Kinetics of Anchoring of Polymer Chains on Substrates with Chemically Active Sites
有关链条的专业英语作文
Chains are integral components in various mechanical systems,serving a multitude of functions such as power transmission,lifting,pulling,and securing.Here is an exploration of the professional English terminology and concepts related to chains.1.Chain Types:Roller Chain:A type of chain link with cylindrical rollers to support and guide the chain. Bushing Chain:Similar to roller chain but without rollers,instead using a bushing to reduce friction.Silent Chain:Designed with rubber or plastic links to reduce noise during operation. Cable Chain:A flexible chain used for lifting and conveying,often in overhead cranes. Drive Chain:Specifically designed for transmitting power in engines and other mechanical systems.2.Chain Components:Link:The basic unit of a chain,which can be a simple,double,or multiplestrand configuration.Pin:A rod that connects two links together.Bushing:A sleeve that fits around a pin to reduce wear on the link plates.Master Link:A link designed for quick assembly and disassembly of a chain. Sprocket:A toothed wheel that engages with the chain to transmit motion.3.Chain Material:Carbon Steel:Commonly used for its strength and durability.Stainless Steel:Chosen for its corrosion resistance.Aluminum:Lighter and often used in applications where weight is a concern. Plastics and Composites:Used in specialized applications for their unique properties. 4.Chain Sizing and Measurement:Pitch:The distance between the centers of two adjacent pins.Roller Diameter:The size of the rollers in a roller chain.Chain Number:A standardized method of identifying chain sizes,often related to the number of teeth on a sprocket.5.Chain Lubrication:Lubrication:The process of applying a substance to reduce friction and wear in a chain. Chain Lube:A specific type of lubricant designed for chains,often with additives to resist extreme temperatures and conditions.6.Chain Maintenance:Tensioning:Adjusting the tightness of the chain to ensure proper engagement withsprockets.Inspection:Regular visual and physical checks for wear,damage,and proper alignment. Replacement:Replacing worn or damaged links to maintain chain integrity and performance.7.Chain Applications:Conveyor Systems:Chains used to move materials along a production line. Elevators and Lifts:Chains used to support and move the car in vertical transportation systems.Bicycles and Motorcycles:Chains used to transfer power from the engine to the wheels. Industrial Machinery:Chains used in various machines for power transmission and material handling.8.Safety Considerations:Guarding:Implementing protective barriers to prevent contact with moving chains. Lockout/Tagout Procedures:Safe practices for working on or around machinery that uses chains.Personal Protective Equipment PPE:Wearing appropriate gear such as gloves and safety glasses when handling chains.Understanding the professional terminology and concepts related to chains is crucial for anyone working in industries that rely on these mechanical components.Whether you are specifying,installing,or maintaining chains,having a firm grasp of the language and principles will ensure efficiency and safety in your work.。
共轭聚合物 有机半导体 英文
共轭聚合物有机半导体英文英文回答:Conjugated polymers are a class of organic semiconductors that have alternating single and double bonds along their backbone. This unique structure gives conjugated polymers interesting electrical and optical properties, making them promising candidates for use in various electronic applications.Conjugated polymers are typically synthesized via chemical polymerization techniques, such as oxidative coupling or Heck reaction. The resulting polymers are typically soluble in organic solvents and can be processed into thin films using techniques such as spin coating or drop casting.The electrical properties of conjugated polymers are highly dependent on the degree of conjugation, which is the length of the alternating single and double bond sequence.Longer conjugation lengths lead to higher charge carrier mobility and lower bandgap, making the polymer more conductive and semiconducting, respectively.The optical properties of conjugated polymers are also affected by the degree of conjugation. Longer conjugation lengths lead to absorption and emission of light at longer wavelengths, resulting in a red shift in the polymer's absorption and emission spectra.Conjugated polymers have been used in a variety of electronic applications, including organic solar cells, organic light-emitting diodes (OLEDs), and transistors. In organic solar cells, conjugated polymers act as the active layer, absorbing light and generating charge carriers that are then collected by the electrodes. In OLEDs, conjugated polymers are used as the emitting layer, emitting light when an electric current is applied. In transistors, conjugated polymers are used as the semiconductor channel, controlling the flow of current between the source and drain electrodes.Conjugated polymers are a promising class of materials for use in electronic applications due to their unique electrical and optical properties. Further research is needed to improve the performance and stability of conjugated polymers, but they have the potential to revolutionize the field of electronics.中文回答:共轭聚合物是有机半导体的一种,其主链上交替排列着单键和双键。
高分子力化学的英文
高分子力化学的英文Polymer Mechanochemistry: An Overview.Polymer mechanochemistry is an interdisciplinary field that explores the chemical reactions initiated or influenced by mechanical forces acting on polymers. At its core, this field merges the principles of polymer science, mechanics, and chemistry to understand how external forces can manipulate the chemical properties and structures of polymers.1. Principles of Polymer Mechanochemistry.Polymer mechanochemistry is based on the principle that mechanical stress or strain can activate chemical bonds within polymers, leading to bond scission, formation of new bonds, or changes in the overall polymer structure. This activation can occur through various mechanisms such as friction, compression, tension, or shear forces.2. Types of Polymer Mechanochemical Reactions.Bond Scission: Mechanical forces can cause the scission of polymer chains, resulting in chain shortening and changes in polymer properties.Cross-Linking: Under certain conditions, mechanical forces can promote the formation of cross-links between polymer chains, increasing the mechanical strength of the material.Isomerization: Mechanical stress can induce conformational changes within polymer chains, leading to isomerization and altered physical properties.3. Applications of Polymer Mechanochemistry.Polymer mechanochemistry finds applications in various fields such as:Materials Science: Mechanical activation can be used to modify the properties of polymers for specificapplications, such as improving their mechanical strength, thermal stability, or conductivity.Waste Management: Polymers can be recycled or upcycled through mechanochemical processes, reducing waste and environmental impact.Sensors and Actuators: Polymers with mechanically responsive chemical properties can be used in sensors and actuators for monitoring and controlling physical parameters.4. Challenges and Future Outlook.While polymer mechanochemistry offers promising opportunities, it also faces several challenges:Controllability: Achieving precise control over mechanochemical reactions can be challenging due to the complexity of polymer systems.Scalability: Scaling up mechanochemical reactions forindustrial applications can be difficult due to equipment limitations and process control issues.Fundamental Understanding: A fundamental understanding of the mechanisms underlying polymer mechanochemical reactions is still evolving, necessitating further research.Conclusion.Polymer mechanochemistry represents a frontier in polymer science, offering new avenues for manipulating polymer properties and structures through mechanical forces. With continued research and technological advancements,this field has the potential to revolutionize polymer processing and applications across multiple disciplines.。
英语翻译
金属聚氨酯,聚氨酯-脲和聚氨酯-醚综述摘要由于聚氨酯具有优良的耐磨性,弹性和塑性,它在工程材料中变得越来越重要。
随着聚氨酯科学与技术的发展,促进了具有更多的令人满意的性能的新材料的发展。
这种材料包括含金属的聚氨酯类,聚氨酯-脲和聚氨酯-醚,它们有异氰酸酯的结构单元,并且增强了热稳定性,阻燃性,柔软性和溶解性。
合成含金属的聚氨酯最初的原料用含金属离子的二醇盐,此时金属牢固的融入了聚合物的主链中。
把金属引入聚氨酯中使得其具有广泛的应用,比如在水性增稠剂、浸渍剂、纺织施胶剂、粘合剂、添加剂、树脂和催化剂上的应用。
本文主要介绍了制备包含金属的聚氨酯各种合成方法,以及其共聚物性能。
1.引言聚氨酯代表了热塑性和热固性的一类重要聚合物,是因为通过不同的多元醇与多异氰酸酯反应调整其机械性能、热的和化学性能。
聚氨酯含有大量的氨基甲酸酯(-HN-COO-),不论其他部分是什么。
通常,通过多异氰酸酯与含有至少两个羟基的反应物如聚醚、蓖麻油和简单的二醇,两者组合来获得PU。
其他活性基像氨基和羧基也可能存在。
因此,这种典型的聚氨酯除了含有氨基甲酸酯基团外,还有酯、醚、酰胺和脲基。
从二醇(HO-R-OH)和二异氰酸酯(OCN-R’-NCO)的结构可以得出线性聚氨酯的一般结构如下:PU的性能根据其需求在许多方面都不同。
羟基化合物和异氰酸酯基的功能基增加到三个或者更多,以此来形成支链或者交联聚合物。
还可以通过R(聚醚、聚酯和乙二醇)的性质做其他结构的改变,也可以通过改变R'的分子量和类型改变R'。
由于这些原因,PU的交联性和链柔软性和其分子间力可以广泛而且独立的变化。
一般来讲,由于P中U通过聚多元醇的软链段和氨基甲酸酯的极性官能团增强的弹性性能,使PU呈现出良好的粘合性能。
这些材料被广泛的应用于涂料、泡沫材料、和不同的塑料和弹性体。
金属聚氨酯代表了把无机盐连接到聚合物链上的一个广泛聚合物的分类。
一般,当他们有充足的离子电荷在水中溶解时,我们把它称为“聚合物电解质”,如果含有离子基的浓度太低以至于不能水解时,我们称之为“离子聚合物”。
【高分子专业英语翻译】
【高分子专业英语翻译】第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。
乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。
水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。
在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。
乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。
单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。
单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。
更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。
这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。
第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。
构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。
以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。
这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。
大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。
和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。
近红外光诱导可控自由基聚合
近红外光诱导可控自由基聚合英文版近红外光诱导可控自由基聚合In recent years, near-infrared (NIR) light-induced controlled radical polymerization has gained significant attention in the field of polymer chemistry. This technique allows for precise control over the polymerization process, leading to polymers with well-defined structures and properties.One of the key advantages of NIR light-induced controlled radical polymerization is its ability to trigger polymerization reactions with high spatial and temporal control. By using specific wavelengths of NIR light, researchers can initiate polymerization only in desired areas, allowing for the creation of complex and patterned polymer structures.Furthermore, NIR light-induced controlled radical polymerization offers excellent control over the molecular weight and dispersity of the resulting polymers. This level of control is crucial for applications where precise control over polymer properties is essential, such as in the development of advanced materials for electronics, biomedical devices, and drug delivery systems.Overall, the development of NIR light-induced controlled radical polymerization has opened up new possibilities for the design and synthesis of advanced polymers with tailored properties. With further research and optimization, this technique has the potential to revolutionize the field of polymer chemistry and enable the creation of novel materials with unprecedented properties and functionalities.近红外光诱导可控自由基聚合近年来,近红外(NIR)光诱导的可控自由基聚合在聚合物化学领域引起了广泛关注。
《材料科学专业英语》课程大纲
《材料科学专业英语》课程大纲一、课程概述课程名称(中文):材料科学专业英语(英文):Professional English for Materials课程编号:14351024课程学分:3学分课程总学时:48学时课程性质:专业课二、课程内容简介(300字以内)随着本科毕业生就业渠道的日益拓宽,对专业英语知识的需求也同样增加。
在了解基本的专业词汇的基础上,更需要对更为专业的表达方式和理论知识的英语表达具有一定的了解。
因此,本课程是大学英语教学的基础上,结合相关专业基础课程(如:高分子化学与物理、高分子材料、材料力学、生物质资源材料学等)和专业选修课程(如:纳米技术、生物质能源利用、功能性纤维等)开设的旨在提高学生使用英文对专业基础知识和技术资料进行阅读,并掌握英文论文的书写格写及英文论文摘要的写作技巧。
三、教学目标与要求通过学习有关专业科技英语的语法知识,了解和掌握英译汉的基本方法和翻译技巧,提高阅读和翻译速度。
培养学生顺利阅读科技及专业英文文献,并达到较高的翻译质量标准。
在此基础上,可以利用英语对本专业的简单问题进行口语交流。
四、教学内容与学时安排Introduction(4学时)1、教学目的要求了解学习专业英语的重要性;掌握本专业名称和主要课程的英文翻译;熟悉普通英语口语交流2、教学要点和难点第一节Why we need to lean professional English? (1学时)一、What is professional English?二、What can we learn from professional English?三、Is it any contribution of professional English to our future career?第二节What can we do in the professional English Class? (1学时)一、Learn how to read二、Learn how to write三、Learn how to use language freely第三节Do you know about in your major? (1学时)一、English name of our causes二、Main concerns of materials science三、Pioneer work in materials science第四节Can you introduce yourself to us? (1学时)一、Several essential points in your self introduction二、Oral English also important in language study三、Are you ready to enjoy losing your face?Chapter One Polymer Chemistry & polymer chains(12学时)1、教学目的要求掌握聚合物的定义和相关专业词汇,熟悉用英语表达常见高分子合成反应;了解分子量及其分布的英文表达方式2、教学要点和难点第一节What are Polymer ? (2学时)一、Definition of polymer and polymer science二、Development of polymer and polymer science三、Polymer and daily life第二节Polymerization method(2学时)一、Characterization of polymerization二、Catalogue of chemical polymerization method三、Chain reaction polymerization四、Step reaction polymerization五、Emulsion polymerization第三节Structure of Polymer chains(3学时)一、Polymer chains二、Conformation of polymer chains三、Molecular chains motion四、Movement of polymer chains五、Glass transition第四节Properties Polymer solution(3学时)一、Dissolution of polymer二、Definition of polymer solution三、Experimental investigation of polymer solution四、Application of polymer solution第五节Molecular Weight and its Distributions of Polymers(2学时)一、Polymer size and shape二、Molecular weight average三、Determination method of molecular weight四、Determination method of molecular weight distributionChapter two Polymer Physics and properties(10学时)1、教学目的要求掌握用英语表达高分子的结构,熟悉用英语表达高分子力学性能;了解用英语表达高分子热学、电学和光学性能。
液晶弹性体
3. Actuators based on LCEs
3.1. Actuators based on thermally actuated LCEs
Fig 3. Micrometer-sized nematic LCE actuators consisting of a pillar array. (a) Experimental setup used to prepare the responsive pillars. (b) Top view (under an optical microscope) of the pillar pattern obtained by the imprint in the nematic liquid crystal elastomer. (Inset) Zoom on the structure (pillar diameter=20mm)[1]. [1 ]Buguin A, Li M H, Silberzan P, et al. Journal of the American Chemical Society, 2006, 128(4): 1088-1089.
