相似三角形的基本模型及其运用

合集下载

相似三角形的性质和实际应用

相似三角形的性质和实际应用

相似三角形的性质和实际应用相似三角形是初中数学中一个重要的概念,它有着广泛的实际应用。

本文将介绍相似三角形的性质以及在实际生活中的应用。

一、相似三角形的性质相似三角形是指具有相同的形状但大小不同的三角形。

相似三角形的性质有以下几点:1.对应角相等:如果两个三角形的三个内角分别对应相等,则它们是相似三角形。

例如,如果∠A=∠D,∠B=∠E,∠C=∠F,则△ABC∽△DEF。

2.对应边成比例:相似三角形中,对应边的长度成比例。

即如果两个三角形的两个对应边的比值相等,则它们是相似三角形。

例如,如果AB/DE=BC/EF=AC/DF,则△ABC∽△DEF。

3.周长比例:相似三角形的周长之比等于对应边长度之比。

设两个相似三角形的周长分别为L1和L2,对应边长度之比为k,则有L1/L2=k。

4.面积比例:相似三角形的面积之比等于对应边长度平方的比值。

设两个相似三角形的面积分别为S1和S2,对应边长度之比为k,则有S1/S2=k²。

二、相似三角形的实际应用1.测量高度:相似三角形的性质可以在测量高度时应用。

例如,在测量一座高楼的高度时,可以利用相似三角形的原理,通过测量自己的身高及影子的长度,然后利用身高与影子的长度之比,以及高楼与其影子的长度之比,计算出高楼的高度。

