点评】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第三象限.【考点】一次函数与一元一次不等式.【分析】根据关于x的一元一次不等式组有解即可得到b的范围,即可判断直线经过的象限.【解答】解:根据题意得:b+2<3b﹣2,解得:b>2.当b>2时,直线经过第一、二、四象限,不过第三象限.故填:三.【点评】根据不等式组的解集的确定方法首先确定b的范围是解决本题的关键.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.【考点】相似三角形的判定与性质;梯形.【分析】在梯形ABCD中,由于AD∥BC,于是得到△ADO∽△BCO,求出,即可得到结论.【解答】解:在梯形ABCD中,∵AD ∥BC ,∴△ADO ∽△BCO ,∴,∴,∴==,故答案为:【点评】本题考查了梯形的性质,相似三角形的判定和性质,知道等高三角形的面积的比等于底的比是解题的关键.25.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 ﹣1 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N 的运动过程中A ′在以M 为圆心、AD 为直径的圆上的弧AD 上运动,当A ′C取最小值时,由两点之间线段最短知此时M 、A ′、C 三点共线,得出A ′的位置,进而利用锐角三角函数关系求出A ′C 的长即可.【解答】解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM ×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【考点】根与系数的关系;根的判别式;勾股定理;矩形的性质.【分析】(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.【点评】解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?【考点】分式方程的应用.【分析】(1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得:=+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.则x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元【点评】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.【考点】相似三角形的判定与性质;根的判别式.【专题】综合题;分类讨论.【分析】(1)由于EF∥x轴,则S△PEF=EF•OE.t=15时,OE=15,关键是求EF.易证△BEF∽△BOA,则,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴当t=15时,OE=BE=15,OA=40,OB=30,∴∴S△PEF=EF•OE=(平方单位)(2)∵△BEF∽△BOA,∴∴整理,得t2﹣30t+240=0∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于160(平方单位)的t值(3)当∠EPO=∠BAO时,△EOP∽△BOA∴,即解得,t=12当∠EPO=∠ABO时,△EOP∽△AOB∴,即解得,∴当t=12或时,△EOP∽△BOA【点评】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。
2016-2017学年八年级下学期期末考试数学试题
25.( 本题满分 12 分 )如图,在△ ABC 中,⊙ O 经过 A、B 两点,圆心 O在 BC 边上,且⊙ O 与 BC
边交于点
E,在 BC 上截取
CF =AC,连接 AF 交⊙ O
于点 D ,若点
D
恰好是
⌒ BE
的中点.
( 1)求证: AC 是⊙ O 的切线;
( 2)若 BF =17, DF =13,求⊙ O 的半径 r ;
x2 18.( 本题满分 8 分 )解方程:(1) x 3 x(x 3) 0 . (2)
x2
x2 x2
16 x2
4
.
19.( 本题满分 8 分 )先化简,再求值:
a2
b2
(a
2ab
b2 ) ,其中
a
2
3, b 2
3.
a
a
20.( 本题满分 8 分 )小明用 12 元买软面笔记本,小丽用 21 元买硬面笔记本, 已知每 本硬面笔记本
2015 年约为 20 万人次, 2017 年约为
28.8 万人次,设观赏人数年均增长率为 x,则下列方程中正确的是(
▲)
A . 20(1 2x) 28.8
B. 28.(8 1 x)2 20
C. 20(1 x) 2 28.8
D. 20 2(0 1 x) 2(0 1 x) 2 28.8
6.有下列五个命题:① 半圆是弧,弧是半圆 ;② 周长相等的两个圆是等圆 ;③半径相等的两个半圆
O
P
A
B
( 第 14 题图 )
10.以 3、- 5 为根且二次项系数为 1 的一元二次方程是
▲ .
11.当 1< P<2 时,代数式 (1 p) 2 ( 2 p )2 的值为 ▲ .
2016—2017学年八年级第二学期期末检测数学试题.(1)doc
2016—2017学年八年级第二学期期末检测数学试题班级:姓名:等级:(满分:120分;考试时间:120分钟)一、选择题。
(本题共10小题,每小题3分,共30分)1.若式子2在实数范围内有意义,则x的取值范围是().A.x>1 B.x<1 C.x≥1D.x≤12.一组数据:0,1,2,3,3,5,5,10的中位数是().A.2.5 B.3 C.3.5 D.53.在平面中,下列命题为真命题的是()A.根据四边形的内角和得出,四个角相等的四边形即四个内角是直角B.只有对角线互相平分且垂直的四边形是菱形C.对角线互相平分且相等的四边形是矩形D.四边相等的四边形是菱形4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365 B. .1225C.94D.5.某特警队为了选拔”神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21.则下列说法中,正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定[中国教育&%出版C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定 6.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( ).A .50°B .60°C .70°D .80°7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是158.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( ) A .甲、乙两人的速度相同 B .甲先到达终点 C .乙用的时间短D .乙比甲跑的路程多9.童童从家出发前往奥体中心观看某演出,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x的函数(第7题)关系式的大致图象是( )10.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是 。
2016~2017学年浙教版八年级下册期末数学试卷含答案
2016~2017学年度八年级下学期期末数学试卷一、仔细选一选:本题共10小题,每小题3分,共30分1.在式子,,,中,x可以取2和3的是()A.B.C.D.2.下列几种名车标志中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个3.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数 B.方差 C.平均数D.中位数4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形6.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°7.已知三点P1(x1,y1),P2(x2,y2),P3(1,﹣2)都在反比例函数的图象上,若x1<0,x2>0,则下列式子正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y28.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm9.下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③;④.其中正确的命题有()A.只有①②B.只有①②④ C.只有①④D.①②③④10.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.二、认真填一填:每小题4分,共24分11.关于y 的一元二次方程2y (y ﹣3)=﹣4的一般形式是12.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中 .13.若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2= .14.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数y= (k ≠0),使它的图象与正方形OABC 有公共点,这个函数的表达式为 .15.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE=1,BE=2,CE=3,则∠BE ′C= 度.16.如图,在y 轴正半轴上依次截取OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1(n 为正整数),过点A 1,A 2,A 3,…,A n 分别作y 轴的垂线,与反比例函数y=(x >0)交于P 1,P 2,P 3,…,P n ,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,过点P 2、P 3、…、P n 分别向P 1A 1、P 2A 2、…、P n ﹣1A n ﹣1作垂线段,构成一列三角形(见图中阴影部分),记这一系列三角形的面积分别为S 1,S 2,S 3,…,S n ,则S 1+S 2+S 3+…+S n﹣1= .三、全面解一解:8个小题,共66分,各小题都必须写出解答过程17.计算:(1)﹣4+(2)已知a=﹣2,b=+2,求代数式a2+ab+b2的值.18.选择适当的方法解方程(1)2x2+12x﹣6=0(2)x2﹣7x﹣18=0.19.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.20.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.22.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)23.教室里的饮水机接通电源就进入自动程序,开机加热时水温上升,加热到100℃停止加热,水温开始下降,水温降至30℃,饮水机自动开始加热,重复上述程序.值日生小明7点钟到校后接通(2)借助(1)所画的图象,判断从7:00开始加温到水温第一次降到30℃为止,水温y和时间x 之间存在怎样的函数关系?试求出函数关系并写出自变量x取值范围;(3)上午第一节下课时间为8:25,同学们能不能喝到不超过50℃的水?请通过计算说明.24.已知菱形ABCD对角线AC=8,BD=4,以AC、BD所在的直角为x轴、y轴建立平面直角坐标系,双曲线y=恰好经过DC的中点,过直线BC上的点P作直线l⊥x轴,交双曲线于点Q.(1)求k的值及直线BC的函数解析式;(2)双曲线y=与直线BC交于M、N两点,试求线段MN的长;(3)是否存在点P,使以点B、P、Q、D四点为顶点的四边形是平行四边形?