如何分析一张已经拿到手的红外谱图
怎么分析红外谱图
分析红外谱图(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200~2100 cm-1烯 1680~1640 cm-1芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。
至此,分析基本搞定,剩下的就是背一些常见常用的健值了!1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm-1)C=C伸缩(1675~1640 cm-1)烯烃C-H面外弯曲振动(1000~675cm-1)。
3.炔烃:伸缩振动(2250~2100cm-1)炔烃C-H伸缩振动(3300cm-1附近)。
4.芳烃:3100~3000cm-1 芳环上C-H伸缩振动1600~1450cm-1 C=C 骨架振动880~680cm-1 C-H面外弯曲振动芳香化合物重要特征:一般在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。
红外光谱图分析
红外光谱图分析简介红外光谱图分析是一种常见的分析方法,广泛应用于化学、生物、材料等领域。
通过测量样品在红外光谱范围内的光吸收,可以获得关于样品中分子结构和化学键的信息。
本文将简要介绍红外光谱图的基本原理、数据处理和常见应用。
基本原理红外光谱图是由红外光谱仪测量得到的,其原理基于分子吸收特性。
在红外光谱范围内,分子会吸收特定波长的红外光,这些波长对应于分子振动和转动。
通常,红外光谱图的横坐标为波数(cm^-1),纵坐标为吸光度或透射率。
数据处理对于红外光谱图的数据处理,通常需要进行以下几个步骤:1.基线校正:红外光谱中可能存在噪声或基线漂移,需要通过基线校正来消除这些干扰。
一种常见的方法是使用多项式函数拟合基线。
import numpy as npimport matplotlib.pyplot as plt# 生成示例数据x = np.linspace(4000, 400, 1000)y = np.random.normal(0, 0.1, size=1000) + np.exp (-0.01 * x)# 多项式拟合coefficients = np.polyfit(x, y, 3)baseline = np.polyval(coefficients, x)# 绘制结果plt.plot(x, y, label='Original Spectrum')plt.plot(x, baseline, label='Baseline')plt.legend()plt.xlabel('Wavenumber (cm$^{-1}$)')plt.ylabel('Absorbance')plt.title('Baseline Correction')plt.show()2.峰提取:在光谱图中,各个峰代表了样品中不同的化学键和功能团。
通过峰提取可以定量分析样品中的各个成分。
如何解析红外光谱图
碳氮伸展酰胺III,1400强峰显。胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰 宽, 仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可 见。
硝基伸缩吸收大,相连基团可弄清。1350、1500,分为对称反对称。
6. 醚特征吸收:1300~1000cm-1 的伸缩振动,
脂肪醚:1150~1060cm-1 一个强的吸收峰
芳香醚:1270~1230cm-1(为Ar-O伸缩),1050~1000cm-1(为R-O伸
缩)
7.醛和酮:
醛的特征吸收:1750~1700cm-1(C=O伸缩),2820,2720cm-1(醛基C-
区 波数 域 (cm-1)
红外光谱的八个峰区
振动类 相关有机化合物中基团的
型
特征频率(cm-1)
O━H伸 缩 N━H 和 37500~ 3200(s,b) 酸 : 单体3560~
说明
无论单体还是缔 合体,νN━ 收都比νO━
O━H 伸缩 振动 区域
H伸缩)
脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共
轭会使吸收频率降低
8.羧酸:羧酸二聚体:3300~2500cm-1 宽而强的O-H伸缩吸收
1720~1706cm-1 C=O伸缩吸收
1320~1210cm-1 C-O伸缩吸收 ,
920cm-1 成键的O-H键的面外弯曲振动
反式取代: 970~
=C━H 面 960(s)
外弯曲
同碳二取代:895~885
三取代: 840~
面内 弯曲 振动 区域
手把手教你红外光谱谱图解析
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
如何解析红外光谱图
如何解析红外光谱图——红外识谱歌红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。
红外光谱具有高度特征性,利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。
解析红外光谱的时候,我们可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。
但很多时候我们手边并没有化合物的标准红外光谱或红外光谱谱图库,这时候就需要自己对红外谱图进行解析。
解析红外谱图最重要的是确定化合物的官能团。