2.影视特技:在电影、电视剧等影视制作中,有时需要通过特技手法来表现出高楼倒塌等场景。

这时,可以利用相似三角形的性质,制作比例缩小的模型,然后通过摄影机的角度选择和镜头拉远,使得模型在电影中看起来像真实的大楼倒塌一样。

3.地图测量:在地图制作和测量工作中,也经常使用相似三角形的原理。

通过测量地面上的一段距离和其在地图上的投影长度,可以得到地面与地图的比例,从而便于进行地图上其他地点的距离估算。

4.影像重建:在计算机视觉和计算机图形学领域,相似三角形的概念也被广泛应用。

通过计算图像中物体的相似三角形关系,可以进行三维模型的重建,实现计算机生成的虚拟现实场景。

相似三角形模型总结

相似三角形模型总结

相似三角形模型总结相似三角形是中学数学中常见的一个概念。

相似三角形有着非常重要的应用,尤其在建筑、地图、航空等领域中被广泛地运用。

在这篇文章中,我将对相似三角形的模型及其应用进行总结。

一、相似三角形的定义相似三角形是指形状相似而大小不同的两个或多个三角形。

它们的对应角度相等,对应边的比例相等。

根据这个定义,我们可以推出相似三角形的判定定理:若两个三角形对应角度分别相等,则它们是相似的。

二、重心模型重心模型是一种抽象的几何模型,它是在研究固体对象的重心和转动惯量时得出的。

对于任意三角形 ABC,以其三条边的中点为顶点,连上互相垂直的直线,将它们相交于 G 点。

这里 G 点称为三角形 ABC 的重心,它与每个中点连成的线段相等。

同时,可以证明如果一个点在三角形内部且到三边距离的乘积等于其到三条中线距离的乘积,则该点一定是三角形的重心。

三、海龟图模型海龟图模型是一个很著名的相似三角形应用模型,它是由美国数学家T. N. Thiele 提出的。

在海龟图中,一个三角形符号代表前进一步,一个圆点符号则代表不动。

当这个图形以相似的规律继续扩展时,就能在图形中看到似乎随机且自相似的模式。

在实际操作中,我们可以将这个模型用于分形的制作和操作中,实现较好的效果。

四、印章模型印章模型是相似三角形的另一种应用模型。

在制作印章时,多会使用到相似三角形的概念。

根据相似三角形的定义,我们可以通过相似三角形来制造缩小复制的图案。

具体来说,我们可以通过将大三角形分割为单位面积相等的若干小三角形,然后根据相似的规律进行缩小,就可以得到与大三角形相似而更小的三角形。

五、三角剖分模型三角剖分模型是相似三角形的一种实际应用模型。

在三角剖分中,我们会把一个多边形分解为多个三角形,这些三角形可以保持相似性,这比将多边形分解成其它形状的图形更容易实现。

总结在本文中,我们总结了几种相似三角形的应用模型,这些模型不仅具有学术研究的意义,更能够应用于实际的生产和生活中。

相似三角形的应用

相似三角形的应用

相似三角形的应用相似三角形是指具有相同形状但大小不同的两个或多个三角形。

相似三角形之间存在一种特殊的比例关系,通过这种比例关系,我们可以运用相似三角形解决各种实际问题。

本文将重点介绍相似三角形的应用领域及其在数学和几何中的具体运用。

一、相似三角形在实际问题中的应用1. 测量高度和距离:相似三角形的应用在测量高度和距离方面非常常见。

例如,在无法直接测量建筑物或树木的高度时,可以通过相似三角形的比例关系,利用已知的高度和距离来计算未知的高度。

类似地,当无法直接测量两个物体之间的距离时,可以利用相似三角形的比例关系来推算出距离。

2. 图像的放大和缩小:在艺术和设计领域中,相似三角形的应用非常重要。

当我们需要将一幅图像进行放大或缩小时,可以利用相似三角形的性质来确定新图像与原图像的比例关系,从而实现图像的变形。

3. 建筑设计与规划:在建筑设计与规划中,相似三角形的应用也非常普遍。

通过相似三角形可以计算出建筑物的高度、宽度、长度等尺寸信息,从而帮助设计师进行准确的规划和设计。

二、相似三角形在数学中的应用1. 比例和比值的计算:相似三角形的比例关系可以用来计算不同长度之间的比例和比值。

通过相似三角形的性质,我们可以建立起各种数学关系式,进行比例和比值的计算,从而解决许多实际和抽象的问题。

2. 三角函数的定义和性质:在三角函数的定义和性质中,相似三角形也扮演着重要角色。

例如,在定义正弦、余弦和正切函数时,就需要利用相似三角形的性质来推导出它们的数学表示式。

相似三角形的运用使得三角函数的计算和应用更加简便和灵活。

3. 几何图形的相似性判定:相似三角形的性质在判定几何图形的相似性方面起着至关重要的作用。

根据相似三角形的比例关系,我们可以通过对角、边长比较等方法来判断两个图形是否相似,并进一步推导出它们之间的其他性质。

总结:相似三角形在实际问题、数学和几何中都有着广泛的应用。

通过运用相似三角形的比例关系,我们可以解决测量、计算和设计等问题,在数学和几何中推导出各种定理和性质。

相似三角形模型(全)课件

相似三角形模型(全)课件

在解题过程中,可以根据题目的条件 选择适当的方法来证明或推导结论。
全等三角形可以用来证明两个三角形 完全重合,而相似三角形则可以用来 研究两个三角形的形状和大小关系。
05
相似三角形的证明方法
利用角角相似的证明方法
01
02
03
总结词
通过比较两个三角形的对 应角,如果两个三角形有 两组对应的角相等,则这 两个三角形相似。
相似三角形的对应角相等
总结词
如果两个三角形相似,则它们的 对应角相等。
详细描述
根据相似三角形的定义,如果两 个三角形对应的角都相等,则这 两个三角形是相似的。因此,相 似三角形的对应角必然相等。
相似三角形的对应边成比例
总结词
如果两个三角形相似,则它们的对应边之间存在一定的比例关系。
详细描述
由于两个三角形相似,它们的对应角相等,根据三角形的性质,对应的边之间 必然存在一定的比例关系,这个比例关系是固定的,与三角形的形状和大小无 关。
相似三角形的面积比等于边长比的平方
总结词
如果两个三角形相似,则它们的面积之比等于对应边长之比 的平方。
详细描述
根据相似三角形的性质,两个相似三角形的对应边长之比是 固定的,设为k。那么它们的面积之比就是k的平方,即k^2 。这意味着相似三角形的面积比等于边长比的平方。
相似三角形的周长比等于边长比
相似三角形模型(全)课件
目 录
• 相似三角形的基本概念 • 相似三角形的性质和定理 • 相似三角形的应用 • 相似三角形与全等三角形的关系 • 相似三角形的证明方法
01
相似三角形的基本概念
相似三角形的定义
相似三角形的定义
相似三角形的性质
如果两个三角形对应的角相等,则这 两个三角形相似。

