中考数学复习专题讲座10:方案设计型问题 (1)
中考数学复习课件 方案设计型问题
![中考数学复习课件 方案设计型问题](https://img.taocdn.com/s3/m/d318ddc9998fcc22bcd10d58.png)
【解析】 (1)y1=(6-a)x-20(0<x≤200,且 x 取整数);y2 =-0.05x2+10x-40(0<x≤80,且 x 取整数). (2)甲产品: ∵3≤a≤5, ∴6-a>0, ∴y1 随 x 的增大而增大. ∴当 x=200 时,y1 最大=1180-200a(3≤a≤5). b 乙产品:∵-0.05<0,- =100,∴当 0<x≤80 时,y2 2a 随 x 的增大而增大. ∴当 x=80 时,y2 最大=440. 答:产销甲种产品的最大年利润为 (1180-200a)万元,产销 乙种产品的最大年利润为 440 万元. (3)∵当 1180-200a=440 时,a=3. 7,∴当 3≤a<3. 7 时, 产销甲产品的利润高, 此时应该选择甲产品; 当 a=3. 7 时, 产销甲、乙两种产品的利润相同,此时选择甲、乙两种产品 均可;当 3.7<a≤5 时,产销乙产品的利润高,此时应该 选择乙产品.
题型二
通过解方程或不等式(组)进行方案设计
列方程或不等式(组)进行方案设计,关键是根据条件 列出方程或不等式(组),然后求出方程或不等式(组)的解, 再从这些解中找出符合题目要求的解(一般为整数解),最 后列举出所有符合要求的方案.
【典例 2】
(2016· 长沙)2016 年 5 月 6 日,中国第一条具 有自主知识产权的长沙磁悬浮线正式开通运营,该路 线连结了长沙火车南站和黄花国际机场两大交通枢 纽,沿线生态绿化带走廊的建设尚在进行中,届时将 给乘客带来美的享受.星城渣土运输公司承包了某标 段的土方运输任务,拟派出大、小两种型号的渣土运 输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型 渣土运输车一次共运输土方 31 t,5 辆大型渣土运输车 与 6 辆小型渣土运输车一次共运输土方 70 t. (1)一辆大型渣土运输车和一辆小型渣土运输车一次各 运输土方多少吨? (2)该渣土运输公司决定派出大、小两种型号的渣土运 输车共 20 辆参与运输土方, 若每次运输土方总量不 少于 148 t,且小型渣土运输车至少派出 2 辆,则有 哪几种派车方案?
中考数学专题方案设计方案型问题
![中考数学专题方案设计方案型问题](https://img.taocdn.com/s3/m/17cd528069dc5022aaea0062.png)
学科教师辅导讲义年级:辅导科目:数学课时数:3课题方案设计型问题教案目的教案内容一、【中考要求】方案设计问题是通过设置一个世纪问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案较优。
方案设计问题主要考查学生的动手操作能力和实践能力。
它包括测方案设计、作图方案设计和经济类方案设计。
(一)测量方案设计题,一般限定条件、限定测量工具,让同学们设计一个可行的方案,对某一物体的长度进行测量并计算,要注意的是设计出来的方案要有课操作性。
(二)作图、拼图方案设计题,它摆脱了传统的简单作图,它把作图的技能考查放在一个世纪生活的大背景下,考查学生的综合创新能力,它给同学们的创造性思维提供广阔的空间与平台。
此类题常以某些规则的图形,如等腰三角形、菱形、矩形、圆等,通过某些辅助线,将面积分割或分割后拼出符合某些条件的图形。
(三)经济类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,但解决的方法较多。
方案设计题贴近生活,具有角强的操作性和实践性,解决此类问题时要慎于思考,要先思考后动手,设计性问题的结果不一定唯一,但必须符合实际情况。
近年一些省市的中考数学题中涌现了立意活泼、设计新颖、富有创新意识、培养创新能力的要求学生自我设计题目。
这类命题以综合考查阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力和动手能力等。
二、【考点知识梳理】1.“动手操作”类题,多指对某种图形按照要求完成某些操作,进而对结果进行探究,直至解决的一类题型.“方案设计”是指根据要求,构造某种问题的具体解决方案或者对问题给出的若干种解决方法进行比较的一类题型.2.实际操作型问题是让学生在实际操作的基础上设计问题,主要有:(1)裁剪、折叠、拼图等动手操作问题,往往与面积、对称性相联系;(2)与画图、测量、猜想、证明等有关的探究性问题.3.方案设计问题的题型主要包括:(1)根据实际问题拼接或分割图形;(2)利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.三、【中考典例精析】类型一动手操作题如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()A.2+10B.2+210C.12D.18【点拨】动手操作法.【答案】B提示:利用勾股定理即可得出结果.类型二方案设计题为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3∶2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?【点拨】本题综合考查方程和不等式组的实际应用,正确理解题意找出题目的等量和不等量关系是解题的关键.注意求n 的整数解时不要漏解.【解答】(1)设篮球的单价为x 元,则排球的单价为23x 元,依题意得x +23x =80,解得x =48,∴23x =32. 即篮球和排球的单价分别是48元和32元.(2)设购买的篮球数量为n 个,则购买的排球数量为(36-n)个.由题意得⎩⎪⎨⎪⎧n>25,48n +32(36-n )≤1 600, 解得25<n ≤28.而n 为整数,所以其取值为26、27、28,对应的36-n 的值为10、9、8,故共有三种购买方案.方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个. 四、【课堂训练】1.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672 解读:第n 次操作得到3n +1个小正方形,所以3n +1=2 011,所以n =670.答案:B2.(1)【操作发现】如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.(2)【解决问题】保持(1)中的条件不变,若DC =2DF ,求AD AB的值. (3)【类比探究】保持(1)中的条件不变,若DC =n·DF ,求AD AB的值. 解:(1)同意.连结EF.则∠EGF =∠D =90°,EG =AE =ED ,EF =EF.∴Rt △EGF ≌Rt △EDF ,∴GF =DF.(2)由(1)知,GF =DF.设DF =x ,BC =y ,则有GF =x ,AD =y.∵DC =2DF ,∴CF =x ,DC =AB =BG =2x ,∴BF =BG +GF =3x.在Rt △BCF 中,BC 2+CF 2=BF 2,即y 2+x 2=(3x)2.∴y =22x ,∴AD AB =y 2x = 2.(3)由(1)知,GF =DF ,设DF =x ,BC =y ,则有GF =x ,AD =y.∵DC =n·DF ,∴DC =AB =BG =nx.∴CF =(n -1)x ,BF =BG +GF =(n +1)x.在Rt △BCF 中,BC 2+CF 2=BF 2,即y 2+[(n -1)x]2=[(n +1)x]2.∴y =2nx ,∴AD AB =y nx =2n n. 3.君实机械厂为青扬公司生产A 、B 两种产品,该机械厂由甲车间生产A 种产品,乙车间生产B 种产品,两车间同时生产.甲车间每天生产的A 种产品比乙车间每天生产的B 种产品多2件,甲车间3天生产的A 种产品与乙车间4天生产的B 种产品数量相同.(1)求甲车间每天生产多少件A 种产品?乙车间每天生产多少件B 种产品?(2)君实机械厂生产的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现青扬公司需一次性购买A 、B 两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司出厂价购买A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案.