2014年中考数学复习专题讲座(WORD)1:选择题解题方法(含答案)
2014年中招数学复习方法与策略共4页
2014年中招数学复习方法与策略从近三年的中招数学试题来看,选择题和填空题中重点考查了图形的对称、中位数、众数、方差、摸球概率、实数的简单运算、二次函数的增减性、三种视图、解不等式组、圆中的垂径定理和圆周角、图形运动结合解直角三角形、利用平行线性质求角度、反比例函数,以上的知识点在近三年的考试中几乎每次都有所考查。
除此之外,像一元二次方程的求解、正方体的平面展开图、科学记数法等也曾在中招试题中出现过。
所以,针对这样的出题规律,我觉得今年的中招试题中对经常出现的图形的对称、中位数和众数、二次函数的增减性、概率、圆的相关性质定理、三种视图求面积这些知识点是考查的重点,而难点还是会出现在几何中的折叠和解直角三角形的综合问题上。
对于解答题而言,题型的变化应该不会太大,每年考查的知识点还是比较固定的。
第16题一般考查分式化简和整式乘法的化简求值;第17题和第18题考查统计图问题中的求字母参数、人数、概率、圆心角和简单的几何图形中的全等三角形的证明;第19题和第20题则一般考查三角函数和一次函数与反比例函数的结合问题;第21题最近三年考查的都是与不等式组有关的方案问题,今年是否仍然继续考查存在疑问,一元二次方程的最值问题也许有考查的可能;第22题的题型应该还是几何题,但此题的变化在于出题的方向比较多,像探究类问题和利用相似求比例问题都有可能结合动点来出题;第23题不出意外的话仍然会是二次函数动点问题,这个应该都在大家意料之中,而这类问题的3个小问应该还是先求点坐标或函数解析式,再求线段最值或判断是何特殊图形,最后为探究类的存在性问题。
因为2015年的中招数学考试面对的是新教材,所以今年作为老教材的最后一次考试,在题型的变化上不会有太大的动作,而题的难度和考查方向可能会向新教材中的强调概念教学上靠拢。
针对这样的情况,在复习的过程中,我提几点建议供大家参考。
一、重视概念和性质定理的理解新教材中更加重视初中数学的概念教学,对于一些性质定理和相关概念的由来要求知道是怎么得来的。
2014年中考数学复习专题讲座-方法论与解题技巧
寄语2014年中考芸芸学子——放下执着,战胜心中的不安和恐惧等焦躁情绪,把握机会,勇敢前行!祝中考成功!学有所成!服务社会!服务众生!阿弥陀佛2014年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1 (2012•白银)方程的解是()A.x=±1B.x=1 C.x=﹣1 D.x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x2﹣1=0,即(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
中考数学选择题解题方法与技巧
中考数学选择题解题方法与技巧 中考数学的选择题该如何又快又准确地找到解题的【答案】?以下是为大家整理了以下选择题的结构及解答方法和技巧。
1.标准化试题的漏洞除了用了知识点之外,用选择题本身固有漏洞做题。
大家记住一点,所有选择题,题目或者【答案】必然存在做题暗示点。
因为首先我们必须得承认,这题能做,只要题能做,必须要有暗示。
1〕有选项。
利用选项之间的关系,我们可以判断【答案】是选或不选。
如两个选项意思完全相反,那么必有正确【答案】。
2〕【答案】只有一个。
大家都有这个经验,当时不明白什么道理,但是看到【答案】就能明白。
由此选项将产生暗示3〕题目暗示。
选择题的题目必须得说清楚。
大家在审题过程中,是必须要用到有效的讯息的,题目本身就给出了暗示。
4〕利用干扰选项做题。
选择题除了正确【答案】外,其他的都是干扰选项,除非是乱出的选项,否那么都是可以利用选项的干扰性做题。
一般出题者不会随意出个选项,总是和正确【答案】有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。
5〕选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程。
6〕选择题必须考察课本知识,做题过程中,可以判断和课本哪个知识相关?那个选项与这个知识点无关的可立即排除。
因此联系课本知识点做题。
8〕选择题必须保证考生在有限时间内可以做出来的,因此当大家花很多时间想不对的时候,说明思路错了。
选择题必须是由一个简单的思路构成的。
2.选择题解答方法和技巧【一】直接法:根据选择题的题设条件,通过计算、推理或判断,最后达到题目要求。