相似三角形12种基本模型证明

相似三角形12种基本模型证明

相似三角形12种基本模型证明相似三角形是指拥有相同形状但不同大小的三角形。

在三角形中,如果它们的对应角度相等,那么它们就是相似三角形。

相似三角形一般用比例关系表示。

下面是相似三角形12种基本模型的证明:1. AAA相似模型如果两个三角形的三个角分别相等,则它们是相似的。

证明:三角形的三个角之和为180度。

如果两个三角形的三个角分别相等,那么它们的三个角和也相等,即这两个三角形的三个角和相等,因此它们是相似的。

2. AA相似模型如果两个三角形中有两个对应角相等,则它们是相似的。

证明:假设两个三角形的对应角分别为A和A’,B和B’,C和C’。

由于A和A’相等,B和B’相等,那么它们的第三个对应角C和C’也必须相等。

因此,这两个三角形的三个角分别相等,它们是相似的。

3. SSS相似模型如果两个三角形的三条边分别成比例,则它们是相似的。

证明:假设两个三角形的三条边为a, b, c和a’, b’, c’。

由于它们是成比例的,即a/a’= b/b’= c/c’,那么它们的三边比例相等,即它们是相似的。

4. SAS相似模型如果两个三角形中有两条边成比例,且夹角相等,则它们是相似的。

证明:假设两个三角形的两条边为a, b和a’, b’,夹角为C和C’。

由于它们是成比例的,即a/a’= b/b’,那么它们的三边比例相等。

又由于它们的夹角相等,即C = C’,因此它们是相似的。

5. ASA相似模型如果两个三角形中有两个角相等,且它们对应的两条边成比例,则它们是相似的。

证明:假设两个三角形的两个对应角分别为A和A’,B和B’,且对应的两条边分别为a, a’和b, b’。

由于它们的两条边成比例,即a/a’= b/b’,那么它们的三边比例相等。

又由于它们的两个角相等,即A = A’,因此它们是相似的。

6. HL相似模型如果两个三角形中有一条边和一条斜边分别成比例,且这两条边夹角相等,则它们是相似的。

证明:假设两个三角形的一条边为b,斜边为c,且夹角为C,另一个三角形的一条边为b’,斜边为c’,且夹角为C’。

三角形相似基本模型

三角形相似基本模型

三角形相似基本模型一、引言三角形是几何学中最基本的图形之一,而相似三角形则是三角形中的重要概念之一。

相似三角形是指具有相同形状但大小不同的两个三角形。

在实际生活中,我们经常会遇到需要利用相似三角形来解决问题的情况。

本文将介绍三种常见的三角形相似基本模型,并通过具体例子来说明其应用。

二、模型一:角-角相似在角-角相似模型中,两个三角形的对应角度相等。

具体来说,如果两个三角形的角度分别为A、B、C和A'、B'、C',且满足A=A'、B=B'、C=C',那么这两个三角形是相似的。

例如,已知三角形ABC与三角形A'B'C'的角度分别为∠A=40°、∠B=60°、∠C=80°,且∠A'=40°、∠B'=60°、∠C'=80°,则可以得出三角形ABC与三角形A'B'C'是相似的。

在实际应用中,我们可以利用角-角相似模型解决一些测量问题。

例如,在无法直接测量某个角度时,我们可以利用已知的相似三角形来计算出该角度的近似值。

三、模型二:边-边-边相似在边-边-边相似模型中,两个三角形的对应边长成比例。

具体来说,如果两个三角形的边长分别为a、b、c和a'、b'、c',且满足a/a'=b/b'=c/c',那么这两个三角形是相似的。

例如,已知三角形ABC的边长分别为AB=4cm、BC=6cm、AC=8cm,而三角形A'B'C'的边长分别为A'B'=8cm、B'C'=12cm、A'C'=16cm,则可以得出三角形ABC与三角形A'B'C'是相似的。