解:(1)设乙车间每天生产x 件B 种产品,则甲车间每天生产(x +2)件A 种产品.根据题意3(x +2)=4x ,解得x =6.∴x +2=8.因此,甲车间每天生产8件A 种产品,乙车间每天生产6件B 种产品.(2)设青扬公司购买B 种产品m 件,则购买A 种产品(80-m)件.15 000<200(80-m)+180m ≤15 080,解得46≤m<50.∵m 为整数,∴m 为46或47或48或49.又∵乙车间8天只能生产48件,∴m 为46或47或48.故共有三种购买方案:方案1: 购买A 种产品32件,B 种产品48件;方案2: 购买A 种产品33件,B 种产品47件;方案3: 购买A 种产品34件,B 种产品46件.4.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.解:(1)画树状图如下:或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种,所以积为0的概率为P =412=13. (2)不公平.因为由图(表)知,积为奇数的有4种,积为偶数的有8种,所以积为奇数的概率为P 1=412=13; 积为偶数的概率为P 2=812=23. 因为13≠23,所以该游戏不公平. 游戏规则可修改如下:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.(只要正确即可) 七、【课后达标练习】1.(10龙岩)我校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购买两种篮球共需费用840元.(1)A 、B 两种篮球单价各多少元?(2)若购买A 种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B 两种篮球的个数及所需费用.2.(10常州)如图所示,小吴和小黄在玩转盘游戏时,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则: 同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜否则小黄胜。
方案设计问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)
![方案设计问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)](https://img.taocdn.com/s3/m/ba978d702b160b4e777fcf00.png)
【课标解读】方案设计问题涉及面较广,内容比较丰富,题型变化较多,不仅有方程、不等式、函数,还有几何图形的设计等.方案设计型题是通过设置一个实际问题情境,给出若干信息,提出解决问题的要求,要求学生运用学过的知识和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括与方程、不等式有关的方案设计、与函数有关的方案设计和与几何图形有关的方案设计.【解题策略】常见的几种考题类型有:1.解决与方程、不等式有关的方案设计题目,通常利用方程或不等式求出符合题意的方案;2.与函数有关的方案设计一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,通常用函数的性质进行分析;3.与几何图形有关的方案设计,一般是利用几何图形的性质,设计出符合某种要求和特点的图案. 解题策略可以概括为:从实际问题入手→归纳若干信息→提出问题要求→引导设计操作→判断优化方案【考点深剖】★考点一与方程、不等式有关的方案设计方程、不等式方案设计问题主要是利用方程、不等式的相关知识,建立相应的数学模型,利用列方程(组)和不等式(组),通过有关的计算,找到方程(组)的解和不等式(组)的解集,再结合题目要求,确定未知数的具体数值.未知数有几个值,即有几种方案.方程、不等式方案设计的主要步骤:(1)利用方程、不等式建立相应的数学模型;(2)列出方程(组)或不等式(组);(3)通过解方程(组)或不等式(组),确定未知数的值;(4)确定方案.【典例1】(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.★考点二与函数有关的方案设计函数方案设计是指由题目提供的背景材料或图表信息,确定函数关系式.利用函数图象的性质获得解决问题的具体方法.解决此类问题的难点主要是正确确定函数关系式,关键是熟悉函数的性质及如何通过不等式确定函数自变量的取值范围.【典例2】(2018·浙江省台州·12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t 之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8.8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.★考点三与几何图形有关的方案设计图形方案设计题,它摆脱了传统的简单作图,把对作图的技能的考查放在一一个实际生活的大背景下,从而考查了学生的综合创新能力,给同学们的创造性思维提供了广阔的空间与平台.此类题常利用某些规则的图形,如等腰三角形、菱形、矩形、圆等,利用图形的性质,或利用轴对称和中心对称等,拼出符合某些条件的图形.学科*网【典例3】某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下,由①知W=200(x﹣100)2+1.056×107>107,所以不能;★考点四 涉及统计计算的方案设计【典例4】某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余所给分的平均数; 方案3:所有评委所给分的中位数; 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.解:(1)方案1最后得分:110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:18×(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4. (2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案;又因为方案4中的众数有两个,从而使众数失去了实际意义,所以方案4不适合作为最后得分的方案.【讲透练活】变式1:(2018•广州)友谊商店A 型号笔记本电脑的售价是a 元/台.最近,该商店对A 型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x 台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.变式2:(2018·广西梧州·10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A.B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型两人+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A.B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,学科*网变式3:(2018•莱芜•10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台变式4:阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:................(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图表明探究方法并直接写出结果).解:⑴如图中平行四边形即为所求.⑵如图:平行四边形MNPQ 面积为52. 变式5:(2018•福建B 卷•10分)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米. 如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【分析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.(2)设AD=x 米,矩形ABCD 的面积为S 平方米 ①如果按图一方案围成矩形菜园,依题意 得:S=,0<x <a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.。