这种直接根据条件进行计算、判断或推理而得到的【答案】的解选择题的方法称之为直接法。
【二】间接法:间接法又称试验法、排除法或筛选法,又可将间接法分为结论排除法、特殊值排除法、逐步排除法和逻辑排除法等方法。
1〕结论排除法:把题目所给的四个结论逐一代回原题中进行验证,把错误的排除掉,直至找到正确的【答案】,这一逐一验证所给结论正确性的解答选择题的方法称之为结论排除法。
2014中考数学答题技巧
2014年中考数学答题技巧一、答题先易后难原则上应从前往后答题,因为在考题的设计中一般都是按照先易后难的顺序设计的。
先答简单、易做的题,有助于缓解紧张情绪,同时也避免因会做的题目没有做完而造成的失分。
如果在实际答卷中确有个别知识点遗忘可以“跳”过去,先做后面的题。
二、答卷仔细审题稳中求快得分的高低往往取决于第一次的答题上。
三、答数学卷要注意陷阱1.答题时需注意题中的要求。
例如、科学计数法在题中是对哪一个数据进行科学计数要求保留几位有效数字等等。
2.警惕考题中的“零”陷阱。
这类题也是考生们常做错的题,常见的有分式的分母“不为零”;一元二次方程的二项系数“不为零”(注意有没有强调是一元二次方程);函数中有关系数“不为零”;a0=1中“a不为零”等3.注意两(或多)种情况的分类讨论问题。
例如等腰三角形、直角三角形、高在形内、形外、两三角形相似、两圆相交、相离、相切,点在射线上运动等。
四、对题目的书写要清晰。
五、对未见过的题目要充满信心综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。
六、图形添线,必有规律几何图形的辅助线集中在四方面:①如果图形中有特殊点,如切点,斜边的中点,就要连结特殊线段,如经过切点的半径、斜边上的中线,等等;②作垂线,构成直角三角形,便于计算;③分割四边形,或延长一组对边,或平移线段,把四边形转化为三角形来研究;④平行线七、步步为营,仔细复查两种不同的解法检查题目,得到同一个结果,答案肯定正确!八、选择题与填空题解答技巧1.排除法。
2.特殊值法。
3.通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、正误验证、总结、归纳等过程使问题得解。
九、考试全过程按程序答题(一)考前5分钟拿到试卷后,而要通览一下全卷,摸透题情。
看无印刷问题等。
此时不能动手答题,但可以阅读试题,因此可以根据自己的情况,有选择地阅读一些试题,如题目比较长的,或者有一定难度的题。
中考数学选择题和填空题解题技巧
中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
2014年中考真题精品解析 数学(陕西卷)精编word版(解析版)
2014年陕西中考试卷及分析点评数学一、选择题(共10小题,每小题,3分,计30分,每小题只有一个选项符合题意的。
) 1、4的算术平方根是( ) A 、-2 B 、2 C 、-21 D 21 【答案】 B【考点】 平方根与算术平方根 【专题】 数与代数——实数【解析】 根据算术平方根的概念,容易选择B .【分析及点评】 主要考查实数的概念——简单的对算数平方根概念的考查,难度系数0.95 2、下图是一个正方体被截取一个直三棱柱得到的几何体,则该几何体的左视图为( )(2题图) A B CD【答案】 A 【考点】 三视图【专题】 几何初步——三视图【解析】 根据几何特征,很容易做出选择:B .【分析及点评】 主要考查三视图,此题原图设置较易,需注意虚实线的画法,较易误选B ,难度系数0.93、若点A (-2,m )在正比例函数x y 21-=的图像上,则m 的值( ) A 、41 B 、41- C 、1 D 、-1 【答案】 C【考点】 正比例函数的概念【专题】 函数——正比例函数和一次函数【解析】 将A (-2,m )带入,解方程,容易求解出m=1.【分析及点评】 主要考查正比例函数的概念,用点在线上能简单解决,需注意负号的处理,4、小军旅行箱的密码是一个六位数,由于他忘记密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A 、101 B 、91 C 、61 D 、51 【答案】 A 【考点】 概率 【专题】 概率统计【解析】 共有0~9十种结果,符合题意的只有一种,所以选择101. 【分析及点评】 本题主要考查概率的求解方法,结合枚举法运用公式解题,抓住关键词易于解答,“密码是六位数”有可能误导学生错选C,难度系数0.825、把不等式组:的解集表示在数轴上,正确的是( )AB 、C 、 D【答案】 D 【考点】 不等式【专题】 不等式与不等式组【解析】 分别求出两不等式的解,根据同大取大,同小取小,一大一小取中间(有时无解)的原则,很容易做出判断 .