2018年暑期八年级数学上册预习课后练习题集含答案27份含答案详解
北师大版八年级上册数学课本课后练习题答案(整理版)
[标签:标题]篇一:北师大版八年级上册数学课本课后练习题答案八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,,¤,♀,∮,≒,均表示本章节内的类似符号。
1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm。
21.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)=AB+CD:也就是BC=a+b。
,222222 这样就验证了勾股定理l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
暑假作业数学八年级(配人教版)答案
暑假作业㊀数学㊀八年级(配人教版)参考答案A 版㊀学习版练㊀习㊀一快乐基础屋一㊁选择题1.D ㊀2.B ㊀3.B ㊀4.C ㊀5.B ㊀6.D ㊀7.A ㊀8.B ㊀9.D ㊀10.C二㊁填空题11.3㊀-0.0212.<㊀=13.0.1m 14.2|a |c 2ab15.x x 2+y 216.1317.518.甲㊀被开方数是负数19.15320.当b >0时,a 2c 10c2b 当b <0时,-a 2c 10c2b三㊁解答题21.(1)解:原式=24ː3=8=22(2)解:原式=27ˑ33ˑ121=211(3)解:原式=12ː3=4=2(4)解:原式=273-123=9-4=3-2=1(5)解:原式=72ˑ-16117()ː14112=-16112ː14112=-23(6)解:原式=(2+26+3)(5-26)=25-(26)2=25-24=122.(1)解:原式=235=1155(2)解:原式=a 2(3)解:ȵxȡ0㊀ʑx+1>0ʑ(x+1)2=x+1(xȡ0) (4)解:原式=(|a+1|)2=(a+1)223.(1)解:原式=1(23)=3(23ˑ3) =36(2)解:原式=3210=(3ˑ10)(210ˑ10) =3020(3)解:原式=506=253=533(4)解:原式=15x35x=3x2=3x24.解:由题意可得2-xȡ0,x-2ȡ0ʑ可得x=2,y=5ʑx y=25欢乐提高吧1.解:原式=-23(m-n)2ˑa2ˑ1m-n =-a62.解:ȵa+1+b-1=0ʑa+1=0,b-1=0ʑa=-1,b=1ʑa2015+b2015=(-1)2015+12015=-1+ 1=0练㊀习㊀二快乐基础屋一㊁选择题1.C㊀2.C㊀3.B㊀4.C㊀5.A㊀6.A㊀7.D㊀8.D㊀㊀二㊁填空题9.010.-2211.29+125㊀66-36212.-24+4313.2+3314.-14215.-116.117.ʃ2318.219.42三㊁解答题20.(1)解:原式=7+27+97= 37+97=127(2)解:原式=32-22+3-33= 2-23(3)解:原式=22+32=52(4)解:原式=23-22+3+2= 33-2(5)解:原式=43+25+23-5 =63+5(6)解:原式=18-35-5=13-35(7)解:原式=22+33-32-2=-22-36(8)解:原式=62-22-2+342=154221.解:原式=2-1(2-1)(2+1)+3-2(3-2)(3+2)+2-3(2-3)(2+3)++10-3(10-3)(10+3)=2-1+3-2+2-3+ +10-3=-1+1022.(1)解:原式=43-(36)2+(3-3)3+33()=43-(36)2+2(2)解:原式=23ˑ3x +6ˑx 2-2x ˑx x=2x +3x -2x =3x23.解:原式=9a a -5a a +3aˑ2a 2a =9a a -5a a +6a a =10a a24.(1)解:ȵx =12(7+5),y =12(7-5)ʑx -y =5,xy =12ʑx 2-xy +y 2=(x -y )2+xy =112(2)解:ȵa =4+15,b =4-15ʑa +b =8,ab =1ʑa 2+5ab +b 2-3a -3b =(a +b )2-3(a +b )+3ab =4325.解:大正方形的边长为:4=2,小正方形的边长为2ʑ阴影部分的面积=(2-2)ˑ2=22-2欢乐提高吧1.解:原式=(25+1)2-12-1+3-23-2(+4-34-3+ +100-99100-99)=(25+1)[(2-1)+(3-2)+(4-3)+ +(100-99)]=(25+1)(100-1)=9(25+1)2.解:原式=(2x -1)2+(y -3)2=0要使两个数的平方和为0,只有使每项式为0,即:2x -1=0,y -3=0解得:x =12,y =323x9x-5x y x=23ˑ3x x-5xy=2x x-5xy=(2-56)2练㊀习㊀三快乐基础屋一㊁选择题1.D㊀2.A㊀3.C㊀4.B㊀5.C㊀6.D㊀7.D㊀8.A㊀9.B㊀10.C㊀11.D㊀12.B㊀13.C二㊁填空题14.13㊀15.20㊀16.11㊀17.24㊀18.601319.5㊀20.492㊀21.32㊀22.13或119㊀23.2㊁2㊁2㊀24.49㊀25.15三㊁解答题26.解:设矩形花池的长是a,宽是b根据题意得:ab=48①a2+b2=100②②+①ˑ2得:(a+b)2=196,即a+b =14ʑ矩形花池的周长是14ˑ2=28m27.解:设E站建在离A站x km处时, C㊁D两村到E站的距离相等㊂在RtәADE 中,DE2=AD2+AE2=152+x2,在RtәCBE 中,CE2=CB2+BE2=102+(25-x)2ȵDE=CE,ʑDE2=CE2,即152+x2= 102+(25-x)2,解得:x=10答:E站建在离A站10km处时,C㊁D 两村到E站的距离相等㊂28.解:设旗杆AB的高为x m,则绳子AC的长为(x+1)mABCȵ在RtәABC中,øABC=90ʎ,BC=5, AB=xAC=x+1,ʑx2+52=(x+1)2解得:x=12答:旗杆的高度为12m㊂欢乐提高吧1.解:连接BD,øA=90ʎ,BD=AB2+AD2 =5cmȵBD2+CD2=BC2ʑәBCD为直角三角形ʑәBCD面积=12ˑBDˑCD=30cm2әABD 的面积=12ˑAB ˑAD =6cm 2故四边形ABCD 的面积为36cm 22.解:过点D 作DE ʅAB 于点E ,ȵø1=ø2,øC =øDEA =90ʎ,AD =AD ,ʑәACD ɸәAED ,ʑCD =DE =1.5,AC =AE在RtәBED 中,BE =BD 2-DE 2=2在RtәABC 中,AC 2=AB 2-BC 2=(AC +BE )2-BC 2即AC 2=(AC +2)2-42ʑAC =33.解:如图所示,过点B 作纸条一边的垂线BDACBDȵ纸条的宽度为3cm ʑBD =3cm ȵøBAD =30ʎʑAB =2BD =2ˑ3=6cm ʑ根据勾股定理得:BC =2AB =2ˑ6=62cm练㊀习㊀四快乐基础屋一㊁选择题1.A ㊀2.C ㊀3.A ㊀4.D ㊀5.C ㊀6.C二㊁填空题7.80ʎ8.8cm 9.3cm 10.1211.12cm 12.12三㊁解答题13.解:ȵ四边形ABCD 为平行四边形ʑAD ʊBC ,ʑøADE =øDEC 又ȵDE 平分øADC ,ʑøADE =øCDEʑøDEC =øCDE ,ʑәCDE 为等腰三角形ʑCD =CE ,则BE =BC -CE =BC -CD=8-6=2(cm)14.证明:ȵ四边形ABCD 是平行四边形ʑAD ʊBC ,AD =BC ȵAE =12AD ,FC =12BC ʑAE =FC ,AE ʊFC ʑ四边形AECF 是平行四边形ʑGF ʊEH同理可证ED ʊBF 且ED =BF ʑ四边形BFDE 是平行四边形ʑGE ʊFHʑ四边形EGFH是平行四边形欢乐提高吧1.DE=BF证明:ȵ四边形ABCD是平行四边形ʑAEʊCF㊀AD=BCʑøE=øFȵO是AC的中点㊀AO=CO在әOCF和әOAE中øAOE=øCOF㊀øE=øF㊀AO=CO ʑәOCFɸәOAE㊀ʑAE=CFʑAE-AD=CF-BC㊀即DE=BF2.(1)证明:ȵ四边形ABCD是平行四边形ʑABʊCD㊀ADʊBC㊀AB=CD㊀AD= BCȵøDAB=60ʎʑøDAB=øDCB=60ʎȵABʊCD㊀ʑøEDA=øDAB㊀øDCB=øCBF ȵøDAB=øDCB=60ʎʑøEDA=øDAB=øDCB=øCBF= 60ʎȵøEDA=øCBF=60ʎ㊀AE=AD㊀CF=CBʑәAED和әCBF均为等边三角形ʑAD=DE㊀BC=BFȵAD=DE㊀BC=BF㊀AD=BCʑDE=BFȵDE=BF㊀AB=CDʑAF=CEȵAFʊCEʑ四边形AFCE是平行四边形(2)解:上述结论还成立,理由如下:ȵ四边形ABCD是平行四边形ʑøADC=øCBA㊀AB=CD㊀AD=BC ㊀ABʊCD㊀ADʊBCȵøADC=øCBA㊀ʑøADE=øCBF ȵAE=AD㊀CF=CB㊀ʑøADE=øAED㊀øCBF=øCFBʑøADE=øAED=øCBF=øCFB ȵøADE=øAED=øCBF=øCFB㊀AD=BCʑәADEɸәCBF㊀ʑDE=BFȵCD=AB㊀ʑAF=CEȵAF=CE㊀AFʊCEʑ四边形AFCE是平行四边形练㊀习㊀五快乐基础屋一㊁选择题1.A㊀2.D㊀3.C㊀4.A㊀5.C㊀6.C㊀7.C㊀二㊁填空题8.129.610.3㊀3㊀菱㊀矩㊀AB=AC且øA= 90ʎ11.8三㊁解答题12.解:ȵ四边形ABCD是平行四边形ʑBC=AD=8cm㊀OA=OCOB=OD=12BD=6cmȵBDʅAD㊀ʑøADO=90ʎʑOA=AD2+OD2=10cmʑAC=2OA=20cm13.证明:ȵBD㊁CE为әABC的中线ʑED为әABC的中位线ʑEDʊBC㊀DE=12CBȵF㊁G分别是BO㊁CO的中点ʑFG是әBOC的中位线ʑFGʊCB㊀FG=12BCʑED=FG㊀DEʊFGʑ四边形DEFG为平行四边形14.证明:ȵ四边形ABCD是平行四边形ʑADʊBC㊀AD=BCȵE㊁F分别是AD㊁BC的中点ʑAE=DE=12AD㊀CF=BF=12BC ʑAEʊCF㊀AE=CFʑ四边形AECF是平行四边形ʑCEʊAFʑEM是әDAN的中位线,FN是әBCM的中位线ʑDM=MN㊀BN=MNʑBN=MN=DM15.证明:ȵ四边形ABCD是平行四边形ʑAB=CD㊀OA=OCʑøBAF=øCEF㊀øABF=øECFȵCE=DC在▱ABCD中,CD=ABʑAB=CEʑ在әABF和әECF中øBAF=øCEFAB=CEøABF=øECFʑәABFɸECF(ASA)ʑBF=CFȵOA=OCʑOF是әABC的中位线ʑAB=2OF欢乐提高吧1.证明:ȵ四边形ABCD是平行四边形ʑADʊBCʑøCBE=øFȵDF=ADʑDF=BC在әBCE和әFDE中,øF=øCBE㊀øDEF=øCEBDF=BC㊀ʑәBCEɸәFDE(AAS)ʑBE=FE㊀DE=CE即点E是CD㊁BF的中点㊂AB CED F2.证明:过点M作MGʅAB连接DG,ADCBMEF G123ȵCFʅABʑMGʊCFȵAM平分øCAB㊀ʑø2=ø3ȵMCʅCA㊀MGʅAB㊀ʑCM=MG ȵøCDM=ø1+ø2㊀øCMD=ø3+øB ø2=ø3㊀ø1=øBʑøCDM=øCMDʑCM=CD㊀ʑCD=CM=MGȵCDʊMG㊀ʑ四边形CDGM是菱形ʑCM=DG㊀且CBʊDGȵDEʊAB㊀ʑ四边形DEBG是平行四边形ʑDG=EB㊀ʑCM=EB练㊀习㊀六快乐基础屋一㊁选择题1.C㊀2.C㊀3.A㊀4.C㊀5.C㊀6.A㊀7.B㊀8.B㊀9.A二㊁填空题10.5311.312.60ʎ13.AB=AC或øB=øC或AD是øBAC的平分线或BD=CD14.AC=BD或ABʅBC15.3三㊁解答题16.证明:ȵDEʊAC㊀DFʊABʑ四边形AEDF是平行四边形ʑøADE=øDAFȵAD平分øBAC㊀ʑøDAE=øDAF ʑøDAE=øADE㊀ʑAE=DEʑ平行四边形AEDF是菱形17.(1)证明:ȵ四边形ABCD是矩形ʑABʊCD㊀ʑøOAE=øOCF㊀øOEA=øOFCȵAE=CF㊀ʑәAEOɸCFO(ASA)ʑOE=OF(2)解:连接BOȵOE=OF㊀BE=BFʑBOʅEF且øEBO=øFBOʑøBOF=90ʎȵ四边形ABCD是矩形ʑøBCF=90ʎ又ȵøBEF=2øBAC㊀øBEF=øBAC+øEOAʑøBAC=øEOA㊀ʑAE=OEȵAE=CF㊀OE=OF㊀ʑOF=CF又ȵBF=BF㊀ʑәBOFɸәBCF(HL)ʑøOBF=øCBF㊀ʑøCBF=øFBO =øOBEȵøABC=90ʎ㊀øOBE=30ʎ㊀øBEO =60ʎʑøBAC=30ʎ㊀ʑAB=3BC=618.(1)证明:ȵ对角线BD平分øABC ʑøABD=øCBD又ȵAB=BC㊀BD=BDʑәABDɸәCBD(SAS)ʑøADB=øCDB(2)证明:ȵPMʅAD㊀PNʅCDʑøPMD=øPND=90ʎȵøADC=90ʎʑ四边形MPND是矩形由(1)知øADB=øCDB又ȵPMʅAD㊀PNʅCDʑPM=MDʑ四边形MPND是正方形欢乐提高吧1.(1)证明:ȵ四边形ABCD是矩形ʑAB=CD㊀AD=BC㊀øA=øC=90ʎȵ在矩形ABCD中,M㊁N分别是AD㊁BC的中点ʑAM=12AD㊀CN=12BCʑAM=CN在әMBA和әNDC中ȵAB=CD㊀øA=øC=90ʎ㊀AM= CNʑәMBAɸәNDC(2)四边形MPNQ是菱形证明:连接MN㊀ȵәMBAɸәNDC ʑMB=ND㊀ȵ四边形ABCD是矩形ʑADʊBC㊀øA=90ʎ㊀AD=BCȵM㊁N分别是AD㊁BC的中点ʑAM=BNʑ四边形AMNB是矩形ʑøMNB=90ʎ在RtәMNB中ȵP是BM的中点ʑPN=12BM=PM同理MQ=NQȵBM=ND㊀P㊁Q分别是BM㊁DN的中点ʑPM=NQ㊀ʑPM=PN=NQ=MQ ʑ四边形MPNQ是菱形2.(1)解:猜想结果,图2结论为BE+ CF=2AG图3结论为BE-CF=2AG (2)证明:连接CE,过D作DQʅl,垂足为点Q,交CE于点HȵøAGO=øDQO=90ʎ㊀øAOG=øDOQ(对顶角相等)且O为AD的中点即AO=DOʑәAOGɸәDOQ(AAS)即AG=DQ ȵBEʊDHʊFC㊀BD=DCʑCHʒEH=CDʒBD=FQʒEQʑQH是三角形EFC的中位线ʑBE=2DH㊀CF=2QHʑBE-CF=2(DQ+QH)-2QH=2DQ =2AGDQFlCH OE A G B练㊀习㊀七快乐基础屋一㊁选择题1.C ㊀2.B ㊀3.C ㊀4.C ㊀5.B ㊀6.B二㊁填空题7.y =100x -408.y =8x ㊀40㊀809.s =2n +110.S =2x 2-4x +411.y =0.25x +6(0ɤx ɤ10)三㊁解答题12.(1)解:由题意可得,甲㊁乙两条生产线投入生产后,甲生产线生产时对应的函数关系式是y 1=20x +200乙生产线生产时对应的函数关系式是y 2=30x(2)令20x +200=30x ㊀解得x =20故第20天结束时,两条生产线的产量相同ʑ甲生产线对应的函数图像一定经过点(0,200)和(20,600)画出函数图像,如下图所示:y x观察图像可知,当第10天结束时甲生产线的总产量高,当第30天结束时乙生产线的总产量高㊂13.(1)由图像得:出租车的起步价是8元,当x >3时,设y 与x 的函数关系式为y =kx +b (k ʂ0),将坐标(3,8)和(5,12)代入函数关系式得:3k +b =8①5k +b =12②{②-①得:2k =4㊀ʑk =2代入①得:b =2解得:k =2,b =2ʑy 与x 的函数关系式为y =2x +2(2)ȵ32元>8元,ʑ把y =32代入函数解析式y =2x +2,解得:x =15ʑ这位乘客乘车的里程是15km欢乐提高吧1.(1)解:设y 1=k 1x 1,将(10,600)代入上式得:k 1=60,ʑy 1=60x (0ɤx ɤ10)设y 2=k 2x 2+b ,将(0,600),(6,0)代入上式得:k 2=-100,b =600ʑy 2=-100x +600(0ɤx ɤ6)(2)根据题意可知当y 1=y 2时,x =154,故当0ɤx ɤ154时,S =600-160x当154ɤx<6时,S=160x-600当6ɤxɤ10时,S=y2=60x,即S关于x的函数关系式为:S=600-160x0ɤx<154() 160x-600154ɤx<6() 60x(6ɤxɤ10)ìîíïïïïïï(3)根据题意,当A加油站在甲地与B 加油站之间时,60x+200=-100x+600,解得:x=52,此时A加油站离甲地的距离为:60ˑ52 =150km,当B加油站在甲地与A加油站之间时, -100x+600+200=60x解得:x=5,此时A加油站离甲地的距离为:60ˑ5=300km综上所述,A加油站离甲地的距离为150km或300km㊂2.解:如图所示,过点B作BDʅOC于点D,则øO=øBDC设OC=x,根据光的反射原理,øACO=øBCD,故әAOCʐәBDC根据三角形的性质可得:OCʒDC= AOʒBD即xʒ(4-x)=2ʒ3解得:x=85故根据勾股定理得:AC=22+85()2 =2415BC=32+4-85()2=3415故这束光从点A到点B所经过的路径的长度为:AC+BC=41练㊀习㊀八快乐基础屋一㊁选择题1.D㊀2.D㊀3.C㊀4.D㊀5.A㊀6.A㊀二㊁填空题7.k<28.y=-2x9.y=x10.(2,0)㊀(0,4)11.6㊀-32三㊁解答题12.(1)解:设y=kx+b则40k+b=7537k+b=70{解得k=53㊀b=253ʑy=53x+253(2)当x=39时,y=53ˑ39+253ʂ78.2ʑ一把高39cm 的椅子和一张高78.2cm的课桌不配套13.如图所示:y 14.解:把(4,a )代入y =12x 得:a =12ˑ4=2ʑ一次函数y =kx +b 的图像经过点(-2,-4)和点(4,2)ʑ-2k +b =-44k +b =2{解得k =1,b =-2ʑ该一次函数的解析式为y =x -215.(1)解:把x =0,y =0代入y =(3-k )x -2k +18可得:k =9(2)解:把x =0,y =-2代入y =(3-k )x -2k +18可得:k =10欢乐提高吧1.解:ȵ一次函数y =-x +a 和一次函数y =x +b 的交点坐标为(m ,8)ʑ8=-m +a ①㊀8=m +b ②①+②得:16=a +b 即a +b =162.解:如图所示,由题意可知A 点坐标为(-1,2+m ),B 点坐标为(1,m -2)C 点坐标为(2,m -4),D 点坐标为(0,2+m ),E 点坐标为(0,m ),F 点坐标为(0,-2+m ),G 点坐标为(1,m -4)ʑDE =EF =BG =2又ȵAD =BF =GC =1ʑ图中阴影部分的面积和等于12ˑ2ˑ1ˑ3=3练㊀习㊀九快乐基础屋一㊁选择题1.B ㊀2.C ㊀3.C ㊀4.B ㊀5.A ㊀6.A ㊀7.A ㊀二㊁填空题8.56㊀80㊀156.89.y =10000+16x ㊀x ȡ110.a <b ㊀011.