中考数学复习专题讲座(三)方案设计问题
![中考数学复习专题讲座(三)方案设计问题](https://img.taocdn.com/s3/m/24fb456be518964bcf847c3a.png)
专题复习(三)——方案设计问题题型概述方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。
它包括测量方案设计、作图方案设计和经济类方案设计等。
题型例析类型1:利用方程、不等式(组)进行方案设计这类问题往往列方程组或不等式(组)解应用题,但是列方程的关键又是找出题目中存在的的等量关系或不等式关系;对于设计方案题一般要根据题意列出不等式或不等式组,求不等式组的整数解(或者符合要求的解)。
【例题】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用.分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.【变式练习】某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。
数学人教版九年级下册中考总复习-方案设计问题精品PPT课件
![数学人教版九年级下册中考总复习-方案设计问题精品PPT课件](https://img.taocdn.com/s3/m/87209fab31b765ce04081406.png)
(2)设卖公鸡x只,卖母鸡(30-x)只 由题意得 x<30-x 15x+6(30-x)≥280
解得 100 9
≤x<15
∵x为整数
∴x可取12,13,14
∴有三种卖鸡方案:一、公鸡12只,母鸡18只; 二、公鸡13只,母鸡17只; 三、公鸡14只,母鸡16只;
设刘阿姨获利为w元 由题意得 w=15x+6(30-x)=9x+180 ∵9>0 ∴w随x的增大而增大 ∴当x=14时,w的最大值为306元 即卖公鸡14只,母鸡16只获利最大,最大利润为306元。
解:(1)设生产A型汽车X辆,B型汽车(40-X)辆 1536 ≤ 34X+42(40-X)≤1552 解得 16≤X≤18 ∵X为整数
∴X=16,17,18 ∴有三种生产方案: 方案一:生产A型汽车16辆,B型汽车24辆; 方案二:生产A型汽车17辆,B型汽车23辆; 方案三:生产A型汽车18辆,B型汽车22辆.
(3)由于公鸡每只获利减少a(0<a<15)元,母鸡仍可获 利6元/只。刘阿姨仍然准备卖出30只鸡,在(2)的方案中, 哪种方案获利最大?
(3)w=(15-a)x+6(30-x)=(9-a)x+180
当0<a<9时,9-a>0,所以w随x的增大而增大 ∴卖公鸡14只,母鸡16只获利最大。
当a=9时,w=180,所以三种方案获利都是180 当元9。<a<15时,9-a<0,所以w随x的增大而减小 ∴卖公鸡12只,母鸡18只获利最大。
某汽车制造公司计划生产A,B两种新型号汽车共40辆 投放市场进行试销售,已知每辆A型汽车的成本是34万 元,售价是39万元;每辆B型汽车的成本是42万元,售 价50万元。若公司对此项计划的投资不低于1536万元, 但不高于1552万元。请解答下列问题: (2)该公司按照哪种方案生产汽车,才能在这批汽车 全部售出后所获利润最大,最大利润是多少?
中考数学专题复习(方案设计)
![中考数学专题复习(方案设计)](https://img.taocdn.com/s3/m/b5a20317650e52ea551898e9.png)
中考数学专题复习:方案设计问题【知识梳理】方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。
【课前预习】1.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .2.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )A .A 点处B .线段A B 的中点处C .线段A B 上,距A 点10003米处D .线段A B 上,距A 点400米处3.如图,是由一些大小相同的小正方体组成的几何体的主视图和 俯视图,则组成这个几何体的小正方体最多块数是( )A. 9B. 10C. 11D. 124.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A .2种 B .3种 C .4种 D .5种 5.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少? 35° A B 主视图俯视图【例题精讲】【例1】如图,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少? (2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元)关于x (个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【例3】某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?甲 乙【巩固练习】1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个2.从2、3、4、5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对3.某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种产品共40件,生产A、B两种产品用料情况如下表,设生产A产品x件,请解答下列问题:(1)求x的值,并说明有哪几种符合题意的生产方案。
北师大中考数学复习专题_方案设计型问题
![北师大中考数学复习专题_方案设计型问题](https://img.taocdn.com/s3/m/a7320987a0116c175f0e48f7.png)
方案设计型问题一、考法分析方案设计型问题是指应用数学基础知识建模的方法,来按题目所呈现的要求进行计算,论证,选择,判断,设计的一种数学试题。
纵观近年来各地的中考试题,涉及方案设计与应用的试题大量涌现,它在考查学生数学创新应用能力方面可谓独树一帜,新颖别致.本文从历年中考试题中,筛选出与之有关的部分题目,对其方案设计类型进行归类探究,以供参考.二、例题分析(一)、利用方程(组)进行方案设计例1“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为:甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,根据题意,得:①x+y=401800 x+600y=60000,解得x=30y=10②x+z=401800 x+1200z=60000,解得x=20z=20③y+z=40600 y+1200z=60000,解得y=-20 z=60(不合题意舍去)答:有两种购买方案:甲种手机购买30部,乙种手机购买10部;甲种手机购买20部,乙种手机购买20部.(2)根据题意,得:x+y+z=401800 x+600y+1200 z=60000 6≤y≤8解得x=26 y=6 z=8或x=27 y=7 z=6或x=28 y=8 z=4答:若甲种型号手机购买26部手机,则乙种型号手机购买6部,丙种型号手机购买8部;若甲方型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲方型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.例2某校组织360名师生去参观三峡工程建设,如果租用甲种客车若干辆,则刚好坐满;若租用乙种客车可少租1辆,且余40个空座位。
2023年中考数学热点专题复习课件4 方案设计型
![2023年中考数学热点专题复习课件4 方案设计型](https://img.taocdn.com/s3/m/00846075e418964bcf84b9d528ea81c758f52ecf.png)
∵tan∠EAC= =tan 22°≈ ,∴DC=AF≈ FC=50(m).