4. Summary
1.Introduction
Smart materials:
There is a group of materials capable of responding to external stimuli with mechanical deformation.
Fig 1. The diferent kinds of actuator materials both in natural and synthetic systems
3. Actuators based on LCEs
郑大考研高分子物理第一章高分子链结构
h
h
4. Mean square root end-to-end distance均方根末端距: h 2
图1-6高分子的末端距
Methods to Measure Polymer Conformation 1.4.1 高分子链构象表征的方法 5.Mean square radius of gyration均方回转半径
l x l cos
2 2 2
l sinψ
图1-9 自由连接链一端 自由取向示意图
1. (3).②.h f , j 2 统计算法的思路与推导
要求得统计平均值,首先要得到分布函数(权重函数)
2 l sin ld 1 W l x dlx sin d 2 4l 2
表征末端距分布的函数
物理意义:
表征高分子呈现某种末端距占各种可能 呈现 的末端距的分数,即某种末端距出 现的几率密度的大小。
Arithmetic of Mean Square End-to-end Distance
1.4.2 均方末端距的算法
1.Freely jointed chain 自由连接链 (1)模型:由n个长度都等于l 的不占体积的单键
出现在离原点的距离为
x
处,则:
x ml x
x m lx
代入(6)式
1. (3).② h f , j 2 统计算法的思路与推导
2 2 nl x 2 W n, x e n x2
(7)
物理意义: 小虫子从 x 轴原点出发无规飞行了 n 步,
其中停留在离原点距离为
x 的几率密度。
但 x ml x
W h W x, y, z W x W y W z
高分子材料工程专业英语第二版课文翻译(基本全了
A 高分子化学和高分子物理UNIT 1 What are Polymer?第一单元什么是高聚物?What are polymers? For one thing, they are complex and giant molecules and are different from low molecular weight compounds like, say, common salt. To contrast the difference, the molecular weight of common salt is only 58.5, while that of a polymer can be as high as several hundred thousand, even more than thousand thousands. These big molecules or ‘macro-molecules’ are made up of much smaller molecules, can be of one or more chemical compounds. To illustrate, imagine that a set of rings has the same size and is made of the same material. When these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same compound. Alternatively, individual rings could be of different sizes and materials, and interlinked to represent a polymer from molecules of different compounds.什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。
高分子材料工程专业英语词汇及部分课文翻译
专业英语词汇accordion手风琴activation活化(作用)additionpolymer加成聚合物,加聚物aggravate加重,恶化agitation搅拌agrochemical农药,化肥Alfincatalyst醇(碱金属)烯催化剂align排列成行aliphatic脂肪(族)的alkalimetal碱金属allyl烯丙基aluminumalkyl烷基铝amidation酰胺化(作用)amino氨基,氨基的amorphous无定型的,非晶体的anionic阴(负)离子的antioxidant抗氧剂antistaticagent抗静电剂aromatic芳香(族)的arrangement(空间)排布,排列atactic无规立构的attraction引力,吸引backbone 主链,骨干behavior性能,行为biological生物(学)的biomedical生物医学的bonddissociationenergy键断裂能boundary界限,范围brittle脆的,易碎的butadiene丁二烯butyllithium丁基锂calendering压延成型calendering压延carboxyl羧基carrier载体catalyst催化剂,触媒categorization分类(法)category种类,类型cation正[阳]离子cationic阳(正)离子的centrifuge离心chainreaction连锁反应chaintermination链终止char 炭characterize表征成为…的特征chilledwater冷冻水chlorine氯(气)coating涂覆cocatalyst 助催化剂coil线团coiling线团状的colligative依数性colloid胶体commence开始,着手commonsalt食盐complex络合物compliance柔量condensationpolymer缩合聚合物,缩聚物conductivematerial导电材料conformation构象consistency稠度,粘稠度contaminant污物contour外形,轮廓controlledrelease控制释放controversy争论,争议conversion转化率conversion转化copolymer 共聚物copolymerization共聚(合)corrosioninhibitor缓释剂countercurrent逆流crosslinking 交联crystal基体,结晶crystalline晶体,晶态,结晶的,晶态的crystalline结晶的crystallinity结晶性,结晶度crystallite微晶decomposition分解defect缺陷deformability变形性,变形能力deformation形变deformation变形degreeofpolymerization聚合度dehydrogenate使脱氢density密度depolymerization解聚deposit堆积物,沉积depropagation降解dewater脱水diacid二(元)酸diamine二(元)胺dibasic二元的dieforming口模成型diffraction衍射diffuse 扩散dimension尺寸dimensionalstability尺寸稳定性dimer二聚物(体)diol二(元)醇diolefin 二烯烃disintegrate分解,分散,分离dislocation错位,位错dispersant分散剂dissociate离解dissolution溶解dissolve使…溶解distort使…变形,扭曲doublebond双键dough(生)面团,揉好的面drug药品,药物elasticmodulus弹性模量elastomer弹性体eliminate消除,打开,除去elongation伸长率,延伸率entanglement缠结,纠缠entropy熵equilibrium平衡esterification酯化(作用)evacuate 撤出extrusion注射成型extrusion挤出fiber纤维flameretardant阻燃剂flexible柔软的flocculatingagent絮凝剂folded-chainlamellatheory折叠链片晶理论formulation配方fractionation分级fragment碎屑,碎片fringed-micelletheory缨状微束理论functionalgroup官能团functionalpolymer功能聚合物functionalizedpolymer功能聚合物gel凝胶glasstransitiontemperature玻璃化温度glassy玻璃(态)的glassy玻璃态的glassystate玻璃态globule小球,液滴,颗粒growingchain生长链,活性链gyration旋转,回旋hardness硬度heattransfer热传递heterogeneous不均匀的,非均匀的hydocyacid羧基酸hydrogen氢(气)hydrogenbonding氢键hydrostatic流体静力学hydroxyl烃基hypothetical假定的,理想的,有前提的ideal理想的,概念的imagine想象,推测imbed嵌入,埋入,包埋imperfect不完全的improve增进,改善impurity杂质indispensable 不了或缺的infraredspectroscopy红外光谱法ingredient成分initiation(链)引发initiator引发剂inorganicpolymer无机聚合物interaction相互作用interchain链间的interlink把…相互连接起来连接intermittent间歇式的intermolecular(作用于)分子间的intrinsic固有的ion离子ionexchangeresin离子交换树脂ionic离子的ionicpolymerization离子型聚合irradiation照射,辐射irregularity不规则性,不均匀的isobutylene异丁烯isocyanate异氰酸酯isopropylate异丙醇金属,异丙氧化金属isotactic等规立构的isotropic各项同性的kineticchainlength动力学链长kinetics动力学latent 潜在的lightscattering光散射line衬里,贴面liquidcrystal液晶macromelecule大分子,高分子matrix基体,母体,基质,矩阵mean-aquareend-to-enddistance 均方末端距mechanicalproperty力学性能,机械性能mechanism机理medium介质中等的,中间的minimise最小化minimum最小值,最小的mo(u)lding模型mobility流动性mobilize运动,流动model模型modify改性molecularweight分子量molecularweightdistribution分子量分布molten熔化的monofunctional单官能度的monomer单体morphology形态(学)moulding模塑成型neutral 中性的nonelastic非弹性的nuclearmagneticresonance核磁共振nucleartrackdetector核径迹探测器numberaveragemolecularweight数均分子量occluded夹杂(带)的olefinic烯烃的optimum最佳的,最佳值[点,状态]orient定向,取向orientation定向oxonium氧鎓羊packing 堆砌parameter参数parison型柸pattern花纹,图样式样peculiarity特性pendantgroup侧基performance性能,特征permeability 渗透性pharmaceutical药品,药物,药物的,医药的phenylsodium苯基钠phenyllithium苯基锂phosgene光气,碳酰氯photosensitizer光敏剂plastics塑料platelet片晶polyamide聚酰胺polybutene聚丁烯polycondensation缩(合)聚(合)polydisperse多分散的polydispersity多分散性polyesterification聚酯化(作用)polyethylene聚乙烯polyfunctional多官能度的polymer聚合物【体】,高聚物polymeric聚合(物)的polypropylene聚苯烯polystyrene聚苯乙烯polyvinylalcohol聚乙烯醇polyvinylchloride聚氯乙烯porosity多孔性,孔隙率positive正的,阳(性)的powdery粉状的processing加工,成型purity纯度pyrolysis热解radical自由基radicalpolymerization自由基聚合radius半径randomcoil无规线团randomdecomposition无规降解reactent反应物,试剂reactive反应性的,活性的reactivity反应性,活性reactivityratio竞聚率real真是的release 解除,松开repeatingunit重复单元retract收缩rubber橡胶rubbery橡胶态的rupture断裂saturation饱和scalp筛子,筛分seal密封secondaryshapingoperation二次成型sedimentation沉降(法)segment链段segment链段semicrystalline半晶settle沉淀,澄清shaping成型sidereaction副作用simultaneously同时,同步singlebond单键slasticparameter弹性指数slurry淤浆solarenergy太阳能solubility溶解度solvent溶剂spacergroup隔离基团sprinkle喷洒squeeze挤压srereoregularity立构规整性【度】stability稳定性stabilizer稳定剂statistical统计的step-growthpolymerization逐步聚合stereoregular有规立构的,立构规整性的stoichiometric当量的,化学计算量的strength强度stretch拉直,拉长strippingtower脱单塔subdivide细分区分substitution取代,代替surfactant 表面活性剂swell溶胀swollen溶胀的synthesis合成synthesize合成synthetic合成的tacky(表面)发粘的,粘连性tanker油轮,槽车tensilestrength抗张强度terminate(链)终止tertiary三元的,叔(特)的tetrahydrofuran四氢呋喃texture结构,组织thermoforming热成型thermondynamically热力学地thermoplastic热塑性的thermoset热固性的three-dimensionallyordered三维有序的titaniumtetrachloride四氯化钛titaniumtrichloride三氯化铁torsion转矩transfer(链)转移,(热)传递triethyloxonium-borofluoride三乙基硼氟酸羊trimer三聚物(体)triphenylenthylpotassium三苯甲基钾ultracentrifugation超速离心(分离)ultrasonic超声波uncross-linked非交联的uniaxial单轴的unsaturated不饱和的unzippering开链urethane氨基甲酸酯variation变化,改变vinyl乙烯基(的)vinylchloride氯乙烯vinylether乙烯基醚viscoelastic黏弹性的viscoelasticstate黏弹态viscofluidstate黏流态viscosity黏度viscosityaveragemolecularweight黏均分子量viscous粘稠的vulcanization硫化weightaveragemolecularweight重均分子量X-rayx射线x光yield产率Young'smodulus杨氏模量课文翻译第一单元什么是高聚物什么是高聚物首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。
湘大高分子专业英语重点词汇汉译英