要想快速分辨官能团,需要知道红外谱图中常见官能团的峰位置和峰形。
下面分享一些红外谱图歌,方便大家快速解析红外谱图。
红外谱图歌2960、2870是甲基,2930、2850亚甲峰。
1470碳氢弯,1380甲基显。
二个甲基同一碳,1380分二半。
面内摇摆720,长链亚甲亦可辨。
烯氢伸展过三千,排除倍频和卤烃。
末端烯烃此峰强,只有一氢不明显。
化合物,又键偏,~1650会出现。
烯氢面外易变形,1000以下有强峰。
910端基氢,再有一氢990。
顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。
炔氢伸展三千三,峰强峰形大而尖。
三键伸展二千二,炔氢摇摆六百八。
芳烃呼吸很特别,1600~1430,1650~2000,取代方式区分明。
900~650,面外弯曲定芳氢。
五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。
C-O伸展吸收大,伯仲叔基易区别。
1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。
1110醚链伸,注意排除酯酸醇。
若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。
苯环若有甲氧基,碳氢伸展2820。
次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。
缩醛酮,特殊醚,1110非缩酮。
酸酐也有C-O键,开链环酐有区别,开链峰宽一千一,环酐移至1250。
红外谱图分析方法总结
红外谱图分析方法总结1. 简介红外(Infrared)分析技术是一种非常重要的分析测试方法,它可以用来研究物质的结构、组成、性质及相互作用等方面的信息。
红外谱图分析方法通过测量物质对红外辐射的吸收和散射,并结合相关的理论和数据库,得出样品的红外光谱图。
本文将总结常用的红外谱图分析方法。
2. 样品制备在进行红外谱图分析之前,首先需要将待测的样品制备成适合红外光谱测量的形式。
常见的样品制备方法包括固体试样法、液体试样法和气相试样法。
•固体试样法:将固体样品粉碎并与适量的无水氯化钾或氯化钠混合,制成样品块。
也可以使用压片法,将粉末样品压制成片。
•液体试样法:将液体样品滴在透明基片上,使其干燥后形成薄膜。
也可以将液体样品放入适合的红外吸收池中进行测量。
•气相试样法:将气体样品填充到气室中,通过红外吸收池进行测量。
3. 红外光谱测量仪器进行红外谱图分析需要使用红外光谱测量仪器。
常见的红外光谱测量仪器有红外光谱仪和红外光谱仪。
红外光谱仪主要由光源、干涉仪、样品室、探测器和数据采集系统等组成。
它通过生成红外光源并使其通过样品,然后测量样品对不同波长的红外光的吸收情况。
常用的红外光谱仪有傅立叶红外光谱仪(FTIR)和分散式红外光谱仪。
红外光谱仪是一种通过获取光谱仪的光栅分散红外光的仪器。
它通过将红外光分散为不同的波长,并通过探测器检测各个波长的红外光强度,得到红外光谱图。
4. 红外谱图解释红外谱图是指样品在红外区域内的吸收峰和吸收强度的图谱。
通过研究红外谱图,可以得到样品的结构和组成等信息。
红外谱图的解释可以从以下几个方面进行:•吸收峰的位置:吸收峰的位置与样品中存在的化学键相关。
不同化学键对应着不同波数的吸收峰。
•吸收峰的强度:吸收峰的强度与样品中某种化学键的含量相关。
吸收峰的强度越高,表示样品中该化学键的含量越多。
•布拉格方程:通过使用布拉格方程可以计算吸收峰的波数。
•参考谱库:借助谱库中的红外光谱标准数据,可以将待测样品的红外光谱与已知物质进行比对和鉴定。
红外光谱解析法
如何分析一张已经拿到手的xx谱图呢?你可以按如下步骤来:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm^-1烯1680~1640 cm^-1芳环1600,1580,1500,1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。
至此,分析基本搞定,剩下的就是背一些常见常用的健值了!………………………………………………………………………………………………………1.烷烃:C-H伸缩振动(3000-2850cm^-1)C-H弯曲振动(1465-1340cm^-1)一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm^-1)C=C伸缩(1675~1640 cm^-1)烯烃C-H面外弯曲振动(1000~675cm^1)。
傅立叶红外图谱详细分析方法大全
傅立叶红外光谱图详细解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。
最新如何解析红外光谱图
如何解析红外光谱图一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n:化合价为4价的原子个数(主要是C原子),4:化合价为3价的原子个数(主要是N原子),n3n:化合价为1价的原子个数(主要是H,X原子)1(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。
二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。
3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。
怎样正确解析红外光谱谱图?