在 Rt△ABD 中,∠ABD=∠EAB=67°,
∵tan∠ABD=
=tan 67°≈ ,∴BD≈ AD= (m),
∴BC=DC-BD=50- ≈41.7(m),即大桥 BC 的长约为 41.7 m.
若6x+160>8x,则x<80;
若6x+160=8x,则x=80;
若6x+160<8x,则x>80.
综上所述,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超
市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.
利用方程(组)或不等式(组)解决方案设计问题, 首先要根据题中蕴含的相等关系或不等关系,列
专题四
方案设计型
1.方案设计型问题涉及生产生活的方方面面,一般主要有以下几种类型:
(1)方程、不等式型方案设计问题;
(2)函数型方案设计问题;
(3)测量方案设计问题.
2.解决方案设计型问题的关键点:
方案设计题贴近生活,具有较强的操作性和实践性,应用性非常突出,题目一般较长,做题之前要认
真读题,理解题意,选择和构造合适的数学模型,并能在实践中对所有可能的方案进行罗列与分析,
或
方法2:(利用全等)
方法3:(利用相似)
解决测量方案设计题应熟练掌握三角形全等、相似、锐角三角函数的有关性质,认真审题,理解
题意,选择恰当的测量方案,注意:(1)不同的方案,所用的数学原理不同,所选用的测量工具、测
中考数学方案设计与决策型问题两套资料培优教学案精编
![中考数学方案设计与决策型问题两套资料培优教学案精编](https://img.taocdn.com/s3/m/a8cf837c27d3240c8447efd1.png)
中考冲刺:方案设计与决策型问题—知识讲解(一)【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.(2016•凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【思路点拨】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【总结升华】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.举一反三:【变式】某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?类型二、利用不等式(组)进行方案设计2.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,②若运往B(2)若总运费为5800元,求n的最小值.【思路点拨】(1)①运往B地的产品件数=总件数n-运往A地的产品件数-运往C地的产品件数:运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费,进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【总结升华】考查一次函数的应用,得到总运费的关系式是解决本题的关键,注意结合自变量的取值n的最小值.举一反三:【变式】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...1300吨污...84万元,预计二期工程完成后每月将产生不少于水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?(2)该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.【思路点拨】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.举一反三:【变式】为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.类型四、利用函数知识进行方案设计4.(2015•深圳模拟)将220吨物资从A地运往甲、乙两地,用大、小两种货车共18辆,恰好一次性运完这批物资,已知这两种货车的载重量分别为15(吨/辆)和10(吨/辆),运往甲、乙两地的运费如表1:(1)求这两种货车各需多少辆?(2)如果安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,填写表2,写出运费w(元)与a的函数关系式.若运往甲地的物资不少于110吨,请设计出货车调配方案,并求出最少运费.【思路点拨】(1)设需要大货车x辆,则需要小货车(18﹣x)辆,根据两种货车的运货总量为220吨建立方程求出其解即可(2)由安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,由总运费=两地费用之和就可以表示会出W与a的关系式,由运往甲地的物资不少于110吨建立不等式求出a的取值范围,由一次函数的性质就可以求出结论.【总结升华】此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.类型五、利用几何知识进行方案设计5.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC 的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.【思路点拨】(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答整理即可;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价即可解答;②利用配方法求得最小值进行验证即可得出结论;③建立不等式与一元二次方程,求出答案结合实际即可解决问题.此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.中考冲刺:方案设计与决策型问题—巩固练习(基础)【巩固练习】一、选择题1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水需2分钟;②洗菜需3分钟;③准备面条及佐料需2分钟;④用锅把水烧开需7分钟;⑤用烧开的水煮面条和菜需3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用( )A.14分钟 B.13分钟 C.12分钟 D.11分钟2.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.请问可行的租车方案有( )A.2种 B.3种 C.4种 D.5种3.(2016•邯郸一模)如图是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额﹣总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③ B.①,③ C.①,④ D.④,②二、填空题4.(2016春•乳山市期中)某足球赛一个赛季共进行了26轮比赛(即每队均需26场),其中胜一场得3分,平一场得1分,负一场得0分,某队在这个赛季中平局的场数比负的场数多7场,结果共得34分,则这个队在第一赛季中胜、平、负的场数依次是.5.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)每支钢笔的价格为;每本笔记本的价格为;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有种购买方案?请你一一写出.6.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:(1)前往A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B 地车票的概率为______.三、解答题 7.(2015春•高新区期末)为了实现区域教育均衡发展,我区计划对A ,B 两类学校分批进行改进,根据预算,改造一所A 类学校和两所B 类学校共需资金230万元,改造两所A 类学校和一所B 类学校共需资金205万元.(1)改造一所A 类学校和一所B 类学校所需的资金分别是多少万元? (2)我区计划今年对A 、B 两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过380万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案?