-212.-213.ʃ414.3<x <6三、解答题15.解:设这个一次函数的解析式为y =kx+bȵ该一次函数的图像经过点(2,3)和点(-1,4)ʑ2k+b=3-k+b=4{解得k=-13,b=113ʑ这个一次函数的解析式为y=-13x+ 11316.解:直线y=kx+b与直线y=5-4x 平行ʑk=-4直线y=-3(x-6)与y轴的交点是(0,18)将x=0,y=18代入y=-4x+b解得b=18ʑ直线的函数解析式是y=-4x+1817.解:设正比例函数的解析式为y= kx,则有-6=3k㊀ʑk=-2即正比例函数解析式为y=-2xȵA(a,a+3)是正比例函数图像上的点ʑa+3=-2a㊀ʑa=-1则平行该图像的一次函数y=kx+a的解析式为y=-2x-1欢乐提高吧1.(1)解:由题意得:x-2y=-k+6x+3y=4k+1{解得:x=k+4,y=k-1ʑ两直线的交点坐标为(k+4,k-1)又ȵ交点在第四象限内ʑk+4>0k-1<1{解得-4<k<1(2)解:由于k为非负整数且-4<k<1ʑk=0㊀ʑ直线方程x-2y=6,x+3y=1两直线相交,即x-2y=6x+3y=1{㊀解得:x=4,y=-1ʑ两直线的交点坐标为(4,-1)ȵ直线x-2y=6与y轴的交点为(0,-3)直线x+3y=1与y轴的交点为0,13()ʑ围成的三角形的面积=12ˑ3+13()ˑ4=2032.(1)解:直线y=-x+b交y轴于点P(0,b),由题意得:b>0,tȡ0,b=1+t,当t=3时,b=4ʑy=-x+4(2)解:当直线y=-x+b过点M(3,2)时,2=-3+b㊀解得:b=55=1+t㊀解得:t=4当直线y=-x+b过点N(4,4)时4=-4+b㊀解得:b=88=1+t㊀解得:t=7故若点M㊁N位于l的异侧,t的取值范围是4<t<7练㊀习㊀十快乐基础屋一㊁选择题1.C㊀2.A㊀3.C㊀4.C㊀5.C㊀6.D二㊁填空题7.29㊀298.769.乙10.711.甲12.87三㊁解答题13.(1)解:70ˑ10%+80ˑ40%+88ˑ50%=83(分)(2)解:80ˑ10%+75ˑ40%+50%㊃x >83ʑx>90ʑ小文同学的总成绩是83分,小明同学要在总成绩上超过小文同学,则他的普通话成绩应超过90分㊂14.解:甲:数据10.8出现2次,次数最多,所以众数是10.8平均数=(10.8+10.9+11+10.7+ 11.2+10.8)ː6=10.9中位数=(10.8+10.9)ː2=10.85乙:数据10.9出现3次,次数最多,所以众数是10.9平均数=(10.9+10.9+10.8+10.8+ 10.5+10.9)ː6=10.8中位数=(10.8+10.9)ː2=10.85所以从众数上看,乙的整体成绩大于甲的整体成绩从平均数上看,甲的平均成绩优于乙的平均成绩从中位数看,甲㊁乙的成绩一样好欢乐提高吧(1)解:观察表格,可知这组样本的平均数=(0ˑ3+1ˑ13+2ˑ16+3ˑ17+4ˑ1)ː50=2样本数据中,3出现17次,出现的次数最多,所以这组数据的众数是3ȵ将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2ʑ这组数据的中位数=(2+2)2=2 (2)解:ȵ在50名学生中,读书多于2册的学生有18名,则该校七年级300名学生在本次活动中读书多于2册的人数为: 300ˑ1850()=108(人)ʑ根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的有108人㊂假期总结测试题一㊁选择题1.B㊀2.D㊀3.D㊀4.D㊀5.C㊀6.B㊀7.D㊀8.A二㊁填空题9.83310.311.等腰直角三角形12.20cm13.y=-x14.4815.y=t-0.6(tȡ3)㊀2.4㊀6.4三㊁解答题16.(1)选①(答案不唯一,任选其一) (2)证明:ȵ四边形ABCD是正方形ʑAB=CD㊀øA=øC=90ʎ又ȵAE=CF,øA=øC,AB=CD ʑәAEBɸCFD(SAS)ʑBE=DF选②:ȵ四边形ABCD是正方形ʑADʊBC又ȵBEʊDFʑ四边形EBFD是平行四边形ʑBE=DF选③:ȵ四边形ABCD是正方形ʑAB=CD㊀øA=øC=90ʎ又ȵø1=ø2ʑәAEBɸәCFD(AAS)ʑBE=DF17.(1)甲:7.5㊀3.8乙:7㊀7.5㊀ 5.4(2)因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出㊂18.(1)解:ȵAD平分øCAB㊀DEʅAB ㊀øC=90ʎʑCD=DE㊀ȵCD=3㊀ʑDE=3 (2)解:在RtәABC中,由勾股定理得: AB=AC2+BC2=62+82=10ʑәADB的面积为:SәADB=12AB㊃DE=12ˑ10ˑ3=1519.解:设一次函数解析式为y=kx+ b,把x=4,y=9和x=6,y=-1,分别带入得:4k+b=9①6k+b=-1②{①-②得:-2k=10㊀ʑk=-5把k=-5代入①得:b=29ʑ一次函数解析式为:y=-5x+2920.(1)解:y=8000-500(x-60)即y=38000-500x(xȡ60) (2)解:当x=70时y=38000-500ˑ70=3000当价格为70元时,这种商品的需求量是3000件㊂。
八年级暑期数学作业及参考答案
八年级暑期数学作业及参考答案八年级暑期数学作业及参考答案选择题(共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形是( )A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列分式中是最简分式的是( )A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.点评:分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列调查中,适合普查的是( )A.中学生最喜欢的电视节目B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查D.中学生上网情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、中学生最喜欢的电视节目,适于用抽样调查,故此选项不合题意;B、某张试卷上的印刷错误,适于用全面调查,故此选项符合题意;C、质检部门对各厂家生产的电池使用寿命的调查,适于用抽样调查,故此选项不合题意;D、中学生上网情况,适于用抽样调查,故此选项不合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的.对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列各式中,与是同类二次根式的是( )A.B.C.D.考点:同类二次根式.专题:计算题.分析:原式各项化简得到结果,即可做出判断.解答:解:与是同类二次根式的是=.故选D点评:此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.5.在平面中,下列说法正确的是( )A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形考点:多边形.分析:此题根据平行四边形的判定与性质,矩形的判定,菱形的判定以及正方形的判定来分析,也可以举出反例来判断选项的正误.解答:解:A、四边相等的四边形也可能是菱形,故错误;B、四个角相等的四边形是矩形,正确;C、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;D、对角线互相平分的四边形是平行四边形,故错误;故选:B.点评:本题考查了正方形、平行四边形、矩形以及菱形的判定.注意正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.6.已知点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y=的图象上,则下列关系正确的是( )A.x1考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征,把三个点的坐标分别代入解析式计算出x1、x3、x2的值,然后比较大小即可.解答:解:∵点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y=的图象上,∴x1=﹣,x2=,x3=,∴x1故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )A.22B.18C.14D.11考点:菱形的性质;平行四边形的判定与性质.专题:几何图形问题.分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选:A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B为顶点,面积为2的阵点平行四边形的个数为( )A.3B.6C.7D.9考点:平行四边形的判定.专题:新定义.分析:根据平行四边形的判定,两组对边边必须平行,可以得出上下各两个平行四边形符合要求,以及特殊四边形矩形与正方形即可得出答案.解答:解:如图所示:∵矩形AD4C1B,平行四边形ACDB,平行四边形AC1D1B,上下完全一样的各有3个,还有正方形ACBC3,还有两个以AB为对角线的平行四边形AD4BD2,平行四边形C2AC1B.∴一共有9个面积为2的阵点平行四边形.故选D.点评:此题主要考查了平行四边形的性质,以及正方形与矩形的有关知识,找出特殊正方形,是解决问题的关键.。
2018年初二数学暑假作业答案
精心整理
2018年初二数学暑假作业答案
【篇一】
1、B
2、D
3、(1)a+ab(2)x+y(3)1(4)ac
4、(1)36a4^4b(注:4^4即4 ,台-7 3)=(根号 1、m>-62、5元感悟体验略
【篇四】
1、y=50/x
2、略
3、>2/3
4、m>1/2
5、D
6、B
7、(1)y=-18/x(2)x=-6
创新舞台略
十、
1-3AAD4、(1)S=100000/d(2)200m(3)6666.67m
【篇四】
4、
(提示:
2cm和
7.6m
1-3CCD4、2:11:25、126、17、(1)135根号8(2)相似,理由略操作探究略
【篇七】
1-3CBC4、∠ACP=∠ABC5、2/56、(1)DE=AD,BE=AE=CE(2)△ADE∽△AEC(3)2创新舞台略
【篇八】
1、A
2、D
3、图1灯光中心投影;图2阳光平行投影
4、6.40m操作探究(1)1.25(2)1.5625(3)y=d/4(4)0.4m
【篇九】
PQ平行
(
数字相等(2)不等(3)相等操作探究落在红色或绿色或黄色区域内不等
【篇十三】
1、(1)相等(2)不等抽出王(3)相等操作探究问题一不正确红球
p(红)=2/3,p(白)=1/3,∵p(红)>p(白)∴摸出红球可能性大问题2拿出一个红球感悟体验①略②当a>b牛奶杯中的豆浆多当a=b牛奶杯中的豆浆和豆浆杯中的牛奶一样多当a。
初二(八年级)上册数学书练习题答案(北师大版)
初二(八年级)上册数学书练习题答案(北师大版)第一章实数1.1 实数的概念1. 实数包括哪些数?实数可以分为哪几类?答:实数包括有理数和无理数。
有理数可以进一步分为整数、分数和有限小数;无理数则包括无限不循环小数。
2. 如何判断一个数是有理数还是无理数?答:如果一个数可以表示为两个整数的比,即分数形式,那么它是有理数;否则,它是无理数。
1.2 实数的运算1. 如何进行实数的加减运算?答:实数的加减运算遵循交换律和结合律。
对于加法,同号相加取相同符号,异号相加取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
对于减法,可以将减法转换为加法,即减去一个数等于加上它的相反数。
2. 如何进行实数的乘除运算?答:实数的乘除运算也遵循交换律和结合律。
乘法中,同号相乘得正,异号相乘得负;除法中,除以一个数等于乘以它的倒数。
1.3 实数的应用1. 如何应用实数解决实际问题?答:实数在日常生活中有着广泛的应用,例如计算长度、面积、体积、质量等。
在解决实际问题时,需要将问题转化为数学模型,然后使用实数进行计算。
2. 实数在科学研究中有什么作用?答:实数是科学研究的基础,它用于描述物理量、化学量、生物量等。
在科学研究中,实数用于建立数学模型,进行实验数据的分析和处理。
第二章整式2.1 整式的概念1. 什么是整式?整式有哪些基本形式?答:整式是由常数和变量的乘积组成的代数式,其中变量的指数为非负整数。
整式的基本形式包括单项式和多项式。
2. 如何判断一个代数式是否为整式?答:如果一个代数式中只包含常数和变量的乘积,且变量的指数为非负整数,那么它是一个整式。
2.2 整式的运算1. 如何进行整式的加减运算?答:整式的加减运算遵循交换律和结合律。
对于加法,将同类项合并;对于减法,将减法转换为加法,即减去一个整式等于加上它的相反数。
2. 如何进行整式的乘除运算?答:整式的乘除运算也遵循交换律和结合律。
乘法中,将同类项相乘;除法中,将整式除以一个非零的整式,结果为商式和余式。
最新人教版八年级初二数学上册《全等三角形》同步预习含答案解析
全等三角形一、填空题(每小题3分,共27分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)2.如图1,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______. 3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______.4.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.5.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.6.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.7.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.AD CB 图1ADECB图2ADOCB图3ADOCB图4AD CB图5ADC B图6E8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.9.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______. 二、选择题(每小题3分,共24分)1.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( ) A .PE PF = B .AE AF = C .△APE ≌△APF D .AP PE PF =+2.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③ 3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°AD CB图7E F AD CB图8E F6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( ) A .5对 B .4对 C .3对 D .2对7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 三、解答题 (本大题共69分)1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和O C 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.3.(本题11分)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手A D OCB图9AD ECB图10F G AEC 图11B A ′ E ′ DADECB图12 F边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?4.(本题12分)填空,完成下列证明过程.如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质). 在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ). ∴ED =EF ( ).5.(本题13分)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.6.(本题15分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDEAD ECB 图13 F GADECB图14F图15内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED∠的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.ADE CB图16 A′2 1参考答案一、1.一定,一定不2.50°3.40°4.HL5.略(答案不惟一) 6.略(答案不惟一)7.58.正确9.8二、1.D2.C3.D4.C5.C6.A7.C8.C三、1.略.2.证明:(1)在ABF△和△CDE中,AB CD DE BF=⎧⎨=⎩,,∴△ABF≌△CDE(HL).∴AF CE=.(2)由(1)知∠ACD=∠CAB,∴AB∥CD.3.合理.因为他这样做相当于是利用“SSS”证明了△BED≌△CGF,所以可得∠B=∠C.4.三角形的一个外角等于与它不相邻两个内角的和,BDE,CEF,BDE,CEF,BD,CE,ASA,全等三角形对应边相等.5.此时轮船没有偏离航线.画图及说理略.6.(1)△EAD≌△EA D',其中∠EAD=∠EA D',AED A ED ADE A DE''=∠=,∠∠∠;(2)118022180-2x y∠=︒-=︒,∠;(3)规律为:∠1+∠2=2∠A.学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
2018-八年级暑假作业及答案-实用word文档 (11页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==八年级暑假作业及答案下面是由小编为大家整理的八年级暑假作业及答案,欢迎大家阅读,仅供参考。