C=C
芳环中C=C
第
—C=O
三
—NO2
区
—NO2 S=O
域
1680—1620 1600,1580 1500,1450 1850—1600
1600—1500 1300—1250 1220—1040
伸缩 伸缩
伸缩
反对称伸缩 对称伸缩 伸缩m,来自 vss s s
苯环的骨架振动
其他吸收带干扰少,是判断羰 基(酮类、酸类、酯类、酸酐 等)的特征频率,位置变动大
根据特征吸收的位置,判断可能存在的特征官能团
图谱解析训练1
图谱解析训练2
图谱解析训练3
图谱解析训练4
—CH3
域
—CH2 —CH2
吸收频 率
(cm-1 )
3650— 3580 3400— 3200 3500— 3300 3400— 3100 2600— 2500
3300附近 3010— 3040 3030附近
2960±5 2870±10 2930±5 2850±10
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
区,判断官能团的种类,最后查看指纹区,判断其精细结构,确 定结构式
注意:在解析过程中,要把注意力集中到主要基团的相关峰上,避免孤 立解析。
分子的不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的 “对”数。如:乙烯变成饱和烷烃需要两个氢原子,不饱和 度为1。
计算: 若分子中仅含一,二,三,四价元素(H,O,N, C),则可按下式进行不饱和度的计算:
各种官能团的吸收频率范围
从第一区域到第四区域,4000cm-1到400cm-1各种官能团的特征吸收频 率范围。
区 域
基团
—OH(游离)
红外谱图峰位分析方法
红外谱图峰位分析⽅法红外谱图分析(⼀)基团频率和特征吸收峰物质的红外光谱,是其分⼦结构的反映,谱图中的吸收峰,与分⼦中各基团的振动形式相对应。
多原⼦分⼦的红外光谱与其结构的关系,⼀般是通过实验⼿段得到的。
这就是通过⽐较⼤量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。
实验表明,组成分⼦的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有⾃⼰特定的红外吸收区域,分⼦其它部分对其吸收位置影响较⼩。
通常把这种能代表基团存在、并有较⾼强度的吸收谱带称为基团频率,其所在的位置⼀般⼜称为特征吸收峰。
根据化学键的性质,结合波数与⼒常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1氢键区2 500~2 000 cm-1产⽣吸收基团有O—H、C—H、N—H;叁键区2 000~1 500 cm-1C≡C、C≡N、C═C═C双键区1 500~1 000 cm-1C═C、C═O等单键区按吸收的特征,⼜可划分为官能团区和指纹区。
⼀、官能团区和指纹区红外光谱的整个范围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。
4 000~1 300 cm-1区域的峰是由伸缩振动产⽣的吸收带。
由于基团的特征吸收峰⼀般位于⾼频范围,并且在该区域内,吸收峰⽐较稀疏,因此,它是基团鉴定⼯作最有价值的区域,称为官能团区。
在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产⽣的复杂光谱。
当分⼦结构稍有不同时,该区的吸收就有细微的差异。
这种情况就像每个⼈都有不同的指纹⼀样,因⽽称为指纹区。
指纹区对于区别结构类似的化合物很有帮助。
指纹区可分为两个波段(1)1 300~900 cm-1这⼀区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振动和C═S,S═O,P═O等双键的伸缩振动吸收。
(2)900~600 cm-1这⼀区域的吸收峰是很有⽤的。
快速分析红外谱图要诀
快速分析红外谱图要诀掌握如下步骤来:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm^-1烯1680~1640 cm^-1芳环1600,1580,1500,1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如28 20,2720和1750~1700cm^-1的三个峰,说明醛基的存在。
至此,分析基本搞定,剩下的就是背一些常见常用的健值了!…………………………………………………………………………………………………… ………1.烷烃:C-H伸缩振动(3000-2850cm^-1)C-H弯曲振动(1465-1340cm^-1)一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm^-1)C=C伸缩(1675~1640 cm^-1)烯烃C-H面外弯曲振动(1000~675cm^1)。
如何解析红外光谱图解读
如何解析红外光谱图一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3—n1)/2其中::化合价为4价的原子个数(主要是C原子),n4:化合价为3价的原子个数(主要是N原子),n3n:化合价为1价的原子个数(主要是H,X原子)1(2)分析3300~2800cm—1区域C—H伸缩振动吸收;以3000 cm—1为界:高于3000cm—1为不饱和碳C—H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C—H伸缩振动吸收;(3)若在稍高于3000cm—1有吸收,则应在 2250~1450cm—1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm—1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm—1的三个峰,说明醛基的存在.二、熟记健值1。