哪种改造方案所需资金最少,最少资金为多少?8.某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m (千元)与销售量倍数p 关系为p =m m 24.02+-;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!9.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户. (1)满足条件的方案共有几种?写出解答过程; (2)通过计算判断,哪种建造方案最省钱.10.阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:................(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可); (2)如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ ,请在图4中探究平行四边形MNPQ 面积的大小(画图表明探究方法并直接写出结果).中考冲刺:方案设计与决策型问题—知识讲解(二)【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【思路点拨】(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解;(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为[10-(9-a)]辆,根据表格所给运费,求出w与a的函数关系式;(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【总结升华】这是一道典型的三个“一次”携手结伴的中考试题,把一元一次方程(组)、一元一次不等式和一次函数有机地结合起来,和谐搭配,形成知识系统化、习题系列化,可谓“一石三鸟”.类型二、利用不等式(组)进行方案设计2.(2015春•文昌校级月考)为美化市容,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A,B两种园艺造型共50个,摆放在文庙广场,搭配每个造型所需花卉情况如表,(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用哪种方案成本最低?【思路点拨】(1)设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,根据题意列不等式组求解,取整数值即可;(2)通过计算比较得出那种方案成本最低.【总结升华】此题考查一元一次不等式组的实际运用,找出题目蕴含的不等关系是解决问题的关键.举一反三:【变式】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和l辆乙型汽车共需费用2450元.且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【思路点拨】这是一道融三个“一次”为一体的综合性应用题,体现了任何数学知识不是片面、孤立存在的,而是相互依赖、相互联系和相互作用的数学意识.【总结升华】只要我们弄清了三个“一次”之间的内在联系,构建其模型,把握题型规律,梳理相关信息,就会轻松、有效地解决这类问题.举一反三:【变式】为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20∶1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅(课桌凳和办公桌椅均成套购进).(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.类型四、利用函数知识进行方案设计4.(2016•营口)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?【思路点拨】(1)根据题意可以列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以写出W与x的函数关系式;(3)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少.【总结升华】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.类型五、利用几何知识进行方案设计5.某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所饮水站,由供水站直接铺设管道到另外两处.如图所示,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【思路点拨】本题以紧密联系学生生活的“将军饮马”问题为原型,情景设计合理,设问层次分明,可以参照“将军饮马”问题来解决该题. 【总结升华】考查了学生的类比思想、操作、猜想论证和严密的数学思维能力,体现了对过程性目标的考查.举一反三:【变式】在△ABC 中,BC =a ,BC 边上的高h =2a ,沿图中线段DE 、CF 将△ABC 剪开,分成的三块图形恰能拼成正方形CFHG ,如图所示.请你解决如下问题:已知:在锐角△A ′B ′C ′中,B ′C ′=a ,B ′C ′边上的高h =a 21.请你设计两种不同的分割方法,将△A ′B ′C ′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,画出分割线及拼接后的图形.。
中考“方案设计型”专题讲解
![中考“方案设计型”专题讲解](https://img.taocdn.com/s3/m/434e84a9a6c30c2259019efe.png)
中考数学“方案设计型”专题讲解新课程大纲告诉我们,创新意识的激发,创新思维的训练,创新能力的培养,是素质教育中最具活力的课题.因而各地中考试卷中纷纷出现一些具有考查同学们的创新意识和实践能力的方案设计型试题,为了帮助同学们搞好后期复习,在有限的时间内抓住要领,现从以下几个方面对“方案设计型”问题进行探究.一、命题趋势近年来不少省市的中考数学试卷中涌现了一大批背景现实、立意活泼、设计新颖、富有创新意识、培养创新能力的要求同学们自我设计的题目,这类试题以考查同学们的综合阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力和动手实践能力等,预计2010年的中考试卷中有关方案设计型试题的地位将得到进一步巩固,不仅如此,还会向求新、求活的方向上发展,注重与所学的重点知识联姻,还会成为各地中考的亮点之一.二、试题特点方案设计型问题一般要通过动手操作来解决一些数学问题,是将所学的数学知识应用于实际,从数学角度对某些日常生活出现的问题进行设计性研究,有利于同学们对数学知识的实践应用能力和动手操作能力的提高,是学为之用的教改精神的具体体现,是数学教改中的一大热点.这类题目不仅要求同学们有扎实的数学双基知识,而且要能够把实际问题中所涉及到的数学问题转化、抽象成具体的数学问题,具有很普遍的实际意义,是各地中考的热点题型之一.三、题型剖析方案设计型试题的题型广泛,形式多样,设计方法灵活,但一般情况下有以下几种类型:1.设计图形题:几何图形的分割与设计在中考中经常出现,有时是根据面积相等来分割,有时是根据线段间的关系来分割,有时根据其它的某些条件来分割,做此类题一般用尺规作图.2.设计最佳方案题:此类问题往往要求所设计的问题中出现路程最短、运费最少、效率最高等词语,常与函数、几何知识联系在一起,求解时要求充分发挥函数的性质、几何图形的性质的作用.3.设计测量方案题:设计测量方案题渗透到几何各个知识点之中.如,要求设计测量底部不能直接到达的小山的高,测量池塘的宽度,测量圆的直径等,此类题目的设计方法一般不惟一,属于典型的开放型试题.四、链接中考1.图案设计例1(山西省)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.(1)填空:图1中阴影部分的面积是___(结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).