数学(一)1. B2. B3. D4. B5. C6. C7. 408. 平行9. a=c>b10. 136 11. 内错角相等,两直线平行;3;4;两直线平行,同位角相等 12.(1) 略(2) 平行,理由略 13. 略14. (1) ∠B+∠D=∠E (2)∠E+∠G=∠B+∠F+∠D (3) 略(二)1. C2. B3. D4. D5. D6. C7. 50°或65°8. 49. 平行10. 9厘米或13厘米11. 60° 12. 13. 略 14. 略 15. 略16. (1) 15° (2) 20° (3) (4) 有,理由略(三)1. 20°2. 厘米3. 84. 4.85. 366. 37. D8. C9. B 10. B 11. 略 12. FG垂直平分DE,理由略 13. 0.5米 14. 同时到达,理由略 15. (1) 城市A受影响 (2) 8小时(四)1. C2. D3. B4. A5. C6. A7. C8. B9. 30 10. 611. , 12. 略 13. 略 14. (1) 直六棱柱 (2) 6ab 15. 3616. 厘米语文第1-4页【练习一】一. [读书人自勉联]在实践中将书本的知识消化、吸收、提高,从生活中学习示例:读重要之书,立鸿鹄之志(参考: 研卷知古今;藏书教子孙。
《对联集锦》)二.【奇妙的共感觉】1.写了人的共感觉现象及原理,人类对共感觉的研究及运用。
2.原因之一一部分人的共感觉能力逐渐遭到部分以至甚至是全部破坏,混合感觉都被过滤掉了,只剩下一种起主导作用的感觉;原因之二,也有可能是他们的共感觉能力实际上是存在的,但由于这种能力不是很强烈,因而没有感觉到这种共感觉能力。
人教版八年级数学暑假作业参考答案
参考答案第1讲二次根式练一练巩固演练1.B2.C3.D4.A5.B6.67.1008.139.a ≤010.111.解:原式=[(22+3)(22-3)]2017·(22-3)=(-1)2017·(22-3)=3-22.12.解:∵x +1x =10,∴()x +1x 2=10,∴x 2+1x 2+2=10,∴x 2+1x2=8.13.解:∵x <2,∴x -2<0,3-x >0,∴(x -2)2=2-x ,|3-x |=3-x ,∴原式=2-x +3-x =5-2x.提高演练1.B2.A3.-24.75.解:a =681×2019-681×2018=681×(2019-2018)=681,b =6782+678+680+690+678=678×(678+1+1)+680+690=678×680+680+690=680×(678+1)+690=680×(680-1)+690=6802+10,a =(680+1)2=6802+1360+12,则b <a.赛一赛1.B2.C3.b <a <c4.解:∵{1-8x ≥0,8x -1≥0,∴8x -1=0,即x =18,∴y =0+12=12,=52-32=1.第1讲测试题1.C2.D3.B4.C5.B6.C7.B8.C9.B10.C11.112.<13.x >214.2015.016.52+2317.解:(=43-2-3+2=33;(2)原式3-96=8-9218.解:∵b <0<a <2,|b |>|a |,∴a +2>0,b -2<0,a +b <0,∴原式=a +2+(b -2)-a -b =a +2+b -2-a -b =0.∵-5无意义,∴过程错误.=4=2;(2)当a ≥0且b >0b.20.解:(1)原式=a 2-1+2a +1×1a 2+1=1a +1,将a =2-1代入上式得:1a +1=12-1+1(2)原式=x 2+2x +1-x 2-2xy -2x =1-2xy ,将x =3+1,y =3-1代入上式得:1-2xy =1-2(3+1)(3-121.解:(1)17+6=1×(-)7676=7-6;(2)原式=2-1+3-2+4-3+…+100-99=100-1=922.解:x 22(+1)22=3+221=3+22,y =2-12+1=(2-1)2(2+1)(2-1)=3-221=3-22,∴x 2-y 2=(x -y )(x +y )=(3+22-3+22)(3+22+3-22)=42×6=242.23.解法一:m 2=(2-1)2=3-22,1m2=13-22=3+22=3+22.∴=3-22+3+22-2=4=2.解法二:∵(m+1)2=2,∴m2+2m-1=0,∴m+2-1m=0,.24.解:x2+x+1=()x+12+34=)+122+34=54+34=2.第2讲勾股定理练一练巩固演练2.C3.C4.B5.B6.537.239.810.1311.解:∵AC=3,AB=8-3=5,∴BC=52-32=4(m).∴BC的长为4m.12.解:在Rt△ABC中,AC=AB2-BC2=52-42=3(km),∵30.3=10(天),∴10天能将隧道AC凿通.13.解:在△ADB中,∵AD2+AB2=42+32=25=52=BD2,∴∠A=90°.在△BDC中,∵BD2+BC2=52+122=169=132=DC2,∴∠DBC=90°,∴∠BDC<90°,∴该零件不符合要求.提高演练1.C2.A解析:答图2-1如答图2-1,作A点关于O B的对称点A',∵四边形O ABC为正方形.∴A'与C重合,CD为所求最小值,CD=62+22=210.3.6013解析:如答图2-2,作A H⊥BC,垂足为H,连接CD,答图2-2在Rt△AB H中,A H=132-52=12,∴S△ABC=12×10×12=60.∵D为AB的中点,∴S△ADC=S△DBC=30,∴12·AC·DE=30,即DE=6013.4.4解析:如答图2-3,E H=2,F H=8,D H⊥EF,ED⊥DF,答图2-3设D H=x,则由DE2+DF2=EF2,得x2+22+x2+82=(2+8)2,解得x=4.5.解:如答图2-4,连接DB,∵DC=BC,∠C=120°,∴∠1=30°,答图2-4∴∠2=120°-30°=90°.作C H⊥DB,垂足为H,在Rt△C H B中,C H=5,H B=53,AB=DB=103,∴S四边形ABCD=S△ABD+S△BDC=12×(103)2+12×103×5=(150+253)(m2).赛一赛1.D解析:如答图2-5,答图2-5∵AE=EB,DE⊥AB,∴AD=D B.设CD=x,则AD=BD=10-x.在Rt△ACD中,(10-x)2=x2+52,解得x=154,∴CD=154cm.2.解:∵∠BAC+∠ACB=∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∴△ABC≌△CDE,∴AB=CD,BC=ED,∴AC2=3=AB2+BC2=S3+S4,即S3+S4=3.同理,2=S2+S3,S1+S2=1,∴S1+S2+S3+S4=1+3=4.3.解:若n=1,则a=0,不符合题意;n≠1时,∵n2+1>n2-1,c>a.又∵c-b=n2+1-2n=(n-1)2>0,∴c>b.又∵a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2=c2,∴△ABC为直角三角形.第2讲测试题1.C解析:a可为直角边,也可为斜边.2.A解析:设AC=4x,则BC=3x,由(4x)2+(3x)2= 102,解得x=2,∴AC=8,BC=6,由AB·CD=AC·BC,得CD=8×610=245.3.D解析:由勾股定理可知AB=25m,即践踏绿地走25m,原来需要走24+7=31(m),所以少走31-25=6(m).4.B解析:连接BD,在Rt△ABD中,∵AB=3,AD=4,∴BD=5,又CD=12,BC=13,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+ S△BCD=12×3×4+12×5×12=36(cm2).5.C解析:设其余两边为a,b(a,b为自然数),则有112+a2=b2,∴112=121=b2-a2=(b+a)(b-a),∴b+a=121,b-a=1,∴b=61,a=60,∴三角形的周长为11+61+60=132.6.D解析:连接BE,交AD于O.作AF⊥BC,垂足为点F.答图Ⅱ-1∵∠BAC=90°,AB=3,AC=4,∴BC=5,∴12AB·AC=12BC·AF,∴AF=125.∵AB=AE,DE=DB=DC,∴AD垂直平分BE,△BEC是直角三角形.∴12AD·B O=12BD·AF.又∵AD=BD,∴B O=AF=125,BE=2B O=245.在Rt△BEC中,CE=BC2-BE2=75.7.B解析:连接AD,在Rt△AED中有:AE2= AD2-DE2,在Rt△EBD中有:BE2=BD2-DE2,又BD=CD,∴AE2-BE2=AD2-DE2-BD2+DE2=AD2-BD2=AD2-CD2=AC2.8.A解析:32+42+122=169=132.9.C解析:分三类,当点A处是直角时,有2个点;当点B处是直角时,有4个点;当点C处是直角时,有2个点,故共有2+4+2=8个点.10.B11.12m12.80解析:由a∶b∶c=15∶8∶17可知△ABC是直角三角形,∴设两条直角边为8x和15x.∵△ABC的面积为240,∴12×8x×15x=240,解得x=2,∴△ABC的三边长为16,30,34,∴△ABC的周长为80.13.12013解析:答图Ⅱ-2过点A作AE⊥BC,垂足为E,又AB=AC,∴E是BC的中点.∵在Rt△ABE中,有AE=AB2-BE2= 132-52=12,点D在AB上运动时,CD最短是当CD⊥AB时,此时CD是边AB上的高,∴S△ABC=12·CD·AB=12·AE·BC,即CD=12×1013=12013.14.45解析:根据图形可得四个三角形的面积+小正方形的面积=大正方形的面积,即4×12ab+4= 49,得2ab+4=49,∴2ab=49-4=45.15.30解析:O D2=O A2+AB2+BC2+CD2=16+1+4+ 9=30.16.直角三角形解析:∵a,b,c满足a2+|b-15|+(c-17)2+64=16a,∴a2-16a+64+|b-15|+(c-17)2=0,即:(a-8)2+|b-15|+(c-17)2=0,由非负性可知:a-8=0,b-15=0,c-17=0,∴a=8,b=15,c=17.又∵a2+b2=82+152=172=c2,∴△ABC是直角三角形.17.解:根据题意画出圆柱侧面展开图,连接AC,答图Ⅱ-3根据两点之间线段最短,蚂蚁从A出发沿圆柱侧面爬行到C的最短路程为A C.∵圆柱的底面周长为20cm,∴BC=AD=10cm.又∵AB=4cm,∴在Rt△ADC中,AC=AD2+DC2=229,则蚂蚁爬行的最短路程为229cm.18.解:过点A作AE⊥BC,垂足为E.答图Ⅱ-4∵AB=AC=20,BC=32,∴CE=BE=16,∴在Rt△AEC中,AE=AC2-EC2=12.∵AD⊥AC,设DE=x,∴在Rt△ADC中,有AD2= DC2-AC2=(x+16)2-202,在Rt△ADE中,有AD2=DE2+AE2=x2+122,∴(x+16)2-202=x2+122,解得:x=9,∴BD=BE-DE=16-9=7(cm).19.解:∵CD=DE=2,∴在Rt△CDE中,CE=CD2+DE2=22.∵直角三角形斜边上的中线等于斜边的一半,∴CE=12AB,∴AB=2CE=42.20.证明:如答图Ⅱ-5,过点A作A M∥BC,交FD 的延长线于点M,连接E M.答图Ⅱ-5∵A M∥BC,∴∠M AE=∠ACB=90°,∠M AD=∠B.∵AD=BD,∠ADM=∠BDF,∴△ADM≌△BDF,∴AM=BF,MD=DF.又∵DE⊥DF,∴EF=EM,∴AE2+BF2=AE2+AM2=EM2=EF2. 21.解:∵c2=a2+22a2=5a2,∴c=5a,∴a c=22.解:∵ìíîïïOB2+OA2=16,①OB2+OC2=9,②OA2+OD2=25,③∴②+③-①:OC2+OD2=25+9-16=18,∴DC2=18,∴DC=32.23.解:如答图Ⅱ-6,作AD关于AB的对称线AD',作D'F⊥AC,垂足为F,交AB于点E,则D'F为EF+DE的最小值.答图Ⅱ-6∵AD=AD'=6,∠D'AD=60°,AF=3,∴在Rt△AD'F中,D'F=D'A2-AF2=33.故DE+EF的最小值为33.24.解:在Rt△ABC中,AB=AC2+BC2=4.∵∠BAD=∠ADB ,∴BD=AB=4.∴CD=BC+BD=10+4.∴S △ADC =12AC ·CD =15+26.25.证明:(1)∵∠ACB=90°,CD ⊥AB ,垂足为点D ,∴S △ABC =12AB ·CD =12AC ·BC ,∴AB·CD=AC·BC ,即ch=ab.∴1a 2+1b 2=a 2+b 2a 2b 2=c 2c 2h 2=1h 2.(2)∵(c +h )-(a +b )=()c +abc-(a +b )=c 2+ab -ac -bc c=(c -a )(c -b )c ,又∵c >a ,c >b ,∴(c -a )(c -b )c>0.∴(c +h )-(a +b )>0.∴c +h >a +b ,即a +b <c +h.(3)∵c +h >a +b ,c +h >h ,∴(c +h )2=c 2+2ch +h 2=a 2+b 2+2ab +h 2=(a +b )2+h 2.∴以a +b ,h ,c +h 为边的三角形是直角三角形.第3讲平行四边形练一练巩固演练1.B2.C3.C4.D5.C6.BO=DO (答案不唯一)7.78.439.310.2411.证明:∵AB ∥CD ,∴∠DCA =∠BA C .∵DF ∥BE ,∴∠DFA =∠BEC ,∴∠AEB =∠DF C .在△AEB 和△CFD 中,{∠DCF =∠EAB,AE =CF,∠DFC =∠AEB,∴△AEB ≌△CFD (ASA ),∴AB =CD.∵AB ∥CD ,∴四边形ABCD 为平行四边形.12.解:∵四边形ABCD 是平行四边形,∴∠ADE =∠DE C .又∵∠DAF =62°,AF ⊥DE ,∴∠ADE =∠DEC =90°-62°=28°.∵∠BED +∠DEC =180°,∴∠BED =180°-28°=152°.13.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥B C .∵DE =12AD ,F 是BC 边的中点,∴DE =FC ,DE ∥FC ,∴四边形CEDF 是平行四边形;(2)解:过点D 作D N ⊥BC ,垂足为点N ,∵四边形ABCD 是平行四边形,∠A =60°,∴∠BCD =∠A =60°.∵AB =3∴FC =2,N C =12DC =32,D N2∴F N =12,则DF =CE=DN 2+FN 2=7.答图3-1提高演练1.D2.D3.①②④5.解:设x s 后,四边形ABQP 是平行四边形.则AP=x ,CQ=2x ,∴BQ =6-2x.∵AD ∥BC ,∴当AP=BQ 时,四边形ABQP 是平行四边形.∴x =6-2x ,解得x =2.当x =2时,AP=BQ =2<BC<AD ,∴2s 后,四边形ABQP 是平行四边形.测一测1.B2.C3.C4.D5.D6.C7.B8.B 9.310.AF=CE ,答案不唯一11.3312.1<a <713.1014.415.证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,∴∠BAE =∠DCF.在△AEB 和△CFD 中,{AB =CD,∠BAE =∠DCF,AE =CF,∴△AEB ≌△CFD (SAS ),∴BE=DF.16.(1)证明:∵O 是AC 的中点,∴OA=OC.∵AD ∥BC ,∴∠ADO=∠CBO.在△AOD 和△COB 中,{∠ADO =∠CBO,∠AOD =∠COB,OA =OC,∴△AOD ≌△COB ,∴OD=OB ,∴四边形ABCD 是平行四边形.(2)解:∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形,∴S ▱ABCD =12AC·BD =24.17.(1)证明:∵D ,E 分别是AB ,AC 边的中点,∴DE ∥BC ,且DE =12B C .同理,G F ∥BC ,且G F =12BC ,∴DE ∥GF 且DE=GF ,∴四边形DEFG 是平行四边形.(2)解:当OA=BC 时,▱DEFG 是菱形.18.(1)证明:∵四边形ABCD 是平行四边形,∴DC=AB ,DC ∥AB ,∴∠ODF=∠OBE.在△ODF 与△OBE 中,{∠ODF =∠OBE,∠DOF =∠BOE,DF =BE,∴△ODF ≌△OBE (AAS ),∴BO=DO.(2)解:∵BD ⊥AD ,∴∠ADB =90°.∵∠A=45°,∴∠DBA=∠A =45°.∵EF ⊥AB ,∴∠G =∠A =45°,∴△ODG 是等腰直角三角形.∵AB ∥CD ,EF ⊥AB ,∴DF ⊥OG ,∴OF=FG ,△DFG 是等腰直角三角形,∴DF=FG=1,∴DG=DF 2+FG 2=2.∵DG=DO=2,又∵DO=BO ,∴AD =2DO =22.19.解:(1)△ABC (或△CDA )与△FAE 全等.(下面仅对△ABC ≌△FAE 证明)∵∠FAB =∠EAD =90°,∴∠EAF +∠DAB =180°.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠DAB +∠CBA =180°,∴∠CBA=∠EAF.∵AE=AD ,∴BC=AE.又∵AB=AF ,∴△ABC ≌△FAE.(2)由(1)同理可得,△AEF ≌△DAC ≌△CIJ ,△BGH ≌△DKL ≌△CDB ,则四个三角形面积和为12×5×4=10.赛一赛解:如答图3-2,分别延长AC ,BD 交于点H ,连接HP.∵∠A =∠DPB =60°,∴AH ∥PD.∵∠B=∠CPA =60°,∴BH ∥PC ,∴四边形CPDH 为平行四边形.∴CD 与HP 互相平分,又∵G 为CD 的中点,∴G 正好为PH 的中点,即在P 运动过程中,G 始终为PH 的中点,所以G 的运动轨迹为△HAB 的中位线MN ,∴MN =12AB =5.答图3-2第4讲特殊的平行四边形练一练巩固演练1.C2.C3.D4.A5.D6.27.2458.139.7-110.511.证明:∵∠BAD=∠D =90°,BA=AD=DC ,又∵点M ,N 分别是AD ,CD 的中点,∴AM=DN =12AD ,∴△ABM ≌△DAN ,∴∠ABM=∠DAN.∵∠BAN+∠DAN =90°,∴∠BAN+∠ABM=90°,∴∠AEB =90°,即AN ⊥BM.12.(1)证明:∵∠OBC=∠OCB ,∴BO=CO.又∵在▱ABCD 中,∴AO=CO ,DO=BO ,∴2BO=2AO ,即BD=AC ,∴▱ABCD 为矩形.(2)解:AC ⊥BD 或AB=BC.13.证明:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC.∵E ,F 分别是AD ,BC 的中点,∴AE=12AD ,CF =12BC ,∴AE=CF ,∴四边形AFCE 是平行四边形.(2)∵四边形AFCE 是平行四边形,∴CE ∥AF ,∴∠DGE=∠AHD=∠BHF.∵AD ∥BC ,∴∠EDG=∠FBH.在△DEG 和△BFH 中,{∠DGE =∠BHF,∠EDG =∠FBH,DE =BF,∴△DEG ≌△BFH (AAS ),∴EG=FH.提高演练1.D2.C3.103-104.65.(1)解:猜想DM 与ME 的关系是:DM=ME.证明:如答图4-1,延长EM 交AD 于点H.∵四边形ABCD、四边形ECGF 都是矩形,答图4-1∴AD ∥BG ,EF ∥BG ,∠HDE =90°,∴AD ∥EF ,∴∠AHM=∠FEM.又∵AM=FM ,∠AMH=∠FME ,∴△AMH ≌△FME ,∴HM=EM.又∵∠HDE=90°,∴DM=EM.(2)DM=ME ,DM ⊥ME.(3)证明:如答图4-2,连接AC .答图4-2∵四边形ABCD 、四边形ECGF 都是正方形,∴∠DCA=∠DCE =45°,∴点E 在AC 上,∴∠AEF=∠FEC =90°.又∵M 是AF 的中点,∴ME=12AF.∵∠ADC =90°,M 是AF 的中点,∴DM=12AF ,∴DM=EM.∵ME =12AF=FM ,DM=12AF=FM ,∴∠DFM=12(180°-∠DMF ),∠MFE =12(180°-∠FME ),∴∠DFM+∠MFE =180°-12(∠DMF+∠FME )=180°-12∠DME.∵∠DFM+∠MFE=180°-∠CFE =180°-45°=135°,∴180°-12∠DME=135°,∴∠DME=90°,∴DM ⊥ME.测一测2.C3.A4.A5.A6.B7.D8.C 910.311.2-212.105cm 85cm13.4或814.(2,4)或(8,4)15.证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C.∵在△ABF 和△CBE 中,{AF =CE,∠A =∠C,AB =CB,∴△ABF ≌△CBE (SAS ),∴∠ABF=∠CBE.16.解:线段AF ,BF ,EF 三者之间的数量关系为AF=BF+EF ,理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠DAB =∠ABC =90°.∵DE ⊥AG ,垂足为E ,BF ∥DE 交AG 于F ,∴∠AED =∠DEF =∠AFB =90°,∴∠ADE +∠DAE =90°,∠DAE+∠BAF =90°,∴∠ADE=∠BAF.在△ABF 和△DAE 中,{∠BAF =∠ADE,∠AFB =∠DEA,AB =AD,∴△ABF ≌△DAE (AAS ),∴BF=AE ,∴AF=AE+EF=BF+EF.17.解:(1)连接AC ,BD ,交于点O ,菱形ABCD 的周长是48cm ,答图4-3则AB=BC=CD=AD =12cm .∵∠A ∶∠B =1∶2,∴∠A =60°,∠B =120°,∴△ADB 是等边三角形,AD=BD =12cm ,在Rt△ADO 中,AO =AD 2-DO 2=63cm ,∴AC=2AO=123cm .(2)S 菱形ABCD =12AC·BD =723cm 2.18.证明:如答图4-4,连接AC ,答图4-4∵四边形ABCD 为菱形,∴AC ⊥BD ,AD =CD ,∴∠ADP =∠CDP.又∵DP =DP ,∴△APD ≌△CP D .∴PA =PC ,∠DAP =∠DCP.又∵∠AEP =∠DCP ,∴∠AEP =∠DAP.∴PA =PE.∴PC =PE.19.(1)解:如答图4-5,答图4-5利用邻边长分别为3和5的平行四边形进行3次操作,所剩四边形是边长为1的菱形,故邻边长分别为3和5的平行四边形是3阶准菱形;如答图4-6,答图4-6∵b =5r ,∴a =8b +r =40r +r =8×5r +r ,利用邻边长分别为41r 和5r 的平行四边形进行8+4=12次操作,所剩四边形是边长为r 的菱形,故邻边长分别为41r 和5r 的平行四边形是12阶准菱形.故答案为:3,12.(2)证明:由折叠知:∠ABE =∠FBE ,AB =BF ,∵四边形ABCD 是平行四边形,∴AE ∥BF ,∴∠AEB =∠FBE ,∴∠AEB =∠ABE ,∴AE =AB ,∴AE =BF ,∴四边形ABFE 是平行四边形,∴四边形ABFE 是菱形.赛一赛解:(1)等腰(2)如答图4-7①,连接BE ,作BE 的垂直平分线交BC 于点F ,连接EF ,△BEF 是矩形ABCD 的一个折痕三角形.∵折痕垂直平分BE ,AB =AE =2,∴点A 在BE 的垂直平分线上,即折痕经过点A ,∴四边形ABFE 为正方形,∴BF =AB =2,∴F 的坐标为(2,0).(3)矩形ABCD 存在面积最大的折痕△BEF ,其面积为4.理由如下:①当F 在边BC 上时,如答图4-7②所示,S △BEF ≤12S 矩形ABCD ,即当F 与C 重合时,△BEF 的面积最大为4.②当F 在边CD 上时,如答图4-7③所示,过F 作F H ∥BC 交AB 于点H ,交BE 于点K ,∵S △E K F =12K F ·A H ≤12H F ·A H =12S 矩形A H FD ,S △B K F =12K F ·B H ≤12H F ·B H =12S 矩形BCF H ,∴S △BEF ≤12S 矩形ABCD =4,即当F 为CD 的中点时,△BEF 的面积最大为4.下面求面积最大时,点E 的坐标:①当F 与点C 重合时,如答图4-7④所示,由折叠可知CE=CB =4,在Rt △CDE 中,ED =CE 2-CD 2=42-22=23,∴AE =4-23,∴E 的坐标为(4-23,2).②当F 在边DC 的中点时,点E 与点A 重合,如答图4-7⑤所示,此时E 的坐标为(0,2).综上所述,折痕△BEF 的最大面积为4时,点E的坐标为(0,2)或(4-23,2).答图4-7第3—4讲测试题1.D2.D3.C4.C5.D6.C7.B8.C9.D 10.D 11.BC=DF (答案不唯一)12.5∶113.60°14.715.75°16.2017.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴∠BAC=∠DCA ,∴180°-∠BAC =180°-∠DCA ,∴∠EAB=∠DCF.∵BE ⊥AC ,DF ⊥AC ,∴∠BEA=∠DFC=90°.在△BEA 和△DFC 中,{∠BEA =∠DFC,∠EAB =∠DCF,AB =CD,∴△BEA ≌△DFC (AAS ),∴AE=CF.18.证明:∵四边形ABCD 是平行四边形,∴点O 是BD 的中点.又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,∴OE ∥BC ,且OE =12BC.又∵CF=12BC ,∴OE=CF.又∵点F 在BC 的延长线上,∴OE ∥CF ,∴四边形OCFE 是平行四边形.19.证明:如答图Ⅲ-1,连接AF ,EC.答图Ⅲ-1∵四边形ABCD 是矩形,∴OB=OD.又∵AE ∥CF ,∴∠BEO=∠DFO ,∠OBE=∠ODF.∴△BOE ≌△DOF (AAS ),∴BE=DF.∵AB+BE=DC+DF ,∴AE=CF ,AE ∥CF ,∴四边形AECF 为平行四边形.20.证明:∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴AD ∥BC.又∵EF ⊥AD ,∴EF ⊥BC.21.证明:∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠CBE =90°.∵BF ⊥CE ,∴∠BCE+∠CBG =90°.∵∠ABF+∠CBG =90°,∴∠BCE=∠ABF.在△BCE 和△ABF 中,{∠BCE =∠ABF,BC =AB,∠CBE =∠A,∴△BCE ≌△ABF (ASA ),∴BE=AF.22.(1)证明:∵四边形ABCD 是矩形,∴AB=DC ,AC=BD ,AD=BC ,∠ADC=∠ABC =90°.由平移的性质得:DE=AC ,CE=BC ,∠DCE=∠ABC=90°,DC=AB ,∴AD=EC.在△ACD 和△EDC 中,{AD =EC,∠ADC =∠DCE,CD =DC,∴△ACD ≌△EDC (SAS ).(2)解:△BDE 是等腰三角形.理由如下:∵AC=BD ,DE=AC ,∴BD=DE ,∴△BDE 是等腰三角形.23.证明:∵四边形ABCD 是菱形,∴AB=BC ,AD ∥BC ,∴∠A=∠CBF.又∵AE=BF ,∴△ABE ≌△BCF ,∴BE=CF.24.(1)证明:如答图Ⅲ-2,连接BD.答图Ⅲ-2∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12B D .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG=12BD ,∴EH ∥FG ,EH=GF ,∴中点四边形EFGH 是平行四边形.(2)四边形EF GH 是菱形.证明:如答图Ⅲ-3,连接AC ,BD,交于点O.答图Ⅲ-3∵∠APB=∠CPD ,∴∠APB+∠APD=∠CPD+∠APD ,即∠APC=∠BPD.在△APC 和△BPD 中,{AP =PB,∠APC =∠BPD,PC =PD,∴△APC ≌△BPD ,∴AC=BD.∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG=12BD ,∴EF=FG.∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)四边形EFGH 是正方形.证明:如答图Ⅲ-3,AC 与PD 交于点M ,AC 与EH 交于点N.∵△APC ≌△BPD ,∴∠ACP=∠BDP.∵∠DMO=∠CMP ,∴∠COD=∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG=∠ENO=∠BOC=∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.25.解:(1)()2,32(2)设点D 的坐标为(x ,y ),当AB 为一条对角线时,AB 的中点坐标为()1,32,则ìíîïïïïx+12=1,y +42=32,解得{x =1,y =-1,此时点D 的坐标为(1,-1).当AC 为一条对角线时,AC 的中点坐标为(0,3),则ìíîïïïïx +32=0,y +12=3,解得{x =-3,y =5,此时点D 的坐标为(-3,5).当BC 为一条对角线时,BC 的中点坐标为()2,52,则ìíîïïïïx -12=2,y +22=52,解得{x =5,y =3,此时点D 的坐标为(5,3).综上所述,点D 的坐标为(1,-1)或(-3,5)或(5,3).第5讲一次函数练一练巩固演练1.B2.A解析:一次函数y =(m -2)x +3的图象经过第一、二、四象限,∴m -2<0,解得m <2.3.B解析:根据函数图象上加下减的平移法则,可得y =2x -3+8,即y =2x +5.4.C解析:由已知可得{n +3=km +k +1,①2n -1=k (m +1)+k +1,②②-①得k =n -4,又0<k <2,则有0<n -4<2,解得4<n <6,只有选项C 的数值符合条件,故选C .5.B6.1解析:由题意可得{y =kx +2,y =2x +k,解得{x =1,y =k +2,故答案为1.7.-40℃8.k =-1(答案不唯一)解析:正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,根据正比例函数的性质可得k <0,只要符合条件的k 值都可以.9.y =x 或y =-x.解析:∵点A (m ,n )在直线y =kx (k ≠0)上,-1≤m ≤1时,-1≤n ≤1,∴图象过点(-1,-1)和(1,1)或者图象过点(-1,1)和(1,-1).∴k =-1或k =1,∴y =x 或y =-x ,故答案为:y =x 或y =-x.10.0.311.解:∵一次函数y =kx +2,当x =-1时,y =1,∴-k +2=1,∴k =1,∴y =x +2.函数图象如答图5-1所示.x y1324答图5-112.(1)l 23020解析:乙离A 地的距离越来越远,图象是l2;甲的速度60÷2=30(km/h);乙的速度60÷(3.5-0.5)=20(km/h);(2)解:设l1所表示的函数关系式为y1=k1x+b1(k1≠0),l2所表示的函数关系式为y2=k2x+b2(k2≠0),可得y1=-30x+60,y2=20x-10,由y1-y2=5得x=1.3;由y2-y1=5得x=1.5.答:甲出发后1.3h或者1.5h时,甲、乙相距5km.13.(1)1,3,1.2,3.3(2)解:y1=0.1x(x≥0);当0≤x≤20时,y2=0.12x,当x>20时,y2=0.12×20+0.09(x-20),即y2=0.09x+ 0.6.故y2关于x的函数解析式为y2={0.12x(0≤x≤20),0.09x+0.6(x>20).(3)解:顾客在乙复印店复印花费少.当x>70时,有y1=0.1x,y2=0.09x+0.6,∴y1-y2=0.1x-(0.09x+0.6)=0.01x-0.6,记y=0.01x-0.6,由于0.01>0,y随x的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.提高演练1.A解析:∵一次函数y=kx-m-2x的图象与y 轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k-2<0,-m<0,∴k<2,m>0.2.B解析:∵一次函数y=-2x+m的图象经过点P(-2,3),∴3=4+m,解得m=-1,∴y=-2x-1.∵当x=0时,y=-1,∴它的图象与y轴的交点为B(0,-1),∵当y=0时,x=-12,∴它的图象与x轴的交点为A()-12,0,∴S△A O B=12×1×12=14.3.an=bm解析:设交点为(x,0),ax+b=0①,mx+ n=0②,①×m-②×a得:mb-an=0,an=bm.4.-25解析:根据题意得y1+y2=3(x1+x2)-16=3×(-3)-16=-25.5.解:(1)观察函数图象可得当横坐标为18时,纵坐标为45,即应交水费为45元.(2)设当x>18时,y关于x的函数解析式为y=kx+ b(k≠0),将(18,45)和(28,75)代入可得{18k+b=45,28k+b=75,解得{k=3,b=-9,则当x>18时,y关于x的函数解析式为y=3x-9,当y=81时,3x-9=81,解得x=30.答:这个月的用水量为30m3.赛一赛解:(1)依据题意画图,如答图5-2.答图5-2∴S△O PA=12O A·PB=12·O A·y.∵点A的坐标为(6,0),∴S=12×6×y=3y.由题知:x+y=8,∴y=8-x,∴S=3(8-x)=24-3x(0<x<8).画图如答图5-3所示.答图5-3(2)当x=3时,S=24-3×3=15.∴当点P的横坐标为3时,△O PA的面积为15.第5讲测试题1.C2.B3.B4.A5.A6.A7.D8.D9.B10.B11.>12.14.-2或-515.七16.(2021217.解:∵直线y=2x+b经过点(3,5),∴5=2×3+b.∴b=-1.即不等式为2x-1≥0,解得x≥12.18.解:将点(0,2)代入y=kx+b(k≠0)中,得:b=2,则一次函数y=kx+b(k≠0)与x轴的交点横坐标为-bk=-2k,由题意可得:S=12×||||||-2k×2=2,解得k=±1,则一次函数的解析式为y=x+2或y=-x+2. 19.解:(1)设直线AB的解析式为y=kx+b.直线AB过点A(1,0),B(0,-2),∴{k+b=0,b=-2,解得{k=2,b=-2,∴直线AB的解析式为y=2x-2.(2)设点C的坐标为(x,y).∵S△B O C=2,∴12×2×x=2,解得x=2,代入y=2x-2中,∴y=2×2-2=2,∴点C的坐标是(2,2). 20.解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,∵b=1+t,当t=3时,b=4.∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,有2=-3+b,解得b=5.∵b=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,有4=-4+b,解得b=8.∵b=1+t,∴t=7.故若点M,N位于l的异侧,t的取值范围是4<t<7.21.(1)将(1,0),(0,2)代入y=kx+b中,得{k+b=0,b=2,解得{k=-2, b=2,∴一次函数的解析式为y=-2x+2.把x=-2代入y=-2x+2,得y=6,把x=3代入y=-2x+2,得y=-4,∴y的取值范围是-4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=-2m+2.∵m-n=4,∴m-(-2m+2)=4,解得m=2,n=-2,∴点P的坐标为(2,-2). 22.解:(1)3min16s=196(s),196+40=236(s).设y=kx+b,则(196,70),(236,80)在直线y=kx+b上,∴{196k+b=70,236k+b=80,解得{k=0.25, b=21,∴y与x之间的函数关系式为y=0.25x+21.(2)令y=100,得0.25x+21=100,解得x=316,令y=28,得0.25x+21=28,解得x=28,∴316-28=288(s),∴需加热288s. 23.解:(1)由题意可知y=60-5x+3x.∴y=60-2x(x≤30).(2)根据题意得60-2x≥40,∴x≤10.∴最迟应在下午6:00关闭两水管.24.解:(1)y1=280×0.8(x-10)+280×10=224x+560(x>10),y2=280×0.9x=252x(x>10).(2)y1-y2=-28x+560,令-28x+560=0,则x=20;①当x>20时,y1<y2,选甲旅行社的费用较低;②当x=20时,y1=y2,选甲、乙两家旅行社的费用相同;③10<x<20时,y1>y2.选乙旅行社的费用较低.25.解:(1)由题意:y=380x+280(62-x)=100x+ 17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴x的取值范围为21≤x≤62.(2)由题意得100x+17360≤21940,∴x≤45.8.又∵x≥20.1,∴21≤x≤45,∴共有25种租车方案.