【分析及点评】主要考查不等式组的解法,口诀解题与数轴结合,注意数轴实点与虚点的区别,难度系数0.82那么这10名学生所得分数的平均数和众数分别是多少?( )A 、85和82.5B 、 85.5和85C 、85和85D 、85.5和80 【答案】 B 【考点】 统计 【专题】 统计与概率【解析】 根据平均数和众数的概念进行选择B .【分析及点评】 主要考查了平均数与众数的概念,题设简单,注意人数的差别,仔细计算,-7、如图AB ‖CD,∠A=45°,∠C=28°,则∠AEC 的大小为( ) A 、17° B 、o 62 C 、o 63 D 、o 73【答案】 D【考点】 平行的性质、外角【专题】 几何初步——平行与相交、三角形【解析】 根据“两直线平行,内错角相等”容易得出∠B=∠C=28°,有根据外角等于不相邻两内角之和,,容易得出∠AEC=28°+ 45°=73°.【分析及点评】 主要考查平行线的性质与一般三角形的外角的性质,较易得出,难度系数0.88、若2-=x 是关于x 的一元二次方程02522=+-a ax x 的一个根,则a 的值是( ) A 、1或4 B 、-1或-4 C 、-1或4 D 、1或-4 【答案】 B【考点】 一元二次方程 【专题】 一元二次方程【解析】 根据方程解的概念,将2-=x 带入,再求解一个关于a 的一元二次方程即可得出答案.【分析及点评】 主要考查一元二次方程的解的概念以及相关的解法,分解因式法较易,难度系数0.759、如图,在菱形ABCD 中,5=AB ,对角线6=AC ,若过点A 作BC AE ⊥,垂足为E,则AE 的长( ) A 、4 B 、512C 、524D 、5【答案】 C【考点】 菱形、勾股定理、方程E A BED C第8题图BC A第7题图【专题】 四边形和方程【解析】 设BE=x ,则EC=(5—x ),则根据公共直角边AE ,结合勾股定理可列方程5²—x ²=6²—(5—x )²,解出BE=7/5,再结合勾股定理,求得AE=524. 【分析及点评】 主要考查以菱形为背景的运用勾股定理求高线,结合方程解题,四边形中找直角三角形是关键,难度系数0.710、二次函数)0(2≠++=a c bx ax yA 、c ˃-1B 、b ˃0C 、02≠+b aD 、b c a 392〉+【答案】 D【考点】 二次函数的性质与图形的关系 【专题】 二次函数的性质与图形的关系【解析】 由图可知,a>0,b<0,c<-1,排除A 、B ,再根据图像与X 轴交点,容易判断出x=1为对称轴,即12=-a b,反解可得2a+b=0,故排除C ,所以选D【分析及点评】 主要考查二次函数的性质与图像的关系,题设形式常规,方法固定,作为压轴题较易,难度0.7第II 卷(非选择题90分)二、填空题(共6小题,每小题3分,计18分) 11、计算=--2)31(____。
2014年中考复习
2014年中考复习一、选择题解题技巧选择题是一种必不可少的重要题型,一般有10道小题,共30分。
选择题的得分率直接影响到中考的成绩,只有努力提高选择题的得分率,才能在中考中立于不败之地。
根据选择题自身的特点,它有一些特殊的思路和解题方法。
1.直接法这种方法用于一些不用过多思考能直接得出结论的简单题目。
只要对知识点比较熟悉就可以解答。
例1.|-22|的值是 ( ) A.-4 B.-6 C.6 D.4例2.(2013成都)如图,已知ΔABC 中, ∠B=∠C,AB=5,则AC的长为 。
二、排除法有些题目,要找到符合条件的选项不太容易,在此情况下将所有不符合条件的选项排除掉,剩下的就是正确的选项。
例3.下列各式中,一定成立的是( )A.2x+3y=5xyB.x 9÷x 3=x 3C.(-x 2y 3)2=x 4y 6D. (x-2)2 =x-2例4 在下列四边形中,是轴对称图形,而不是中心对称图形的是( )A 、矩形B 、菱形C 、等腰形D 、一般平行四边形 三、数形结合法就是把问题中的数量关系和空间图形结合起来思考问题。
数与型相互转化,使问题化繁为简,得以解决。
例5.在函数y=kx(k>0)的图像上有三点(x 1,y 1),(x 2,y 2),(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中,正确的是( ) A.y 1<y 2<y 3B.y 3<y 2<y 1 C.y 2<y 1<y 3D.y 3<y 1<y 2四、特殊值法有些问题从理论上论证它的正确性比较困难,但是代入一些满足题意的特殊值,验证它是错误的比较容易,此时,我们就可以用这种方法来解决问题。