分析(1)要直接求图中阴影部分的面积确实还有点难度,不过若连结对角线后,我们会发现阴影部分的弓形刚好可以绕正方形网格的中心旋转180°后与空白的弓形重合,此时阴影部分的面积刚好等于四分之一个圆的面积减去直角三角形的面积.(2)要设计满足条件的图案,显然,答案不惟一.解(1)阴影部分的面积=14π×22-12×2×2=π-2. (2)答案不唯一.如图3所示中的三种情形.说明 本题不光考查了求图形阴影部分的面积,也考查了图案的设计,都是基础考查题.在求图形阴影部分的面积时,一般采用的方法是利用规则图形的面积的和差解决问题;在使用基本图案进行新图案设计时,常用的方法就是领用图形的平移、翻折、旋转、轴对称及中图1 图2图3心对称等方法来设计.设计时要注意紧盯题目中设计要求,否则,图形设计有哪一点不能满足要求就会出现错误.例2(哈尔滨市)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个一边长为,面积为6的等腰三角形.分析本题考查的是图形方案设计题,在方格中画知道一边和面积的特殊三角形,只需再求出此三角形的高就行.其中,图(b)的直角边长本身就是高.解(1)依题意,所画的三角形底边上的高为8×2÷4=4,所以如图(a)所示中的等腰三角形即为所求.(2,所以如图(b)所示中的等腰直角三角形即为所求.(3)依题意,所画的等腰三角形边长为的边上的高为6×2÷=,所以如图(c)所示中的等腰三角形即为所求.说明本题考查的三个特殊三角形的设计的关键是求高.三个图形的设计层次强,有简单到复杂;除求高外,我们对长为带根号的线段的确定也很关键,通常勾股定理在此时会用到帮助确定这些线段的长.图(a)图(b)图(c)2.利用不等式设计例3(威海市)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?分析(1)抓住题目的“不超过...132 000元”,引进未知数,进而可得到不等式求解.(2)同样,由“甲种电冰箱的台数不超过丙种电冰箱的台数”得到一个不等量关系式,于是又可以得到一个不等式,结合(1)可求解.解(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,则根据题意,得1200×2x+1600x+(80-3x)×2000≤132000,解得x≥14.所以至少购进乙种电冰箱14台.(2)根据题意,得2x≤80-3x,解得x≤16.由(1),得14≤x≤16,而x为正整数,所以x=14,15,16.所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台;方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台;方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.说明本题以鲜活的“家电下乡”政府补贴时代热点为背景编拟设计,其实质就是用不等式解决问题.求解时通过寻求问题中的不等式关系,建立一元一次不等式模型,利用实际问题中的家电台数的意义求得方案.生活中这样的问题有许多,请同学们注意观察发现,并用数学的方法去解决.3.利用方程设计例4(潍坊市)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.图①B图②(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的14,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.分析对于图①,若设P,Q两块绿地周围的硬化路面的宽都为x米,易得两块绿地与AB平行的边长为(40-2x)米,与BC平行的边长为(60-3x)米.图②中,因为O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等于AB的一半20,则O1O2=60-40=20,由两圆相切得圆半径为10,由题意这样的两个圆可以在地块内建出来.解(1)设P,Q两块绿地周围的硬化路面的宽都为x米,则根据题意,得(60-3x)(40-2x)=60×40×14,解之,得x1=10,x2=30.经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米. (2)设想成立.设圆的半径为r米,O1到AB的距离为y米,则根据题意,得240,2260.yy r=⎧⎨+=⎩解得20,10.yr=⎧⎨=⎩符合实际.所以,设想成立,此时,圆的半径是10米.说明本题除了考查矩形、圆、方程以及综合分析问题能力外,还要利用方程解决图形问题中的方案设计,一般要做好三步:一是设其中一个未知量为x,二是用代数式试着表示其他量,如线段或角等,三是进一步分析数量关系列出方程解决问题.4.利用概率设计例5(鄂州市)如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8.(1)自由转动转盘,当它停止转动时,指针指向的数正好能被2整除的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为34. (注:指针指在边缘处,要重新转,直至指到非边缘处.)分析(1)属于几何概率型,即事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果所组成的图形面积.(2)由于转盘被等分成八个扇形,故设计游戏时,只需使关注的事件包含其中的6个扇形(即指针指向区域包含其中的6个数).解(1)因为这8个数中,能被2整除的数有2,4,6,8,所以自由转动转盘,当它停止转动时,指针指向的数正好能被2整除的概率是48=12. (2)答案不惟一.如,当自由转动转盘停止时,指针指向区域的数小于7的概率,即当自由转动的转盘停止时,指针指向的区域的概率为68=34.或将其中有6个扇形涂黑,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为68=34. 说明 本题的第(2)小题是一道以概率知识为基础的方案设计题,答案具有开放性,求解时要在正确理解概率意义的基础上,进行逆向思考,准确而清晰地表达自己的观点,题目有效考查了同学们对基础知识的掌握情况,有利于发展同学们的实践能力与创新精神,体现了新课标的要求.5.利用方程、不等式、函数综合设计例6(深圳市)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。
中考数学 专题 方案设计型问题题型专讲专练课件(12、13真题为例)
![中考数学 专题 方案设计型问题题型专讲专练课件(12、13真题为例)](https://img.taocdn.com/s3/m/0c311509f5335a8102d22088.png)
1.现有球迷 150 人欲同时租用 A、B、C 三种型号客车去观
看世界杯足球赛,其中 A、B、C 三种型号客车载客量分
别为 50 人、30 人、10 人,要求每辆车必须满载,其中
A 型客车最多租两辆,则球迷们一次性到达赛场的租车
方案有 A.3 种
B.4 种
C.5 种
( B)
D.6 种
解析 分类讨论:当 A 租用一辆时,有 3 种方案; 当 A 租用 2 辆时,有 1 种方案,故共有 4 种租车方案.
考点1 统计测量型方案设计
(1)分别按上述 4 个方案计算这个同学演讲的最后得分; (2)根据(1)中的结果,请用统计的知识说明哪些方案不适合
作为这个同学演讲的最后得分.
解解 ((11))方方案案11最最后后得得分分:: 111100××((33..22++77..00++77..88++33××88++33××88..44++99..88))==77..77;; 方方案案22最最后后得得分分::8181××((77..00++77..88++33××88++33××88..44))==88;; 方方案案33最最后后得得分分::88;;方方案案44最最后后得得分分::88或或88..44.. ((22))因因为为方方案案 11 中中的的平平均均数数受受极极端端数数值值的的影影响响,,不不能能反反映映这这 组组数数据据的的““平平均均水水平平””,,所所以以方方案案 11 不不适适合合作作为为最最后后得得分分的的 方方案案;;又又因因为为方方案案44中中的的众众数数有有两两个个,,从从而而使使众众数数失失去去了了实实 际际意意义义,,所所以以方方案案44不不适适合合作作为为最最后后得得分分的的方方案案..