在实际应用中,我们经常会遇到需要测量无法直接测量的边长的情况。

相似三角形的基本模型归纳总结

相似三角形的基本模型归纳总结

相似三角形的基本模型归纳总结
相似三角形是指拥有相似的形状但大小不同的三角形。

在相似三角形中,对应角度相等,而对应边长之间存在比例关系。

以下是一些基本的相似三角形模型:
1. 比例模型:在两个相似三角形中,对应边长之比相等。

例如,若∆ABC与∆DEF相似,则有AB/DE = BC/EF = AC/DF。

2. 三角形高度模型:在两个相似三角形中,对应高度之比等于对应边长之比。

例如,若∆ABC与∆DEF相似,则有h_1/h_2 = AB/DE = BC/EF = AC/DF,其中h_1和h_2分别为∆ABC和
∆DEF的高度。

3. 角平分线模型:在两个相似三角形中,对应角的平分线所延伸的比例相等。

例如,若∆ABC与∆DEF相似,角A和角D相等,则有BD/CE = AB/DE = AC/DF。

4. 底角模型:在两个相似三角形中,底角对应相等。

例如,若∆ABC与∆DEF相似,并且∠A = ∠D,则有∠B = ∠E和∠C
= ∠F。

5. 周长模型:在两个相似三角形中,对应边长之比等于相似三角形的周长比。

例如,若∆ABC与∆DEF相似,则有
(A+B+C)/(D+E+F) = AB/DE = BC/EF = AC/DF。

这些是常见的相似三角形模型,可以根据具体问题选择适合的模型进行求解。

但需要注意的是,在相似三角形中,只有形状
相似,而边长比例相等,因此,对于三角形中角度的求解通常更加重要。

相似三角形的几何意义与应用

相似三角形的几何意义与应用

相似三角形的几何意义与应用相似三角形是指具有相同形状但不同大小的三角形。

在几何学中,相似三角形具有重要的意义和广泛的应用。

本文将讨论相似三角形的几何意义以及它在实际问题中的应用。

一、相似三角形的几何意义相似三角形中,对应角度相等,对应的边长成比例。

这意味着相似三角形保持了相同的形状,只是在大小上有所不同。

相似三角形的几何意义如下:1. 比例关系:相似三角形的边长成比例。

如果两个三角形的对应边长比值相同,那么这两个三角形就是相似的。

这个比例关系对于解决实际问题中的长度测量和比较非常有用。

2. 角度对应:相似三角形的对应角度相同。

这意味着相似三角形具有相似的内角,角度大小保持不变。

对于角度的测量和计算来说,相似三角形提供了一种简便的方法。

3. 边长比例:相似三角形的边长比例相同。

这意味着如果一个三角形的一个边长与另一个三角形的对应边长之比等于一个常数,那么这两个三角形就是相似的。

这个比例关系对于测量边长和确定位置关系非常有用。

二、相似三角形的应用相似三角形的几何特性赋予了它广泛的应用领域。

以下是一些相似三角形在实际问题中的应用:1. 测量高度:在实际测量中,经常会遇到无法直接测量的高度问题。

利用相似三角形的性质,可以通过测量已知高度的影子长度和目标物体的影子长度,计算出目标物体的高度。

这在建筑、测绘和天文学等领域非常常见。

2. 估算距离:在无法直接测量距离的情况下,可以利用相似三角形来估算距离。

例如,通过测量目标物体的视角和已知物体的实际尺寸,可以计算出目标物体的距离。

这在导航、激光测距和地理测量等领域有着广泛的应用。

3. 图像变换:相似三角形的比例关系使其成为图像变换中的重要工具。

例如,在计算机图形学中,可以利用相似三角形的性质进行图像的缩放、旋转和变形操作。

这对于图像处理、动画和计算机辅助设计等领域非常重要。

4. 比例模型:利用相似三角形的比例关系,可以制作比例模型。

比例模型在建筑、工程和地质学等领域中广泛使用,用于研究、展示和预测实际对象的特性和行为。

中考中相似三角形的常见模型及典型例题

中考中相似三角形的常见模型及典型例题
1.相似的基本模型:
(1)A字、8字; (3)角平分线; (5)一线三等角; (7)内接矩形;
2.基本辅助线:
(2)反A、反8; (4)旋转型; (6)线束模型; (8)相似比与面积比。
(1)作平行线构造A字、8字; (2)作垂线构造直角三角形相似
3.基本问题类型:
(1)证明相似;
(2)求线段长;
(1)若点P在线段CB上,且BP=6,求线段CQ的长; (2)若BP=x,CQ=y,求y与x的关系式,并求出自变量x的取值范围。
例 9 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CD,
AD与BE相交于点F. (1)求证:△ABD≌△BCE; (2)求证:△ABE∽△FAE;
(3)当AF=7,DF=1时,求BD的长。
(量得BN=70cm)
C
C
DME
DME
A PN F
B
A PN F
B
1.如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80 毫米,要把它加工成正方形零件,使正方形的一边在BC上,其 余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
A
A
M
EN
H
KG

B Q DPC
B
E
DF C
E
AB AC BC
B
C (2)公共边平方=共线边之积:AC 2 AE • AB
反A字 型 【模型2】反“A”字型&反“8”字型
(Ⅱ)DE拉下来经过点C,又称之为母子型,为相似常考模型:
A
A
E
B
C
AC2 AED • BC
AC2 CD • CB
AD2 BD • CD

相似三角形常见模型(总结)1

相似三角形常见模型(总结)1

相似三角形第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)BDE(平行)BDE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型BDD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:ADC 二、相似三角形判定的变化模型旋转型:由A字型旋转得到。

8字型拓展CB EDA共享性GABEF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OEOAOC⋅=2.例2:已知:如图,△ABC中,点E在中线AD上, ABCDEB∠=∠.求证:(1)DADEDB⋅=2;(2)DACDCE∠=∠.例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EGEFBE⋅=2.相关练习:1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FCFBFD⋅=2.A CDEBGMF EHDCBA2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。