若存在,请求出所有P点的坐标;若不存在,请说明理由.2016~2017学年度八年级下学期期末数学试卷参考答案与试题解析一、仔细选一选:本题共10小题,每小题3分,共30分1.在式子,,,中,x可以取2和3的是()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.【解答】解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.下列几种名车标志中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念及各图特点作答.【解答】解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形;不是中心对称图形,因为找不出这样的一个点,将这个图形绕这一点旋转180°后能够与自身重合,即不满足中心对称图形的定义.不符合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,因为找不出这样的一条直线,将这个图形沿这条直线对折后两部分可重合,即不满足轴对称图形的定义,是中心对称图形,不符合题意.共有两个既是中心对称图形又是轴对称图形.故选B.【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数 B.方差 C.平均数D.中位数【考点】统计量的选择.【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【考点】概率公式;勾股定理;勾股定理的逆定理.【专题】网格型.【分析】由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形,则使△ABC为直角三角形的概率是:.故选B.【点评】此题主要考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【考点】菱形的判定;作图—复杂作图.【分析】关键菱形的判定定理(有四边都相等的四边形是菱形)判断即可.【解答】解:由图形作法可知:AD=AB=DC=BC,∴四边形ABCD是菱形,故选:B.【点评】本题主要考查对作图﹣复杂作图,菱形的判定等知识点的理解和掌握,能熟练地运用性质进行推理是解此题的关键.6.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【考点】平行四边形的性质;平行线的性质.【专题】计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.7.已知三点P1(x1,y1),P2(x2,y2),P3(1,﹣2)都在反比例函数的图象上,若x1<0,x2>0,则下列式子正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【考点】反比例函数图象上点的坐标特征.【分析】根据k=xy即横纵坐标相乘得比例系数k,再由反比例函数图象上点的坐标特征即可解答.【解答】解:∵点P3(1,﹣2)都在反比例函数的图象上,∴k=1×(﹣2)=﹣2<0,函数图象在二,四象限,又∵x1<0,x2>0,∴P1在第二象限,P2在第四象限,∴y1>0,y2<0,∴y1>0>y2.故选D.【点评】本题需先求出反比例函数的比例系数.在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.8.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【考点】线段垂直平分线的性质;平行四边形的性质.【专题】几何图形问题.【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.9.下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③;④.其中正确的命题有()A.只有①②B.只有①②④ C.只有①④D.①②③④【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线.【分析】①可证△ABF≌△BEC到△BEH∽△ABF,所以∠BAF=∠BHE=90°得证.②由题意正方形中∠ABO=∠BCO,在上面所证∠BCE=∠ABF,由△OBM≌△ONC得到ON=OM 即得证.③利用AAS证明三角形OCN全等于三角形OBM,所以BM=CN,只有H是BM的中点时,OH 等于BM(CN)的一半,所以(3)错误.过O点作OG垂直于OH,OG交CH于G点,由题意可证得三角形OGC与三角形OHB全等.按照前述作辅助线之后,OHG是等腰直角三角形,OH乘以根2之后等于HG,则在证明证明三角形OGC与三角形OHB全等之后,CG=BH,所以④式成立.【解答】解:∵AF=BE,AB=BC,∠ABC=∠BAD=90°,∴△ABF≌△BEC,∴∠BCE=∠ABF,∠BFA=∠BEC,∴△BEH∽△ABF,∴∠BAF=∠BHE=90°,即BF⊥EC,①正确;∵四边形是正方形,∴BO⊥AC,BO=OC,由题意正方形中角ABO=角BCO,在上面所证∠BCE=∠ABF,∴∠ECO=∠FBO,∴△OBM≌△ONC,∴ON=OM,即②正确;③∵△OBM≌△ONC,∴BM=CN,∵∠BOM=90°,∴当H为BM中点时,OH=BM=CN(直角三角形斜边中线等于斜边的一半),因此只有当H为BM的中点时,,故③错误;④过O点作OG垂直于OH,OG交CH与G点,在△OGC与△OHB中,,故△OGC≌△OHB,∵OH⊥OG,∴△OHG是等腰直角三角形,按照前述作辅助线之后,OHG是等腰直角三角形,OH乘以根2之后等于HG,则在证明证明三角形OGC与三角形OHB全等之后,CG=BH,所以④式成立.综上所述,①②④正确.故选B.【点评】本题考查了正方形的性质,全等三角形的证明以及直角三角形斜边中线的性质,比较综合,有一定难度.10.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A(2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF 为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E 点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、认真填一填:每小题4分,共24分11.关于y的一元二次方程2y(y﹣3)=﹣4的一般形式是2y2﹣6y+4=0.【考点】一元二次方程的一般形式.【分析】去括号,移项变成ax2+bx+c=0的形式即可.【解答】解;:去括号得,2y2﹣6y=﹣4,移项得,2y2﹣6y+4=0,所以关于y的一元二次方程2y(y﹣3)=﹣4的一般形式是2y2﹣6y+4=0.故答案为2y2﹣6y+4=0.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.12.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中每一个内角都大于60°.【考点】反证法.【分析】熟记反证法的步骤,直接填空即可.【解答】解:根据反证法的步骤,第一步应假设结论的反面成立,即三角形的每一个内角都大于60°.故答案为:每一个内角都大于60°.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.13.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=16.【考点】根与系数的关系.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.【点评】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2﹣2αβ是解题的关键.14.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).【考点】反比例函数图象上点的坐标特征.【专题】开放型.【分析】先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.【解答】解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135度.【考点】勾股定理的逆定理;正方形的性质;旋转的性质.【专题】压轴题.【分析】首先根据旋转的性质得出,△EBE ′是直角三角形,进而得出∠BEE ′=∠BE ′E=45°,即可得出答案.【解答】解:连接EE ′∵△ABE 绕点B 顺时针旋转90°到△CBE ′∴∠EBE ′是直角,∴△EBE ′是直角三角形,∵△ABE 与△CE ′B 全等∴BE=BE ′=2,∠AEB=∠BE ′C∴∠BEE ′=∠BE ′E=45°,∵EE ′2=22+22=8,AE=CE ′=1,EC=3,∴EC 2=E ′C 2+EE ′2,∴△EE ′C 是直角三角形,∴∠EE ′C=90°,∴∠AEB=135°.故答案为:135.【点评】此题主要考查了旋转的性质,根据已知得出△EBE ′是直角三角形是解题关键.16.如图,在y 轴正半轴上依次截取OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1(n 为正整数),过点A 1,A 2,A 3,…,A n 分别作y 轴的垂线,与反比例函数y=(x >0)交于P 1,P 2,P 3,…,P n ,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,过点P 2、P 3、…、P n 分别向P 1A 1、P 2A 2、…、P n ﹣1A n ﹣1作垂线段,构成一列三角形(见图中阴影部分),记这一系列三角形的面积分别为S 1,S 2,S 3,…,S n ,则S 1+S 2+S 3+…+S n﹣1= 1﹣ .【考点】反比例函数系数k 的几何意义.【专题】规律型.A n=1可知P1点的坐标为(x1,1),P2点的坐标为(x2,2),【分析】由OA1=A1A2=A2A3=…=A n﹣1P3点的坐标为(x3,3)…P n点的坐标为(x n,n),把y=1,y=2,y=3…y=n代入反比例函数的解析式即可求出x1、x2、x3…x n的值,再由三角形的面积公式可得出S1、S2、S3…S n﹣1的值,故可得出结论.A n=1,【解答】解:∵OA1=A1A2=A2A3=…=A n﹣1∴设P1(x1,1),P2(x2,2),P3(x3,3),…P n(x n,n),∵P1,P2,P3…Pn在反比例函数y=(x>0)的图象上,∴x1=2,x2=1,x3=…x n=,∴S1=×(x1﹣x2)×1=×1×(2﹣1)=1﹣;S2=×1×(x2﹣x3)=×1×(1﹣)=﹣;S3=×1×(x3﹣x4)=×1×(﹣)=﹣;…S n=(﹣),﹣1=1﹣+﹣+﹣+…+﹣=1﹣.∴S1+S2+S3+…+S n﹣1故答案为:1﹣.【点评】本题考查的是反比例函数综合题,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、全面解一解:8个小题,共66分,各小题都必须写出解答过程17.计算:(1)﹣4+(2)已知a=﹣2,b=+2,求代数式a2+ab+b2的值.【考点】二次根式的混合运算;二次根式的化简求值.【专题】计算题.【分析】(1)先进行二次根式的除法运算,再先把各二次根式化为最简二次根式,然后合并即可;(2)先计算出a+b与ab的值,再利用完全平方公式把原式变形为(a+b)2﹣ab,然后利用整体代入的方法计算.【解答】解:(1)原式=3﹣2+=+2=3;(3)∵a=﹣2,b=+2,∴a+b=2,ab=3﹣4=﹣1,∴原式=(a+b)2﹣ab=(2)2﹣(﹣1)=13.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.