烷烃:C—H伸缩振动(3000-2850cm-1)C—H弯曲振动(1465—1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm—1的频率吸收.2。
烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C—H面外弯曲振动(1000~675cm-1)。
3.炔烃:炔烃C—H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm —1).4.芳烃:芳环上C-H伸缩振动3100~3000cm—1, C=C 骨架振动1600~1450cm —1, C—H面外弯曲振动880~680cm—1。
红外图谱分析方法大全
红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。
如何分析红外图谱
经验】如何分析已经拿到手的红外谱图可以按如下步骤来:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800 cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000 cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000 cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000 cm-1有吸收,则应在2250~1450 cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔2200~2100 cm-1烯1680~1640 cm-1芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm-1的三个峰,说明醛基的存在。
至此,分析基本搞定,剩下的就是背一些常见常用的健值了!1.烷烃:C-H伸缩振动(3000-2850 cm-1)C-H弯曲振动(1465-1340 cm-1)一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010 cm-1)C=C伸缩(1675~1640 cm-1)烯烃C-H面外弯曲振动(1000~675 cm-1)。
红外图谱分析方法大全
红外图谱分析是光谱分析技术中的一种,它利用红外光作为光源,检测样品的吸收、反射、散射等特性,从而得到样品的分子结构和化学组成。
下面是红外图谱分析方法的详细步骤:一、准备工作在进行红外图谱分析之前,需要准备好相应的仪器和样品。
红外光谱仪通常由光源、光阑、干涉仪、样品室、检测器等部分组成。
在采集样品红外光谱时,需要使用专门的样品制备技术,如样品压制、样品溶液制备等。
二、样品制备样品制备是红外图谱分析中非常重要的一步,因为只有样品中的分子在红外光的作用下产生吸收、反射、散射等特性,才能得到样品的分子结构和化学组成。
样品制备需要根据样品的性质和所用光谱仪的类型来选择不同的制备方法,如固体样品需要进行研磨和压片,液体样品需要进行溶液制备等。
三、谱图解析在采集到样品的红外光谱后,需要通过谱图解析来得到样品的分子结构和化学组成。
谱图解析需要掌握一定的方法技巧,例如:1. 确定光谱类型:根据光谱中出现的特征峰,确定光谱的类型。
例如,如果是伸缩振动,则可以判断出样品的分子结构中存在这种键。
2. 确定基团:根据特征峰的位置和形状,确定样品中存在的基团。
例如,如果出现了苯环的振动吸收峰,则可以判断出样品中含有苯环结构。
3. 确定分子结构:通过确定基团和键的类型,可以得到样品的分子结构。
例如,如果一个化合物的红外光谱中出现了C-H键的振动吸收峰,则可以判断出这个化合物的分子结构中存在C-H键。
四、定量分析除了定性分析外,红外光谱还可以用于定量分析。
通过测量特征峰的强度和宽度等参数,可以计算出样品中某种物质的含量。
例如,可以利用红外光谱技术测定高聚物中某种单体的含量。
五、应用领域红外光谱在多个领域都有广泛的应用,例如:1. 化学领域:用于研究有机化合物、无机化合物的分子结构和化学反应机理等。
2. 材料科学领域:用于研究高聚物、无机非金属材料、金属材料的结构和化学组成等。
3. 环境科学领域:用于监测大气、水体、土壤等环境中的有害物质和污染物的含量等。
红外光谱解析方法
红外光谱解析方法
红外光谱解析方法主要包括以下四个步骤:
1. 收集红外光谱数据:这是解析红外光谱的第一步,可以通过实验或在线数据库获得红外光谱数据。
2. 绘制红外光谱图:将收集到的红外光谱数据以图形形式表示出来,横轴为波数(单位为cm^-1),纵轴为透射比或吸光度。
3. 观察红外光谱图:观察红外光谱图可以发现不同物质的红外光谱具有不同的特征峰,这些特征峰的位置和强度反映了物质的结构和组成。
4. 解析红外光谱图:通过比对已知的红外光谱数据库或利用化学计量学方法对未知的红外光谱进行解析,可以推断出物质的结构和组成。
在具体解析红外光谱时,可以参考以下方法:
1. 谱库对比:适用于单一物质和均聚物,对于多组分共聚物检索匹配度不高;谱库涵盖不高的情况下无法匹配出对应物质。
2. 排除法:不能确定物质是什么,通过排除法确定不是什么物质,如1870cm-1-1550cm-1没有出现对应的特征峰,则代表此物质不含羰基基团C=O,从而判定物质不属于聚酯、聚酰胺等含羰基高聚物。
3. 认可法:主要吸收带对应主要官能团位置。
4. 排除与认可结合法:按谱带位置、相对强度、形状确定某些基团的存在,同时排除某些结构。
实际谱图解析过程中,可能需要上述四种方法相结合同时应用才能更准确的解析红外光谱图。
红外谱图峰位分析方法
红外谱图分析(一)基团频率和特征吸收峰物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。
实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。