例5.如果m<n<0,那么下列表达式中错误的是( )A.m-9<n-9B.-m>-nC.1m <1nD.mn>1五、划归转化法运用某种方法把生疏问题转化为熟悉问题,把复杂问题转化为简单问题,使问题得以解决。
2014河南中招数学试题解析版含详细答案Word版精要
Pzb2014 年河南省中招数学试卷及答案分析一、选择题(每题 3 分,共 24 分)1.以下各数中,最小的数是()1 (C).1(A). 0(B).(D). - 333答案: D分析:依占有理数的大小比较法例(正数都大于 0,负数都小于 0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵-3<-1<13 3∴最小的数是﹣ 3,应选 A .2. 据统计, 2013 年河南省旅行业总收入达到3875.5 亿元 . 若将 3875.5 亿用科学计数法表示为n ()3.8755 ′ 10,则 n 等于(A)10 (B) 11(C).12(D).13答案: B分析:科学记数法的表示形式为a ×10n的形式,此中 1≤|a < 10,n 为整数,表示时重点要正确确立a 的值以及 n 的值. 3875.5 亿=3.8755×1011,应选 B.3.如图,直线 AB 、 CD 订交于 O ,射线 OM 均分 衈AOC, ON OM ,若? AOM35?,则 DCON 的度数为()C(A) .35 °(B). 45 °(C) 55°(D). 65°MN答案: C分析:依据角的均分线的性质及直角的性质,即可求解. AOB ∠ CON=90 ° - 35° =55° , 应选 C.4.以下各式计算正确的选项是()D( A ) a + 2a = 3a 2( B )3) 2= a 6(- a32= a 622+ b 2(C ) a ·a (D )( a + b ) = a答案: B分析:依据同底数幂的乘法;幂的乘方;完好平方公式;同类项加法即可求得;( -a 3)2=a 6 计算正确,故选 B5.以下说法中,正确的选项是( )( A ) “翻开电视,正在播放河南新闻节目”是必定事件( B )某种彩票中奖概率为 10%是指买十张必定有一张中奖 ( C )神州飞船发射前需要对零零件进行抽样检查( D )认识某种节能灯的使用寿命合适抽样检查 答案: D分析:依据统计学知识;( A ) “翻开电视,正在播放河南新闻节目”是随机事件,( A )错误。
2014 2014年中招考试数学试卷及答案
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
2014陕西中考数学试题及解析(word)
2014陕西中考数学试题及解析一、选择题(每小题只有一个正确答案) 1.4的算术平方根是( ) A .2- B .2 C .21-D .21 考点:此题一般考查的内容简单,有相反数、倒数、绝对值、立方根、平方根及算术平方根、具有相反意义的量的表示及正负数的概念等简单的知识点,本题考查的是一个非负数的算术平方根。
解析:正数的正的平方根是这个数的算术平方根,因此易知4的算术平方根是2,此题故选B .2.如图,下图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )考点:常见的几何体的三视图的画法。
解析:此类题主要考查学生们的空间想象能力,一般考查常见的简单的几何体有圆柱,正方体及其组合体。
应注意看的见的轮廓线与看不见的轮廓线的画法与圆锥与圆柱的视图的区别是否有圆心,相对来说考查的较为简单,此题故选A . 3.若A (-2,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A .41 B .41- C .1 D . 1- 考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A 在函数的图象上,因此将点的坐标代入即可求解。
1)2(21=-⨯-=m 故选C ;如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小( ) A . 65° B . 55° C .45° D . 35° 考点:平行线的性质应用与互余的定义。
解析:此类题主要考查学生们的平面几何的性质应用的能力, 一般考查常见较为简单的两直线平行而同位角和内错角相等第2题图A B DC B CDAO第7题图的应用,而问题的设置也是求角度或者是找角的关系。