选择适当的方法解方程(1)2x2+12x﹣6=0(2)x2﹣7x﹣18=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)2x2+12x﹣6=0,b2﹣4ac=122﹣4×2×(﹣6)=192,x=,x1=﹣3+2,x2=﹣3﹣2;(2)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.19.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.【考点】反比例函数图象上点的坐标特征;反比例函数系数k的几何意义.【专题】计算题.【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=8,然后解方程得到满足条件的k的值.【解答】解:(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=8,∴|k|=10,而k<0,∴k=﹣10.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数系数k的几何意义.20.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40,并把条形统计图补充完整;(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人),补全统计图如图所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为:(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【考点】菱形的判定与性质;全等三角形的判定与性质.【分析】(1)先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD;(2)由邻边相等可判断四边形BGFD是菱形;(3)设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD是菱形.22.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为26.8万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)【考点】一元二次方程的应用.【分析】(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27﹣0.1×2,即可得出答案;(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.【解答】解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27﹣0.1×(3﹣1)=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28﹣[27﹣0.1(x﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.23.教室里的饮水机接通电源就进入自动程序,开机加热时水温上升,加热到100℃停止加热,水温开始下降,水温降至30℃,饮水机自动开始加热,重复上述程序.值日生小明7点钟到校后接通(2)借助(1)所画的图象,判断从7:00开始加温到水温第一次降到30℃为止,水温y和时间x 之间存在怎样的函数关系?试求出函数关系并写出自变量x取值范围;(3)上午第一节下课时间为8:25,同学们能不能喝到不超过50℃的水?请通过计算说明.【考点】反比例函数的应用;一次函数的应用.【分析】(1)根据表格中数据,先描点,再用平滑的曲线按照自变量从小到大的顺序依次连接各点可得图象;(2)由函数图象可设函数解析式,再由图中坐标代入解析式,即可求得y与x的关系式;(3)求出饮水机完成一个循环周期所需要的时间,再计算求出每一个循环周期内,水温超过50℃的时间段,最后根据时间确定答案.【解答】解:(1)图象如下:。
2016-2017八年级下数学试题及答案
八年级数学试题 第 1 页 (共 8 页)2016-2017学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.下列二次根式中,是最简二次根式的是( ) A .15B .9C .8D .51 2.某校初三已经进行了五次月考测试,若想了解某学生的数学成绩是否稳定,老师需要知道 他5次数学成绩的( ) A.平均数B .方差C .中位数D .众数3.若一个三角形的三边长分别为x ,8,6,则使此三角形是直角三角形的x 的值是( ) A. 8B. 10C.72D.7210或4.下列判断正确的是( )A.对角线互相垂直且相等的四边形是正方形 B .对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D .对角线相等的四边形是矩形 5.下列运算正确的是( ) A.363332=⋅B.332255=-C.532=+D.3)3(2=-6.若一次函数1)2(-+=x k y 中y 随x 的增大而减小,则k 的取值范围是( ) A . 2->kB . 2-≤kC. 2-<kD. 2-≥k7.潼南区在一次空气污染指数抽查中,收集到10天的数据如下:60,80,69,55,80,85, 80, 90,76,69.该组数据的中位数和众数分别是( )A.76和80B.80和80C.78和80D.78和69 8.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E , ο90=∠CBD ,4=BC ,3==ED BE ,10=AC ,则四边形 ABCD 的面积为( ) A .24B .20C .12D .69.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2米,当他把绳子的下端拉题图)(8八年级数学试题 第 2 页 (共 8 页)开6米后,发现下端刚好接触地面,则旗杆的高度是( ) A.6米B .8米C .10米D .12米10.如图,在菱形ABCD 中,ο70=∠BCD ,BC 的垂直平分线交对角线 AC 于点F ,垂足为E ,连接DF ,则ADF ∠的大小为( )A .ο75B .ο70C .ο65D .ο6011.如图:下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积 为1的正方形有2个,第(2)个图形中面积为1的正方形有4个,第(3)个图形中面积为1 的正方形有7个,Λ,按此规律,则第(10)个图形中面积为1的正方形的个数为( ) A.54 B .55C .56D .57 ……12.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达 乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行 驶的时间为)(h t ,两车之间的距离为)(km s ,图中的折线表示s 与t 之间的函数关系.根据图 象提供的信息下列说法错误的是( )A. 甲、乙两地之间的距离为km 900B. 行驶h 4两车相遇C.快车共行驶了h 6D.行驶h 8两车相距km 560二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.若代数式x 27-有意义,则x 的取值范围是 .14.若直线a x y +-=和直线b x y +=的交点坐标为(m ,7),则a b += .15.某单位欲招聘职工一名,对A 、B 两名候选人进行了面试和笔试两项素质测试.其中A 的面试成绩为90,笔试成绩为85;B 的面试成绩为95,笔试成绩为78.根据实际需要,该单位将面试、笔试测试的得分按23:的比例计算两人的总成绩,则______将被录用(填“A ”或“B ”).16.木工师傅做了一张桌面,要求为长方形,现量得桌面的长为60cm ,宽为32cm ,对角线为 68cm ,这个桌面 (填“合格”或“不合格”). 17.如图,P 是矩形ABCD 的对角线AC 的中点,E 是AD 的中点.题图)(170 )(h t 412900)(km s ABCD题图)(12(2)(1)(3)ABEDF)题图10(八年级数学试题 第 3 页 (共 8 页)若9=AB ,12=AD ,则四边形ABPE 的周长为 .18.已知整数a ,使得关于x 的分式方程xxx ax -=+--3333有整数解,且关于x 的一次函数 10)1(-+-=a x a y 的图象不经过第二象限,则满足条件的整数a 的值有 ________个.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:213721122+÷--)(20.如图,四边形ABCD 是平行四边形,对角线BD AC ,相交 于点O ,且21∠=∠.求证:四边形ABCD 是矩形.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再计算:,244412222+-÷++--+-a a a a a a a a )(其中13-=a .22.如图,直线:l 221+=x y 与y 轴交于点A ,与x 轴于点B .(1)求AOB ∆的面积;(2)若直线1l 经过点A ,且与x 轴相交于点C ,并将ABO ∆ 的面积分成相等的两部分,求直线1l 的解析式.23.某中学开展“唱红歌”比赛活动,八年级(1)班、(2)班根据初赛成绩,各选出5名 选手参加决赛,两个班各选出的5名选手的决赛成绩如图所示.(1)根据统计图中信息完成表格;(2)结合两班决赛成绩的平均数和中位数,分析哪个班级的决赛成绩较好; (3)计算两个班决赛成绩的方差并判断哪一个班选手成绩较为稳定.班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 八(2) 85 100A OBxyl题图)(220708090100分数选手编号)八(1)八(212345题图)(20八年级数学试题 第 4 页 (共 8 页)(参考资料:()[]222212)()(1x x x x x x ns n -++-+-=Λ) 24.为绿化校园,某学校计划购进A 、B 两种树苗,若购买A 树苗10棵,B 树苗20棵,需要 2300元,若购买A 树苗20棵,B 树苗10棵,需要2500元, (1)求A 、B 两种树苗单价各是多少?(2)学校计划购买A 、B 两种树苗共21棵,且购买B 种树苗的数量不超过A 种树苗的一半, 设购买B 种树苗x 棵,购买两种树苗所需费用为y 元,请给出一种费用最省的方案,并求出该方案所需费用.25.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整 数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才 能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到 了周长为24的“整数三角形”. 丙同学受到甲、乙两同学的启发找到了两个不同的等腰 “整数三角形”.请完成:(1)以点A 为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每 边周边标注其边长;(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长; (3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26.如图,在菱形ABCD 中,AC AB =,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且AE CF =,连接EF BE ,.(1)如图1,当点E 是线段AC 的中点,且4=AB 时,求BE 的长; (2)如图2,当点E 不是线段AC 的中点时,求证:EF BE =; (3)如图3,当点E 是线段AC 延长线上的任意一点时,(2)中的结论是否成立?若成立, 请给予证明;若不成立,请说明理由.图1图2 图3八年级数学试题 第 5 页 (共 8 页)2016-2017学年度第二学期期末测试八年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.27≤x 14. 