∵y随x的增大而增大,∴x=21时,y取最小值.x=21时,y=100×21+17360=19460,即租A型号客车21辆,B型号客车41辆时最省钱,最少租车费为19460元.第6讲数据的分析练一练巩固演练1.B2.B3.C4.C5.C6.27.908.59.解:(1)由题意可得,调查的学生有:30÷25%= 120(人),选B的学生有:120-18-30-6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全条形统计图与扇形统计图如答图6-1所示,答图6-1(2)由(1)中补全的条形统计图知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢.(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即估计该年级学生中对数学学习“不太喜欢”的有240人.10.解:(1)-x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲.(2)-x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,-x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.提高演练1.C2.D3.84.96分,96.4分5.解:(1)甲的平均成绩为a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大排列为:3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数b =7+82=7.5(环),乙射击成绩的方差为c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2.(2)从平均成绩看,甲、乙二人的成绩相等,均为7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多;而乙射中8环的次数最多;从方差看甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参加比赛,可选择乙参赛,因为乙获得高分的可能更大.赛一赛解:(1)28-22=6(天),∴10盆花的花期最多相差6天.(2)由平均数公式得:-x 甲=15(25+23+28+22+27)=25,-x 乙=15(27+24+24+27+23)=25,∴-x 甲=-x 乙.故无论用哪种花肥,花的平均花期相等.(3)由方差公式得:s 甲2=15[(25-25)2+(23-25)2+(28-25)2+(22-25)2+(27-25)2]=5.2,s 乙2=15[(27-25)2+(24-25)2+(24-25)2+(27-25)2+(23-25)2]=2.8,得s 2乙<s 2甲,故施用乙种花肥效果更好.第6讲测试题1.B 2.C 3.B 4.C 5.B 6.D 7.C 8.C9.D 10.B 11.312.713.1514.4.8或5或5.215.2.516.18317.解:(1)根据题意得:30÷30%=100(人),∴劳动时间为“1.5h ”的人数为100-(12+30+18)=40(人),补全统计图,如答图Ⅵ-1所示:答图Ⅵ-1(2)根据题意得:40100×360°=144°,则扇形图中的“1.5h ”部分的圆心角是144°.(3)根据题意得:抽查的学生劳动时间的众数为1.5h ,中位数为1.5h .18.解:(1)由题意可得,甲组的平均成绩是:91+80+783=83(分),乙组的平均成绩是:81+74+853=80(分),丙组的平均成绩是:79+83+903=84(分),从高分到低分小组的排名顺序是:丙>甲>乙.(2)由题意可得,甲组的平均成绩是:91×40%+80×30%+78×30%40%+30%+30%=83.8(分),乙组的平均成绩是:81×40%+74×30%+85×30%40%+30%+30%=80.1(分),丙组的平均成绩是:79×40%+83×30%+90×30%40%+30%+30%=83.5(分),由上可得,甲组的成绩最高.19.解:(1)根据题意得:15×40+25×40+30×2040+40+20=22(元/千克).则该什锦糖的单价是22元/千克;(2)设加入丙种糖果x kg ,则加入甲种糖果(100-x )kg ,根据题意得:30x +15(100-x )+22×100200≤20,解得x ≤20.答:最多加入丙种糖果20kg .20.解:(1)由表格中的数据可以将折线统计图补充完整,如答图Ⅵ-2所示,答图Ⅵ-2(2)将乙的射击训练成绩按照从小到大排列是:6,7,7,7,7,8,9,9,10,10,故乙运动员射击训练成绩的众数是7,中位数是:7+82=7.5,故答案为:77.5;(3)由表格可得,-x 甲=8+9+7+9+8+6+7+8+10+810=8,s 甲2=110×[(8-8)2×4+(9-8)2×2+(7-8)2×2+(6-8)2+(10-8)2]=1.2,∵1.2<1.8,∴甲本次射击成绩的稳定性好.21.解:(6+12+16+10)÷4=44÷4=11,∴这四个小组回答正确题数的平均数是11题.22.解:(1)如答图Ⅵ-3所示:答图Ⅵ-3(2)由题意知,10+9+9+a +b5=9,∴a +b =17.23.解:(1)-x 甲=15×(7.2+9.6+9.6+7.8+9.3)=8.7(万元),把乙的销售额按照从小到大依次排列可得:5.8,5.8,9.7,9.8,9.9;则中位数为9.7.丙中出现次数最多的数为9.9.(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.24.解:(1)由折线统计图可知,甲组成绩从小到大排列为3,6,6,6,6,6,7,9,9,10,∴甲组学生成绩的中位数a =6,乙组学生成绩的平均分b =5×2+6×1+7×2+8×3+9×210=7.2.(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于全班中上游,∴小英属于甲组学生.(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.25.解:(1)4030(2)观察条形统计图,∵-x =13×4+14×10+15×11+16×12+17×340=15,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+152=15,∴这组数据的中位数为15.综合测试题1.D2.C3.C4.C5.B6.D7.C8.A9.A 10.D11.三12.y =12x -513.x <114.751615.n -1416.517.解:(1)27+48=33-23+43=53;(2)原式=3+1-3+9+62+2=12+62.18.(1)点A 关于y 轴对称的点的坐标是(2,3).(2)点B对应点的坐标是(0,-6),画图略.(3)以A,B,C为顶点的平行四边形的第四个顶点D的坐标为(-7,3)或(-5,-3)或(3,3). 19.(1)∠ACB=90°;(2)S△ABC=16-12×2×4-12×2×1-12×4×3=5. 20.(1)解:AD=13BC,理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD是平行四边形,∴AD=BE,AD=F C.又∵四边形AEFD是平行四边形,∴AD=EF,∴AD=BE=EF=FC,∴AD=13B C.(2)证明:∵四边形ABED和AFCD是平行四边形,∴DE=AB,AF=D C.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴四边形AEFD是矩形.21.解:(1)由题意{17(a+0.8)+3(b+0.8)=66,①17(a+0.8)+8(b+0.8)=91,②②-①,得5(b+0.8)=25,解得b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,得a=2.2,b=4.2.(2)当用水量为30m3时,水费为:17×3+13×5=116(元),9200×2%=184(元),∵116<184,∴小王家6月份用水超过30m3.设小王家6月份用水x m3,由题意,得17×3+13×5+6.8(x-30)≤184,6.8(x-30)≤68,解得x≤40.则小王家6月份最多能用水40m3.22.解:从成绩统计表看,甲组成绩高于90分的有20人,乙组成绩高于90分的有24人,乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看乙组的成绩较好.当然还可以从其他角度来分析.(从不同的角度分析,可能会得到不同的结论)23.(1)证明:由折叠知AE=AD=E G,BC=C H,∵四边形ABCD是矩形,∴AD=BC,∴E G=C H.(2)解:∵∠ADE=45°,∠F G E=∠A=90°,AF=2,∴D G=G F=2,DF=DG2+GF2=2,∴AD=AF+DF=2+2.∵∠G EF=∠AEF,又∵∠BEC=∠H EC,∴2∠G EF+2∠H EC=180°,∴∠CEF=90°.∵∠CE H+∠H CE=90°,∠FE G+∠CE H=90°,∴∠G EF=∠H CE.在△F G E和△E H C中,{∠FGE=∠CHE,∠GEF=∠HCE,CH=EG,∴△F G E≌△E H C,∴F G=E H=AF=BE=2,∴AB=AE+BE=AD+AF=2+2+2=22+2. 24.解:(1)设直线l1的表达式为y=k1x,过B(18,6),得18k1=6,解得k1=13,∴直线l1的表达式为y=13x.设直线l2的表达式为y=k2x+b,过A(0,24),B(18,6),得{b=24,18k2+b=6,解得{k2=-1,b=24,∴直线l2的表达式为:y=-x+24.(2)∵点C在直线l1上,且点C的纵坐标为a,∴a=13x,则x=3a,∴点C的坐标为(3a,a).∵CD∥y轴,∴点D的横坐标为3a.∵点D在直线l2上,∴y=-3a+24,∴点D的坐标为(3a,-3a+24).25.证明:由图①知:S多边形ABCDEF=S正方形AB O F+S正方形C O ED+2S△B O C=a2+b2+ 2×12ab=a2+b2+ab.设BC=c,则B'C'=c.由图③知:S多边形A'B'C'D'E'F'=S△A'B'F'+S正方形B'C'E'F'+S△C'D'E'=12ab+ c2+12ab=c2+ab.∵S多边形ABCDEF=S多边形A'B'C'D'E'F',∴a2+b2+ab=c2+ab.∴a2+b2=c2.。
【最新2018】八年级上数学练习册答案word版本 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==八年级上数学练习册答案篇一:人教版八年级上数学练习册答案篇二:201X数学练习册八年级上 C版答案篇三:八年级数学练习册答案第12章数的开方12.1 平方根与立方根1.平方根第1课时52. 3 负的平方根3. 2 0 3课前预习 : 1.x a ?4 ?24.(1)错误,因为0=0,所以0的平方根是0;(2)错误,因为负数没有平方根;(3)错误,因为64的平方根不但有一个8,—8也是它的平方根,说法丢解;(4)正确,因为5=25,所以5是25的平方根. (5)错误课堂练习: 5.B 6.D 7.B 8.D9. x≤2 10.-111. 4 12. 49 13.(1)±10 (2)±4(3)±1.1 (4)?287320.5-m 21.?322.(1)4 (2)5课后训练 :14.D 15.A 16.C 17.2 18.1119.??423. m=1或m= —324._1=(n+1)n?21 16126.111111111 n?2学习拓展: 25.n? 第2课时3,3 2.?93.x≥2,≥ 4.D 5课前预习 : 1.33课堂练习: 5.B 6.C7.3 3 8. 09.m10.±8 , 8 11.± ,12.±334413.19 点拨:由,得x=2,y=5,故2x+3y=19. 14.1<c<7课后训练15.C 16.C 17、B18、9;7,819、-2b 20. 021. 1622. 7 123.由题意知:4a2=(?2)2= 4 ,b=2 所以a2+2b= 4+4=824.解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?25.1<c<726.砖的边长为0.4米.??0.4,所以每块瓷 2. 立方根课前预习 :1.立方根?5 —45 —125 2.64 3.任意数4.A课堂练习 : 5.B 6.D 7.D 8.A 9.D 10.A 11.1 课后训练 12.C 13.A 14.?2 15.0或—2 16.?2 217. 0?1,018.2, 919. 020. .n322.(1)解:(x?2)?723433x-2= x=3(2)解:(1?x)?55125113(1?x)? 6481?x?11x?22223.解:因为a?4 所以 a=64 又因为(b?2c?1)?c?3?0 所以??b?2c?1?0,?c?3?0?b?53333解之得? 所以a?b?c?64?5?3?216?6?c?324.x=4,x=-22(舍)y=0.5,原式=2-4+3=1.25.由题意,1?2x与3x?5互为相反数,所以(1?2x)?(3x?5)?0,解得x?4,所以1?x?1?4?1?2??1学习拓展: 26.B27.A 点拨:设正方体的棱长为xcm,则x?100,由于4?64,5?125,所以棱长x大约在4~5cm之间.故选A.33312. 2 实数与数轴课前预习:1. 2,6,4,2 2.?3,3?3 ,5?7,2?13.?3 4.>,5,>,< 5.D 课堂练习 : 6.D7.B 8.C 9.C 10.C 11.A 12.A 13.D14.+2与--1;1+与-等 15.?,3.010010001… 点拨:答案不唯一.(1)< (2)。
(暑假预习)江苏省 八年级数学上册第1_27讲课后练习 含讲析 (打包27套)(新版)苏科版
第1讲图形的全等题一:如图,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2010m停下,则这个微型机器人停在().A.点A处B.点B处C.点C处D.点E处如图所示,两个全等的菱形边长为1m,一个微型机器人由A点开始按ABCDEFCGA…的顺序沿菱形的边循环运动,行走2011m停下,则这个微型机器人停在点.题三:全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形。
若运动方向相反,则称它们是镜面合同三角形。
两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,如图,下列各组合同三角形中,是镜面合同三角形的是().A.B.C.D.题四:阅读下面材料:如图(1),把△ABC沿直线BC平移线段BC的长度,可以变到△ECD的位置;如图(2),以BC为轴,把△ABC翻折180º,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180º,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平移、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在上面的右图中,四边形ABCD是正方形,AF=AE,可以通过平移、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;②指出图中线段BE与DF之间的关系,为什么?第1讲图形的全等题一:A.详解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2010÷6=335,即正好行走了335圈,回到出发点,∴行走2010m停下,则这个微型机器人停在A点.故选A.根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2010÷6=335,正好行走了一圈,即落到A点.本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2010为6的倍数.题二:D.详解:∵两个全等菱形的边长为1厘米,∴微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离为8×1=8厘米,∵2011÷8=251…3,∴当微型机器人走到第251圈后再走3厘米正好到达D点.故答案为D.解析:先求出微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离,再根据菱形的边长为1厘米可知微型机器人每走1厘米按A、B、C、D、E、F、C、G的顺序循环,故可用2011除以两菱形的周长和,所得余数为从A开始所走的距离,找出此点即可.本题考查的是菱形的性质,解答此题的关键是根据题意得出蚂蚁每走1厘米按A、B、C、D、E、F、C、G的顺序循环,找出规律即可轻松作答.题三:B.详解:认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.题意知真正合同三角形和镜面合同三角形的特点,可判断要使B组的两个三角形重合必须将其中的一个翻转180°;而其它组的全等三角形可以在平面内通过平移或旋转使它们重合.故选B.此题考查了学生的阅读理解能力及空间想象能力,较灵活.认真读题,透彻理解题意是正确解决本题的关键.题四:(1)根据阅读材料和平移、旋转、轴对称的知识可以判断出可以通过旋转,以点A为旋转中心,逆时针方向旋转90°,使△ABE变到△ADF的位置.(2) 线段BE与DF之间的关系是垂直且相等。
2018学年八年级数学上册全套同步练习题有答案详解苏科版新版共88业