A. ① B. ② C. ③ D. ④
初三数学方案设计专题北师大版知识精讲
![初三数学方案设计专题北师大版知识精讲](https://img.taocdn.com/s3/m/400533ba69eae009591bec02.png)
初三数学方案设计专题北师大版【本讲教育信息】一. 教学内容: 方案设计专题【典型例题】1. 设计最佳方案题例1. 黄冈某商场在世界杯足球比赛期间举行促销活动,并设计了两种方案:一种是以商品价格的九五折优惠的方式进行销售;一种是采用有奖销售的方式,具体措施是:①有奖销售自2006年6月9日起,发行奖券10000X ,发完为止;②顾客累计购物满400元,赠送奖券一X (假设每位顾客购物每次都恰好凑足400元);③世界杯后,顾客持奖券参加抽奖;④奖项是:特等奖2名,各奖3000元奖品;一等奖10名,各奖1000元奖品;二等奖20名,各奖300元奖品;三等奖100名,各奖100元奖品;四等奖200名,各奖50元奖品;纪念奖5000名,各奖10元奖品。
试就商场的收益而言,对两种促销方法进行评价,选用哪一种更为合算?解:设在定价销售额为400×10000元的情况下,采用打折销售的实际销售金额为W 1元,采用有奖销售的实际销售金额为W 2元。
由题意有1W =400×10000×95%=3800000(元)W 2=400×10000-(2×3000+10×1000+20×300+100×100+200×50+5000×10) =3908000(元)比较知:W 2>W 1∵在定价销售额相同的情况下,实际销售额大,收益就大 ∴就商场的收益而言,选用有奖销售方式,更为合算。
例2. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元; (1)符合公司要求的购买方案有几种?请说明理由; (2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租车,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案? 解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆 由题意得:55)x 10(4x 7≤-+ 解得:5x ≤ 又∵3x ≥,则x =3,4,5 ∴购车方案有三种: 方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆 (2)方案一的日租金为:3×200+7×110=1370(元) 方案二的日租金为:4×200+6×110=1460(元) 方案三的日租金为:5×200+5×110=1550(元) 为保证日租金不低于1500元,应选择方案三。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
2013年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1 (2012•白银)方程的解是()A.x=±1 B.x=1 C.x=﹣1 D.x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x2﹣1=0,即(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( ) A .7队 B .6队 C .5队 D .4队 考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好.例2 (2012•常州)已知a 、b 、c 、d 都是正实数,且 a cb d<,给出下列四个不等式: ①a c a b c d <++;②c a c d a b <++;③ d b c d a b <++;④b d a b c d<++。
其中不等式正确的是( ) A .①③ B .①④C .②④D .②③思路分析:由已知a 、b 、c 、d 都是正实数,且 a cb d<,取a=1,b=3,c=1,d=2,代入所求四个式子即可求解。
解:由已知a 、b 、c 、d 都是正实数,且a cb d<,取a=1,b=3,c=1,d=2,则 1111,134123a c a b c d ====++++,所以a ca b c d <++,故①正确; 2233,123134d b c d a b ====++++,所以d bc d a b<++,故③正确。
故选A 。
点评:本题考查了不等式的性质,用特殊值法来解,更为简单. 对应训练 2.(2012•南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( ) A .3 B .1 C .1,3 D .±1,±3考点三:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。
使用筛选法的前提是“答案唯”. 例3 (2012•东营)方程(k-1)x 2-1k -x+14=0有两个实数根,则k 的取值范围是( ) ...>.<思路分析:原方程有两个实数根,故为二次方程,二次项系数不能为0,可排除A 、B ;又因为被开方数非负,可排除C 。
故选D . 解:方程(k-1)x 2-1k -x+14=0有两个实数根,故为二次方程,二次项系数10k -≠,1k ≠,可排除A 、B ;又因为10,1kk-,可排除C 。
故选D .点评:此题考查了一元二次方程根的判别式与解的情况,用排除法较为简单. 对应训练3. (2012•临沂)如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数 y=1k x (x >0)和y=2kx(x >0)的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( ).∠不可能等于B .12k PM QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是12(|k 1|+|k 2|)考点四:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较例4 (2012•贵港)下列各点中在反比例函数y=6x的图象上的是( ) 思路分析:根据反比例函数y=6x中xy=6对各选项进行逐一判断即可. 解:A 、∵(-2)×(-3)=6,∴此点在反比例函数的图象上,故本选项正确; B 、∵(-3)×2=-6≠6,∴此点不在反比例函数的图象上,故本选项错误; C 、∵3×(-2)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误; D 、∵6×(-1)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误. 故选A .点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.对应训练4.(2012•贵港)从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是()A.B.C.D.1考点五:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。
这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例5(2012•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值-5、最大值0 B.有最小值-3、最大值6C.有最小值0、最大值6 D.有最小值2、最大值6解:由二次函数的图象可知,∵-5≤x≤0,∴当x=-2时函数有最大值,y最大=6;当x=-5时函数值最小,y最小=-3.故选B.点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.对应训练5.(2012•南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A.k=n B.h=m C.k<n D.h<0,k<0考点六:特征分析法对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例6 (2012•威海)下列选项中,阴影部分面积最小的是()A.B.C.D.分析:根据反比例函数系数k的几何意义对各选项进行逐一分析即可.解:A、∵M、N两点均在反比例函数y=2x的图象上,∴S阴影=2;B、∵M、N两点均在反比例函数y=2x的图象上,∴S阴影=2;C、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,则S阴影=S△OAM+S阴影梯形ABNM -S△OBN=12×2+12(2+1)×1-12×2=32;D、∵M、N两点均在反比例函数y=2x的图象上,∴12×1×4=2.∵32<2,∴C中阴影部分的面积最小.故选C.点评:本题考查的是反比例函数系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是||2k,且保持不变.对应训练6.(2012•丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为()A.﹣1 B.1C.2D.﹣2考点七:动手操作法与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.例7 (2012•西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形思路分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解.解:如图②,∵△CDE由△ADE翻折而成,∴AD=CD,如图③,∵△DCF由△DBF翻折而成,∴BD=CD,∴AD=BD=CD,点D是AB的中点,∴CD=12AB,即直角三角形斜边上的中线等于斜边的一半.故选C.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.对应训练线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.四、中考真题演练1.(2012•衡阳)一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2 2.