42-=x y 15. B 16 . 合格 17. 27 18. 6 三、解答题:(本大题共2个小题,每小题7分,共14分)19.解:2262262+--=原式……………………………6分 22-=………………………8分 20.证明:在▱ABCD 中,AO=CO ,BO=DO , …………………………2分∵∠1=∠2,∴BO=CO ,…………………………4分 ∴AO=BO=CO=DO , ∴AC=BD ,………………6分∴▱ABCD 为矩形 (对角线相等的平行四边形是矩形) …………8分四、解答题:(本大题共4个小题,每小题10分,共40分) 21.解:原式=24)2(1)2(22+-÷⎥⎦⎤⎢⎣⎡+--+-a a a a a a a =42)2()1()2()2)(2(22-+⨯⎥⎦⎤⎢⎣⎡+--++-a a a a a a a a a a 42)2(4222-+⨯++--=a a a a a a a八年级数学试题 第 6 页 (共 8 页))2(1+=a a …………………………………7分13-=a Θ,原式=21)213)(13(1=+-- …………………………………10分 22.解:(1)两点与坐标轴交于直线B A l ,Θ)0,4(),2,0(-∴B A …………………………………2分 44221=⨯⨯=∴∆AOB S …………………………………4分 (2)分,的面积分成相等的两部并将经过点ABO A l ∆,1Θ )的中点(经过0,21-∴BO l ………………………6分 设直线b kx y l +=:1,…………………………………7分 将)(0,2-与点A 代入直线方程,得 ∴⎩⎨⎧==+-202b b k 解得⎩⎨⎧==21b k …………………………………9分∴直线1l 的解析式为2+=x y …………………………………10分23.(1) ………………3分(2)八(1)班成绩好些.因为八(1)班的中位数高,所以八(1)班成绩好些.(回答合理即可给分 ………………6分(3)八(1)班成绩的方差八(2)班成绩的方差2221s s <Θ,所以八年级(1)班的成绩更稳定.………………10分24.解:(1)设A,B 两种树苗的单价分别为元元b a ,,由题意得:⎩⎨⎧=+=+2500102023002010b a b a ………………2分班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 85 85 八(2)8580100八年级数学试题 第 7 页 (共 8 页)解得⎩⎨⎧==7090b a ………………4分∴A,B 的单价分别为90元,70元.(2)18902070)21(90+-=+-=x x x y ………………6分由题意221xx -≤,70≤<∴x ………………8分 020<-Θ∴.的增大而减小随x y有最小值时,当y x 7=∴,1750=最小y 元,所以当购买A 种14棵,B 种7棵时,费用最少,为1750元.………………10分25.解:(1)如下图所示:……………2分 (2)如下图所示:…………………6分(3)不能.设一个等边三角形的边长为a ,则该三角形高为3a ,则其面积为23a ,若a 为整数,则23a 一定不为整数,所以不能.…………10分 26.解:(1)∵四边形ABCD 是菱形,AC AB =,∴△ABC 是等边三角形,∴4=AC ,又E 是线段AC 的中点,221,==⊥∴AC AE AC BE3222=-=∴AE AB BE ……………………………4分 (2)作EG ∥BC 交AB 于G , ∵△ABC 是等边三角形,∴△AGE 是等边三角形, ∴BG CE =,∵EG ∥BC ,ABC 60BGE 120∠=︒∴∠=︒,,图3图2八年级数学试题 第 8 页 (共 8 页)∵ACB 60ECF 120BGE ECF ∠=︒∴∠=︒∴∠=∠,,, ∴△BGE ≌△ECF EB EF ∴=,;………………………………8分 (3)成立.作EH ∥BC 交AB 的延长线于H ,∵△ABC 是等边三角形, ∴△AHE 是等边三角形, ∴BH CE =,HE AE = 又∵CF AE =, ∴CF HE = 在△BHE 和△ECF 中,CF HE ECF BHC CE BH ==∠=∠=,60,ο,∴△BHE ≌△ECF ,∴EB EF =.………………………………………………12分。
2016-2017学年八年级(下)期末数学试卷(新人教版)
八年级(下)期末数学试卷(三)一、选择题(本大题12个小题,每小题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.2.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算3.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.935.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°6.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.17.(3分)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.28.(3分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.9.(3分)下列计算中,正确的是()A.B.=2 C.=6D.﹣=4 10.(3分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4 11.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.812.(3分)如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9 B.9 C.27 D.27二、填空题(本大题8个小题,每小题3分,共24分)13.(3分)计算:的结果是.14.(3分)若直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),则a+b=.15.(3分)数据﹣2,﹣1,0,3,5的方差是.16.(3分)如果最简二次根式与是同类二次根式,则a=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.18.(3分)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为.19.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.20.(3分)如图,矩形纸片ABCD的长AD=9cm,宽AB=3cm,沿EF将其折叠,使点D与点B重合,则折痕EF的长为cm.三、解答题(本大题共7个小题,共60分)21.(6分)计算与化简:(1)计算:;(2)先化简,再求值:,其中,.22.(6分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.23.(8分)某中学对“希望工程捐款活动”进行抽样调查,得到一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请你估算全校学生共捐款多少元?24.(8分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.25.(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.26.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=,b=;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.27.(12分)在矩形ABCD中,AB=6,AD=8,点E在AB上,且BE=2,P是BC 上的动点(BP>2),连接EP,将线段EP绕点E逆时针旋转一定角度后,点P 落在AD上的点F处,以EP,EF为邻边作平行四边形EPGF.(1)如图1,当BP=4时,求证:四边形EPGF是正方形;(2)如图2,当BP=6时,过点G作GH⊥AD,交AD的延长线于点H,连接DG,FP.①求四边形EPGF的周长;②请直接写出∠EFP,∠BPF,∠HFG之间的数量关系;③求△DFG的面积.2015-2016学年人教版八年级(下)期末数学试卷三参考答案与试题解析一、选择题(本大题12个小题,每小题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】化简得到结果,即可作出判断.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项符合题意;D、,本选项不合题意;故选C.【点评】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.2.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算【分析】利用勾股定理将AB2+AC2转化为BC2,再求值.【解答】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选A.【点评】本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.3.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.【解答】解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.4.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.5.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【分析】要求∠E+∠F,只需求∠ADE,而∠ADE=∠A与∠B互补,所以可以求出∠A,进而求解问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选D.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【分析】把点的坐标代入函数解析式计算即可得解.【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.7.(3分)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.2【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【点评】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.8.(3分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.【分析】根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【解答】解:A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.9.(3分)下列计算中,正确的是()A.B.=2 C.=6D.﹣=4【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B 进行判断;根据二次根式的加减法对C、D进行判断.【解答】解:A、原式=3×2=6,所以A选项错误;B、原式==2,所以B选项正确;C、原式=2+3,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选B.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10.