相似三角形及其应用

相似三角形及其应用

相似三角形及其应用相似三角形是指两个或多个三角形的对应角度相等,并且对应的边长成比例。

在几何学中,相似三角形是一个重要的概念,具有广泛的应用。

本文将介绍相似三角形的性质以及它在实际问题中的应用。

一、相似三角形的性质1. AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

2. SSS相似定理:如果两个三角形的三条边对应成比例,则这两个三角形相似。

3. SAS相似定理:如果两个三角形的两边成比例,且包含这两边的夹角相等,则这两个三角形相似。

4. 相似三角形中对应边的比例关系:如果三角形ABC与三角形DEF相似,那么AB与DE的比例等于AC与DF的比例,BC与EF的比例等于AC与DF的比例,AB与DE的比例等于BC与EF的比例。

二、相似三角形的应用1. 测量难以直接获取的距离:通过相似三角形的比例关系,可以利用已知的距离和长度来计算无法直接测量的距离和长度。

例如,在实际测绘中,可以通过测量一棵树的阴影以及测量人的身高和阴影长度,来计算树的高度。

2. 解决高空物体的测量问题:在很多时候,无法直接测量高空物体的高度,但可以通过相似三角形的比例关系来间接计算。

比如,在测量高楼的高度时,可以通过测量建筑物的阴影长度以及测量阴影与高楼的投影角度,来计算出高楼的实际高度。

3. 三角测量法的应用:在导航、航海和地理测量等领域,三角测量法是一种常用的测量技术。

这种方法利用相似三角形的性质,通过测量三角形的边长和角度来计算未知的长度和距离。

4. 建筑工程中的应用:在建筑工程中,相似三角形的概念经常被应用于设计、施工和测量。

通过相似三角形的比例关系,可以确定建筑物的尺寸、高度和角度,保证工程的准确性和稳定性。

5. 几何模型的相似:在计算机图形学和动画制作中,相似三角形的概念被广泛应用。

通过构建相似的几何模型,可以实现图形的放大、缩小和形变,从而实现各种特效和动画效果。

总结:相似三角形是几何学中一个重要的概念,用于描述两个或多个三角形的形状和尺寸关系。

初三相似三角形的基本模型

初三相似三角形的基本模型

初三相似三角形的基本模型相似三角形在数学中,相似三角形是指具有相同形状但大小不同的三角形。

在相似三角形的证明中,常见的基本模型是AA、辅助线构造成比例线段和面积法。

AA模型AA模型指的是两个三角形的两个角分别相等,那么这两个三角形就是相似的。

例如,如果三角形DEF的两个角分别等于三角形ABC的两个角,那么我们就可以得出这两个三角形相似的结论。

辅助线构造成比例线段在相似三角形的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论。

常见的等量代换包括等线代换、等比代换、等积代换等。

例如,对于图中的问题,我们可以通过做平行线CE∥AD 来得到证明。

这种方法利用了“A”型图的基本模型。

面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题。

常用的面积法基本模型包括“山字”型。

“田字”型和“燕尾”型等。

在题型方面,与三角形有关的相似问题是常见的。

例如,对于图中的问题,我们需要证明角ADE等于角B,可以通过使用AA模型来得出结论。

在三角形ABC中,已知AB=3,AC=4,BC=5,以BC为边在A点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.解:首先,我们需要构造双垂直辅助线,如图所示:由于△ABD为等腰直角三角形,所以AD=BD=AB=3,又由于BC=5,所以BD=5-3=2,根据勾股定理可得CD=√(BC²-BD²)=√(5²-2²)=√21.因此,线段CD的长为√21.例2:在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.证明:方法一:连接PC,过点P作PD⊥AC于D,则PD//BC。