A.暗场darknessB.半成品parison半合成聚合物semi-syntheticpolymers半天然,半合成partially natural半纤维素hemicellulose包装食物wrap foods薄膜film饱和的saturated饱和共聚物saturated copolymer保护滤网protective screen pack被提出put forward本体聚合bulk polymerization本体聚合mass polymerization本体性质bulk property本征粘度值limiting viscosity number 苯甲酮benzophenone苯乙烯-丁二烯-苯乙烯共聚物SBS (styrene-butadiene-styrene)比容specific volume变形deformation变形温度distortion temperature表征characterization宾汉塑料Bingham plastic丙烯腈-丁二烯-苯乙烯共聚物(ABS)acrylonitrile butadiene styrene丙烯晴-苯乙烯共聚物SAN波兹曼时温等效原理Boltzman time–temperature superposition principle 玻璃态glassy state玻璃态区域glassy region玻璃纸,赛璐玢cellophane玻纤fibrous glass泊松比Poisson’s Ratio补偿compensated by不饱和的unsaturated不纯的impure不均匀的heterogeneous不考虑;不顾及without regard to不良溶剂,非溶剂nonsolvent不良溶剂poor solvent不取向的聚合物unoriented polymers 不确定的poorly defined不相容的incompatible布朗运动Brownian motion C.侧基pendant group侧链,侧基side chain侧面尺寸,侧向尺寸lateraldimensions层压laminating层状的lamellar层状堆叠lamellar stacks层状复合材料laminar compositematerials差示折光计differential refractometer缠结entanglement产地occurrence超高分子量聚乙烯ultrahighmolecular weightpolyethylene(UHMWPE)超速离心法ultracentrifugation超线性聚乙烯(ULPE)ultralinearpolyethylene沉淀precipitate沉降速度实验sedimentation velocityexperiment成对的相互作用力pair interactions成核阶段nucleating phase成核现象,成核作用nucleation冲击强度impact strength冲击韧性impact toughness畴domain臭氧化ozonolysis除法division除以divided by储料器hopper处理disposed of串晶结构shish-kebab吹塑成型blow molding垂直于normal to醇钾溶液alcoholicpotash醇盐alkoxide次级键secondary bond醋酸纤维素cellulose acetate催速剂accelerator脆的brittle淬火quenching淬火的quenchedD.大分子取向high molecularorientation大分子碳负离子macrocarbanion大分子碳正离子macrocarbocation大分子阳离子macrocation大分子阴离子macroanion大分子自由基macroradical大规模移动wholesale mobility单个烃链individual hydrocarbonchain单糖monosaccharides单体monomer单位质量热焓值enthalpy per unitmass低表面摩擦low surface friction低吸湿性low moisture absorption抵消offset第二维利系数second virial coefficient第三维利系数third virial coefficient电负性electronegativity电正性electropositivity电子产品应用electronic applications淀粉糊精amylodextrin叠加效应cumulative effects丁达尔效应the Tyndall effect丁二烯橡胶(BR) butadiene rubber丁基橡胶butyl rubber动力学链长the kinetic chain length动态硫化dynamic vulcanization短程的short-range多分散的polydisperse多分散性heterogeneity多分散指数polydispersity index多相heterophasic夺氢hydrogen abstractionE.二苯基酮diphenylketone二次项second-order二级结构secondary structure二甲基二苄基dimethyl dibenzyl二甲基甲酰胺(DMF)dimethylformamide二甲亚砜(DMSO)dimethyl sulfoxide二糖disaccharides二维的two-dimensional二元单体diadic二元混合物binary mixtureF.反弹力reciprocal of resilience反复试验法trial-and-error反离子gegenion反渗透reverse osmosis反相乳液聚合inverse emulsionpolymerization反应活性reactivity芳香聚酰胺aramid芳香族聚酰胺aromatic polyamides芳香族取代的化合物aromaticcompound纺丝仓spinning cabinet纺丝成型spinning放热的exothermic非理想nonideality非理想部分nonideal part非牛顿流体Non-newtonian flow非相干散射incoherent scattering分解速率specific rate分裂split off分子间intermolecularly分子间的intermolecular分子量molecular weight分子量分布(MWD)molecular weightdistribution分子内intramolecularly分子生物学molecular biology封装材料packaging峰位peak position浮力系数buoyancy factor辐射radiation复出reemergence复制品replicaG.改性modification改性modify改性剂modifier甘露糖mannose干法纺丝dry spinning刚柔嵌段hard-soft block strategy刚性的rigid刚性的stiff刚性基团stiffening group高的链堆积密度high packing densityof chain高分子材料polymeric materials高分子工程学polymer engineering高分子化学polymer chemistry高分子化学家polymer chemist高分子物理polymer physics格氏试剂Grignard’s reagent格子链模型lattice chain model 各向同性isotropic各向异性anisotropic给电子n. electron-releasing根本原因underlying reason共混聚合物,聚合物混合物polymerblends共聚物copolymers共聚作用,共聚合copolymerization共连续相co-continuous phases共体eutectic构象conformation构象异构体conformer构型configuration固定相stationary phase固化的cured固有性能intrinsic properties寡聚物oligomer寡聚物的oligomeric寡糖oligosaccharides关于…,就…而言with respect to灌溉应用irrigation applications光合作用photosynthesis光气phosgene光散射light scattering光散射法测量light scatteringmeasurements光学活性,旋光性optical activity光泽gloss果糖fructose过冷度degree of supercooling过冷液体supercooled liquidH.焓n.enthalpy焓损失enthalpic penalty合成聚合物synthetic polymers合成路线synthetic routes黑十字图案Maltese-cross pattern很好的分散,精细分散fine dispersion恒定组分共聚物azeotropic copolymer横向应变lateral strain红外吸收光谱infrared-absorption后成形postshaping厚的取向薄模thicker oriented film虎克弹簧Hookean spring滑动slippage化学名称chemical names化学式chemical formula化学势chemical potential环化cyclization环境温度ambient temperature环境应力分裂environmental stresscracking环氧化epoxidation环氧乙烷ethylene oxide回收recycling回转半径radius of gyration混合熵the entropy of mixing活化能activation energy活塞piston活性氯原子labile chlorine atomJ.机理mechanism吉布斯自由能Gibbs free energy己醛醣aldohexose挤出extruded挤出extrusion挤出成形extrusion molding挤出吹塑成形extrusion blow molding挤出机extruder挤出物extrudate挤出胀大die swell挤压extruding挤压squeezing记录tally加成聚合addition polymerization加成聚合物addition polymer加工性processability加热料筒heated cylinder甲醛formaldehyde间规聚丙烯(syndiotactic PP)sPP间同立构的,间规立构的syndiotactic剪切变稀shear thinning剪切行为shear behavior剪切模量shear modulus剪切应力shear stress剪切增稠shear thickening键伸缩bond flexing键长bond length降解degradation交叉增长cross-propagating交点intersection交叠,交合intermeshing交叠体积分数overlap volume fraction交替共聚物alternating copolymer胶束micelle焦油tar角度因子angular factor接线板模型•switchboard model接枝graft接枝反应grafting reaction接枝共聚物graft copolymer结构与性质关系structure property relations结合点juncture结晶vt.crystallise结晶度crystallinity结晶度the degree of crystallinity 解缠结disentanglement解聚v.depolymerize解聚作用depolymerization介电常数dielectric constant介观meso介观区mesoregions介观象mesophase介观状态mesogenic state介晶mesogen界面的interfacial界面聚合interfacial polymerization 金属烷基化合物metal alkyl进料口feed throat晶胞,单胞unit cell晶格参数lattice parameter晶格配位数lattice coordinate晶片载体wafer carriers晶体缺陷crystal imperfection晶性热塑塑胶crystallinethermoplastics径向radial direction竞聚率reactivity ratio静态quiescent state纠结vt.intertangle旧料used material锯齿形zigzag-shaped聚苯基醚(PPE)poly(phenyleneether)聚苯乙烯polystyrene聚丙烯(PP)polypropylene聚多糖,多糖polysaccharides聚多糖,聚碳水化合物polycarbohydrates聚芳砜polyarylsulfone聚合度degree of polymerization聚合物的大分子构象polymermacro-conformations聚合物的单体monomer of polymer 聚合物的复合和加工compounding and processing of polymers 聚合物的回转半径the polymer’sradius of gyration聚合物晶体结构crystal structure ofpolymer聚合物链,聚合物链段polymer chain聚合物溶液polymer solution聚合作用n. polymerization聚环烯烃polyalkenamer聚环氧乙烷(PEO)poly(ethyleneoxide)聚环氧乙烷,聚乙二醇(PEG)polyethylene glycol聚甲基丙烯酸甲酯(PMMA)poly(methyl methacrylates)聚甲醛(POMs) polyoxymethylene聚结coalescence聚醚醚酮(PEEK)poly(etheretherketone)聚醚酰亚胺(PEI)polyetherimide聚碳酸酯(PC)polycarbonate聚乙烯醇poly(vinyl alcohol)聚异丁烯(PIB)polyisobutylene卷曲crimping决速步骤dominant step决速步骤rate-controlling step绝对分子量absolute molecularweight绝缘材料insulation均聚物homopolymer均聚物homopolymersK.抗衡离子counterion抗疲劳fatigue-resistant抗蠕变性creep-resistant抗压强度,压缩强度compressivestrength抗氧化剂antioxidant苛性碱caustic可流动的flowable可模塑的moldable可逆的reversible可逆过程reversible process可染性dyeability可熔化的meltable可再生的regenerable可再生天然高分子regeneratednatural polymers空间位阻steric factor控制grip on扩链反应extension reactionL.拉伸吹塑成型stretch blow molding拉伸模量(写tensile modulus拉伸模量tensile moduli拉伸强度tensile strength蜡状固体waxy solid老化deterioration老化(写)ageing老化aging理论塔板高HETP立构规整tactic forms立构规整度tacticity立构规整性stereoregularity立体化学stereochemistry立体异构的stereoisomeric沥青,柏油asphalt沥青pitch粒状结构particulate architecture粒状盐,食盐table salt链缠结chain entanglement链缠结tangled mass of chains链段segment链段因子segmental factor链段运动segmental motion链刚性chain rigidity链滑动chain slippage链连接chain connectivity链长chain length链转移剂chain transfer agent良溶剂good solvent两性离子的zwitterionic量级magnitude邻位交叉的gauche临界的critical临界链长the critical chain lengths临界值critical value临界状态critical condition淋洗体积the elution volume淋洗液eluent流变学rheology流动flow流体与固体力学fluid and solidmechanics硫化,交联固化v.vulcanizing硫化的,交联的vulcanized硫氰酸盐thiocyanate卤化halogenation轮齿sprocket螺杆screw螺旋形的helical络合物,复合物complex compound 氯丁二烯chloroprene氯氧化oxychlorinationM.麻线twine麦芽糖maltose茂金属metallocene密度梯度柱density-gradient column 密封剂sealant灭菌sterilization模具die模量modulus模塑成型molding模塑制件molded objects膜渗透压法membrane osmometry摩尔气化能molar energy ofvaporization末端基growing end木材lumber木质素ligninN.耐扯和耐磨resistance to tearing andabrasion耐冲击聚苯乙烯(HIPS)high-impactpolystyrene耐腐蚀corrosion-resistant耐腐蚀性corrosion resistance耐摩擦和耐磨损性friction and wearresistance耐磨损性abrasion resistance耐磨性abrasion-resistant耐压缩形变性能resistance tocompression set耐用性durability内能改变the change in the internalenergy能量势垒energy barrier尼龙nylon碾压成型calendering凝胶gelatin凝胶渗透色谱法(GPC) gel permeationchromatography 凝结coagulation牛顿粘糊定律Newtonian dash pot扭曲distortion浓度concentration P.排代吹塑成型displacement blowmolding泡沫聚苯乙烯styrofoam配方recipe配位聚合coordinative polymerization膨胀的聚苯乙烯expandable PS偏光显微镜polarising microscope偏氯乙烯vinylidene chloride漂白bleach平均场近值mean-field approximation平均场理论meanfield theory平均分子量average molecular weight葡萄糖glucose普适标定universal calibrationQ.歧化终止disproportionation嵌段,序列sequence嵌段共聚物block copolymer嵌段聚胺酯segmented polyurethanes强而韧strong and tough切变强度shear strength切线curves亲电性n. electrophilicity氢卤化hydrohalogenation球晶spherulite屈服点yield point取向oriented(orient的过去分词)全同立构的,等规立构的isotactic全同立构聚丙烯(isotactic PP iPP缺陷检测defect detectionR.燃烧combustion热波动thermal vibration热固性塑料thermosets热机械的thermomechanical热力学上thermodynamically热力学性质thermodynamic property热塑性弹性体thermoplasticelastomer热塑性塑料thermoplast热致性thermotropic人造肾artificial kidney人造纤维rayon韧性toughness溶剂solvent溶剂滞留solvent entrapment溶剂化n solvation溶剂化vt. solvate溶解dissolve溶解solubilize溶解参数solubility parameter溶液solution溶液聚合solution polymerization溶液生长solution-grown溶质solute熔点melting point熔融的液态liquid state (melt)熔融纺丝melt spinning熔融石英fused quartz熔融温度melting temperature熔体生长melt-grown柔而弱soft and weak柔性的flexible蠕动creep蠕动类型wriggling type乳液聚合emulsion polymerization润滑vt.lubricate润滑剂lubricantS.