(3分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【分析】先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.11.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.8【分析】先进行二次根式的化简,再进行二次根式加减法运算法则进行求解即可.【解答】解:∵+4+m=30,∴++=30,∴5=30,∴=6,∴m=6.故选C.【点评】本题考查了二次根式的加减法,解答本题的关键在于熟练掌握二次根式的化简及二次根式加减法运算法则.12.(3分)如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9 B.9 C.27 D.27【分析】先求出第一个菱形和第二个菱形的边长,得出规律,根据规律即可得出结论.【解答】解:连接BD交AC于O,连接CD1交AC1于E,如图所示:∵四边形ABCD是菱形,∠DAB=60°,∴ACD⊥BD,∠BAO=∠DAB=30°,OA=AC,∴OA=AB•cos30°=1×=,∴AC=2OA=,同理AE=AC•cos30°=•=,AC1=3=()2,…,第n个菱形的边长为()n﹣1,∴第六个菱形的边长为()5=9;故选:B.【点评】本题考查了菱形的性质、含30°角的直角三角形以及锐角三角函数的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.二、填空题(本大题8个小题,每小题3分,共24分)13.(3分)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.14.(3分)若直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),则a+b=16.【分析】把点(m,8)分别代入y=﹣x+a和y=x+b,得到关于m、a、b的两个方程,将这两个方程消去m,即可得出a+b的值.【解答】解:∵直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),∴8=﹣m+a①,8=m+b②,①+②,得16=a+b,即a+b=16.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.15.(3分)数据﹣2,﹣1,0,3,5的方差是.【分析】先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.【点评】本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x﹣)2].n16.(3分)如果最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.18.(3分)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为﹣2.【分析】根据正比例函数的意义,可得答案.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=m,∴m2﹣3=1,∴m=﹣2,故答案为:﹣2.【点评】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.19.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是 2.4.【分析】连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即×4×3=×5•CP,解得CP=2.4.故答案为:2.4.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CP⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.20.(3分)如图,矩形纸片ABCD的长AD=9cm,宽AB=3cm,沿EF将其折叠,使点D与点B重合,则折痕EF的长为cm.【分析】作FM⊥AD于M,则∠FME=90°,FM=AB=3cm,由折叠的性质得出BE=DE,∠BEF=∠DEF,再求出BF=BE,设AE=x,则BE=DE=9﹣x,根据勾股定理得出方程,解方程求出AE,得出DE、BF、EM,根据勾股定理求出EF即可.【解答】解:作FM⊥AD于M,如图所示:则∠FME=90°,FM=AB=3cm,根据题意得:BE=DE,∠BEF=∠DEF,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BF=BE,设AE=x,则BE=DE=BF=9﹣x,根据勾股定理得:AB2+AE2=BE2,即32+x2=(9﹣x)2,解得:x=4,∴AE=4,∴DE=BF=5,∴CF=DM=4,∴EM=1,根据勾股定理得:EF==(cm);故答案为:.【点评】本题考查了翻折变换的性质、矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共7个小题,共60分)21.(6分)计算与化简:(1)计算:;(2)先化简,再求值:,其中,.【分析】(1)根据负整数指数幂的意义和绝对值的意义得到原式=3﹣2﹣4+3,然后合并即可;(2)先把括号内通分,再把分子分母因式分解,然后把除法运算化为乘法运算后约分得到原式=,再把a和b的值代入计算即可.【解答】解:(1)原式=3﹣2﹣4+3=﹣1;(2)原式=÷=•=,当,,原式==.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.也考查了负整数指数幂.22.(6分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.23.(8分)某中学对“希望工程捐款活动”进行抽样调查,得到一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请你估算全校学生共捐款多少元?【分析】(1)利用从左到右各长方形高度之比为3:4:5:8,可设捐5元、10元、15元和20元的人数分别为3x、4x、5x、8x,则根据题意得5x+8x=39,解得x=3,然后计算3x+4x+5x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用1500乘以样本平均数即可.【解答】解:(1)设捐5元、10元、15元和20元的人数分别为3x、4x、5x、8x,5x+8x=39,解得x=3,∴3x+4x+5x+8x=20x=20×3=60(人);(2)捐5元、10元、15元和20元的人数分别为9、12、15、24,∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第三组内,∴中位数为15元;(3)×1500=21750(元),∴估算全校学生共捐款21750元.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.24.(8分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.【分析】(1)利用平行四边形的性质,得到AD=BC,AB=CD,∠A=∠C,证明△AEB≌△CDG,得到AE=CG,利用G为BC中点,即可解答;(2)作辅助线,延长DF,BE,相交于点H,证明四边形EBDG为平行四边形,得到BE∥DG,得到∠G=∠2,因为∠3=∠2,得到∠G=∠3,利用等角对等边,得到GF=BF,再证△AEB≌△EDG,得到AB=EG,即可解答.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,∠A=∠C,在△AEB和△CDG中,,∴△AEB≌△CDG,∴AE=CG,∵G为BC中点,∴,∴,∵AD=BC,∴,∴E是AD的中点;(2)如图,延长DF,BE,相交于点H,∵E为AD的中点,G为BC的中点,∴,:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴DE=BG,DE∥BG,∴四边形EBGD为平行四边形,∴BE∥DG,∴∠H=∠2,∵∠3=∠2,∴∠H=∠3,∴BF=HF,∵∠1=∠2,∴∠H=∠1,∵E为AD的中点,∴AE=DE,在△AEB和△DEH中,,∴△AEB≌△DEH,∴AB=DH,∵AB=CD,∴CD=DH,∵DH=HF+FD,HF=BF,∴DH=BF+FD,∴CD=BF+FD.【点评】本题考查了平行四边形的性质以及全等三角形的判定,解决本题的关键是利用全等三角形的性质,全等三角形的对应边相等,再利用等量代换即可解答.25.(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.【分析】(1)由师生总数为240人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为240人以及租车总费用不超过2300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x 的值即可解决最值问题.【解答】解:(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤2,∵x为整数,∴x=1,或x=2.设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400,∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.【点评】本题考查了一次函数的应用、解一元一次不等式组已经一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(2)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.26.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=﹣1,b=﹣3;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.【分析】(1)利用非负数的性质可求得a、b的值;(2)过O作OF⊥OE,可得△OEF为等腰直角三角形,可证明△EOC≌△FOB,可证明OB=OC;(3)可证明△AOC≌△DOB,可求得D点坐标,由(2)可求得B点坐标,从而可求得直线BE的解析.【解答】解:(1)∵(a+1)2+=0,∴a+1=0,b+3=0,∴a=﹣1,b=﹣3,故答案为:﹣1;﹣3;(2)OB=OC,证明如下:如图,过O作OF⊥OE,交BE于F,∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形,∴∠EOC+∠DOF=∠DOF+∠FOB=90°,∴∠EOC=∠FOB,且∠OEC=∠OFB=135°,在△EOC和△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC;(3)∵△EOC≌△FOB,∴∠OCE=∠OBE,OB=OC,在△AOC和△DOB中,,∴△AOC≌△DOB(ASA),∴OD=OA,∵A(﹣1,0),C(0,﹣3),∴OD=1,OC=3,∴D(0,﹣1),B(3,0),设直线BE解析式为y=kx+b,把B、D两点坐标代入可得,解得.∴直线BE的解析式为y=x﹣1.【点评】本题主要考查一次函数的综合应用,涉及非负数的性质、全等三角形的判定和性质、等腰直角三角形的性质、待定系数法等知识点.在(1)中注意非负数的性质的应用,在(2)中构造三角形全等是解题的关键,在(3)中证明三角形全等求得D点坐标是解题的关键.本题考查知识点较为基础,综合性强,但难度不大.27.(12分)在矩形ABCD中,AB=6,AD=8,点E在AB上,且BE=2,P是BC 上的动点(BP>2),连接EP,将线段EP绕点E逆时针旋转一定角度后,点P 落在AD上的点F处,以EP,EF为邻边作平行四边形EPGF.(1)如图1,当BP=4时,求证:四边形EPGF是正方形;(2)如图2,当BP=6时,过点G作GH⊥AD,交AD的延长线于点H,连接DG,FP.①求四边形EPGF的周长;②请直接写出∠EFP,∠BPF,∠HFG之间的数量关系;③求△DFG的面积.【分析】(1)先证明四边形EFGP是菱形,再证明∠FEP=90°即可.(2)①在Rt△PBE中,求出PE即可解决问题.②结论:∠EFP=∠BPF﹣∠HFG.利用平行线的性质以及菱形的性质即可证明.=•FD•GH计算即可.③求出DF、GH,根据S△DFG【解答】(1)证明:如图1中,∵四边形EPGF是平行四边形,又∵EF=EP,∴EPGF是菱形,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AB=6,EB=2,∴AE=PB=4,在Rt△AEF和Rt△BPE中,∴Rt△AEF≌Rt△BPE∠AEF=∠BPE,∵∠BPE+∠BEP=90,∴∠AEF+∠BEP=90,∴∠FEP=90,∴EPGF是正方形.(2)如图2中,①解:在Rt△PBE中,∵BE=2 BP=6,∴EP==2,∵EPGF是菱形,∴四边形EPGF的周长为8;②结论:∠EFP=∠BPF﹣∠HFG.理由:∵AD∥BC,∴∠HFP=∠BPF,∵四边形EFGP是菱形,∴∠EFP=∠GFP=∠FPE=∠FPG,∴∠BPE=∠HFG,∴∠BPF﹣∠BPE=∠EPF,∴∠BPF﹣∠HFG=∠EFP.③解:在△HFG和△PBE中,∴△HFG≌△BPE,∴HG=BE=2,∵EF=EP=2,AE=4,∴AF==2,∴FD=8﹣2,=•FD•GH=×(8﹣2)×2=8﹣2.∴S△DFG【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.。