根据折叠可知XXX⊥CP。

由∠2+∠PCN=90°,∠PCN+∠XXX°可得∠2=∠CNM。

相似三角形的八大基本模型

相似三角形的八大基本模型

相似三角形的八大基本模型1、等腰三角形:等腰三角形是一种三角形,它的两条边长相等,称为等腰三角形。

它的三个角也是等角,每个角度都是60度,是一个等边三角形。

它也有着金字塔形状。

2、等边三角形:等边三角形是三角形中最常见的一种,它的三个边长都是相等的,因此得名等边三角形。

由于边长是相等的,因此三个角也是等角,每个角度都是60度。

此外,它也有着正三角形的特性。

3、直角三角形:直角三角形是一种三角形,它的一个角是90度,成为直角三角形。

直角三角形一般分为狭角三角形和钝角三角形两种,其中,狭角三角形的两个直角边都要大于第三条斜边,而钝角三角形则相反,其两个直角边都要小于第三条斜边。

4、相似三角形:相似三角形是指三角形中,由一条射线形成的两个三角形,三条边长的比值相等的三角形。

它的内角和外角相似,但是边长和面积都不同。

由此可以知道,如果两个三角形边长比值相同,则该两个三角形为相似三角形。

5、等分直角三角形:等分直角三角形是指一个直角三角形中,由底边一个端点引分出来的两条斜边上的各个点,连接起来后形成的直角三角形。

由于它的特点,两个边长和底边的面积比例也是相同的,每个等分点也和其他两个等分点是相等的。

6、正交三角形:正交三角形是指两个直角三角形中的一类,由其相似的三条边构成,两个斜边互相垂直相交,而三条边长分别是直角三角形中底边和邻边之和。

正交三角形属于相似三角形,具有和相似三角形一样的特性。

7、正三角形:正三角形是一种特殊的三角形,它的三个角都是60度,每个角度都相同,其三条边长也相等,为了符合这种特性,它也有其称之为正三角形的原因。

它有着明显的金字塔形状,但是每个角度都是60度,因此可以说它的金字塔形状是平行的。

8、稜角三角形:稜角三角形是一种特殊的三角形,它的其中一个角是60度,另外两个角都小于60度,一般不会大于60度,这种三角形因此也有着金字塔形状,但是由于角度上的不同,边长也不同。

其中,由三角形的垂足作为原点,内角和外角大小关系也要满足,且两个内角和一个外角和要等于180度。

相似三角形的基本模型

相似三角形的基本模型

相似三角形是指具有相同形状但可能不同尺寸的三角形。

两个三角形相似的条件是它们的对应角相等,而对应边的比例相等。

相似三角形的基本模型包括比例、角的对应关系和性质等。

1. 相似三角形的定义:两个三角形ABC 和DEF 是相似的,记作∆ABC ∼ ∆DEF ,如果它们的对应角相等,即∠A = ∠D ,∠B = ∠E ,∠C = ∠F 。

2. 相似三角形的基本性质:• 对应边的比例: 如果两个三角形相似,那么它们的对应边的长度比是相等的,即AB DE =BC EF =CA FD 。

• 高与底的比例: 两个相似三角形的高与底的比例等于它们的对应边的比例。

•角平分线: 如果在一个三角形的两个角上分别引一条角平分线,这两条平分线所夹的角的正弦比等于与这两个角对应的边的比例。

3. 相似三角形的求解问题:•相似三角形的判定: 给定两个三角形的三个角,判断它们是否相似。

•相似三角形的边长求解: 已知一个三角形和一个角,求另一个相似三角形的边长。

• 相似三角形的角度求解: 已知两个相似三角形的边长比,求它们的角度。

4. 模型示例:考虑两个相似三角形ABC 和DEF ,其中∠A = ∠D ,∠B = ∠E 。

已知AB DE =BC EF =CA FD =k 。

• 已知边长求解: 如果已知AB=6,找出DE 、BC 和EF 。

DE =AB k , BC =AB k , EF =AB k• 已知一个角和边长比求解: 如果已知∠A=40°,找出∠D ,∠B 和∠E 。

∠D =40°, ∠B =40°, ∠E =40°•已知角度求解: 如果已知∠A=30°,∠B=60°,找出∠D 和∠E 。

∠D =30°, ∠E =60°这是一个基本的相似三角形模型,可以根据具体的已知条件和问题求解未知量。

在实际应用中,相似三角形的模型经常出现在几何问题中,例如测量远近、影子问题、光学等领域。

(完整版)相似三角形模型分析大全(非常全面-经典)

(完整版)相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全1、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(6)双垂型:2、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展B一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:.OE OA OC ⋅=2例2:已知:如图,△ABC 中,点E 在中线AD 上, .ABC DEB ∠=∠求证:(1); (2).DA DE DB ⋅=2DAC DCE ∠=∠ACDEB例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:.EG EF BE ⋅=2相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:.FC FB FD ⋅=22、已知:AD 是Rt△ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME∽△NMD; (2)ND =NC·NB23、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。

求证:EB·DF=AE·DB⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。

4.在∆ABC中,AB=AC,高AD与BE交于H,EF BCGBM90求证:∠=︒5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高A(第25题图)求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=6,求:点B 到直线AC 的距离。

相似三角形模型(全)

相似三角形模型(全)