赛璐珞celluloid三级结构tertiary structure散射因子scattering factor色散力dispersion force商标名称brand names商业化commercialization上限温度ceiling temperature伸缩膜stretch film伸长率elongation伸直链晶体extended-chain crystallite渗透压osmotic pressure渗透压缩系数osmotic compressibility生长机制growth mechanism湿法纺丝wet spinning石化产品petrochemicals石化工业petrochemical industry石蜡paraffin食用色素colorants使……相形见绌dwarf示差热分析,差热分析法differentialthermal analysis示差热分析,差热分析法DTA示差扫描仪,示差扫描量热计DSC示差扫描仪,示差扫描量热计differential scanning calorimetry室温andambient temperature室温room temperature手性碳chiral carbon手性中心chiral sites首项(写)first term首项leading term熟化ripening数均分子量number-averagemolecular weight双酚A bisphenol A双间同的threosyndiotactic双键double bonds双螺杆挤出机Twin-screw extruders 双全同的threodiisotactic双全同立构规整性diisotacticity双轴取向PET biaxially oriented PET 水溶性的water-soluble水相的aqueous瞬时波动instantaneous fluctuations 瞬态介晶transient mesogens四级结构quaternary structure塑化plasticize塑料溶胶plasti-sols随机空穴填充模型random hole–filling model缩合condensation缩合聚合物condensation polymer缩聚反应condensationpolymerizationT.弹性flexibility弹性resilience弹性模量modulus of elasticity弹性体elastomer炭黑carbon black碳负离子carbanion碳正离子carbonium ion碳正离子carbocation糖浆molasses糖类,碳水化物carbohydrates体积volume替代品substitute天然聚合物natural polymers天然纤维素native cellulose天然橡胶,三叶橡胶hevea rubber添加剂additives填充材料packing material填料filler调聚剂telogen调聚物telomer 调试剂regulator停滞的液相stagnate liquid phase同系物homologs铜氨溶液cuprammonium酮ketone透明度clarity透气性,气体透过性gas permeability透视平面六角环perspective planarhexagonal rings涂膜成型coating退火annealingW.外加速度梯度applied velocitygradient外加应力applied stress弯曲强度flexural strength往复活塞reciprocating plunger微观和宏观结构micro- and grossstructure微晶n.crystallite维利常数the virial constants维利展开virial expansion未开发的untapped稳定剂stabilizer无不,总是invariably无定形的amorphous无定形聚合物amorphous polymer无关irrelevant to无规程度randomness无规共聚物random copolymer无规聚丙烯(atactic PP)aPP无规立构的atactic无规线团random coil无规线团构象random-coilconformation无热溶液athermal solution无应变产品strain-free products物理共混physical mixing物理交联physical crosslink物理性能测试Physical TestsX.吸电子n. electron-withdrawing吸热的endothermic烯烃olefin稀溶液dilute solution锡稳定剂tin stabilizer纤维fiber纤维二糖cellobiose纤维状的fibrillar纤维状微晶的产生occurrence offibrillar crystallite线团coil相phase相对分子量relative molecular weight相分离separate phase相互分散的interdispersed相邻的折返adjacent re-entry相容性miscibility相异的divergent橡胶态rubbery state消毒剂disinfectant消光extinction消耗demise消耗consumption小纤维fibril小纤维fibrils效率常数efficiency constant偕二甲基geminal dimethyl鞋底soles新料virgin material形态学morphology性质the nature of溴化对甲基苯乙烯brominatedparamethyl styrene序列组装sequence assembly宣布…非法outlaw悬浮聚合suspension polymerization旋转角速度the angular velocity ofrotationY.压缩compression压缩机compressor哑铃形样条dumbbell specimen亚硫酸盐sulfite亚稳态metastable延长,伸出stretch out研磨成细小的颗粒grinding into smallparticles颜料pigment阳极anode阳离子cation阳离子催化作用cationic catalysis阳离子的cationic杨氏模量Young’s modulus氧化还原试剂redox reagent液晶聚合物liquid crystalline polymers一级结构primary structure一元单体monadic依据in terms of依数性colligative property移动mobilize乙二醇ethylene glycol乙炔acetylene异丁烷isobutane异丁烯isobutylene异构化n. isomerization异戊二烯isoprene易挥发溶剂volatile solvent易获得的介晶accessible mesogens 易位聚合metathesis polymerization 阴离子anion阴离子的anionic引发initiation引发速率initiation rate引发效率initiator efficiency缨状胶束模型the fringed-micellemodel应变,拉strain应力,压stress应力传递机制stress transfermechanisms硬度,刚性rigidity硬度,刚性stiffness硬而脆hard and brittle硬而强hard and strong硬而韧hard and tough硬脂酸钙calcium sterate硬质橡胶ebonite永恒介晶permanent mesogen有毒的toxic诱导永力induced permanent forces 预成形preshaping预处理prior treatment预辐射preirradiated预聚物prepolymer原料feedstock原位in situ原子排列arrangement of the atom Z.杂增长heteropolymerization杂质impurity再成型v.reform在后台under-the-hood增强材料reinforcing materials增强剂reinforcing agent增塑剂plasticizer 增塑性PVC plasticized PVC增长n. propagation增长v.propagate粘弹性viscoelastic粘度viscosity粘合binding粘性流动viscous flow长丝filament折叠链晶体chain-folded crystallite折光指数refractive index蔗糖sucrose蒸发热heat of evaporation蒸气压渗透法vapor pressureosmometry蒸汽灭菌steam sterilization正比于be proportional to支化分布distribution of branching支链branch支配dominates over脂肪族聚酯aliphatic polyesters直链淀粉amylose starch滞后hysteresis中子散射实验neutron-scatteringexperiment终止(链终止)termination重复单位repeat unit重均分子量weight-average molecularweight重力沉降力sedimentation force ofgravity轴承罩,轴承环bearing cage轴晶axialite主观e值arbitrary e values主价键primary valence bond主链backbone主链main chain注射成型injection注射成型injection molding注射成型injection-molded注射吹塑成型injection blow molding转移吹塑成型transfer blow molding浊度turbidity紫外可见光ultraviolet and visible自润滑self-lubrication自引发self-initiated自由基free radical自由基端基free radical ends自增长self-propagating纵向应变longitudinal strain阻燃剂fire retardants组织培养瓶tissue culture bottles组装的介晶assembled mesogens最终性能end properties其他.Avrami指数Avrami exponentCarothers方程Carothers equationQ-e概念the Q-e SchemeX射线衍射X-ray diffractionβ-乙缩醛β-acetalθ溶剂theta solventθ条件theta conditionθ温度theta temperature。
大学高分子化学专业英语整理
Activation 活化作用Addition polymer 加成聚合物Anionic polymerization 阴离子聚合Antioxidant 抗氧化剂Atactic 无规立抅Batch reactor 间歇反应器Bulk polymerization 本体聚合Carrier 载体Catalysts 催化剂Categorize 分类Categorize分类种类Cationic polymerization 阳离子聚合Chain polymerization 链式聚合Component 组分Condensation polymer缩合聚合物Continuous reactor 连续反应器Controlled release 可控释放Conversion 转化率Copolymerization 共聚Crystal 晶体Crystallization bond 结晶行为Decomposition 分离Deformability 变形Density 溶度Destructive distillation干馏Dissociation 离解Dissolution 溶解Double bond 双键Durable 耐用的Elasticity 弹性Elastomer 弹性体Elastomer弹性体Emulsion polymerization 乳液聚合Endothermic reaction 吸热反应Excessive metal oxid过度金属化合物Exothermic reaction 放热反应Fiber纤维Firm坚固Heterogeneous 非均相Homogeneous 均相In series 串联Initiation 引发剂Initiator 引发剂Inter polymer 共聚物Ionic polymerization 离子型聚合Ir regular 无规律Isotactic 等规Isothermal crystallization 等温结晶Kinetic chain length 动力学链长Liquid crystal 液晶Mass average 质均Mechanical loss机械损耗Mechanical property力学机械性能Mechanism 机理Molecular weight distributio分子量分布Monomer reactivity 单体反应活性Number average 数均Oxidation 氧化Plastic 塑料Poly vinylchhoride 聚氯乙烯Polydispersity多分散性Polymeric 聚合的Polymerization reaction 聚合反应Polymerization 缩聚Random 无规Reactants 分子试剂Reactor 反应器Recirecipe 配方Recycle reactor 循环反应器Reflux condenser 回流冷凝器Regular 有规律Repeating unit 重复单元Rubber 橡胶Saturation 饱和Semibatch reactor 半间歇反应器Settle沉淀Side reaction 副反应Side reactor 副反应Sodium chloride 氯化钠Stability 稳定剂Step-growth polymerization逐步聚合Stress relaxation 应力松弛Stretch strength 拉伸强度Substitution 取代Surfactanl 表面活性剂Swell 溶胀Syndio tactic 间规Synthetic 合成Tensile modulus 拉伸模量Tensile strength 抗张强度Thermoplastic 热塑性Thermoset 热固性Tubular reactor 管式反应器V atting 还原Viscoelatic deformation 弹性变形Viscosity average 粘均Yield 产率、屈服Molecule : is the smallest unit that can maintain the chemical property of the material. Monomer : is the raw material that can be used to synthesize a veriety of polymer. Kinetic chain length :is the total number of the monomer molecules that comsumed unit the active state is terminated in a chain polymerization.Functional polymers are macromolecules to which chemically functional groups are attached they have the potential advantages of small molecules with the same functional groups.Polymer : are complex and giant mole cules and built up from bonding together a single kind of reapting unit. 填空In emulsion polymerization,which is applicable when the end-product is desired as a latex,monomer is dispersed by vigorous stirring in an immiscible liquid water. Droplet size normally ranges from 0.1 to 1.0 microns. Emulsion stability, in the absence of agitation, is achieved by means of sufficient amounts of emulsifier and surfactants. Products made by this method include polyvinyl acetate for paint and coating; carboxylated styrenebutadiene copolymer; elastomers, such as semibatch reactor (SBR) or buna N (butadiene-acrylonierile) rubbers,and Acrylonitrile Butadiene styrene (ABS) polymer.A required active可以用如下三种方法将所需要的活性官能团引入到聚合物主链上:(1)在合成主链聚合物时通过带有所需官能团的单体均聚或共聚,使聚合物带上官能团;(2)将预先制成的未功能化的主链聚合物进行化学改性;(3)将(1)和(2)两种方法结合起来.A semibatch个别反应物的不同加入方式也导致半连续操作。
《聚合反应原理专论》 chapter 4 (中科大研究生教学课件)
R X R X Initiator Initiator
M XnLm MnnXnLm M XnLm
Metal complex Metal complex
The choice of the metals and the initiators according to the monomer structures is crucial for controlling radical polymerization.