2016-2017学年度第二学期期末质量检测八年级数学试卷(含答案)
2016——2017学年度第二学期八年数学试题答案一、选择题:(每题2分,共16分)1、D2、B3、A4、D5、C6、B7、C8、A9、C 10、D 二、填空题:(每题2分,共16分) 11、3 12、4 13、96 14、2.3 15、y =-2x-2 16、 17、25 18、①②④ 三、解答题:(本题50分) 19、 原式= (6分)20、解:(1)∵四边形ABCD 是矩形,∴∠ABC=90°又∠ACB=30°, ∴AC=2AB ,设AB=x ,则在Rt △ABC 中, 有 ,解得,∴AB=,AC= (4分)(2)四边形BOCE 是菱形,理由是:∵BE ∥AC ,CE ∥BD ,∴四边形BOCE 是平行四边形, 又∵四边形ABCD 是矩形,AO=CO ,BO=DO ,AC=BD , ∴BO=CO ,∴平行四边形BOCE 是菱形 (8分) 21、解:(1)过点P 作PA ⊥x 轴于点A ,在Rt △PAM 中,PA=12,AM=14-9=5,则PM= (4分)(2)作图正确 (6分) 点N 坐标(23,12) (8分) 22、(1)a=5;m=6;p=8;q=7.5 (每个2分,共8分)(2)答案不唯一,正确即可;例如,八年级平均分高;中位数高; 方差小,成绩比较稳定等等 (10分)23、(1) (2分) (4分) (2)当时,有解得 (6分)当时,有 (8分)∵x 为正整数,∴当贡献奖奖状的个数小于等于25个时,选B 公司比较合算;当贡献奖奖状的个数多于25个时,选A 公司比较合算 (10分)四、解答题:(本题18分)24、解:(1) (1分)(2)①填表正确, (3分) 图像正确 (5分)② (1,2);1;2;减小;增大 (8分)(错一空扣一分)③ 设长方形的长为x ,周长为y ,由长方形面积为1,则它的宽为, 根据题意,,由②得,当x=1时,周长最小,最小值为4, ∴长方形的长和宽都为1时,周长为最小 (10分)3323210-222)2(3x x =+3=x 3321351222=+986.13504)102(8.41+=+++=x x x y 543.155.4)102(4.52+=++=x x x y 21y y >543.15986.13+>+x x 171525<x 21y y <171525>x 0≠x x 1)1(2xx y +=25、解:(1)证出 (3分) ∴∠EAF=45° (4分)(2)写出结论 (5分) 证出 (7分) (9分)(3)画出图形 (10分) 直接代入(2)式求值:MN=9 (12分)ADF AGF AGE ABE ∆≅∆∆≅∆,AHN AMN ∆≡∆222MN BM DN =+。
2016-2017学年华师大版八年级下学期期末数学试卷及答案
2016-2017学年八年级下学期期末数学试卷一.选择题(单项选择,每小题3分,共21分)1.(3分)20130的值等于()A.0B.1C.2013 D.﹣20132.(3分)在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.94.(3分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.65.(3分)下列式子成立的是()A.B.C.D.6.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B D=CD B.A B=AC C.∠B=∠C D.∠BAD=∠CAD 7.(3分)如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.4.二.填空题(每小题4分,共40分)8.(4分)3﹣2=.9.(4分)若分式的值为0.则x=.10.(4分)用科学记数法表示:0.000004=.11.(4分)数据2,4,5,7,6的极差是.12.(4分)在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.13.(4分)命题“同位角相等,两直线平行”的逆命题是:.14.(4分)甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差S=3.2,乙同学的方差S=4.1,则成绩较稳定的同学是(填“甲”或“乙”).15.(4分)已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).16.(4分)如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG=.17.(4分)如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形的直角顶点的坐标是.三、解答题(共89分)18.(16分)①计算:②解方程:.19.(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.20.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)21.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60 70 80 90人数(人) 1 3 x 4(1)填空:①x=;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.22.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.23.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.24.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.25.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).26.(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(1)求四边形ABDC的面积.(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?(3)当A1与D不重合时①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.四、附加题(每小题0分,共10分)友情提示:请同学们做完上面考题后,估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分.27.=.28.在平面直角坐标系中,直线y=x+1与y轴的交点坐标是(,)参考答案与试题解析一.选择题(单项选择,每小题3分,共21分)1.(3分)20130的值等于()A.0B.1C.2013 D.﹣2013考点:零指数幂.分析:根据零指数幂公式可得:20130=1.解答:解:20130=1.故选B.点评:本题主要考查了零指数幂的运算,要求同学们掌握任何非0数的0次幂等于1.2.(3分)在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,2)所在的象限是第一象限.故选A.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.9考点:函数值.分析:把x=3代入函数关系式进行计算即可得解.解答:解:x=3时,y=3×3﹣1=8.故选C.点评:本题考查了函数值求解,把自变量的值代入函数关系式计算即可,比较简单.4.(3分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.6考点:中位数.分析:根据这组数据是从大到小排列的,找出最中间的数即可.解答:解:∵9,9,8,8,7,6,5是从大到小排列的,∴处于最中间的数是8,∴这组数据的中位数是8;故选B.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.5.(3分)下列式子成立的是()A.B.C.D.考点:分式的混合运算.分析:利用分式的基本性质,以及分式的乘方法则即可判断.解答:解:A、+=,选项错误;B、当m=1时,=4,故选项错误;C、()2=,故选项错误;D、正确.故选D.点评:本题主要考查分式的混合运算,理解分式的性质以及运算法则是解答的关键.6.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B D=CD B.A B=AC C.∠B=∠C D.∠BAD=∠CAD考点:全等三角形的判定.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.4.考点:反比例函数系数k的几何意义.分析:首先根据反比例系数k的几何意义,可知矩形OAPB的面积=6,然后根据题意,得出图中阴影部分的面积是矩形OAPB的面积的一半,从而求出结果.解答:解:∵P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=6.∴阴影部分的面积=×矩形OAPB的面积=3.故选C.点评:本题考查了反比例函数比例系数k的几何意义和矩形的性质,在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答此题的关键.二.填空题(每小题4分,共40分)8.(4分)3﹣2=.考点:负整数指数幂.专题:计算题.分析:根据幂的负整数指数运算法则计算.解答:解:原式==.故答案为:.点评:本题考查的是幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.9.(4分)若分式的值为0.则x=1.考点:分式的值为零的条件.分析:根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x 的值是多少即可.解答:解:∵分式的值为0,∴,解得x=1.故答案为:1.点评:此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.10.(4分)用科学记数法表示:0.000004=4×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000004=4×10﹣6;故答案为:4×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(4分)数据2,4,5,7,6的极差是5.