面积比等于相似比的平方
如果两个三角形相似,则它们的对应 角相等。
如果两个三角形相似,则它们的面积 比等于它们的相似比的平方。
对应边成比例
如果两个三角形相似,则它们的对应 边成比例。
相似三角形的判定条件
两个三角形对应角相等,则这两个三角形相似。
两个三角形对应边成比例,则这两个三角形相似。
两个三角形有一个对应的角相等,且这个角所对的两边成比例,则这两个三角形相 似。
射影定理还涉及到角度的关系,即 $angle A_1 = angle A_2, angle B_1 = angle B_2, angle C_1 = angle C_2$ 。
在两个相似三角形中,对应边的比例 相等,即$frac{a_1}{a_2} = frac{b_1}{b_2} = frac{c_1}{c_2}$。
03
相似三角形的应用
在几何作图中的应用
利用相似三角形确定未知长度
01
通过已知的边长比例关系,利用相似三角形来求解未知的边长
或角度。
确定未知角度
02
通过相似三角形的性质,可以确定未知的角度。
证明定理和性质
03
相似三角形在几何作图中常被用来证明定理和性质,如角平分
线定理、中线定理等。
在解决实际问题中的应用
泰勒斯定理还可以表述为:在任何三 角形中,半周长与内切圆半径之和等 于从三角形一边上的一点到另两边的 垂直距离之和。
THANK YOU
测量问题
在测量中,可以利用相似三角形 的性质来计算难以直接测量的距
离和高度。
建筑设计
在建筑设计中,可以利用相似三角 形来计算建筑物的尺寸和比例。
物理学应用
在物理学中,可以利用相似三角形 来解释和计算光学、力学等问题。

相似三角形的九大模型

相似三角形的九大模型

相似三角形的九大模型相似三角形是几何学中一类重要的图形,它具有一些独特的性质和模型。

这些模型可以用来解决各种实际问题,从简单的长度关系到复杂的空间结构。

本文将介绍相似三角形的九大模型,并给出相应的例子和应用场景。

相似三角形是指两个三角形形状相同,大小成比例。

相似三角形的对应边成比例,对应角相等。

相似三角形还有一些其他的性质,例如,相似三角形的中线、角平分线、高的比等于它们的相似比。

平行线模型:两个三角形分别在两条平行线上,它们的对应边平行且成比例。

这种模型经常用于解决一些与长度和角度相关的问题。

共顶点模型:两个三角形有一个共同的顶点,且它们的对应边成比例。

这种模型常用于证明两个三角形相似,以及求解一些角度问题。

角平分线模型:一个三角形的角平分线将这个三角形分成两个小的相似三角形。

这种模型可以用于证明两个三角形相似,以及求解一些角度问题。

平行四边形模型:一个平行四边形被它的两条对角线分成四个小的相似三角形。

这种模型可以用于解决一些与面积和长度相关的问题。

位似模型:一个相似变换将一个三角形映射到另一个三角形,这种变换称为位似变换。

这种模型可以用于解决一些与长度、角度和面积相关的问题。

旋转模型:一个三角形绕着它的一个顶点旋转一定的角度后得到另一个三角形,这两个三角形是相似的。

这种模型可以用于解决一些与角度和长度相关的问题。

镜像模型:一个三角形沿一条直线翻折后得到另一个三角形,这两个三角形是相似的。

这种模型可以用于解决一些与长度和角度相关的问题。

传递模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分相似。

这种模型可以用于解决一些与长度和角度相关的问题。

扩展模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分成比例。

这种模型可以用于解决一些与长度和角度相关的问题。

相似三角形的九创作者是几何学中一类重要的模型,它们具有广泛的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 1 )若 A B =9 , C D= 4, 肋 =1 0 , 请 问
在B D上 是 否 存 在 P
百 1 0 8方程 ② 得 : ( 1 2一 ):3 6 ,2—1 2 +3 6:0 ,

A=(一l o ) 一 4×l × 3 6= O ,
点, 使 以 P、 A、 B三 点
’ . ’
判 别 式 的应 用 , 注意 :
+ +C= 0( 。≠0 , n 、 b 、 C为 常
数) , 当 △= b 一4 a c<0时 , 方 程 无实 数解 , 当 A =b 一
4 =0时 , 方程有 两个 相等的实数解 , 当 △=b 一 4 a c >0 时, 方程有两个 不等的实数解.
此 方程的解为 2 = = 6 , . 。 . 存 在 2个点 P, 当 =
..
.+
.一
.+
..
..
.一
..
.+
..
..
..



n I
k t罐
或 6时 , 以P 、 A、 B三 点 为 顶 点 的 三 角 形 与 以 P、 C、 D 三点 为顶 点 的 三 角 形 相 似 . ( 3 ) 在B D 上 存 在 3个 P点 , 理 由是 : 设B P= ,

(Ⅱ) 当点 P在 线 段 A B 的延 长 线 上 时 , 如题图 2
所示.
点的三角形与 以 P、 C、 D三点为顶点的三角形相似 ,






① ÷ = 志或 ② = } ,

‘ .