通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1氢键区2 500~2 000 cm-1产生吸收基团有O—H、C—H、N—H;叁键区2 000~1 500 cm-1C≡C、C≡N、C═C═C双键区1 500~1 000 cm-1C═C、C═O等单键区按吸收的特征,又可划分为官能团区和指纹区。
一、官能团区和指纹区红外光谱的整个范围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。
4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。
由于基团的特征吸收峰一般位于高频范围,并且在该区域内,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。
在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。
当分子结构稍有不同时,该区的吸收就有细微的差异。
这种情况就像每个人都有不同的指纹一样,因而称为指纹区。
指纹区对于区别结构类似的化合物很有帮助。
指纹区可分为两个波段(1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振动和C═S,S═O,P═O等双键的伸缩振动吸收。
(2)900~600 cm-1这一区域的吸收峰是很有用的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何分析一张已经拿到手的红外谱图
如何分析一张已经拿到手的红外谱图
如何分析一张已经拿到手的红外谱图呢?
你可以按如下步骤来:
(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:
不饱和度=F+1+(T-O)/2 其中:
F:化合价为4价的原子个数(主要是C原子),
T:化合价为3价的原子个数(主要是N原子),
O:化合价为1价的原子个数(主要是H原子),
例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱
和度;
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱
和C-H伸缩振动吸收;
(3)若在稍高于3000cm^-1有吸收,则应在 2250~1450cm^-1频区,分析不饱和碳碳键的伸
缩振动吸收特征峰,其中:
炔 2200~2100 cm^-1
烯 1680~1640 cm^-1
芳环 1600,1580,1500,1450 cm^-1
若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区 ,以确定取
代基个数和位置(顺反,邻、间、对);
(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的
官能团;
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。
至此,分析基本搞定,剩下的就是背一些常见常用的健值了!………………………………………………………………………………………………………
……
1.烷烃:C-H伸缩振动(3000-2850cm^-1)
C-H弯曲振动(1465-1340cm^-1)
一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm^-1)
C=C伸缩(1675~1640 cm^-1)
烯烃C-H面外弯曲振动(1000~675cm^1)。
3.炔烃:伸缩振动(2250~2100cm^-1)
炔烃C-H伸缩振动(3300cm^-1附近)。
4.芳烃:3100~3000cm^-1 芳环上C-H伸缩振动
1600~1450cm^-1 C=C 骨架振动
880~680cm^-1 C-H面外弯曲振动
芳香化合物重要特征:一般在1600,1580,1500和1450cm^-1可能出现强度不等的4个峰。
880~680cm^-1,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。
5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,
O-H 自由羟基O-H的伸缩振动:3650~3600cm^-1,为尖锐的吸收峰,
分子间氢键O-H伸缩振动:3500~3200cm^-1,为宽的吸收峰;
C-O 伸缩振动: 1300~1000cm^-1
O-H 面外弯曲: 769-659cm^-1
6. 醚: 特征吸收: 1300~1000cm^-1 的伸缩振动,
脂肪醚: 1150~1060cm^-1 一个强的吸收峰
芳香醚:两个C-O伸缩振动吸收: 1270~1230cm^-1(为Ar-O伸缩)
1050~1000cm^-1(为R-O伸缩)
7.醛和酮: 醛的主要特征吸收: 1750~1700cm^-1(C=O伸缩)
2820,2720cm^-1(醛基C-H伸缩)
脂肪酮: 1715cm^-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低
8.羧酸:羧酸二聚体: 3300~2500cm^-1 宽,强的O-H伸缩吸收
1720~1706cm^-1 C=O 吸收
1320~1210cm^-1 C-O伸缩
920cm^-1 成键的O-H键的面外弯曲振动
9.酯: 饱和脂肪族酯(除甲酸酯外)的C=O 吸收谱带: 1750~1735cm^-1区域
饱和酯C-C(=O)-O谱带:1210~1163cm^-1 区域 ,为强吸收
10.胺:3500~3100 cm^-1, N-H 伸缩振动吸收
1350~1000 cm^-1, C-N 伸缩振动吸收
N-H变形振动相当于CH2的剪式振动方式, 其吸收带在:
1640~1560cm^-1, 面外弯曲振动在900~650cm^-1.