(2012•福州)⊙O1和⊙O2的半径分别是3cm和4cm,如果O1O2=7cm,则这两圆的位置关系是()A.内含B.相交C.外切D.外离3.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2 4.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O 过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.5.(2012•黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=3 6.(2012•长春)有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图象可能是()A.B.C.D.7.(2012•荆门)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3C.4D.58.(2012•河池)若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.a b>b29.(2012•南通)已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16 10.(2012•六盘水)下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x 11.(2012•郴州)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)12.(2012•莆田)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()A.甲队B.乙队C.丙队D.丁队13.(2012•怀化)为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定14.(2012•长春)如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A.27 B.29 C.30 D.31 15.(2012•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形16.(2012•江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长17.(2012•大庆)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(O,2)D.(2,0)18.(2012•长春)在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.19.(2012•凉山州)已知,则的值是()A.B.C.D.20.(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④21.(2012•朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆22.(2012•河池)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°23.(2012•长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C 的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1 24.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.B D=AC D.∠B=45°25.(2012•河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形26.(2012•随州)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°27.(2012•攀枝花)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A.1个B.2个C.3个D.4个28.(2012•莱芜)以下说法正确的有()①正八边形的每个内角都是135°②与是同类二次根式③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当x<0时,y随x的增大而增大.A.1个B.2个C.3个D.4个29.(2012•东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①②B.①②③C.①②③④D.②③④专题一选择题解题方法参考答案三、中考典例剖析对应训练1.C解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即(1)2x x -=10, ∴x 2-x-20=0,∴x=5或x=-4(不合题意,舍去). 故选C . 2.D解:当两个圆外切时,圆心距d=1+2=3,即P 到O 的距离是3,则a=±3. 当两圆相内切时,圆心距d=2-1=1,即P 到O 的距离是1,则a=±1. 故a=±1或±3. 故选D . 3.D解:A .∵P 点坐标不知道,当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据图形可得:k 1>0,k 2<0,而PM ,QM 为线段一定为正值,故12k PM QM k =,故此选项错误;C .根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; 故选:D . 4.C 5.A 6.D解:∵点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点, ∴四边形ABCD 是矩形, ∵四边形ABCD 的面积是8, ∴4×|﹣k|=8, 解得|k|=2,又∵双曲线位于第二、四象限, ∴k <0, ∴k=﹣2. 故选D . 7. B .四、中考真题演练 1.B 2.C 3.A解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a ,∴AB=a ,且∠CAB=∠CBA=45°, ∴sin45°===,∴AC=BC=a ,=×a×a=,∴S△ABC∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.4.D解:当P与O重合,∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣6x+6,∴S△ABP故此函数为二次函数,∵a=>0,∴当x=﹣=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.5.B解:根据题意得:7x+9y≤40,则x≤,∵40﹣9y≥0且y是非负整数,∴y的值可以是:1或2或3或4.当x的值最大时,废料最少,当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;当y=4时,x≤,则x=0(舍去).则最小的是:x=3,y=2.故选B.6.A7.D解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.8.A9.A10.D11.D12.A13.A14.C15.D16.D17.A解:如图,作AC⊥x轴于C点,BD⊥y轴于D点,∵点A的坐标为(,1),∴AC=1,OC=,∴OA==2,∴∠AOC=30°,∵OA绕原点按逆时针方向旋转30°得OB,∴∠AOB=30°,OA=OB,∴∠BOD=30°,∴Rt△OAC≌Rt△OBD,∴DB=AC=1,OD=OC=,∴B 点坐标为(1,).故选A.18.D19.D20.C21.B22.C解:∵△GEF是含45°角的直角三角板,∴∠GFE=45°,∵∠1=25°,∴∠AFE=∠GEF﹣∠1=45°﹣25°=20°,∵AB∥CD,∴∠2=∠AFE=20°.故选C.23.B解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.24.A25.B26.B27.B解:∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;如图,∠C和∠D都对弦AB,但∠C和∠D不相等,即②是假命题;三角形有且只有一个外接圆,外接圆的圆心是三角形三边垂直平分线的交点,即③是真命题;垂直于弦的直径平分弦,且平分弦所对的两条弧,即④是真命题.故选B.28.C解:①正八边形的每个内角都是:=135°,故①正确;②∵=3,=,∴与是同类二次根式;故②正确;③如图:∵OA=OB=AB,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴长度等于半径的弦所对的圆周角为:30°或150°;故③错误;④反比例函数y=﹣,当x<0时,y随x的增大而增大.故④正确.故正确的有①②④,共3个.故选C.29.C解:①设D(x,),则F(x,0),由图象可知x>0,∴△DEF的面积是:×||×|x|=2,设C(a,),则E(0,),由图象可知:<0,a>0,△CEF的面积是:×|a|×||=2,∴△CEF的面积=△DEF的面积,故①正确;②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,故EF∥CD,∴FE∥AB,∴△AOB∽△FOE,故②正确;③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,∴x+3=,解得:x=﹣4或1,经检验:x=﹣4或1都是原分式方程的解,∴D(1,4),C(﹣4,﹣1),∴DF=4,CE=4,∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,∴A(﹣3,0),B(0,3),∴∠ABO=∠BAO=45°,∵DF∥BO,AO∥CE,∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,∴∠DCE=∠FDA=45°,在△DCE和△CDF中,∴△DCE≌△CDF(SAS),故③正确;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;正确的有4个.故选C.教学反思1 、要主动学习、虚心请教,不得偷懒。