等边三角形重难点易错点解析题一:题面:如图,△ABC为等边三角形,点D,E,F别离在AB,BC,CA边上,且△DEF 是等边三角形,求证:△ADF≌△CFE.题二:题面:已知,在Rt△ABC中,∠C=90°,∠BAC=30°,AB=10,那么BC= .金题精讲题一:题面:如图,△ABC是等边三角形,别离延长AB至F,BC至D,CA至E,使AF=3AB,BD=3BC,CE=3CA,求证:△DEF是等边三角形.题二:题面:如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE. 求证:AE∥BC.题三:题面:如图,已知:△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线交AB于E,交BC于F,DG为AC的垂直平分线,交AC于G,交BC于D,若BC=15cm,则DF长为.题四:题面:如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )A.2 B.23C.3D.3思维拓展题面:等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( ) A.7 B.6 C.5 D.4课后练习详解重难点易错点解析题一:答案:见详解详解:∵△ABC为等边三角形,∴∠A=∠C=60°.∴∠ADF+∠AFD=120°.∵△DEF是等边三角形,∴∠DFE=60°,DF=EF.∴∠AFD+∠CFE=120°.∴∠ADF=∠CFE.在△ADF和△CFE中∠A=∠C,∠ADF=∠CFE,DF=EF,∴△ADF≌△CFE.题二:答案:5详解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,∴BC:AB=1:2,∵AB=10,∴BC=5.金题精讲题一:答案:见详解详解:∵△ABC是等边三角形,∴∠EAF=∠FBD=∠DCE=120°.∵AB=BC=CA,AF=3AB,BD=3BC,CE=3CA,∴AF=BD=CE即AB+BF=BC+CD=CA+AE.∴AE=BF=CD,∴△AEF≌△BFD≌△DCE.∴EF=FD=DE.即△DEF是等边三角形.题二:答案:见详解详解:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°.∴∠BCA∠DCA=∠ECD∠DCA,即∠BCD=∠ACE.∵在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CD=CE,∴△ACE≌△BCD(SAS).∴∠EAC=∠DBC=60°=∠ACB.∴AE∥BC.题三:答案:5cm.详解:连接AF、AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°−∠BAC)÷2=30°,∵EF、DG别离为线段AB、AC的垂直平分线,∴BF=AF,AD=CD,∠B=∠BAF=30°,∠C=∠CAD=30°,∵∠AFD与∠ADF别离是△ABF与△ACD的外角,∴∠AFD=∠B+∠BAF=30°+30°=60°,∠ADF=∠C+∠CAD=30°+30°=60°,∴△ADF是等边三角形,∴AF=FD=AD,∵BF=AF,AD=CD,BC=15cm,∴AF=FD=AD=BF=CD,∴3DF=BC=15,∴DF=5cm.题四:答案:C.详解:∵△ABC是等边三角形,点P在∠ABC的平分线上,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF•cos30°=2×3=3.2∵FQ是BP的垂直平分线,∴BP=2BQ=23.BP=3.故选C.在Rt△BEP中,∵∠EBP=30°,∴PE=12思维拓展答案:C.详解:如图,△ABC中AB=AC,AD是BC边上的中线,按照等腰三角形三线合一的性质,AD⊥BC.×6=3,AD=4,按照勾股定理,得AB=5.故选C.在Rt△ABD中,B D=12等边三角形重难点易错点解析题一:题面:如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.求证:△CBE为等边三角形.题二:题面:已知:如图,△ABC中,∠C=90°,学习等边三角形时,咱们明白,若是∠A=30°,那么AB=2BC,由此咱们猜想,若是AB=2BC,那么∠A=30°,请你利用轴对称变换,证明那个结论.金题精讲题一:题面:已知:如图,△BCE、△ACD别离是以BE、AD为斜边的直角三角形,且BE=AD,△CDE 是等边三角形.求证:△ABC是等边三角形.题二:题面:如图,已知△ABC是等边三角形,点D、F别离在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.题三:题面:如图,△ABC中,AB=8,AC=11,BC边上的垂直平分线别离交AC、BC于点E、D,则△ABE的周长等于 .题四:题面:如图,△ABC是等边三角形,点D是边BC上(除B、C外)的任意一点,∠ADE=60°,且DE交△ABC外角∠ACF的平分线CE于点E.(1)求证:∠1=∠2;(2)求证:AD=DE.思维拓展题面:已知等腰△ABC中,AD⊥BC于点D,且AD=12BC,则△ABC底角的度数为( )A.45° B.75° C.45°或75° D.60°课后练习详解重难点易错点解析题一:答案:见详解详解:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形题二:答案:∠A=30°.详解:如图,延长BC至点D,使CD=BC,连接AD,则△ABC和△ADC关于直线AC成轴对称,∴AB=AD,BD=2BC,∠BAC=∠DAC,∵AB=2BC,∴AB=BD,∴AB=AD=BD,∴△ABD是等边三角形,∴∠BAD=60°,∴∠BAC=12∠BAD=12×60°=30°.金题精讲题一:答案:见详解详解:∵△CDE是等边三角形,∴EC=CD,∠1=60°.∵BE、AD都是斜边,∴∠BCE=∠ACD=90°在Rt△BCE和Rt△ACD中,EC=DC,BE=AD∴Rt△BCE≌Rt△ACD(HL).∴BC=AC.∵∠1+∠2=90°,∠3+∠2=90°,∴∠3=∠1=60°.∴△ABC是等边三角形.题二:答案:见详解详解:(1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥DC(内错角相等,两直线平行). ∵DC=EF,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°,∴△EFB是等边三角形.∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠EBF=∠ACB.∴△AEB≌△ADC(SAS).∴AE=AD.题三:答案:19.详解:∵BC边上的垂直平分线是DE,∴BE=CE,∵AB=8,AC=11,∴△ABE的周长为:AB+AE+BE=AB+AE+CE=AB+AC=8+11=19.故答案为:19.题四:答案:见详解详解:(1)∵△ABC是等边三角形,∠ADE=60°∴∠ADE=∠B=60°,∠ADC=∠2+∠ADE=∠1+∠B∴∠1=∠2.(2)如图,在AB上取一点M,使BM=BD,连接MD.∵△ABC是等边三角形∴∠B=60°∴△BMD是等边三角形,∠BMD=60°.∠AMD=120°.∵CE是△ABC外角∠ACF的平分线,∴∠ECA=60°,∠DCE=120°.∴∠AMD=∠DCE,∵BA BM=BC BD,即MA=CD.在△AMD和△DCE中∠1=∠2,AM=DC,∠AMD=∠DCE,∴△AMD≌△DCE(ASA).∴AD=DE.思维拓展答案:C.详解:按照题意画出图形,注意别离从∠BAC是顶角与∠BAC是底角去分析,然后利用等腰三角形与直角三角形的性质,即可求得答案:如图1:AB=AC,∵AD⊥BC,∴BD=CD=12BC,∠ADB=90°.∵AD=12BC,∴AD=BD. ∴∠B=45°.即现在△ABC底角的度数为45°.如图2,AC=BC,∵AD⊥BC,∴∠ADC=90°.∵AD=12BC,∴AD=12AC,∴∠C=30°.∴∠CAB=∠B=(1800-∠A)÷2=75°.即现在△ABC底角的度数为75°.综上所述,△ABC底角的度数为45°或75°.故选C.等腰三角形1重难点易错点解析题一:题面:下列命题说法中:(1)等腰三角形一定是锐角三角形(2)等腰三角形有一个外角等于120°,这一个三角形必然是等边三角形(3)等腰三角形中有一个外角为140°,那么它的底角为70°(4)等腰三角形是轴对称图形,它有3条对称轴错误的有( )个金题精讲题一:题面:如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.题二:题面:等腰三角形的顶角为80°,则它的底角是( )A.20°B.50° C.60° D.80°题三:题面:如图,在△ABC中,∠ABC和∠A CB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )A.6 B.7 C.8 D.9题四:题面:如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB 于F,且AB>AC,求证:BF=AC+AF.思维拓展题面:如图,∠MAN是一钢架,且∠MAN=18°,为了使钢架加倍牢固,需在其内部添加一些钢管BC,CD,DE,…添加的钢管长度都与AB相等,则最多能添如此的钢管 .课后练习详解重难点易错点解析题一:答案:3.详解:(1)错误,三个内角别离为20°,20°,140°的等腰三角形是钝角三角形;(2)正确;(3)错误,等腰三角形中有一个外角为140°,那么它的底角为70°或40°;(4)错误,等腰三角形是轴对称图形,它有1条对称轴.错误的有3个.金题精讲题一:答案:见详解详解:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵ AC=BD,AB=BA,∠ACB=∠BDA =90°,∴△ABC≌△BAD(HL).∴BC=AD.(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.∴△OAB是等腰三角形.题二:答案:B.详解:∵等腰三角形的一个顶角为80°,∴底角=(180°80°)÷2=50°.故选B. 题三:答案:D.详解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB.∴∠MBE=∠MEB,∠NEC=∠ECN.∴BM=ME,EN=CN.∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9∴MN=9.故选D.题四:答案:见详解详解:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵DB=DC,DF=DN,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵AD=AD,DF=DN,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.思维拓展答案:4.详解:∵BC=AB,∴∠BCA=∠A=18°,∴∠DBC=∠BCA+∠A=36°.同理,∠CDB=∠DBC=36°,∴∠DCE=∠CDB+∠A=54°,∠DEC=∠DCE=54°,∴∠FDE=∠DEC+∠A=72°,∠DFE=∠FDE=72°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF,共有4条.故答案是:4.等腰三角形2重难点易错点解析题一:题面:下列说法:①顶角相等的两个等腰三角形的底角必然相等;②底边相等的两个等腰三角形全等;③腰长相等且有一个角是20°的两个等腰三角形全等.其中正确的有 .金题精讲题一:题面:如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE题二:题面:如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=900,AB=AC.若∠1=20°,则∠2的度数为( )A. 25°B. 65°C. 70°D. 75°题三:题面:如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A. 20B. 12C. 14D. 13题四:题面:如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P别离作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.思维拓展题面:如图,∠AOB是一建筑钢架,∠AOB=10°,为使钢架加倍稳固,需在内部添加一些钢管EF、FG、GH、HI、IJ,添加钢管的长度都与OE相等,则∠BIJ= .课后练习详解重难点易错点解析题一:答案:①.详解:①两个等腰三角形的顶角相等,按照三角形内角和定理可知底角必然相等,故是正确的;②底边相等的两个等腰三角形,不满足两个三角形全等的条件,故是错误的;③腰长相等且有一个角是20°的两个等腰三角形,不满足两个三角形全等的条件,故是错误的.故答案为:①.金题精讲题一:答案:见详解详解:(1)∵D是BC的中点,∴BD=CD.在△ABD和△ACD中,∵BD=CD,AB=AC,AD=AD(公共边),∴△ABC≌△ACD(SSS).(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE.在△ABE和△ACE中,∵AB=AC,∠BAE=∠CAD,AE=AE,∴△ABE≌△ACE(SAS).∴BE=CE(全等三角形的对应边相等). 题二:答案:B.详解:∵∠BAC=90°,AB=AC,∴∠ACB=45°.∵∠1=20°,∴∠ACB+∠1=65°.又∵a∥b,∴∠2=∠ACB+∠1=65°.故选B.题三:答案:C.详解:∵AB=AC,AD平分∠BAC,BC=8,∴按照等腰三角形三线合一的性质得AD⊥BC,C D=BD=12BC=4.∵点E为AC的中点,∴按照直角三角形斜边上的中线等于斜边的一半得DE=CE=12AC=5.∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.题四:答案:见详解详解:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中PC=PB,PM=PN,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.思维拓展答案:60°.详解:∵OE=EF=FG=GH=HI=IJ,∴∠1=∠AOB=10°,∠2=∠3,∠4=∠5,∠6=∠7,∠8=∠9,∴∠2=∠O+∠1=20°=∠3,∴∠4=∠O+∠3=30°=∠5,∠6=∠O+∠5=40°=∠7,∠8=∠O+∠7=50°=∠9,∠BIJ=∠O+∠9=60°角平分线的性质与判定1重难点易错点解析题一:题面:如图,PC、PB是∠ACB、∠ABC的平分线,∠A=40°,∠BPC= .金题精讲题一:题面:如图,OB、OC别离平分∠ABC与∠ACB,MN∥BC,若AB=24,AC=36,则△AMN的周长是.题二:题面:如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,AD与EF 相交于点O.求证:AD⊥EF.题三:题面:如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=D C=10,求AC的长.思维拓展题面:如图,△ABC中,AB=AC,∠B的平分线交AC于D,且BC=BD=AD,则CD BC的值为.课后练习详解重难点易错点解析题一:答案:110°.详解:∵∠A=40°,∴∠ABC+∠ACB=180°40°=140°,又∵BP平分∠ABC,CP平分∠ACB,∴∠PCB=12∠ACB,∠PBC=12∠ABC,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12×140°=70°,∴∠BPC=180°(∠PBC+∠PCB)=110°.金题精讲题一:答案:60.详解:∵OB平分∠ABC,∴∠ABO=∠OBC,∵MN∥BC,∴∠OBC=BOM,∴∠ABO=∠BOM,∴BM=OM,同理可得CN=ON,∴△AMN的周长=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC,∵AB=24,AC=36,∴△AMN的周长=24+36=60.题二:答案:AD⊥EF.详解:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠EDO=∠FDO,在△DEF中,DE=DF,∠EDO=∠FDO,∴DO⊥EF,∴AD⊥EF.题三:答案:AC长为17.详解:过C作CE⊥AB,延长AD作CF⊥AD,∴∠CEA=90°,∠CFD=90°,∵AC平分∠BAD,∴CF=CE(角平分线上的点到角的两边的距离相等),又∵BC=DC,∴△CFD≌△CEB(HL),∴DF=EB,同理可得△ACF≌△ACE,∴AF=AE,∴AD+DF=AB BE,即9+DF=21BE,解得DF=BE=6,由勾股定理得,AC =22222222==15106AF CF AF CD DF ++-+-=17.答:AC 长为17.思维拓展答案:152-+详解:设==CDCDx BC AD ,∵AB=AC ,∴∠ABC=∠ACB ,∵BC=BD=AD ,BD 平分∠ABC ,∴∠A=∠ABD=∠DBC ,∠C=∠BDC=∠ABC ,∴∠ABC=2∠A ,∠C=2∠A ,∴∠A=∠ABD=∠DBC=36°,∠C=∠BDC=∠ABC=72°,∵∠ABC=∠C=∠BDC ,∴△BCD ∽△ABC .∴BC ACCDBC =, 又BC=BD=AD ,∴AD2=AC•DC.∵AD2=AC•DC,==CDCDxBC AD ,AC=AD+CD ,∴AD2=(AD+CD)•CD,AD2=(AD+x•AD )•x•AD,x(1+x)=1,x2+x 1=0,x =152-±(负值舍去).即x=152-+.角平分线的性质与判定2重难点易错点解析题一:题面:如图,PB、PC别离是△ABC的外角平分线,它们相交于点P,求证:点P在∠A的平分线上.金题精讲题一:题面:已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE ∥AC交BC于E,若BC=16cm,则△ODE的周长是多少cm?题二:题面:如图,已知AD是△ABC的角∠BAC的角平分线,DF垂直AB于F,DE垂直AC于E,求证:AE=AF,AD平分∠EDF.题三:题面:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE.求证:∠B+∠ADC=180°.思维拓展题面:如图,已知△ABC中,∠BAC:∠ABC:∠ACB=4:2:1,AD是∠BAC的平分线.求证:AD=AC AB.课后练习详解重难点易错点解析题一:答案:点P在∠A的平分线上.详解:作PM⊥AC于M,PN⊥BC于N,PE⊥AB于E,∵PB、PC别离是△ABC的外角平分线,∴PM=PN,PN=PE,∴PM=PE,∵PM⊥AC,PE⊥AB,∴点P在∠A的平分线上.金题精讲题一:答案:16cm.详解:∵OC、OB别离是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,OD=BD,OE=CE.