因为AB ∥CD ,所以∠D=∠BED ,因为∠CED=90°,∠AEC=35°所以∠BED=180°-90°-35°=55°,此题故选B4.不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A .21>x B .1-<x C .211<<-x D .21->x 考点:不等式的解法及不等式组的解集的选取。
2014年陕西省中考数学试题及参考答案(word解析版)
2014年陕西省中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.4的算术平方根是()A.﹣2 B.2 C.12-D.122.如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()A.B.C.D.3.若点A(﹣2,m)在正比例函数12y x=-的图象上,则m的值是()A.14B.14-C.1 D.﹣14.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.155.把不等式组2130xx+⎧⎨-≥⎩>的解集表示在数轴上,正确的是()A.B.C.D.6.某区10那么这10A.85和82.5 B.85.5和85 C.85和85 D.85.5和80 7.如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°8.若x=﹣2是关于x 的一元二次方程x 2﹣52ax+a 2=0的一个根,则a 的值为( ) A .1或4 B .﹣1或﹣4 C .﹣1或4 D .1或﹣49.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4B .125C .245D .5 10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论中正确的是( )A .c >﹣1B .b >0C .2a+b≠0D .9a+c >3b二、填空题(本大题共2小题,每小题3分,共18分)11.计算:213-⎛⎫-= ⎪⎝⎭. 12.因式分解:m (x ﹣y )+n (x ﹣y )= .13.请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.A .一个正五边形的对称轴共有 条.B+3tan56°≈ (结果精确到0.01)14.如图,在正方形ABCD 中,AD=1,将△ABD 绕点B 顺时针旋转45°得到△A′BD′,此时A′D′与CD 交于点E ,则DE 的长度为 .15.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且211112y y =+,则这个反比例函数的表达式为 .16.如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是 .三、解答题(本大题共9小题,计72分)17.(5分)先化简,再求值:22211x xx x--+,其中12x=-.18.(6分)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.19.(7分)根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(A﹣二氧化硫,B﹣氢氧化物,C﹣化学需氧量,D﹣氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园,加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%,按此指示精神,求出陕西省2014年二氧化硫、化学需氧量的排放量供需减少约多少万吨?(结果精确到0.1)20.(8分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?21.(8分)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?22.(8分)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?23.(8分)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.24.(10分)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?25.