考点:极差.分析:用这组数据的最大值减去最小值即可.解答:解:由题意可知,极差为7﹣2=5.故答案为5.点评:本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.12.(4分)在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).考点:关于原点对称的点的坐标.分析:根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.解答:解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).点评:本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.13.(4分)命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.考点:命题与定理.分析:把一个命题的题设和结论互换就得到它的逆命题.解答:解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.(4分)甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差S=3.2,乙同学的方差S=4.1,则成绩较稳定的同学是甲(填“甲”或“乙”).考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S=3.2,S=4.1,∴S甲2<S乙2,则成绩较稳定的同学是甲.故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(4分)已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是y=﹣(答案不唯一)(写出一个即可).考点:反比例函数的性质.专题:开放型.分析:设该反比例函数的解析式是y=,再根据它在每个象限内,y随x增大而增大判断出k的符号,选取合适的k的值即可.解答:解:设该反比例函数的解析式是y=,∵它在每个象限内,y随x增大而增大,∴k<0,∴符合条件的反比例函数的解析式可以为:y=﹣(答案不唯一).故答案为:y=﹣(答案不唯一).点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一,只要写出的反比例函数的解析式符合条件即可.16.(4分)如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG=2.5.考点:正方形的性质;线段垂直平分线的性质;勾股定理.分析:求出BC、AB长,求出AM、求出AO,证△GAO∽△MAB,得出比例式,代入求出即可.解答:解:∵M为BC中点,CM=2,∴BC=4,BM=2,∵四边形ABCD是正方形,∴∠B=90°,AB=BC=4,在Rt△ABM中,由勾股定理得:AM==2,∵AM的垂直平分线GH,∴AO=OM=AM=,∠AOG=∠B=90°,∵∠GAO=∠MAB,∴△GAO∽△MAB,∴=,∴=,∴AG=2.5,故答案为:2.5.点评:本题考查了线段垂直平分线,相似三角形的性质和判定,勾股定理,正方形性质的应用,主要考查学生运用性质进行推理和计算的能力.17.(4分)如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是6;(2)三角形的直角顶点的坐标是(8052,0).考点:坐标与图形变化-旋转;三角形的面积.专题:规律型.分析:(1)根据点A、B的坐标求出OA、OB,再根据三角形的面积列式计算即可得解;(2)观察不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商是671可知三角形是第671个循环组的最后一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.解答:解:(1)∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∴△AOB的面积=×4×3=6;(2)由图可知,每3个三角形为一个循环组依次循环,∵2013÷3=671,∴三角形是第671个循环组的最后一个三角形,12×671=8052,∴三角形的直角顶点的坐标是(8052,0).故答案为:6;(8052,0).点评:本题考查了坐标与图形变化﹣旋转,三角形的面积,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(共89分)18.(16分)①计算:②解方程:.考点:解分式方程;分式的加减法.专题:计算题.分析:①原式利用同分母分式的减法法则计算,约分即可得到结果;②分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:①原式===2;②方程两边同乘以5x(x﹣6),得10x=4x﹣24,解得x=﹣4,经检验x=﹣4是分式方程的解.点评:此题考查了解分式方程,以及分式的加减法,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.考点:全等三角形的判定.专题:证明题.分析:由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.解答:证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)考点:作图—复杂作图.专题:作图题.分析:(1)分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN 就是所求的直线;(2)以点C为圆心,任意长为半径画弧,交AC,BC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线CE交AB于D即可.解答:解:如图所示:点评:考查三角形角平分线及边垂直平分线的画法;掌握角平分线与线段垂直平分线的作法是解决本题的关键.21.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60 70 80 90人数(人) 1 3 x 4(1)填空:①x=2;②此学习小组10名学生成绩的众数是90;(2)求此学习小组的数学平均成绩.考点:众数;加权平均数.分析:(1)①用总人数减去得60分、70分、90分的人数,即可求出x的值;②根据众数的定义即一组数据中出现次数最多的数,即可得出答案;(2)根据平均数的计算公式分别进行计算即可.解答:解:(1)①∵共有10名学生,∴x=10﹣1﹣3﹣4=2;②∵90出现了4次,出现的次数最多,∴此学习小组10名学生成绩的众数是90;故答案为:2,90;(2)此学习小组的数学平均成绩是:=(60+3×70+2×80+4×90)=79(分).点评:此题考查了众数和平均数,掌握众数和平均数的概念及公式是本题的关键,众数是一组数据中出现次数最多的数.22.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.考点:待定系数法求一次函数解析式.分析:设该一次函数解析式为y=kx+b(k≠0).把已知点的坐标代入函数解析式,可以列出关于系数k、b的方程组,通过解该方程组可以求得它们的值.解答:解:设该一次函数解析式为y=kx+b(k≠0).由题意,得解得,即k和b的值分别是2和1.点评:本题考查了待定系数法求一次函数解析式.注意:求正比例函数,只要一对x,y 的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.23.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本(30﹣x)本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.考点:一次函数的应用.分析:(1)根据一共准备购买30本笔记本作为奖品,可知购买B种笔记本的数量=30﹣购买A种笔记本的数量;(2)先由购买这两种笔记本共花费的钱数=购买A种笔记本花费的钱数+购买B种笔记本花费的钱数,求出y元与x的函数关系式,再由自变量的取值范围,根据一次函数的增减性,即可求得答案.解答:解:(1)∵某校举行英语演讲比赛,准备购买30本笔记本作为奖品,其中购买A 种笔记本x本,∴购买B种笔记本(30﹣x)本.(2)y=12x+8(30﹣x)=4x+240,∵k=4>0,∴y随x的增大而增大,又∵0≤x≤30,∴当x=0时,y的最小值为240,当x=30时,y的最大值为360.故答案为(30﹣x).点评:本题考查的是用一次函数解决实际问题,此类题是近年2015届中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数值y随x的变化,结合自变量的取值范围确定最值.24.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.分析:(1)把A的坐标代入反比例函数的解析式求出即可;(2)把B的坐标代入反比例函数的解析式求出B的坐标,设平移后的直线的解析式为y=x+b,把B的坐标代入求出即可.解答:解:(1);(2)点B(6,m)在反比例函数的图象上,m=1.5,平移后的直线的解析式为y=x+b,y=x+b的图象过点B,把B的坐标代入得:1.5=6+b,解得:b=﹣4.5,∴平移的距离为4.5.点评:本题考查了用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的理解能力和计算能力.25.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).考点:四边形综合题.分析:(1)根据正方形的周长定义求解;(2)根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;(3)①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG 互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG=GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.解答:(1)解:正方形ABCD的周长=4×4=16;(2)证明:∵四边形ABCD,AEFG都是正方形,∴AB=AD,AE=AG,∵将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ,在△BAE和△DAG,,∴△BAE≌△DAG(SAS),∴BE=DG;(3)①证明:∵△BAE≌△DAG,∴∠ABE=∠ADG,又∵∠AMB=∠DMH,∴∠DHM=∠BAM=90°,∴BH⊥DG;②解:连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;∴BE=,∵S△DEG=GE•ND=DG•HE,∴HE==,∴BH=BE+HE=+=≈5.1.点评:本题考查了四边形的综合题:熟练掌握正方形的性质和旋转的性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和等腰直角三角形的性质进行几何计算.26.(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(1)求四边形ABDC的面积.(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?(3)当A1与D不重合时①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.考点:四边形综合题.专题:综合题.