The rate and control of polymerization can also be increased by addition of some additives or by changing solvent.
2. Transition-metal catalysts
(1) Function of transition-metal complex a. Induce reversible activation (homolytic cleavage) of a dormant carbon-halogen bond at a polymer terminal via a one-electron redox reaction of metal center
CH 3 CH 2 C C C=O OCH 3
heat
CH 3 CH 2 C C=O OCH 3
. .
C
1
CH2 CH SCNEt2 O
hv
CH2 CH
..
S
SCNEt2 O S
CH2 CH Se
hv
CH2 CH
..
Se
CH2 CH O N
heat
CH2 CH
《中国塑料》关于论文学术不端的认定及处理办法
•26 •PE-HD/PE-UHMW共混物的非等温结晶动力学研究及其对性能的影响[J].高分子学报,2017(8) = 1-9.Y A N G L, W EI J T, LUO Z, et al. Melt Branching of High Density Polyethylene and Influences on Its Perfor- m ances[J].八e ta Polymerica Sinica, 2017 ( 8) :1 3391 349.[2] Abbes F, T R A N N G, Abbes B, et al. Modelling of theDegradation of Mechanical Properties of High-density Polyethylene Based-packaging Exposed to Amyl Acetate S〇- lution[J]. Polymer Testing, 2017(59) : 449-461.[3] SOGANCIOGLU M,YEL E,八HM ETLI G. Pyrolysis ofWaste High Density Polyethylene(HDPE) and Low Density Polyethylene (LDPE) Plastics and Production of Epoxy Composites with Their Pyrolysis Chars [J].Journal of Cleaner Production, 2017,165(1) : 369-381.[4] SUN Z, W AN G X, GUO F, et al. Isothermal and N〇-nisothermal Crystallization Kinetics of Bio-sourced Nylon 69[J]. Chinese Journal of Chemical Engineering,2016,24(5): 638-645.[5] CAO T, Y A N G F, CHEN G, et al. Effect of Photofunc-[6] JEZIORNY A. Parameters Characterizing the Kinetics ofthe Non-isothermal Crystallization of Poly (ethylene tere-phthalate) Determined by D. S. C[J]. Polymer,1978,19(10) :1 142-1 144.[7]莫志深.一种研究聚合物非等温结晶动力学的方法[J].高分子学报,2008(7): 656-661.MO Z S. A Method for the Non-isothermal CrystallizationKinetics of Polymers [J] •Acta Polymerica Sinica, 2008(7):656-661.[8] KISSINGER H E. Reaction Kinetics in Differential Thermal Analysis [J].Analytical Chemistry, 1957,29 (11):1 702-1 706.[9] T A K H O R R. Advances in Nucleation and Crystallizationof G la sses[M] • Columbus: American Ceramics Society,1971:166-172.[10] O ZA W A T. Kinetics of Non-isothermal Crystallization[J]. Polymer,1971,12(12): 150-158.[11] Avrami M. Kinetics of Phase Change. II. Transformation-time Relations for Random Distribution of Nucleitional Organo Anion-intercalated Layered Double Hydro- [J]. J Chem Phys,1940,8(3) : 212-224.xide Nano p articles on Poly (ethylene terephthalate) No- [12] 八V R A M I M. Granulation,Phase Change,and Micro-nisothermal Crystallization Kinetics[J]. Reactive &•Functional Polymers^ 2014,83(6) : 1-6.structure Kinetics of Phase Change III[J]. J Chem Phys,1941,9(2):177-184.《中国塑料》关于论文学术不端的认定及处理办法为保护广大读者和作者的权益,维护《中国塑料》的质量和声誉,提高期刊的审稿效率,《中国塑料》编辑部在出版过程中将启用 CNKI开发的《科技期刊学术不端文献检测系统(AMLC) KAMLC是以中国学术期刊网络出版总库、中国博士学位论文全文数据库、中国优秀硕士学位论文全文数据库、中国重要会议论文全文数据库、中国重要报纸全文数据库、中国专利全文数据、互联网资源为全文比对数据库)对来稿进行检测和甄选。
Unit2-Chainpolymerization
Chain PolymerizationOlefinicVinylUnsaturatedEliminateDouble bondDiolefin Words and Expressions Transfer Initiator Radical Chain reaction TerminatePolyvinylchloridePolystyreneDegree ofpolymerizationPolymericMechanismChlorine Words and ExpressionsHydrogen Phosgene Initiation ActivationUltrasonicCatalystIonicComplexTitanium tetrachlorideTitanium trichlorideAluminum alkyl•by means of•one after the other •be propotional to •over a large range•lie in•bring about•energy-rich••in the strictest sense•play an important role inPart 1Read and translateCallingIn the same way 同样地by means of 借助于一个接一个地,,one after the other 一个接一个地Many olefinic the double bond, a phenomenon recognized by Staudinger.许多烯烃和乙烯基不饱和化合物通过消除双键可以形成链式大分子消除双键可以形成链式大分子。
这一现象由现象由Staudinger Staudinger Staudinger首先发现首先发现首先发现。
Diolefins polymerize in the same manner , however, only one of the two double bonds is eliminated. 二烯烃以同样的方式聚合二烯烃以同样的方式聚合,,然而然而,,两个双键中只有一个被消除双键中只有一个被消除。
The Mechanisms and Kinetics of Polymer Degradation
The Mechanisms and Kinetics of PolymerDegradationPolymers are highly versatile materials that we use in many aspects of everyday life. From plastic bags and water bottles to car parts and medical devices, polymers have become an essential part of modern society. However, despite their usefulness, polymers can also present a significant environmental problem. Many of these materials are non-biodegradable, meaning that they persist in the environment for centuries, posing a threat to both wildlife and human beings. Polymer degradation, the process by which polymers break down into smaller particles, is, therefore, a crucial area of research.There are several mechanisms by which polymers can degrade. One of the most common is thermo-oxidative degradation. This process is initiated when polymers are exposed to heat and oxygen. This exposure causes the polymer to undergo oxidation, which generates free radicals and other reactive species that attack the polymer chain. This process leads to chain scission, which is the breaking of polymer chains into smaller particles. The smaller particles are unstable and can react with other free radicals, leading to further chain scissions and the formation of even smaller particles. Ultimately, this process leads to the degradation of the polymer into small, non-useful particles.A second mechanism of polymer degradation is hydrolysis. Hydrolysis occurs when polymers are exposed to water, and it is particularly relevant in the case of biodegradable polymers. Biodegradable polymers, such as poly(lactic acid) andpoly(hydroxyalkanoates), are designed to decompose in the presence of microorganisms in the environment. In this process, water molecules attack the ester bonds in the polymer chain, breaking it down into smaller fragments. These fragments can then be metabolized by microorganisms and converted into harmless products.A third mechanism of polymer degradation is photodegradation, which is the degradation of polymers induced by light. This process occurs when polymers are exposed to UV light, which causes the polymer to undergo photodegradation. Thisprocess leads to the dissociation of chemical bonds and the formation of free radicals. These free radicals can then attack the polymer chain, leading to chain scission and the ultimate degradation of the polymer.The kinetics of polymer degradation refers to the rate at which polymers degrade. The kinetics can be influenced by several factors, including temperature, the presence of catalysts, and the chemical structure of the polymer. Generally, degradation rates increase with increasing temperature because higher temperatures lead to increased reaction rates. The presence of catalysts can also enhance polymer degradation by accelerating chemical reactions. The chemical structure of the polymer can also impact the kinetics of polymer degradation, with some polymer structures being more susceptible to degradation than others.The study of polymer degradation is essential from an environmental perspective. Understanding the mechanisms and kinetics of polymer degradation can help us to develop strategies for managing plastic waste. Biodegradable polymers, for example, can be used as alternatives to non-biodegradable polymers in certain applications. Additionally, by understanding how different polymers degrade, we can design better waste management strategies that take into account the unique properties of different polymers.In conclusion, polymer degradation is a crucial area of research that has significant environmental implications. There are several mechanisms by which polymers can degrade, including thermo-oxidative degradation, hydrolysis, and photodegradation. The kinetics of polymer degradation can be influenced by several factors, including temperature, the presence of catalysts, and the chemical structure of the polymer. Understanding these processes is essential to developing effective waste management strategies that can mitigate the environmental impacts of plastic waste.。