日 +z _ a q 8: 9 0 。 , A+ P:9 0 。 ,
A Q =Z . A , B Q= A B.
, j
AB
・ . .
= B 而 P 或 . A 而 B= 历 B P 时 使以 P 、 A 、 B三点 为顶

四、 M 宇 型
例 4 如图 , 已知
A B上 B D. C D上 B D
点 的三角形 与以 P、 C 、 D三点为顶点 的三角形相 似 ,



① ÷ = 或 ② = 亍 , 解 方 程 ① 得 : =

A B上 B D, C D 上BD, . ‘ ./ _B = Z _ D :9 0。 ,
B P j  ̄历 A B=

・ . .
A P = A B — P B - 3 - ÷ = ÷ ;
B P=B Q, . 。 . 8 q e= P,
・ . .
P D

而 A B= B 历 P 时 使 以 P, A、 B三 点 为 顶
9 0。 .
’ . .
A Q= C
( 2 ) 若A 曰= 9 , C D= 4, B D=1 2 , 请 问在 B D上存在 多
在Z  ̄ A P Q与 AA B C中 ,


少个 P点 , 使 以 P、 A 、 B三点为顶 点的三 角形与 以 P、 C 、
D三点为顶点的三角形相似 ?并求 的长 ;
三个 P 点 ?
一 3 ’ ,
( 2 ) 解: 在R t Z X A B C中, A B: 3 , B C= 4, 由勾股定理
得 : A C=5 .
‘ . ‘

当△P Q | B为等腰 三角形 时 , 只可能是 P B=P Q .
(1) 当点 P在 线 段 A B上 时 , 如题图 l 所示 .
’/ AP Q= C。 Z . A=Z . A,



△a p q —Z X A B C .
( 3 ) 若A B= 9, C D= 4 , B D=1 5, 请问在 B D上存在 多 少个 P点 , 使 以 P、 A、 B三点 为顶 点的 三角形与 以 P、 C 、 D三点 为顶点 的三角形 相似 ?并求 的长 ; ( 4 ) 若A B=m, C D=, l , 肋 :1 , 请 问 m, n , z 满足 什 么关 系时 , 存在以 P、 A、 B三 点为顶 点 的三角形 与 以 P、 C、 D三点 为顶 点的三角形相 似的一个 P点?两个 P点 ?
。 . . . 。 + . . ;. ▲ - 致 掌大j } l 暴 o . 。 ∞▲ ▲
解析

( 1 ) 证明
’ . 厶4+/ _ . a P q: 9 0 。 , A+ C
为顶点的 三角形 与 以 P、 C 、 D 三点 为顶 点 的 三 角形 相 似?若存在 , 求 的长 ; 若不存在 , 请说 明理 由;
( 2 ) 在 肋 上存在 2个 P点 , 理 由是 : 本题 考查相 似三 角形及分 类讨论 的数学 思
设 B P:x .
‘ . ‘
点评
想, 难度不大. 第( 2 ) 问 中, 当 ̄ X P Q B为等 腰 三角 形 时 , 有两种情况 , 需要分类讨论 , 避 免漏解
A B上BD, CD上 B D, . ‘ ./ B = /D :9 0。 ,
‘ . .
. ’ . 存在P 存在 P 点, 当 B P : = 署时, 时, 以P 、、 A B三点为顶点 B三点为顶点



综上所述, 当Z X P Q B 为等腰三角形时, A P的 长为÷
或6 .
的三 角 形 与 以 P、 C 、 D三点为顶点的三角形相似.
解方程①得 : = 西 9 0 方程 ②得 :
( 1 0一x )= 3 6 , 一1 0 x+ 3 6= 0,
’ .

。 . .



A B= B P, 点 为线段 A B中点 ,
AP =2 A B =2 X3=6 .
△:(一1 O ) 一 4 X1 X3 6< 0 , 此方程无解 ,
由( 1 ) 可知, △A P Q一 △A B C,
・ . .
= , 即
=一 P B 解得 : P B=一 4
, 一 4 ’ 肝 l 哥:
’ 。 AC 一 B C ’ l J 5
解析
O o
( 1 ) 存 在 P点 , 理 由是 : 设曰 P= ,
相关文档
最新文档