11.腈:腈类的光谱特征:三键伸缩振动区域,有弱到中等的吸收
脂肪族腈 2260-2240cm^-1
芳香族腈 2240-2222cm^-1
12.酰胺: 3500-3100cm^-1 N-H伸缩振动
1680-1630cm^-1 C=O 伸缩振动
1655-1590cm^-1 N-H弯曲振动
1420-1400cm^-1 C-N伸缩
13.有机卤化物:
C-X 伸缩脂肪族
C-F 1400-730 cm^-1
C-Cl 850-550 cm^-1
C-Br 690-515 cm^-1
C-I 600-500 cm^-1
红外光谱识别歌
红外可分远中近,中红特征指纹区,
1300来分界,注意横轴划分异。
看图要知红外仪,弄清物态液固气。
样品来源制样法,物化性能多联系。
识图先学饱和烃,三千以下看峰形。
2960、2870是甲基,2930、2850亚甲峰。
1470碳氢弯,1380甲基显。
二个甲基同一碳,1380分二半。
面内摇摆720,长链亚甲亦可辨。
烯氢伸展过三千,排除倍频和卤烷。
末端烯烃此峰强,只有一氢不明显。
化合物,又键偏,~1650会出现。
烯氢面外易变形,1000以下有强峰。
910端基氢,再有一氢990。
顺式二氢690,反式移至970;
单氢出峰820,干扰顺式难确定。
炔氢伸展三千三,峰强很大峰形尖。
三键伸展二千二,炔氢摇摆六百八。
芳烃呼吸很特征,1600~1430。
1650~2000,取代方式区分明。
900~650,面外弯曲定芳氢。
五氢吸收有两峰,700和750;
四氢只有750,二氢相邻830;
间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。
C-O伸展吸收大,伯仲叔醇位不同。
1050伯醇显,1100乃是仲,
1150叔醇在,1230才是酚。
1110醚链伸,注意排除酯酸醇。
若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。
苯环若有甲氧基,碳氢伸展2820。
次甲基二氧连苯环,930处有强峰,
环氧乙烷有三峰,1260环振动,
九百上下反对称,八百左右最特征。
缩醛酮,特殊醚,1110非缩酮。
酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。
羰基伸展一千七,2720定醛基。
吸电效应波数高,共轭则向低频移。
张力促使振动快,环外双键可类比。
二千五到三千三,羧酸氢键峰形宽,
920,钝峰显,羧基可定二聚酸、
酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。
羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。
1740酯羰基,何酸可看碳氧展。
1180甲酸酯,1190是丙酸,
1220乙酸酯,1250芳香酸。
1600兔耳峰,常为邻苯二甲酸。
氮氢伸展三千四,每氢一峰很分明。
羰基伸展酰胺I,1660有强峰;
N-H变形酰胺II,1600分伯仲。
伯胺频高易重叠,仲酰固态1550;
碳氮伸展酰胺III,1400强峰显。
胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。
1600碳氢弯,芳香仲胺千五偏。
八百左右面内摇,确定最好变成盐。
伸展弯曲互靠近,伯胺盐三千强峰宽,仲胺盐、叔胺盐,2700上下可分辨,
亚胺盐,更可怜,2000左右才可见。
硝基伸缩吸收大,相连基团可弄清。
1350、1500,分为对称反对称。
氨基酸,成内盐,3100~2100峰形宽。
1600、1400酸根展,1630、1510碳氢弯。
盐酸盐,羧基显,钠盐蛋白三千三。
矿物组成杂而乱,振动光谱远红端。
钝盐类,较简单,吸收峰,少而宽。
注意羟基水和铵,先记几种普通盐。
1100是硫酸根,1380硝酸盐,
1450碳酸根,一千左右看磷酸。
硅酸盐,一峰宽,1000真壮观。
勤学苦练多实践,红外识谱不算难。