RAFT聚合法研究丙烯酸酯自由基聚合链间转移过程
第54卷 第7期 2021年7月天津大学学报(自然科学与工程技术版)Journal of Tianjin University (Science and Technology )V ol. 54 No. 7Jul. 2021收稿日期:2020-05-01;修回日期:2020-06-08. 作者简介:郭睿威(1963— ),男,博士,副教授. 通信作者:郭睿威,*************.cn.DOI:10.11784/tdxbz202005002RAFT 聚合法研究丙烯酸酯自由基聚合链间转移过程郭睿威,张梦媛,薛 杨,张世先(天津大学化工学院,天津 300072)摘 要:针对丙烯酸酯自由基聚合过程中链间转移常数测定难题,提出了新的测试策略,即在低分子量聚丙烯酸酯存在下,以UV 标记的RAFT 试剂N-咔唑二硫代甲酸苄基酯(BCBD )调控第二单体进行RAFT 聚合,聚合产物经梯度淋洗聚合物色谱(GPEC )分离,直接测定由向聚合物转移所产生嵌段物的相对摩尔比,并以此估算增长链自由基向另一种聚合物的链转移常数.然后以异丙醇为链转移剂制得的低分子量聚丙烯酸甲酯(iPr-PMA )、丙烯酸乙酯(EA )为例,在优化GPEC 分离条件后,选用二氯乙烷/甲醇为淋洗剂实现了RAFT 聚合的均聚物RPEA 与链转移生成的嵌段物iPr-PMA-b-RPEA 的有效分离,测得了80℃、100℃和120℃下PEA 增长链向iPr-PMA 的转移常数.结果表明,这一过程的链转移常数在10-4数量级,且随温度升高而增大;通过RAFT 聚合与GPEC 技术相结合,可以高效简易地测定自由基聚合中向聚合物的链转移常数,而不必依赖其他动力学参数.这一方法的建立为深入研究链间转移动力学及影响因素提供了可行的方法.关键词:丙烯酸酯;向聚合物的链转移;RAFT 聚合;梯度淋洗聚合物色谱中图分类号:TK448.21 文献标志码:A 文章编号:0493-2137(2021)07-0687-07Feasible Method for the Determination of the Chain TransferConstants of Acrylates to Polymers in Free RadicalPolymerization via RAFT PolymerizationGuo Ruiwei ,Zhang Mengyuan ,Xue Yang ,Zhang Shixian(School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China )Abstract :A new measuring strategy was proposed to determine the interchain transfer constant during the free radicalpol ymerization of acryl ates. An acryl ate monomer was subjected to RAFT pol ymerization control l ed with a UV-labeled RAFT agent ,namely ,benzyl N-carbazole dithiocarboxylate ,in the presence of another pre-prepared low-molecular-weight polyacrylate. The RAFT polymerization products were separated through gradient polymer elution chromatography (GPEC ),and the relative molar content of the blocked product formed via the transfer of the poly-acrylate radical to the pre-prepared polyacrylate was directly determined. The chain transfer constant of the growing chain radical in the polymer was estimated. As an example ,ethyl acrylate (EA ) was selected as the monomer ,and pol ymethyl acryl ate (iPr-PMA )prepared in isopropyl al cohol was chosen as the pre-prepared pol ymer matrix. The GPEC separation conditions were optimized ,and a dichl oroethane/methanol mixture was used as the el uent that could effectively separate the homopolymer RPEA and the block iPr-PMA-b-RPEA generated via the chain transfer to iPr-PMA. The chain transfer constants of the PEA growth radicals to iPr-PMA at 80℃,100℃,and 120℃ were estimated. Results showed that the chain transfer constants were in the order of 10-4,and they increased with the in-crease of temperature. The chain transfer constant of the polymer in free radical polymerization could be efficiently and simply measured through the combination of RAFT polymerization and polymer liquid chromatography technol-ogy without relying on other kinetic parameters. This method was demonstrated to be feasible for studying the inter-chain transfer dynamics and influencing factors.·688·天津大学学报(自然科学与工程技术版)第54卷 第7期 Keywords:acrylate;chain transfer to polymer;RAFT polymerization;gradient polymer elution chromatography随着对聚合物结构与聚合过程控制精准化要求的提高,人们对聚合过程中各类低几率反应越来越重视.在自由基聚合过程中,链转移是一类重要的反应,直接影响聚合物的分子量、链端结构和链的构造(支化或交联)[1-5].已报道丙烯酸酯类单体在自由基聚合时存在显著的链内转移与链间转移,导致生成叔碳的聚合物链中自由基(mid-chain radical,MCR),这类MCR进一步增长形成短支化或长支化聚合物.链内的转移主要通过末端自由基的回咬反应进行,生成大量的短侧基(C4-C6),这一回咬反应的动力学及短支化程度已被13C NMR等技术广泛研究和表征[6].但因缺乏合适的技术手段,对丙烯酸酯链间转移程度的研究很不充分,所得到的链间转移速率常数相差极大.一般认为链间转移程度较低,但链间转移会产生长支化,严重时甚至会导致微凝胶,尤其是近些年来丙烯酸酯被认为可用作不饱和树脂的交联单体,高温下聚合时链转移的影响更为显著.Plessis等[7]研究了丙烯酸丁酯(BA)的半连续种子乳液聚合中凝胶含量,通过数学模型法估算出BA聚合时75℃下链间转移速率常数(P,intertrk)约为0.178L/(mol·s). Bosch-mann等[8]在研究丙烯酸甲酯、丙烯酸丁酯和丙烯酸十二烷基酯的本体可逆加成-断裂链转移聚合(RAFT)制备星形聚合物时,发现体系中存在超高分子量的级分,认为是由分子间链转移而形成,通过动力学模拟估算丙烯酸丁酯在60℃聚合时链间转移速率常数P,intertrk=0.33L/(mol·s),丙烯酸十二烷基酯的链间转移速率常数P,intertrk=7.1L/(mol·s).Ahmad 等[9]在研究BA采用不同聚合方法聚合时所得产物PBA的支化程度与单体浓度间关系时,给出了较高的链间转移速率常数P,intertrk=200L/(mol·s)(80℃).最近,Ballard等[10]采用在低分子量聚丙烯酸丁酯存在下进行BA的RAFT聚合,因链间转移会产生含RAFT端基的低分子量聚合物级分,通过模型法拟合产物分子量分布的方法估算了BA聚合时链间转移速率常数约为25L/(mol·s)(80℃).现有对丙烯酸酯聚合时链间转移速率常数的估算主要采用模型法,借助聚合产物的支化程度或分子量分布数据来拟合链间转移速度常数.这种方法依赖于众多动力学参数以及完整的聚合机理.聚合机理的不完整以及个别动力学参数的不确切都会直接影响拟合结果,导致链间转移速率常数的误差.这也是几个不同研究方法所得数据相差极大的原因之一.笔者在前期研究丙烯酸酯的RAFT聚合时,利用RAFT聚合的可逆失活特性,建立了一种研究方法,即将第一单体(M1)的RAFT聚合产物与第二单体(M2)进行扩链反应,从而使M1的RAFT聚合产物中可再活化的组分衍生化为嵌段聚合物,而不可再活化的非活性组分仍保留均聚物形式,再利用梯度淋洗聚合物色谱(gradient polymer elution chromatogram-phy,GPEC)将嵌段物与均聚物分离,并通过紫外测定各组分的相对摩尔含量,从而直接测定相关反应的动力学参数[11-15].本文参照Nicholas Ballard的研究策略,利用上述嵌段衍生聚合反应与GPEC分离相结合的方法来研究单体聚合时向聚合物的链转移 过程.1 实 验1.1 实验原料丙烯酸甲酯(MA)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、偶氮二异丁腈(AIBN)、1,1-偶氮双(环己烷-1-甲腈)(V88)、咔唑,分析纯,均购自于上海阿拉丁试剂公司;异丙醇(iPrOH),分析纯,购自天津市江天化工技术有限公司;二氯甲烷、二氯乙烷、乙腈、甲醇,色谱级纯度,购自天津康科德试剂公司.RAFT试剂N-咔唑二硫代甲酸苄基酯(BCBD)按文献[16]方法合成.1.2 分析测试仪器高效液相色谱Agilent 1100,安捷伦科技有限公司;A V ANCE Ⅲ 400MHz 液体核磁共振谱仪,Bruker公司;凝胶渗透色谱,安捷伦科技有限公司;WFZ-26A紫外可见分光光度计,上海美谱达仪器有限公司.1.3 制备与分析1.3.1丙烯酸酯的精制MA、EA和BA经碱性氧化铝柱子去除阻聚剂,减压蒸馏,将收集单体置于冰箱里低温保存.1.3.2低分子量聚丙烯酸甲酯的制备按MA、iPrOH和AIBN的摩尔比为1∶9∶0.01,称取MA 20g、iPrOH 125g加入带有冷凝回流装置的三口瓶中.将380mg的AIBN等分3批每隔3h加入.在氮气氛围下回流聚合8h.将产物旋转蒸发以除去iPrOH和未反应的单体,最后将旋转蒸发后的产物置于60℃真空干燥12h,得白色不透明的膏状产物,即为由异丙醇制得的低分子量聚丙烯酸甲酯(记为iPr-PMA).2021年7月郭睿威等:RAFT聚合法研究丙烯酸酯自由基聚合链间转移过程 ·689·1.3.3丙烯酸酯的RAFT聚合按80∶1∶0.125的摩尔比称取单体MA或EA、BCBD和AIBN,加入反应装置溶解后密封,通氮除氧20min,置于60℃水浴中反应24h.所得黏稠液体在60℃下真空干燥48h,得聚合产物RPMA和RPEA.其中R代表聚合产物是由RAFT聚合制备 所得.采用如下方法制备嵌段共聚物RPMA-b-PEA. 将MA(2.690g,31mmol)与RPEA(775mg,0.155 mmol)在5mL棕色西林瓶中混合.加入AIBN (5.2mg,0.031mmol),完全溶解后,用丁基橡胶塞密封,并充氮气除氧10min,将反应瓶置于60℃的恒温水浴中聚合24h,得到嵌段物RPMA-b-PEA.1.3.4丙烯酸酯溶液聚合体系均匀性的测定将2g iPr-PMA、0.6g EA(或 0.6g BA)、3mg AIBN和5mg BCBD加入小棕瓶中,磁力搅拌均匀后,将之转移至带盖比色皿中,经过两次抽空-充氮处理封闭,置于紫外可见分光光度计中,在外循环水浴80℃下进行恒温聚合,并在700nm波长下在线测量反应体系的透光率随反应时间的变化(测量时间4h).1.3.5iPr-PMA存在下丙烯酸乙酯的RAFT聚合在耐压反应瓶内加入0.6g的预溶AIBN(或V88)的EA(引发剂质量分数为0.5%)、2g iPr-PMA 和5mg RAFT试剂BCBD,磁力搅拌溶解均匀.用橡胶塞密闭,向体系中多次抽空-通氮除氧后,将反应瓶置于80℃、100℃和120℃油浴下反应12h,最终得到iPr-PMA存在下EA的RAFT聚合产物,记为RPEA@iPr-PMA,R字头表示RAFT聚合产物.1.3.6紫外测试待测物质的紫外吸收光谱使用WFZ-26A紫外可见分光光度计测试.1.3.7核磁分析以氘代氯仿(CDCl3)为溶剂、四甲基硅烷为内标,用A V ANCE Ⅲ 400MHz液体核磁共振谱仪器测试.1.3.8聚合物液相色谱分离测定正相梯度淋洗聚合物色谱(GPEC)使用Agilent 1100型高效液相色谱,多波长紫外检测器,色谱柱采用Scienhome 公司的Kromasil硅胶柱(300mm,4.6mm×250mm,5µm,30nm,Sigma-Aldrich,Inc.,St. Louis,MO,USA).所测试样均溶于色谱纯的二氯乙烷中,测试条件如下:流速1.0mL/min,色谱柱温度是30℃,流动相为色谱纯二氯乙烷和甲醇.梯度淋洗条件如下:MOH和DCE体积比从0∶100经17min的梯度淋洗后比例变为6∶94,总淋洗时间为18min. UV检测波长为284nm.利用 Agilent 液相色谱化学工作站软件及 Origin TM 软件进行记录并分析计算各峰的相对面积.2 结果与讨论图1给出本研究策略的流程及PMA与链转移产物iPr-PMA-b-RPEA的结构.在低分子量聚丙烯酸甲酯iPr-PMA存在下,以具有强UV吸收的BCBD为RAFT试剂,进行第二单体EA的RAFT聚合.正常聚合产物(包括链内转移)为EA的均聚物,而向iPr-PMA的链转移则生成嵌段聚合物.在聚合过程中向自身聚合物的链转移并不改变均聚物或嵌段物的类型.因此,最终聚合产物RPEA@iPr-PMA包含3个组分:①含RAFT端基N-咔唑二硫代甲酸基的均聚物RPEA;②不含RAFT 端基的iPr-PMA均聚物;③因向iPr-PMA链转移而生成的嵌段物iPr-PMA-b-RPEA,该嵌段聚合物也含有RAFT端基N-咔唑二硫代甲酸基.采用GPEC法可以将含RAFT端基N-咔唑二硫代甲酸基的均聚物RPEA与嵌段物iPr-PMA-b-RPEA分离,并通过端基N-咔唑二硫代甲酸基的特征UV吸收测定均聚物与嵌段物的相对摩尔比.不含RAFT端基的iPr-PMA 均聚物对测试信号不产生干扰.RAFT聚合过程中生成的死聚物(包括均聚物PEA和嵌段物iPr-PMA-b-RPEA)不含端基N-咔唑二硫代甲酸基,也不会产生干扰.但因该部分的生成机理与含N-咔唑二硫代甲酸端基的聚合物具有相同的比例,因此该部分的缺失不会对链间转移程度计算造成影响.图1丙烯酸酯聚合中向聚合物转移程度测试流程示意Fig.1Schematic of the measurement of the degree of the interchain transfer of acrylate polymerization·690· 天津大学学报(自然科学与工程技术版) 第54卷 第7期2.1 向聚合物转移过程分析如图1所示,本研究是基于第一单体(M 1)的均聚物存在下进行第二单体(M 2)的RAFT 聚合.在此聚合过程中,向第一种聚合物的链转移程度可估算 如下.(1) 在此聚合过程中,只涉及链增长(即单体消耗)和链间转移过程,引发与终止过程可以不考虑.当采用链增长速率常数k p 和链转移总速率常数k tr 表示时,可考虑如下反应: p**22P M PM +⎯⎯→k (1)ptr**1212P PM PM P-H PM -b-PM +⎯⎯→+⎯⎯→k k(2)链增长过程导致单体消耗,转化率增加,链间转移则生成嵌段物PM 1-b-PM 2,以下用Block 表示. 因此有*2p 2d[M ][P ][M ]d −=k t (3)**1tr 1PM1d[PM ]d[Block][P ][PM ]DP d d =k t t (4)式中DP PM1为PM 1的聚合度.将式(3)和式(4)相除,并积分可得12tr 1PM p M1[Block][PM ]DP ln 1=⋅−k k x (5)式中2M x 为M 2的转化率.