∵BC=16cm,∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=16cm.题二:答案:AE=AF.AD平分∠EDF.详解:∵DF⊥AB,DE⊥AC,∴∠AFD=∠AED=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠FAD,∵∠EAD+∠AED+∠ADE=180°,∠DAF+∠AFD+∠ADF=180°,∴∠ADE=∠ADF,即AD平分∠EDF,∴AE=AF.题三:答案:∠B+∠ADC=180°.详解:延长AD,过C作CF垂直AD的延长线于点F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵2AE=AB+AD,又∵AD=AF DF,AB=AE+BE,AF=AE,∴2AE=AE+BE+AE DF,∴BE=DF,∵∠DFC=∠CEB=90°,CF=CE,∴△CDF≌△CEB,∴∠ABC=∠CDF,∵∠ADC+∠CDF=180°,∴∠B+∠ADC=180°.思维拓展答案:AD=AC AB.详解:在AC上截取AE=AB,连DE,如图,设∠C=x,∵∠BAC:∠ABC:∠ACB=4:2:1,∴∠BAC=4x,∠B=2x,∵AD是∠BAC的平分线,∴∠3=∠4=2x,∵在△ABD和△AED中,AB=A E,∠3=∠4,AD=AD,∴△ABD≌△AED(SAS),∴∠B=∠1=2x,∴∠1=∠4,∴DA=DE,∵∠1=∠2+∠C,∠C=x,∴∠2=2x x =x ,即∠2=∠C ,∴ED =EC ,∴DA =EC ,∴AC =AE +EC =AB +AD ,即AD =AC AB .立方根与实数1题一:有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与那个数同号;④若是一个数的立方根是那个数本身,那么那个数是1或0,其中错误的是( )A .①②③B .①②④C .②③④D .①③④题二:下列说法:题三:①无限小数都是无理数;题四:②无理数都是无限小数;题五:③带根号的数都是无理数;题六:④所有有理数都可以用数轴上的点表示;题七:⑤数轴上所有点都表示有理数;题八:⑥所有实数都可以用数轴上的点表示;题九:⑦数轴上所有的点都表示实数,题十:其中正确的有 .题十一: 若|a b +2|与1a b +-互为相反数,求22a +2b 的立方根.题十二: 已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是_____.题十三: 把下列各数别离填在相应的括号内:3323.14,,9,25, 3.131131113,27,12,0,2,1,300%35π------ 整数{ …};分数{ …};无理数{ …}.题十四: 按要求别离写出一个大于8且小于9的无理数:(1)用一个平方根表示: ;(2)用一个立方根表示: ;(3)用含π的式子表示:;(4)用构造的方式表示:.题十五:下面4种说法:题十六:①两个无理数的差一定是无理数;②两个无理数的商必然是无理数;③一个无理数与一个有理数的差仍是无理数;④一个无理数与一个有理数的积仍是无理数.其中,正确的说法个数为( )A.1 B.2 C.3 D.4立方根与实数 课后练习参考答案 题一: B . 详解:①负数有立方根,故错误;②一个实数的立方根是正数、0、负数,故错误;③一个正数或负数的立方根与这个数同号,故正确;④如果一个数的立方根是这个数本身,那么这个数是±1或0,故错误.故选B .题二: ②④⑥⑦.详解:∵无穷不循环小数小数是无理数,无穷循环小数是有理数,∴①错误;∵无理数都是无限小数正确,∴②正确;∵如4=2,4是有理数,不是无理数,∴③错误;∵所有有理数和无理数都可以用数轴上的点表示,∴④正确;∵数轴上所有点都表示实数,∴⑤错误;∵所有实数都可以用数轴上的点表示正确,∴⑥正确;∵数轴上所有的点都表示实数正确,∴⑦正确; 即正确的有②④⑥⑦.题三: 2.详解:∵|ab +2|与1a b +-互为相反数, ∴|a b +2|+1a b +-=0,∴a −b +2=0,a +b −1=0,解得a =12-,b =32, ∴22a +2b =22×(12-)+2×32= 11+3= 8, ∵(2)3= 8,∴22a +2b 的立方根是2.题四: 4cm .详解:∵铜质的五棱柱的底面积为16cm 2,高为4cm ,∴铜质的五棱柱的体积V =16×4=64cm 3,设熔化后铸成一个正方体的铜块的棱长为a cm ,则a 3=64,解得a =4cm .题五: 见详解.详解:整数39,27,0,2,300%---…};分数{23.14, 3.131131113,15--…}; 无理数{325,123π-…}.题六: (1)66;(2)3555;(3)5+π;(4)….详解:按照8=64,9=81写出64与81之间的一个数即可;按照8=3512,9=3729,写出3512与3729之间的一个数即可;按照π的值,写出符合条件的数即可;按照无理数的概念写出一个无规律的数即可.故答案为:(1)66;(2)3555;(3)5+π;(4)…. 题七: A .详解:①两个无理数的差必然是无理数,错误,如:220-=;②两个无理数的商必然是无理数,错误,如:313=;③一个无理数与一个有理数的差仍是无理数,正确;④一个无理数与一个有理数的积仍是无理数,错误,例如:2×0=0.则其中正确的有1个.故选A .立方根与实数2题一:有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④若是一个数的立方根是那个数本身,那么那个数是l 或0.其中错误的个数是( )A .1B .2C .3D .4题二:下列说法中,正确的有( )个题三:(1)无限小数都是无理数; (2)无理数都是无限小数;题四:(3)正实数包括正有理数和正无理数; (4)实数可以分为正实数和负实数两类.A .1B .2C .3D .4题五:若8a +与(b 27)2互为相反数,求33a b -的立方根.题六:一块棱长6m 的正方体钢坯,从头溶铸成一个横截面积18m 2的长方体钢坯,铸成的长方体钢坯有多长?题七:把下列各数别离填在相应的括号内:32514 3.142 3.1,0,1.410,211,,43612π---⨯-,,,,, 整数{ …};分数{ …};无理数{ …}.题八:按要求别离写出一个大于4且小于5的无理数:(1)用一个平方根表示: ;(2)用一个立方根表示: ;(3)用含π的式子表示: ;(4)用构造的方式表示: .题九:关于无理数,有下列说法:题十:①2个无理数之和可以是有理数;题十一: ②2个无理数之积能够是有理数;题十二: ③开方开不尽的数是无理数;题十三: ④无理数的平方一定是有理数;题十四: ⑤无理数一定是无限不循环小数.题十五: 其中,正确的说法个数为( )A .1B .2C .3D .4立方根与实数课后练习参考答案题一: D .详解:①开方开不尽的数是无理数,但无理数就是开方开不尽的数是错误的,故①错误; ②一个实数的立方根不是正数就是负数,还可能包括0,故②错误;③无理数包括正无理数,0,负无理数,不包括0,故③错误;④若是一个数的立方根是那个数本身,那么那个数是l 或0,那个数还可能是-1,故④错误. 故选D .题二: B .详解:(1)无穷不循环小数是无理数,故本小题错误;(2)符合无理数的定义,故本小题正确;(3)符合实数的分类,故本小题正确;(4)实数分正实数、负实数和0,故本小题错误.故选B .题三: 35-.详解:∵8a +与(b 27)2互为相反数,∴8a ++(b 27)2 =0,而8a +≥0,(b 27)2≥0,∴8a +=0,(b 27)2=0,∴a = 8,b =27,∴33a b -= 23= 5.∴33a b -的立方根为35-.题四: 12m . 详解:按照题意,得6×6×6÷18=216÷18=12(m),答:锻成的钢材长12m .题五: 见详解. 详解:整数{3140,1.410,211,4-⨯-,,…};分数{25 3.14 3.1361-,,…}; 无理数{22π-,…}. 题六: (1)17;(2)367;(3)1+π;(4)….详解:按照4=16,5=25写出16与25之间的一个数即可;按照8=364,9=3125,写出364与3125之间的一个数即可;按照π的值,写出符合条件的数即可;按照无理数的概念写出一个无规律的数即可.故答案为:(1)17;(2)367;(3)1+π;(4)…. 题七: D .详解:①2个无理数之和能够是有理数,如2(32)3+-=,本选项正确,②2个无理数之积可以是有理数,如(32)(32)1+-=,本选项正确,③开方开不尽的数是无理数,本选项正确,④无理数的平方一定是有理数,如2π:本选项错误,⑤无理数一定是无限不循环小数,本选项正确,故选D .平方根与算术平方根125的平方根是 .()b a c 23240--+-=a b c -+的值.()27-的平方根是 .题四:已知a 、b 、c 知足b a 4=-,ab c 4=+,求a +b +c 的值.题五:已知一个正数的平方根别离是3a 和2a +3,求那个正数.1.7201 1.311≈17.201 4.147≈,求0.0017201-题七:解方程:2(x +2)2+2=4.平方根与算术平方根 课后练习参考答案 题一: 5±. 详解:∵25=5,∴5的平方根是5±.故25的平方根是5±.题二: 3. 详解:∵()b a c 23240-+-+-=∴a 2=0,b 3=0,c4=0, ∴a =2,b =3,c =4.∴a b c -+=234-+=3.题三: 7±.详解:∵()277-=,∴7的平方根是7±.故()27-的平方根是7±.题四: 8. 详解:∵ab a b c 4=⨯=+,把b a 4=-代入上式得:a a c (4)4⨯-=+, a a c 44--=,a c 2(2)--=,按照开方的结果都为非负数,可得c =0,a =4,把a =4代入得b =4,所以a +b +c =8.题五: 81.详解:由题意得,3a +2a +3=0,解得a = 6,则3a =9,故那个正数为81.题六: 0.04147-.详解:∵ 1.7201 1.311≈,17.201 4.147≈,∴0.00172010.04147-≈-.题七:1,3.详解:等式两边同时减去2,得2(x +2)2=2,等式两边同时除于2,得(x +2)2=1,则x +2=1或x +2= 1,解得x = 1或x = 3.平方根与算术平方根2题一:43的平方根是 .题二:已知a 、b 、c 知足()b a c 258180-+-+-=,求a 、b 、c 的值.题三:()49-的平方根是 .题四:已知实数a 、b 知足:a b b 2=---,求a b 的值.题五:若一个正数的平方根别离为3a +1和42a ,求那个正数.题六:已知54.037.35≈,求54030000的值是多少?题七:解方程:3(x +2)2+6=33.平方根与算术平方根 课后练习参考答案 题一: ±8. 详解:∵43=64,而8或8的平方等于64,∴43的平方根是±8.题二: 22,5,32.详解:由题意得,b 50-=,a 80-=,c 180-=,解得a 822==,b 5=,c 1832==.题三: 9±.详解:∵()4981-=,∴81的平方根是9±.故()49-的平方根是9±. 题四: 1. 详解:∵b 中,b ≥0,b -中,b ≥0,即b ≤0,∴b =0,a =002= 2,∴a b =(2)0=1.题五: 196.详解:3a +1+42a =0,解得a = 5,则3a +1=3×(5)+1=-14,故那个正数为(14)2 =196. 题六: 7350.详解:∵54.037.35≈,∴5403000054.0310000007.3510007350=⨯≈⨯=. 题七: 1,5.详解:等式两边同时减去6,得3(x +2)2=27,等式两边同时除于3,得(x +2)2=9,则x +2=3或x +2= 3,解得x =1或x = 5.平面直角坐系题一:在平面直角坐标系中,对于点P (2,5),下列说法错误的是( )A .P (2,5)表示那个点在平面内的位置B .点P 的纵坐标是5C .它与点(5,2)表示同一个点D .点P 到x 轴的距离是5题二:学完了“平面直角坐标系”后,贝贝同窗在笔记本上写了下列一些体会:题三:①如果一个点的横,纵坐标都为零,则这个点是原点;题四:②如果一个点在x轴上,那它必然不属于任何象限;题五:③纵轴上的点的横坐标均相等,且都等于零;题六:④纵坐标相同的点,分布在平行于y轴的某条直线上.其中你以为正确的有______(把正确的序号填在横线上).题七:在平面直角坐标系中,下列各点位于第四象限的是( )A.(2,3) B.(2,1) C.(2,3) D.(3,2)题八:在平面直角坐标系中,点(3,3)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限题九:(1)已知点P位于y轴右边,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是;(2)若(x y1)2+|3x+2y1|=0,则点P(x,y)在第象限;(3)若是点M(a,b)在第二象限,那么点N(b,a)在第象限.题十:(1)若是P(m+3,2m+4)在y轴上,那么点P的坐标是;(2)在平面直角坐标系中,若是mn>0,那么点(m,|n|)必然在第象限;(3)若是点(a,b)在第二象限,那么(a,b)在第象限.题十一:将平面直角坐标系内某个图形各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.两图形重合题十二:将点(0,0),(5,4),(3,0),(5,1),(5,1),(3,0),(4,2),(0,0),在下面的平面直角坐标系A中描出,并将点按序连接.题十三:做如下变化:(对以下问题请将图形代码填入相应的括号内)题十四:(1)横坐标保持不变,纵坐标分别乘以1,再将所得的点用线段依次连接起来,所得的图案是________;题十五:(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案是_______.题十六:如图所示,若在某棋盘上成立直角坐标系,使“将”位于点(1,2),“象”位于点(3,2),则“炮”位于点( )A.(1,3) B.(2,1)C.(2,2) D.(1,2)题十七:如图是某学校的平面示用意,在8×8的正方形网格中,若是实验楼所在位置的坐标为(2,3).题十八:(1)请画出符合题意的平面直角坐标系;题十九:(2)在(1)的平面直角坐标系内表示下列位置:题二十:旗杆_____,校门_____,图书馆_____,教学楼______.题二十一:(1)已知点P(3a8,a1),若点P在y轴上,则点P的坐标为______;(2)已知点M(2x3,3x)在第一象限的角平分线上,则M坐标为______.题二十二:(1)已知P点坐标为(2a+1,a3),点P在x轴上,则点P的坐标为______;(2)已知点P(2m5,m1),当m=______时,点P在二、四象限的角平分线上.题二十三:(1)若P(a+2,a1)在y轴上,则点P的坐标是______;(2)点P(2m1,m1)在第三象限,则整数m=______,现在点P到x轴距离为______.题二十四:(1)已知P点在第三象限,且到x轴距离是2,到y轴距离是3,则P点的坐标是______;(2)已知点A(1,2a+2)到x轴的距离是到y轴距离的2倍,则a的值为______.题二十五:如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q 别离是M到直线l1和l2的距离,则称有序实数对(p,q)是点M的“距离坐标”.按照上述概念,有以下几个结论:题二十六:①“距离坐标”是(0,1)的点有1个;题二十七:②“距离坐标”是(5,6)的点有4个;题二十八:③“距离坐标”是(a,a)(a为非负实数)的点有4个.题二十九:其中正确的有( )A.0 B.1 C.2 D.3题三十:某校数学课外小组,在座标纸上为学校的一块空地设计植树方案如下:第n 棵树种植在点P n (x n ,y n )处,其中x 1=1,y 1=1,当n ≥2时,111215([][])5512[][]55n n n n n n x x n n y y ----⎧=+--⎪⎪⎨--⎪=+-⎪⎩,[a ]表示非负实数a 的整数部份,例如[]=2,[]=0.按此方案,第2009棵树种植点的坐标为( )A .(4,2010)B .(5,2009)C .(4,402)D .(5,401)平面直角坐系课后练习参考答案题一:C.详解:按照点P(2,5),可知:A.P(2,5)表示那个点在平面内的位置,故此选项错误;B.点P的纵坐标是5,故此选项错误;C.它与点(5,2)表示的不是同一个点,故此选项正确;D.点P到x轴的距离是5,故此选项错误.故选:C.题二:①②③.详解:①说法是正确的,这是原点的特点.②x轴上的点不属于任何象限,这是平面直角坐标系的特点,正确.③纵轴上的点的横坐标都为0,而0既不是正数,也不是负数,正确.④纵坐标相同的点,分布在平行于x轴的某条直线或就是x轴,故④错误.题三:C.详解:第四象限点的坐标特点为横坐标为正,纵坐标为负,只有选项C符合条件,故选C.题四:B.详解:∵点(3,3)的横坐标是负数,纵坐标是正数,∴点在平面直角坐标系的第二象限,故选B.题五:(1)(3,4);(2)四;(3)四.详解:(1)∵P点位于y轴右边,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4);(2)∵(x y1)2+|3x+2y1|=0,∴x−y−1=0,3x+2y−1=0,解得x=,y= ,∴点P(x,y)在第四象限;(3)∵点M(a,b)在第二象限,∴a<0,b>0,∴点N(b,a)的坐标符号是(+,),∴点N(b,a)在第四象限.题六:(1)(0,2);(2)一、二;(3)一.详解:(1)∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m= 3,2m+4= 2,∴点P的坐标是(0,2);(2)∵mn>0,∴m和n同号,当m和n都是正数时,m>0,|n|>0,则点在第一象限,当m,n都是负数时,m<0,|n|>0,则那个点在第二象限,∴点(m,|n|)必然在第一象限或第二象限;(3)点(a,b)在第二象限,则a<0,b>0,那么(a,b)中,a>0,b>0,故(a,b)在第一象限.题七:B.详解:由题意得:两个图形中对应两点的纵坐标相同,横坐标互为相反数,则这两点关于y 轴对称,那么所在的图形关于y轴对称,故选B.题八:见详解.详解:按照题意在平面直角坐标系A描出的图案如下图;(1)所取得图案为B;(2)所取得的图案为C.题九:B.详解:以“将”位于点(1,2)为基准点,则“炮”位于点(13,2+3),即(2,1).故选B.题十:见详解.详解:(1)成立平面直角坐标系如图所示;(2)旗杆:(0,0),校门:(4,0),图书馆:(5,3),教学楼:(1,2).题十一:(1)(0,53);(2)(1,1).详解:(1)∵点P(3a8,a1)在y轴上,∴3a8=0,解得a=83,∴a1=831=53,点P的坐标为(0,53);(2)∵点M(2x3,3x)在第一象限的角平分线上,∴2x3=3x,∴x=2,∴2x3=2×23=1,∴点M的坐标为(1,1).题十二:(1)(7,0);(2)2.详解:(1)点P在x轴上则其纵坐标是0,即a3=0,a=3,则点P的坐标为(7,0);(2)∵点P在第二、四象限的夹角角平分线上,∴2m5+(m1)=0,解得:m=2.题十三:(1)(0,3);(2)0,1.详解:(1)∵P(a+2,a1)在y轴上,∴a+2=0,解得a= 2,∴点P的坐标是 (0,3);(2)∵点P(2m1,m1)在第三象限,∴2m1<0,m1<0,解得1<m<,∴整数m=0,∴点P的坐标为(1,1),∴现在点p到x轴距离为|1|=1.题十四:(1)(3,2);(2)0或2.详解:(1)∵第三象限内点的横坐标<0,纵坐标<0,点P到x轴的距离是2,到y轴的距离为3,∴点P的纵坐标为2,横坐标为3,因此点P的坐标是(3,2);(2)∵点A(1,2a+2)到x轴的距离是到y轴距离的2倍,∴|2a+2|=2×1,∴2a+2=2或2a+2= 2,解得a=0或a= 2.题十五:B.详解:如上图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,。