(12分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC 的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.4的算术平方根是()A.﹣2 B.2 C.12D.12【知识考点】算术平方根.【思路分析】根据算术平方根的定义进行解答即可.【解题过程】解:∵22=4,∴4的算术平方根是2.故选:B.【总结归纳】本题考查了算术平方根的定义,熟记定义是解题的关键.2.如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()A.B.C.D.【知识考点】简单几何体的三视图;截一个几何体.。
2014年中考数学复习专题讲座(WORD)3:开放性问题
2014年中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (2012•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD 及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (2012•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
2014数学中考试题答案
2014数学中考试题答案本文旨在提供2014年数学中考试题的详细答案,帮助考生了解题目并提高解题能力。
以下是各题目的具体答案。
一、选择题1. 答案:B解析:根据题干可得到方程为2x + 3 = 5。
将x代入计算可得x = 1。
2. 答案:D解析:根据题干可得方程为3y - 2 = 7。
将y代入计算可得y = 3。
3. 答案:C解析:根据题干可得方程为4z + 6 = 14。
将z代入计算可得z = 2。
4. 答案:A解析:根据题干可得方程为5x - 3 = 22。
将x代入计算可得x = 5。
5. 答案:C解析:根据题干可得方程为2y + 4 = 10。
将y代入计算可得y = 3。
二、填空题1. 答案:16解析:根据题干可得5 + (3 * 4) = 5 + 12 = 17。
2. 答案:9解析:根据题干可得(4 * 2) + 1 = 8 + 1 = 9。
3. 答案:15解析:根据题干可得14 - (4 - 3) = 14 - 1 = 13。
4. 答案:16解析:根据题干可得4 * 2 + 8 = 8 + 8 = 16。
5. 答案:4解析:根据题干可得(12 - 5) ÷ 7 = 7 ÷ 7 = 1。
三、解答题1. 答案:50解析:根据题干可得正方形的周长为4 * 10 = 40,而perimeter = 40 + 10 = 50。
2. 答案:10解析:根据题干可得长方形的面积为12 * 5 = 60,而area = 60 ÷ 6 = 10。
3. 答案:30解析:根据题干可得长方形的周长为2 * (5 + 10) = 30。
4. 答案:48解析:根据题干可得2 * (36 ÷ 3) = 2 * 12 = 24,而width = 32 ÷ 4 = 8,因此area = 24 + 8 = 32。
5. 答案:14解析:根据题干可得三角形的周长为5 + 4 + 5 = 14。
2014中考数学解题方法与技巧
中考数学复习专题讲座八:归纳猜想型问题(二) • 考点四:猜想数量关系
• • • • • • 如图,在标有刻度的直线l上,从点A开始, 以AB=1为直径画半圆,记为第1个半圆; 以BC=2为直径画半圆,记为第2个半圆; 以CD=4为直径画半圆,记为第3个半圆; 以DE=8为直径画半圆,记为第4个半圆, …按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 第n个半圆的面积为 (结果保留π)
中考数学复习专题讲座三:开放性问题
• 考点一:条件和结论都开放的问题:
• • • 例3 如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上, 有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF. (1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所 有命题(用序号写出命题书写形式:“如果…,那么…”) (2)选择(1)中你写出的一个命题,说明它正确的理由.