分析:(1)根据平行四边形的判定方法可得到四边形ABCD为平行四边形,然后根据平行四边形的面积公式计算;(2)根据折叠的性质得到AC=CD,然后根据菱形的判定方法可判断四边形ABDC是菱形;(3)①连结A1D,根据折叠性质和平行四边形的性质得到CA1=CA=BD,AB=CD=A1B,∠1=∠CBA=∠2,可证明△A1CD≌△A1BD,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A1D∥BC;②讨论:当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A1CBD=10,即ab=10,由BA1=BA=5,根据勾股定理得到a2+b2=25,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,所以(a+b)2=(2+5)2.解答:解(1)∵AB=CD=5,AB∥CD,∴四边形ABCD为平行四边形,∴四边形ABDC的面积=2×5=10;(2)∵四边形ABDC是平行四边形,∵A1与D重合时,∴AC=CD,∵四边形ABDC是平行四边形,∴四边形ABDC是菱形;(3)①连结A1D,如图,∵△ABC沿BC折叠得到△A1BC,∴CA1=CA=BD,AB=CD=A1B,在△A1CD和△A1BD中∴△A1CD≌△A1BD(SSS),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A1D∥BC;②当∠CBD=90°,∵四边形ABDC是平行四边形,∴∠BCA=90°,∴S△A1CB=S△ABC=×2×5=5,∴S矩形A1CBD=10,即ab=10,而BA1=BA=5,∴a2+b2=25,∴(a+b)2=a2+b2+2ab=45;当∠BCD=90°时,∵四边形ABDC是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b)2=(2+5)2=49,∴(a+b)2的值为45或49.点评:本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.四、附加题(每小题0分,共10分)友情提示:请同学们做完上面考题后,估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分.27.=.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算即可得到结果.解答:解:原式==.故答案为:点评:此题考查了分式的加减法,熟练掌握同分母分式的减法法则是解本题的关键.28.在平面直角坐标系中,直线y=x+1与y轴的交点坐标是(0,1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据y轴上点的坐标特征得到直线y=x+1与y轴的交点的横坐标为0,然后把x=0代入直线解析式求出对应的y的值即可.解答:解:把x=0代入y=x+1得y=1,所以直线y=x+1与y轴的交点坐标是(0,1).故答案为0,1.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了y轴上点的坐标特征.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青山区2016~2017学年度第二学期八年级期末测试
考试时间:2017年6月28日14:00~16:00
一、选择题(共10小题,每小题3分,共30分)
1.若3+x 在实数范围内有意义,则x 的取值范围是( ) A .x >3
B .x >-3
C .x ≥-3
D .x ≤-3
2.下列四组线段中,可以构成直角三角形的是( ) A .1、2、3
B .2、3、4
C .1、2、3
D .4、5、6
3.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )
4.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:
选手 甲 乙 丙 丁 方差
0.56 0.60 0.50 0.45 则在这四个选手中,成绩最稳定的是( ) A .甲
B .乙
C .丙
D .丁
5.正方形具有而菱形不一定具有的性质是( ) A .四边相等
B .对角线相等
C .对角线互相垂直
D .对角线互相平分
6.直线y =-3x +2经过的象限为(
)
A .第一、二、四象限
B .第一、二、三象限
C .第一、三、四象限
D .第二、三、四象限 7.如图,广场中心菱形花坛ABCD 的周长是32米,∠A =60°,则A 、C 两点之间的距离为( ) A .4米
B .34米
C .8米
D .38米
8.已知,在平面直角坐标系xOy 中,点A (-4,0),点B 在直线y =x +2上.当A 、B 两点间的距离最小时,点B 的坐标是( ) A .(22--,2-) B .(22--,2)
C .(-3,-1)
D .(-3,2-)
9.如图,在长方形ABCD 中,AC 是对角线.将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 的中点.若AB =6,BC =8,则线段CH 的长为( ) A .52
B .41
C .102
D .21
10.已知函数⎪⎪⎩⎪
⎪⎨⎧>-≤<+-≤<-+-≤--=)
1(1)10(1)01(1)
1(11x x x x x x x x y 的图象为“W ”型,直线y =kx -k +1与函数y 1的图象有
三个公共点,则k 的值是( )
A .1或
2
1 B .0或
2
1 C .
2
1 D .
21或2
1- 二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知函数y =2x +m -1是正比例函数,则m =___________.
12.已知P 1(-3,y 1)、P 2(2,y 2)是一次函数y =-2x +1图象上的两个点,则y 1__________y 2. 13.已知一组数据0、2、x 、4、5的众数是4,那么这组数据的中位数是___________. 14.如图,把一张长方形纸条ABCD 沿AF 折叠.已知∠ADB =25°,AE ∥BD ,则∠BAF =___________.
15.在青山区“海绵城市”工程中,某工程队接受一段道路施工的任务,计划从2016年10月初至2017年9月底(12个月)完成.施工3个月后,实行倒计时,提高工作效率,剩余工程量与施工时间的关系如图所示,那么按提高工作效率后的速度做完全部工程,则工期可缩短________个月.
16.如图,矩形ABCD 中,AB =4,AD =3,E 为对角线BD 上一个动点,以E 为直角顶点,AE 为直角边作等腰Rt △AEF ,A 、E 、F 按逆时针排列.当点E 从点B 运动到点D 时,点F 的运动路径长为___________.
三、解答题(共8题,共72分) 17.(本题8分)计算:(1) 2238+- (2) )35)(35(-+
18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =
2
1
AC ,连接CE 、OE (1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.
19.(本题8分)作为武汉市政府民生实事之一的公共自行车建设工作已基本完成,“摩拜单车”等租车服务进入市民的生活.某部门对今年5月份一周中的连续7天进行了公共自行车日租车量的统计,并绘制了如下条形图: (1) 求这7天日租车量的众数与中位数;
(2) 求这7天日租车量的平均数,并用这个平均数估计5月份(31天)共租车多少万车次?
20.(本题8分)武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示
(1) 求甲、乙两种收费方式的函数关系式;
(2) 当印刷多少份学案时,两种印刷方式收费一样?
21.(本题8分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD
(1) 求AD的长;
(2) 若∠C=30°,求CD的长.
22.(本题10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A种产品的件数为x(件),生产A、B两种产品所获总利润为y(元)
(1) 试写出y与x之间的函数关系式
(2) 求出自变量x的取值范围
(3) 利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
23.(本题10分)已知:在正方形ABCD中,AB=6,P为边CD上一点,过P点作PE⊥BD 于点E,连接BP
(1) O为BP的中点,连接CO并延长交BD于点F
①如图1,连接OE,求证:OE⊥OC
② 如图2,若5
3
=EF BF ,求DP 的长 (2) CP EP 2
2
+
=___________
24.(本题12分)如图1,直线333+-=x y 分别与y 轴、x 轴交于点A 、点B ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E
(1) 点B 的坐标为__________,不等式0333>+-x 的解集为___________ (2) 若S △COE =S △ADE ,求点D 的坐标
(3) 如图2,以CD 为边作菱形CDFG ,且∠CDF =60°.当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.
青山区2016~2017学年度第二学期八年级期末测试参考答案
一、选择题(共10小题,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10 答案
C
A
D
D
B
A
D
C
B
B
9.提示:取BG 的中点M ,连接MH
二、填空题(共6小题,每小题3分,共18分)
11.1 12.> 13.4 14.57.5°
15.1.5
16.25
16.提示:建立平面直角坐标系 设E (a ,34
3
+-
a ),表示出F 点坐标(三垂直) 三、解答题(共8题,共72分) 17.解:(1) 0;(2) 2
18.解:略(此题条件无聊) 19.解:(1) 8、8;(2) 263.5 20.解:(1) 6101+=x y 甲,x y 25
3=乙 (2) 300
21.解:(1) 2;(2) 33
22.解:(1) y =700x +1200(50-x )=-500x +60000
(2) 由⎩
⎨⎧≤-+≤-+290)50(103360)50(49x x x x ,得30≤x ≤32
(3) 当x =30时,y 有最大值为45000
23.证明:(1) ① ∵∠PEB =∠PCB =90°,O 为BP 的中点
∴OE =OB =OP =OC
∴∠POE =2∠DBP ,∠POC =2∠CBP
∴∠COE =∠POE +∠POC =2(∠DBP +∠CBP )=90° ∴OE ⊥OC
② 连接OE 、CE
∵△COE 为等腰直角三角形 ∴∠ECF =45°
在等腰Rt △BCD 中,BF 2+DE 2=EF 2 设BF =3x ,EF =5x ,则DE =4x ∴3x +4x +5x =26,解得x =2
2
∴DP =2DE =424=x
(2) ∵62==-+=+CD C DP CP EP
∴232
2
=+
CP EP 24.解:(1) (3,0)、x <3
(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD
即33321621⨯⨯=⨯⨯D y ,y D =2
33 当y =233时,2
3
233333==+-x x , ∴D (
23
323,
) (3) 连接CF
∵∠CDF =60° ∴△CDF 为等边三角形 连接AC
∵AB =AC =BC =6 ∴△ABC 为等边三角形 ∴△CAF ≌△CBD (SAS ) ∴∠CAF =∠ACB =60° ∴AF ∥x 轴
设D (m ,333+-m ) 过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF ∴F (2m -6,33)
由平移可知:G (m -9,m 3-)
令⎪⎩⎪⎨⎧-=-=m
y m x 39 ∴点G 在直线393--=x y 上。