人教版初二数学暑假作业答案
人教版初二数学暑期作业答案学期期末考试结束,接下来就是假期时间,查词典数学网初中频道特整理了初二数学暑期作业答案,希望能够对同学们有所帮助。
一、选择 :DCBBCBADBC二、填空 :11、 y=2x-112 、略 13、614、此袋尿素最多不超出75.1kg, 最少许多于74.9kg15 、 2019、study 或学习 17、(2,3)(2,-3)(-2,3)(-2,-3)18 、40 度三、 19、(1)消元正确得 3 分 ,全解对得 2 分 ,结论 1 分(2)解①得 x>-3--------2分,解②得x≤2-------2分解得 -320、绘图正确得 5 分 ,说明原因得 3 分 (文字或符号 )。
21、(1)坐标系完整正确得 2 分 ,(2) 写对每个坐标分别得 2 分 ,(3)画出三角形ABC 得 1 分,三角形 A/B/C/ 得 3 分,(4) 算出头积为7得4分。
22、解 :设鲜花和礼盒的单价分别是x 元和 y 元 ,则----------6 分解得 -----------3 分答:--------------------------1 分或用算术方法 :90-55=3555-35=2035-20=1523、填表 :18,3,7.5%(6 分 )图略 (4 分 )(4)375 户 --4 分24、 (1)8 分 180°,90 °,180 °,90 °(2)答 1 分 ,证明 3 分 (略)宋此后,京师所设小学馆和武学堂中的教师称呼皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝当选翰林院的进士之师称“教习”。
到清末,学堂盛行,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的帮手一律称“训导”。
于民间,特别是汉代此后,关于在“校”或“学”中教授经学者也称为“经师”。
2018八年级数学暑假作业答案
弹指一挥间,一个学期就这样即将结束了。
朋友,以下是由小编为大家精心整理的“2018八年级数学暑假作业答案”,仅供参考,欢迎大家阅读,希望能够对大家有所帮助。
2018八年级数学暑假作业答案1.答案:B2.解析:∠α=30°+45°=75°.答案:D3.解析:延长线段CD到M,根据对顶角相等可知∠CDF=∠EDM.又因为AB∥CD,所以根据两直线平行,同位角相等,可知∠EDM=∠EAB=45°,所以∠CDF=45°.答案:B4. 解析:∵CD∥AB,∴∠EAB=∠2=80°.∵∠ 1=∠E+∠EAB=120°,∴∠E=40°,故选A.答案:A5.答案:B6.答案:D7. 答案:D8. 答案:D9.解析:根据四个选项的描述,画图如下,从而直接由图确定答案.答案:①②④10.答案:如果两个角是同一个角或相等角的余角,那么这两个角相等11.答案:40°12.答案:112.5°13.解:(1)如果一个四边形是正方形,那么它的四个角都是直角,是真命题;(2)如果两个三角形有两组角对应相等,那么这两个三角形相似,是真命题;(3)如果两条直线不相交,那么这两条直线互相平行,是假命题,如图中长方体的棱a,b所在的直线既不相交,也不平行.14. 解:平行.理由如下:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC与DF平行.15.证明:∵CE平分∠ACD(已知),∴∠1=∠2(角平分线的定义).∵∠BAC>∠1(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC >∠2(等量代换).∵∠2>∠B(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC>∠B(不等式的性质).16.证明:如图④,设AD与BE交于O点,CE与AD交于P点,则有∠EOP=∠B+∠D,∠OPE=∠A+∠C(三角形的外角等于和它不相邻的两个内角的和).∵∠EOP+∠OPE+∠E=180°(三角形的内角和为180°),∴∠A+∠B+∠C+∠D+∠E=180°.如果点B移动到AC上(如图⑤)或AC的另一侧(如图⑥)时,∠EOP,∠OPE仍然分别是△BOD,△APC的外角,所以可与图④类似地证明,结论仍然成立.17.解:(1)∠3=∠1+∠2;证明:证法一:过点P作CP∥l1(点C在点P的左边),如图①,则有∠1=∠MPC .图①∵CP∥l1,l1∥l2,∴CP∥l2,∴∠2=∠NPC.∴∠3=∠MPC+∠NPC=∠1+∠2,即∠3=∠1+∠2.证法二:延长NP交l1于点D,如图②.图②∵l1∥l2,∴∠2=∠MDP.又∵∠3=∠1+∠MDP,∴∠3=∠1+∠2.(2)当点P在直线l1上方时,有∠3=∠2-∠1;当点P在直线l2下方时,有∠3=∠1-∠2.推荐阅读:2018八年级语文暑假作业答案八年级历史暑假作业答案2018小编精心推荐八年级暑假作业答案:语文 | 数学 | 英语 | 物理 | 历史小编精心推荐八年级暑假作业答案:语文 | 数学 | 英语 | 物理 | 历史。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018苏科版暑期八年级数学上册预习练习题集目录第01讲图形的全等课后练习第02讲全等图形的性质课后练习第03讲全等三角形的判定之SSS课后练习第04讲全等三角形的判定之SAS课后练习第05讲全等三角形的判定之ASA课后练习第06讲全等三角形的判定之AAS课后练习第07讲全等三角形的判定之HL课后练习第08讲全等三角形综合课后练习第09讲角平分线的重要性质课后练习第10讲角平分线的判定课后练习第11讲与角平分线有关的问题课后练习第12讲轴对称课后练习第13讲垂直平分线课后练习第14讲等腰三角形课后练习第15讲等腰三角形的判定课后练习第16讲等边三角形的性质课后练习第17讲等边三角形的判定课后练习第18讲勾股定理课后练习第19讲平方根与算术平方根课后练习第20讲勾股定理的使用课后练习第21讲勾股定理的逆定理课后练习第22讲勾股定理的应用课后练习第23讲勾股定理的应用课后练习第24讲勾股定理的应用课后练习第25讲立方根课后练习第26讲实数课后练习第27讲实数的应用课后练习第1讲图形的全等题一:如图,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2010m停下,则这个微型机器人停在().A.点A处B.点B处C.点C处D.点E处如图所示,两个全等的菱形边长为1m,一个微型机器人由A点开始按ABCDEFCGA…的顺序沿菱形的边循环运动,行走2011m停下,则这个微型机器人停在点.题三:全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形。
若运动方向相反,则称它们是镜面合同三角形。
两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,如图,下列各组合同三角形中,是镜面合同三角形的是().A.B.C.D.题四:阅读下面材料:如图(1),把△ABC沿直线BC平移线段BC的长度,可以变到△ECD的位置;如图(2),以BC为轴,把△ABC翻折180º,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180º,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平移、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在上面的右图中,四边形ABCD是正方形,AF=AE,可以通过平移、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;②指出图中线段BE与DF之间的关系,为什么?第1讲图形的全等题一:A.详解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2010÷6=335,即正好行走了335圈,回到出发点,∴行走2010m停下,则这个微型机器人停在A点.故选A.根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2010÷6=335,正好行走了一圈,即落到A点.本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2010为6的倍数.题二:D.详解:∵两个全等菱形的边长为1厘米,∴微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离为8×1=8厘米,∵2011÷8=251…3,∴当微型机器人走到第251圈后再走3厘米正好到达D点.故答案为D.解析:先求出微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离,再根据菱形的边长为1厘米可知微型机器人每走1厘米按A、B、C、D、E、F、C、G的顺序循环,故可用2011除以两菱形的周长和,所得余数为从A开始所走的距离,找出此点即可.本题考查的是菱形的性质,解答此题的关键是根据题意得出蚂蚁每走1厘米按A、B、C、D、E、F、C、G的顺序循环,找出规律即可轻松作答.题三:B.详解:认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.题意知真正合同三角形和镜面合同三角形的特点,可判断要使B组的两个三角形重合必须将其中的一个翻转180°;而其它组的全等三角形可以在平面内通过平移或旋转使它们重合.故选B.此题考查了学生的阅读理解能力及空间想象能力,较灵活.认真读题,透彻理解题意是正确解决本题的关键.题四:(1)根据阅读材料和平移、旋转、轴对称的知识可以判断出可以通过旋转,以点A为旋转中心,逆时针方向旋转90°,使△ABE变到△ADF的位置.(2) 线段BE与DF之间的关系是垂直且相等。
说明如下:因为四边形ABCD是正方形,所以AB=AD,∠DAF=∠BAE=90°.又因为AE=AF,因此△ADF可以看作是△ABE绕点A逆时针方向旋转90°得到的.根据旋转的性质可知:BE=DF,且BE⊥DF.因此线段BE与DF之间的关系是垂直且相等.详解:本题主要是图形旋转的判断和利用旋转的性质解题.利用旋转的性质判断线段BE与DF的位置关系和数量关系,过程简单,但是需要认真体会才能掌握好.本题也可以用全等三角形的知识来解决,请同学们自己完成,认真体会这两种方法的优劣.第2讲全等图形的性质题一:如图,若△ABC≌△DEF,则∠E等于().A.30° B.50° C.60° D.100°如图,两个三角形全等,其中某些边的长度及某些角的度数已知,则∠α= 度.题三:如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105º,∠CAD =40º,∠B=∠D=25º,求∠DGB的度数.题四:如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= .题五:如图,△ABD≌△EBC,AB=3cm,BC=5cm,求DE长.题六: 如图,△ABC ≌△DEF ,∠A =25°,∠B =65°,BF =3㎝,求∠DFE 的度数和EC 的长.AC B DE第2讲全等图形的性质题一:D.详解:首先求出∠B=180°-∠A-∠C=100°,再根据三角形全等对应角相等可得∠E=∠B=100°,所以答案选择D.题二:62.详解:∵如图,两个三角形全等,根据相等的边是对应边,∴∠α的对应角是第一个三角形5这边所对的角,∴∠α=180°-73°-45°=62°.要求∠α的大小,首先要找到它的对应角,由图形可知,左边三角形中长为5的边对的角与∠α是对应角,利用三角形的内角和不难求出其角的大小,问题可解.题三:90o.详解:在△ABC中,∠CAB=180-105o-25o=50o,∵△ABC≌△ADE,∴∠EAD=∠CAB=50o.∴∠EAB=50º+40º+50º=140o,∴在四边形GEAB中,∠EGB=360º-105º-140º-25o=90°.∵∠DGB+∠EGB=180o,∴∠DGB=90o.解析:方法一:把已知角的度数和利用三角形的内角和等于180°得到的角的度数在图中标出来,如图1.通过观察很容易得出这样的结论:要求∠DGB的大小,只要先求出的它的邻补角∠EGB的大小就行了,而由图我们很快可以得到在四边形AEGB中,∠EGB=360º-105º-140º-25º=90º,所以∠DGB=90º.图1 图2方法二:如图2所示,先用外角与内角的关系计算出∠ACF=75°.再用三角形的内角和等于180°,求出∠AFC=65º,由对顶角相等到∠DFG=65°,最后由三角形的内角和等于180°求出∠DGC=90º.题四:95°.详解:∵∠O=65°,∠C=20°∴∠OBC=180°-∠O-∠C=95°.∵△OAD≌△OBC∴∠OAD=∠OBC=95°∴答案为95°.解析:如果题目条件中给出了全等三角形,根据全等三角形的性质就可以得出对应边相等,对应角相等。
因此有了全等形,就可以转化为边和角的关系。
本题要求∠OAD的度数,可以根据全等三角形,知道∠OBC的度数就行。
也可以先根据全等三角形的性质,得出△OAD中的∠ODA的度数,再根据三角形内角和可得答案。
题五:因为△ABD≌△EBC,所以AB=EB=3,BD=BC=5.所以DE=BD-BE=5-3=2.解析:如果题目的条件中给出了全等三角形,根据全等三角形的性质就可以得出对应边相等,对应角相等.因此有了全等形,就可以转化为边和角的关系.本题中求线段DE的长,就转化为两个全等三角形的两条边BD与BE的差,从而解决问题.题六:∠DFE=90°.EC=3cm.解析:因为ΔABC≌ΔDEF,所以∠A=∠D=25°,∠B=∠E=65°,BC=EF.所以∠DFE=180°-∠D-∠E=90°.EC=BF=3cm.第3讲 全等三角形的判定之SSS如图,已知AD =CB ,若利用“SSS ”来判定△ABC ≌△CDA ,则添加直接条件是 .题二:已知:如图1,在四边形ABCD 中,AB =CB ,AD =CD .求证:∠C =∠A .题三: 如图,AB =DC ,AC =DB ,根据“SSS ”得到全等的三角形是 , ,在此基础上还可以得到全等的三角形是 .题四: 如图,△ABC 中,AB =AC ,EB =EC ,则由“SSS ”可以判定( ).A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BDE ≌△CDED .以上答案都不对D CBA 第13(3)题 图图1题五:如图,在四边形ABCD中,已知AB=DC,AD=BC,试说明:∠A=∠C.题六:如图,点A、E、F、C在同一条直线上,且AF=CE.若AB=CD,BE=DF,则有∠A=∠C.为什么?第3讲 全等三角形的判定之SSS题一: AB =CD .解析:要使△ABC ≌△CDA ,已知AD =CB ,且有公共边AC =CA ,所以只要添加AB =CD 即可.本题重点考查了三角形全等的判定;添加时要按题目的要求进行,必须是符合SSS ,注意此点是解答本题的关键.题二: 见详解.解析:连结BD .在△ABD 和△CBD 中,∵∴△ABD ≌△CBD (SSS ).∴∠C =∠A .要说明∠C =∠A ,就要找出这两个角所在的三角形全等,因此想到作辅助线.从而证明△ABD ≌△CBD 就行.题三: △ABC ≌△DCB ;△ABD ≌△DCA ;△AOB ≌△DOC .解析:∵在△ABC 和△DCB 中,AB =DC ,AC =DB ,AD 是公共边,∴△ABC ≌△DCB ,同理,△ABD ≌△DCA ,由△ABC ≌△DCB ,可得,AB =CD ,∠ABD =∠DCA ,∵∠AOB =∠DOC ,∴△AOB ≌△DOC .故答案为:△ABC ≌△DCB ;△ABD ≌△DCA ;△AOB ≌△DOC .本题已知AB =DC ,AC =DB ,AD 、BC 是公共边,具备了三组边对应相等,所以即可判定三角形全等;根据△ABC ≌△DCB ,可得,AB =DC ,∠ABD =∠DCA ,利用对顶角相等的性质,再利用AAS 即可求证△AOB ≌△DOC . 题四: B .解析:∵AB =AC ,EB =EC ,AE =AE ∴△ABE ≌△ACE 故选B .AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩由AE 为公共边易得△ABE ≌△ACE .注意题目的要求SSS ,要按要求做题.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.题五: 见详解.解析:连结BD在△ABD 和△CDB 中∴△ABD ≌△CDB (SSS )∴∠A =∠C (全等三角形的对应角相等)要证明∠A =∠C ,可通过构造三角形,把∠A 和∠C 放到两个三角形中,再证明这两个三角形全等.根据已知条件并结合图形特征,只要连结BD (或AC )即可,BD 是两个三角形的公共边,用SSS 来说明.题六: 见详解解析:∵AF =CE ,∴,即AE =CF 。