考点二:结论探究型:
• 如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、 BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D 作DD1⊥l于点D1,过点E作EE1⊥l于点E1. (1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB; (2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、 EE1、AB之间的数量关系,并说明理由; (3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB 之间的数量关系.(不需要证明)
考点二:逆推代入法
• 例3 下列各点中在反比例函数y=的图象上的是 ( )A.(-2,-3) B.(-3,2) C.(3,-2) D.(6,-1) • 对应训练 • 从2,﹣1,﹣2三个数中任意选取一个作为直线 y=kx+1中的k值,则所得的直线不经过第三象限 的概率是___________
2014昆明中考数学试卷及解析讲课教案
2014年云南省昆明市中考数学试卷一、单项选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•昆明)的相反数是()A.B.﹣C.2D.﹣22.(3分)(2014•昆明)如图是由3个完全相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)(2014•昆明)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣4 B.﹣1 C.1D.44.(3分)(2014•昆明)下列运算正确的是()A.(a2)3=a5B.(a﹣b)2=a2﹣b2C.﹣=3D.=﹣35.(3分)(2014•昆明)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85°B.80°C.75°D.70°6.(3分)(2014•昆明)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144 7.(3分)(2014•昆明)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.A B∥CD,AD∥BC B.O A=OC,OB=OD C.A D=BC,AB∥CD D.A B=CD,AD=BC 8.(3分)(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.(3分)(2014•昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为_________万立方米.10.(3分)(2014•昆明)如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=_________ cm.11.(3分)(2014•昆明)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_________(填“甲”或“乙“).12.(3分)(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为_________.13.(3分)(2014•昆明)要使分式有意义,则x的取值范围是_________.14.(3分)(2014•昆明)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是_________cm.三、解答题(共9小题,满分58分,必须写出运算步骤、推理过程或文字说明)15.(5分)(2014•昆明)计算:||+(π﹣3)0+()﹣1﹣2cos45°.16.(5分)(2014•昆明)已知:如图,点A、B、C在同一直线上,AB=CD,AE∥CF,且AE=CF.求证:∠E=∠F.17.(5分)(2014•昆明)先化简,再求值:(1+)•,其中a=3.18.(6分)(2014•昆明)某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a=_________人,其中选择“绘画”的学生人数占抽样人数的百分比为b=_________;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?19.(6分)(2014•昆明)九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.20.(6分)(2014•昆明)如图,在教学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC=22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)21.(8分)(2014•昆明)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.22.(8分)(2014•昆明)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)23.(9分)(2014•昆明)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B (4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC 上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.2014年云南省昆明市中考数学试卷参考答案与试题解析一、单项选择题(共8小题,每小题3分,满分24分)考点:相反数.专题:计算题.分析:根据相反数的概念解答即可.解答:解:的相反数是﹣,添加一个负号即可.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.考点:简单组合体的三视图.分析:根据三视图的定义求解.解答:解:从正面看,上面一层最左边有1个正方形,下边一层有2个正方形.故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1•x2=1.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.考点:完全平方公式;实数的运算;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方运算法则计算得到结果,即可作出判断;B、原式利用完全平方公式展开得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用立方根定义化简得到结果,即可做出判断.解答:解:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选:D点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式是解本题的关键.考点:三角形的外角性质.专题:计算题.分析:利用角平分线的性质可得∠ABD=∠ABC=×70°=35°,再根据三角形外角的性质可得∠BDC=∠A+∠ABD=50°+35°=85°.解答:解:∵BD平分∠ABC,∠ABC=70°,∴∠ABD=∠ABC=×70°=35°,∵∠A=50°,∴∠BDC=∠A+∠ABD=50°+35°=85°,故选:A.点评:此题主要考查了角平分线的定义和三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.6.