(2) 在GPEC 中,可将含RAFT 链端的聚合产物PM 2与嵌段物分离,UV 检测选在RAFT 端基特征吸收波长下时,峰面积与该组分的摩尔比成正比.因此由峰面积比可得2[Block][PM ]的数值.在RAFT 聚合中,含RAFT 端基组分间有 02[RAFT][Block][PM ]=+ (6)式中[RAFT]0为反应初始加入的RAFT 试剂的量.设2[Block][PM ]α=,则可以推导出 0[Block][RAFT]1αα=− (7)12tr p 1PM M[Block]11[PM ]DP ln 1==⋅−k k x121PM M [RAFT]11[PM ]DP ln1αα+⋅−x(8)1110RAFTRAFT 1PM PM M[RAFT]/[PM ]DP /=⋅mM m M (9)式中m RAFT 和1PM m 分别为RAFT 试剂和聚合物PM 1的质量;M RAFT 和1M M 为RAFT 试剂和单体M 1的分子量.由此可得112M tr RAFT p PM RAFT M 11ln1αα+=−M k m k m M x(10)(3) 在确定RAFT 试剂和PM 1的质量条件下,测定单体M 2的转化率及对应条件下链转移所生成嵌段物与均聚物PM 2的摩尔比(α),即可求得PM 2增长自由基对PM 1聚合物的链转移常数C tr ,即 C tr =k tr /k p (11)该方法目前适用于单体向另一种聚合物的链转移,通过一定的改造,相信也可用于单体向其自身聚合物的链转移. 2.2 低分子量聚丙烯酸甲酯的制备为便于GPEC 的分离,基质聚合物应选用较低分子量.为制得较低分子量聚丙烯酸甲酯,又不引入其他易导致链转移的新位点,本研究中选用异丙醇为链转移剂,通过较高温度下的溶液聚合制得端基为叔醇结构的聚丙烯酸甲酯,记为iPr-PMA . 表1给出iPr-PMA 的制备条件、特性黏数([η])及黏均分子量(M η).其中黏均分子量采用Mark-Houwink 方程计算,参数a =0.697,k =7.79×10-3. 由于iPr-PMA-2的分子量较低,故本文采用iPr-PMA-2进行后续反应.表1 iPr -PMA 样品的制备条件及结构参数Tab.1 Preparation and structural parameters of iPr -PMA样品 w (异丙醇)/%温度/℃[η]/(mL ·g -1)M ηiPr-PMA-180 60 8.51 22868iPr-PMA-290 80 4.19 82752.3 测试条件的选择2.3.1 GPEC 检测波长的选择RAFT 试剂N-咔唑二硫代甲酸酯在284nm 、320nm 和360nm 处有特征吸收,其中284nm 处的吸收系数更高,有利于提高对嵌段物的检测灵敏度.虽然饱和链端的各丙烯酸酯聚合物在260nm 之上均无吸收,不会产生干扰.但在丙烯酸酯单体聚合过程中,链转移产生的MCR 会发生β-断裂,生成不饱和双键端基的聚合物.为评估这种由β-断裂形成的端不饱和死聚物对UV 检测的干扰程度,本实验采用甲基丙烯酸甲酯(MMA )为模型物,测试了MMA 与BCBD 在二氯甲烷中的UV 吸收及相对吸收度,见图2.2021年7月郭睿威等:RAFT聚合法研究丙烯酸酯自由基聚合链间转移过程 ·691·图2MMA与BCBD的UV吸收光谱Fig.2UV absorption spectra of MMA and BCBD由图2可知,MMA在280nm左右只有很弱的吸收,而BCBD在284nm、318nm和365nm处有较强的吸收,且在284nm处吸收峰最大.在284nm下测定不同浓度MMA和BCBD的吸光度,计算其摩尔吸收系数.通过计算得出,MMA在284nm下的摩尔吸收系数ε1=2.70L/(mol·cm),BCBD在284nm 处的摩尔吸收系数ε2=1.14×104L/(mol·cm).由此可以估算在相同摩尔浓度下,在284nm下检测时不饱和链端对含N-咔唑二硫代羧酸酯的聚合物的吸光度干扰程度不大于0.03%,可基本视作无影响.因此为提高对嵌段物的检测灵敏度,GPEC的检测波长设为284nm.2.3.2iPr-PMA存在下BA和EA聚合体系的相容性图3为iPr-PMA存在下EA和BA在80℃进行R A F T聚合时体系透光度随聚合时间的变化(700nm).由图3可看出,随聚合进行,iPr-PMA存在下BA的RAFT聚合体系的透光度表现出明显下降,而EA的RAFT聚合体系的透光度没有明显变化.这表明,iPr-PMA存在下EA的RAFT聚合体系具有很好的相容性,整个聚合体系一直维持均匀透明状态,不会产生相分离,即在此共混体系中不会发生隔离效应而降低增长链对iPr-PMA的接触几率.而当BA为第二单体时聚合体系的均匀性会有所下图3反应过程中体系透光度随反应时间的变化(λ=700nm)Fig.3Change in the light transmittance of the system with reaction time during the reaction(λ=700nm)降.为避免这种不相容性的影响,本文选用iPr-PMA存在下EA的聚合来进行链转移的研究.2.4 iPr-PMA存在下EA的RAFT聚合2.4.1聚合产物的GPEC分离在主要基于吸附/解吸机理来分离聚合物的GPEC中,焓与熵同时起作用,不同极性聚合物的解吸过程仅在非常狭窄的洗脱液组成处发生,较低分子量会产生前沿峰.因此GPEC可以实现极性不同的聚合物间的分离,特别是可有效地分离嵌段聚合物与其母体均聚物.图4为甲醇/二氯乙烷(MOH/DCE)为淋洗液时均聚物RPEA、均聚物RPMA、嵌段物RPMA-b-PEA的GPEC谱图.淋洗条件如下:MOH和DCE体积比从0∶100经17min梯度淋洗至6∶94.如图4所示,2~4min左右的峰来自溶剂以及样品中的单体等小分子杂质.均聚物RPEA在9.5min处出峰,均聚物RPMA在13.6min处出峰,嵌段物RPMA-b-PEA在13.5min处出峰,与RPMA相当.表2列出3种聚合物出峰时对应的甲醇含量.RPMA出峰所需的甲醇含量较高,这是因为RPMA的极性要高于RPEA.嵌段物RPMA-b-PEA的洗脱主要受高极性段PMA决定,因此与PMA相当.由此可知,MOH/DCE二元溶剂梯度淋洗可以很好地分离嵌段物RPMA-b-PEA和均聚物RPEA.图4RPEA、RPMA和RPMA-b-PEA在MOH/DCE的GPEC谱图Fig.4GPEC spectra of RPEA,RPMA,and RPMA-b-PEA in MOH/DCE表2聚合产物GPEC分离结果Tab.2GPEC separation results of polymers样品出峰时间/min w(甲醇)/%RPMA 13.63.29RPEA 09.5 1.87 RPMA-b-PEA 13.5 3.28链转移生成的嵌段物iPr-PMA-b-RPEA虽与嵌段物RPMA-b-PEA有一点区别(连接点在链中间,而非链端),但其组成与RPMA-b-PEA相同,因此其在·692· 天津大学学报(自然科学与工程技术版) 第54卷 第7期GPEC 中的洗脱条件也应与RPMA-b-PEA 和均聚物RPMA 相当.因此,链转移体系中的均聚物RPEA 和分子间链转移产物iPr-PMA-b-RPEA 在GPEC 中可以完全有效分离.2.4.2 链转移产物含量的测定图5是3种不同聚合温度下在iPr-PMA 存在下EA 进行RAFT 聚合时所得产物的GPEC 谱图.淋洗条件如下:MOH 和DCE 体积比从0∶100经17min 的梯度淋洗比例变为6∶94,总淋洗时间为18min . UV 检测波长为284nm .由图5可知,聚合产物呈现两个峰:一个大峰(S 1)在9min 附近,这归于EA 进行RAFT 聚合时所得的均聚物RPEA ;另一个小峰(S 2)出现在13min 附近,与RPMA 或RPMA-b-PEA相近,这应归于由PEA 增长链向iPr-PMA 链转移而生成的嵌段物iPr-PMA-b-RPEA .此峰的出现表明在此聚合过程中确实发生了向聚合物PMA 的链转移.链转移产物的摩尔分数(α)可以用GPEC 中S 1峰和S 2峰的面积来表征,即α=21S S /A A .表3给出不同温度下聚合结果.随着温度升高,α 变大.图5 iPr -PMA 存在下EA 的RAFT 聚合产物的GPEC谱图Fig.5 GPEC spectrum of the RAFT polymerizationproduct of EA in the presence of iPr -PMA表3 iPr -PMA 存在下EA 的RAFT 聚合产物的参数 Tab.3 Parameters of the RAFT polymerization productof EA in the presence of iPr -PMA样品 温度/℃ 引发剂 α /%RPEA@iPr-PMA-1 80 AIBN 12.15 RPEA@iPr-PMA-2 100 V88 16.08RPEA@iPr-PMA-3 120 V88 21.332.4.3 RAFT 聚合转化率分析图6为在iPr-PMA 存在下EA 在80℃下RAFT聚合产物RPEA@iPr-PMA 的1H NMR 谱.图6中,化学位移在5.5~6.7间的3个多重峰来源于丙烯酸乙酯(EA )残余单体的双键氢,化学位移为4.19的峰来源于EA 中的酯基亚甲基—OCH 2—.化学位移为3.67的单峰来自于iPr-PMA 中的酯基甲基峰—OCH 3,化学位移1.5~2.3间的峰归属于聚合物主链的亚甲基与次甲基氢,化学位移为1.3的峰归属于EA 或PEA 中酯基的端甲基.由1H NMR 谱图可知,残余EA 的双键氢(δ=5.5~6.7)峰(S 3)与其酯基—OCH 2—(δ=4.19)峰(S 4)明显且不受干扰,可以由其峰面积计算EA 单体的转化率.即x EA =1-34S S /A A .计算可得80℃下EA 的转化率为82.6%.同理可以计算100℃、120℃下EA 的转化率列于表4.图6 RPEA@iPr -PMA (80℃)的1H NMR 谱 Fig.6 1H NMR spectrum of RPEA@iPr -PMA (80℃) 表4 不同温度下的RPEA@iPr -PMA 的参数Tab.4Parameters of RPEA@iPr -PMA at different tem -peratures样品 温度/℃ 引发剂 x EA /%RPEA@iPr-PMA-1 80 AIBN 82.6RPEA@iPr-PMA-2 100 V88 85.1 RPEA@iPr-PMA-3 120 V88 88.32.4.4 链转移常数的计算表5给出不同温度下iPr-PMA 存在下EA 以BCBD 调控的RAFT 聚合结果.C tr 为由式(11)计算的PEA 增长链对PMA 聚合物的链转移常数.表5 EA 聚合对iPr -PMA 的链转移常数Tab.5 C tr of PEA propagating radical to iPr -PMA样品温度/℃x EA /%α /%C tr /10-4RPEA@iPr-PMA-1 80 82.6 12.15 1.12 RPEA@iPr-PMA-2 100 85.1 16.08 1.31 RPEA@iPr-PMA-3 120 88.3 21.33 1.47由表5中的数据可知,PEA 增长链对PMA 聚合物的链转移常数在10-4等级,并随温度的增加而变大.这一数值比Ballard 等[10]测试的BA 在80℃下的链转移常数(4.1×10-4)低,但高于Boschmann 等[8]所测得的BA 在60℃下链间转移常数(6.0×10-6).以上的分析表明,采用本文所提出的方法可以直接测得链转移常数,而无需采用依赖众多动力学参数的模型.该方法的可靠性还需更多的实验验证以及敏感性分析.2021年7月郭睿威等:RAFT聚合法研究丙烯酸酯自由基聚合链间转移过程 ·693·3 结 语本文以异丙醇为链转移制备了低分子量聚丙烯酸甲酯(记为iPr-PMA),在iPr-PMA存在下丙烯酸乙酯(EA)进行RAFT聚合反应,其聚合产物经梯度淋洗聚合物色谱(GPEC)分离,可有效地测得PEA增长链自由基向iPr-PMA的链转移程度.结果表明,选用二氯乙烷/甲醇为淋洗剂可以有效地分离RPEA均聚物与链转移生成的嵌段物iPr-PMA-b-RPEA,并定量测定两者的摩尔比,由此估算了在不同温度下PEA链自由基对PMA的链转移常数C tr,PEA增长链对PMA聚合物的链转移常数约在10-4等级,并随温度的增加而变大.实验结果证明,采用在聚合物存在下进行第二单体的RAFT聚合,并采用GPEC法分离测定向聚合物链转移的方法是高效可行的,为进一步深入研究链间转移的影响因素提供了一种新的可行的研究方法.参考文献:[1]Barth J,Buback M,Hesse P,et al. Termination and transfer kinetics of butyl acrylate radical polymerizationstudied via SP-PLP-EPR[J]. Macromolecules,2010,43(9):4023-4031.[2]Ahmad N M,Charleux B,Farcet C,et al. Chain trans-fer to polymer and branching in controlled radical polym-erizations of n butyl acrylate[J]. Macromolecular RapidCommunications,2009,30(23):2002-2021.[3]Junkers T,Barner Kowollik C. The role of mid chain radicals in acrylate free radical polymerization:Branching and scission[J]. Journal of Polymer SciencePart A:Polymer Chemistry,2008,46(23):7585-7605.[4]Liu S,Srinivasan S,Grady M C,et al. Backbiting and β-scission reactions in free radical polymerization ofmethyl acrylate[J]. International Journal of Q uantumChemistry,2014,114(5):345-360.[5]Konkolewicz D,Sosnowski S,D’hooge D R,et al.Origin of the difference between branching in acrylatespolymerization under controlled and free radical condi-tions:A computational study of competitive proc-esses[J]. Macromolecules,2011,44(21):8361-8373. [6]Keddie D J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain trans-fer(RAFT)polymerization[J]. Chemical Society Re-views,2014,43(2):496-505.[7]Plessis C,Arzamendi G,Leiza J R,et al. Modeling ofseeded semibatch emulsion polymerization of n-BA[J].Industrial & Engineering Chemistry Research,2001,40(18):3883-3894.[8]Boschmann D,Vana P. Z-RAFT star polymerizations of acrylates:Star coupling via intermolecular chain transferto polymer[J]. Macromolecules,2007,40(8):2683-2693.[9]Ahmad N M,Frank H A,Lovell P A. Chain transfer to polymer in free-radical solution polymerization of n-butylacrylate studied by NMR spectroscopy[J]. Macromole-cules,1998,31(9):2822-2827.[10]Ballard N,Hamzehlou S,Asua J M. Intermolecular transfer to polymer in the radical polymerization of n-butyl acrylate[J]. Macromolecules,2016,49(15):5418-5426.[11]郭睿威,张明锋,张建华. 超支化大分子RAFT试剂的制备及应用[J]. 天津大学学报:自然科学与工程技术版,2015,48(5):395-400.Guo Ruiwei,Zhang Mingfeng,Zhang Jianhua. Synthe-sis of hyperbranched macro RAFT agent and its applica-tion to RAFT polymerization[J]. Journal of Tianjin Uni-versity:Science and Technology,2015,48(5):395-400(in Chinese).[12]郭睿威,张建华,赵宗峰. N-咔唑二硫代甲酸异丙苯酯的合成及应用[J]. 天津大学学报,2007,40(8):24-28.Guo Ruiwei,Zhang Jianhua,Zhao Zongfeng. Synthe-sis and application of cumene dithiocarbamate N-carbazole[J]. Journal of Tianjin University,2007,40(8):24-28(in Chinese).[13]Guo R,Shi Z,Wang X,et al. Separation and quantifi-cation of dead species in styrene RAFT polymerizationby gradient polymer elution chromatography[J]. PolymerChemistry,2012,3(5):1314-1321.[14]Guo R,Yao Y,Bai S,et al. Determination and corre-lation of regioselectivity and dead dormant species fromhead addition in acrylate RAFT polymerization[J].Polymer Chemistry,2017,8(23):3560-3573. [15]Zhu Y,Xue Y,Li X,et al. Determination of head addition incidence of (meth)acrylate and styrene in radi-cal polymerization by RAFT block polymerization deri-vation and gradient polymer elution chromatography[J].Polymer Chemistry,2019,10(16):2073-2082. [16]Zhang J,Dong A,Cao T,et al. Carbazyl RAFT agents synthesized by an improved aqueous phase method andtheir applications in RAFT polymerization[J]. EuropeanPolymer Journal,2008,44(4):1071-1080.(责任编辑:田 军)。