(3分)考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解答:解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选:D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.7.(3分)考点:平行四边形的判定.专题:证明题.分析:根据平行四边形的判定定理分别进行分析即可.解答:解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.(3分)考点:反比例函数的性质;一次函数的图象.专题:数形结合.分析:根据反比例函数y=的图象所在的象限确定k>0.然后根据k>0确定一次函数y=kx﹣k的图象的单调性及与y轴的交点的大体位置,从而确定该一次函数图象所经过的象限.解答:解:根据图示知,反比例函数y=的图象位于第一、三象限,∴k>0,∴一次函数y=kx﹣k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx﹣k的图象经过第一、三、四象限;故选:B.点评:本题考查了反比例函数、一次函数的图象.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.二、填空题(共6小题,每小题3分,满分18分)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于58500有5位,所以可以确定n=5﹣1=4.解答:解:58 500=5.85×104.故答案为:5.85×104.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.(3分)考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.解答:解:∵∠ABC=90°,点D为AC的中点,∴BD=AC=×10=5cm.故答案为:5.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.考点:方差.分析:直接根据方差的意义求解.解答:解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.考点:坐标与图形变化-平移.专题:几何图形问题.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)进行计算即可.解答:解:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1﹣2,3),即(﹣1,3),故答案为:(﹣1,3).点评:此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣10≠0,解得x≠10.故答案为:x≠10.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据翻折的性质可得DF=EF,设EF=x,表示出AF,然后利用勾股定理列方程求出x,从而得到AF、EF 的长,再求出△AEF和△BGE相似,根据相似三角形对应边成比例列式求出BG、EG,然后根据三角形周长的定义列式计算即可得解.解答:解:由翻折的性质得,DF=EF,设EF=x,则AF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为:12.点评:本题考查了翻折变换的性质,勾股定理,相似三角形的判定与性质,熟记性质并求出△AEF的各边的长,然后利用相似三角形的性质求出△EBG的各边的长是解题的关键,也是本题的难点.三、解答题(共9小题,满分58分,必须写出运算步骤、推理过程或文字说明)考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、绝对值化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=+1+2﹣=3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.考点:全等三角形的判定与性质.专题:证明题.分析:首先根据AE∥CF可得∠A=∠FCD,再加上条件AB=CD,AE=CF可利用SAS定理判定△ABE≌△CDF,根据全等三角形的性质可得∠E=∠F.解答:证明:∵AE∥CF,∴∠A=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠E=∠F.点评:此题主要考查了三角形全等的判定和性质,关键是正确找出证明三角形全等的条件.17.(5分)考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•=,当a=3时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用音乐的人数除以所占的百分比计算即可求出a,再用绘画的人数除以总人数求出b;(2)求出体育的人数,然后补全统计图即可;(3)用总人数乘以“绘画”所占的百分比计算即可得解.解答:解:(1)a=20÷20%=100人,b=×100%=40%;故答案为:100;40%;(2)体育的人数:100﹣20﹣40﹣10=30人,补全统计图如图所示;(3)选择“绘画”的学生共有2000×40%=800(人).答:估计全校选择“绘画”的学生大约有800人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.考点:列表法与树状图法.专题:计算题;分类讨论.分析:(1)列表得出所有等可能的情况数即可;(2)找出两次摸出小球标号相同的情况数,即可求出中奖的概率.解答:解:(1)列表得:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况数有9种;(2)可能出现的结果共9种,它们出现的可能性相同,两次摸出小球标号相同的情况共3种,分别为(1,1);(2,2);(3,3),则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:根据题意得AC=22米,AB=1.5米,过点B做BE⊥CD,交CD于点E,利用∠DBE=32°,得到DE=BEtan32°后再加上CE即可求得CD的高度.解答:解:由题意得AC=22米,AB=1.5米,过点B做BE⊥CD,交CD于点E,∵∠DBE=32°,∴DE=BEtan32°≈22×0.62=13.64米,∴CD=DE+CE=DE+AB=13.64+1.5≈15.1米.答:旗杆CD的高度约15.1米.点评:此题主要考查了仰角问题的应用,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.专题:应用题.分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.解答:解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,∴m=75时,W最小=1125.∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.点评:本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.22.(8分)考点:切线的判定;扇形面积的计算.专题:几何综合题.分析:(1)由OD=OB得∠1=∠ODB,则根据三角形外角性质得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,则可根据切线的判定定理得到AC是⊙O的切线;(2)解:由∠A=60°得到∠C=30°,∠DOC=60°,根据含30度的直角三角形三边的关系得CD=OD=2,然后利用阴影部分的面积=S△COD﹣S扇形DOE和扇形的面积公式求解.解答:(1)证明:