聚合物稳定胆甾相滤色液晶光阀的显示研究
聚合物稳定胆甾相滤色液晶光阀的显示研究胡金良;徐超;吴少君;陆红波【摘要】本文研究了在平面态和场致向列相之间快速切换的聚合物稳定胆甾相(PSCT)液晶光阀的彩色显示.采用紫外光诱导相分离法(PIPS)制备具有染料掺杂的聚合物稳定胆甾相液晶光阀,通过3种染料在可见光区的吸收作用,对入射白光进行选择性吸收过滤,得到不同颜色的出射光.结果表明:当PSCT处在平面态下,分子螺旋排列,染料对入射光波的吸收不受光波偏振方向的影响,器件具有很强的吸收作用,呈现有色态;当处于场致向列相,染料的吸收作用微小,器件呈透明态,因此器件具有一定的对比度,且不需要偏振片;器件在平面态和场致向列相之间快速切换的响应时间短于7 ms. PSCT光阀可以用作滤色器,在多种染料的共同作用下,快速选择滤色得到多种彩色可见光,组成彩色显示平面.【期刊名称】《液晶与显示》【年(卷),期】2016(031)004【总页数】6页(P347-352)【关键词】聚合物稳定胆甾相液晶;滤色;快速响应【作者】胡金良;徐超;吴少君;陆红波【作者单位】特种显示技术教育部重点实验室特种显示技术国家工程实验室,现代特种显示技术省部共建重点实验室培育基地,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009;特种显示技术教育部重点实验室特种显示技术国家工程实验室,现代特种显示技术省部共建重点实验室培育基地,安徽合肥230009;特种显示技术教育部重点实验室特种显示技术国家工程实验室,现代特种显示技术省部共建重点实验室培育基地,安徽合肥230009;合肥工业大学化学与化工学院,安徽合肥230009;特种显示技术教育部重点实验室特种显示技术国家工程实验室,现代特种显示技术省部共建重点实验室培育基地,安徽合肥230009【正文语种】中文【中图分类】O753+.2宾主型液晶是少量二色性染料和向列相液晶的混合物,棒状染料分子会沿液晶指向矢取向排列,在电场的作用下,染料分子的取向会发生变化,从而颜色的改变,达到显示效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:cond-mat/9807184v1 [cond-mat.soft] 13 Jul 1998
G.Oshanin1 , S. Nechaev2,3 , A.M.Cazabatห้องสมุดไป่ตู้ and M.Moreau1
Laboratoire de Physique de la Mati` ere Condens´ ee, Coll` ege de France, 11 place M.Berthelot, 75252 Paris Cedex 05, France
We consider dynamics of an isolated polymer chain with a chemically active end-bead on a 2D solid substrate containing immobile, randomly placed chemically active sites (traps). For a particular situation when the end-bead can be irreversibly trapped by any of these sites, which results in a complete anchoring of the whole chain, we calculate the time evolution of the probability Pch (t) that the initially nonanchored chain remains mobile until time t. We find that for relatively short chains Pch (t) follows at intermediate times a standard-form 2D Smoluchowski-type decay law lnPch (t) ∼ −t/ln(t), which crosses over at very large times to the fluctuationinduced dependence lnPch (t) ∼ −t1/2 , associated with fluctuations in the spatial distribution of traps. We show next that for long chains the kinetic behavior is quite different; here the intermediate-time decay is of the form lnPch (t) ∼ −t1/2 , which is the Smoluchowski-type law associated with subdiffusive motion of the endbead, while the long-time fluctuation-induced decay is described by the dependence lnPch (t) ∼ −t1/4 , stemming out of the interplay between fluctuations in traps distribution and internal relaxations of the chain.
1
Institut de Physique Nucl´ eaire, Division de Physique Th´ eorique∗ , 91406 Orsay Cedex, France L.D. Landau Institute for Theoretical Physics, 117940, Moscow, Russia
Laboratoire de Physique Th´ eorique des Liquides∗ (URA 765), Universit´ e Pierre et Marie Curie, T.16, 4 place Jussieu, 75252 Paris Cedex 05, France
2 3 4
PACS: 05.40.+j; 68.35.Fx; 82.35.+t; 83.10.Nn
∗
Unit´ e de Recherche des Universit´ es Paris XI et Paris VI associ´ ee au CNRS.
I. INTRODUCTION
Understanding of polymer dynamics on solid substrates impacts many areas of modern technology, including coating, gluing, painting or lubrication. Most of liquids used in these material processing operations are either polymer liquids or contain polymeric additives. Meanwhile, polymer dynamics on bare substrates or in adsorbed polymer films has been studied theoretically and numerically only for model substrates with an ideal, crystalline-type order [1–3]. However, recent experimental studies [4–9] of polymer monolayers spreading on solid substrates have given an ample evidence that in realistic situations chains dynamics is strongly influenced by different types of disorder, associated with the presence of contaminants, chemically active ”hot” sites or surface roughness. Such a disorder is unavoidable for real surfaces and induces significant departures from the behavior predicted for model systems. In particular, studies of light polydimethylsiloxane (usually abbreviated as PDMS) molecules spreading on oxidized silicon wafers have demonstrated that the form of the PDMS diffusivity D is very sensitive to the chemical composition of the surface, or more specifically, to the presence of the silanol sites, which can form a hydrogen bond with any chain’s monomer and thus temporarily anchor the chain. Experiments reveal [6] an ideal, Rouse-type behavior of the form D ∼ N −1 , where N is the number of monomeric units in a polymer, at low density of such sites. On the other hand, a stronger dependence of the form D ∼ N −2 is observed [6] at higher density of the silanol sites, which behavior resembles of the reptative motion and stems apparently from some collective effects, associated with trapping of some portion of chains serving then as obstacles for the rest. Even more striking effect of chemical disorder has been observed in the case of the so-called PDMS-OH polymers, i.e. the PDMS molecules bearing an OH-group at one or at both of the chain’s extremities. The OH-group can form a strong chemical bond with any of the silanol sites, resulting in a complete anchoring of the whole chain by one of its ends. In consequence, despite the fact that the macroscopic spreading power of such a liquid/solid system is positive and thus favors complete wetting, spreading of a sufficiently thin film of the PDMS-OH molecules terminates at a certain moment of time due to the presence of chemically active trapping sites (see [8] and [9]). Surprisingly enough, dynamics of polymers in presence of randomly placed traps has not been addressed so far, in contrast to the well-studied theoretically problems of chain dynamics on the surface with randomly placed barriers or obstacles (see, e.g. [10,11] and references therein) or diffusion of monomers in a medium with traps (see for a review [12–14]). In the present paper we discuss this practically important problem focusing first on a simple model appropriate to the just-described situation with the PDMS-OH molecules deposited on a bare silicon wafer with silanol sites. More specifically, we study here dynamics of a single polymer, modeled as an ideal Rouse chain with a chemically active end-bead (see Fig.1), on a two-dimensional ideal substrate with randomly placed perfect immobile traps. The end-bead can be irreversibly trapped upon the first encounter with any of the traps, which results in anchoring of the whole chain. Dynamics of all other beads is completely unaffected by traps. For this model we find explicit results for the probability Pch (t) that the chemically active end-bead of the chain does not meet any of the trap until time t, or, in other words, that the polymer chain, which is unanchored at t = 0, remains completely mobile until time t. Other possible situations involving, in particular, reversible traps or many active groups per 1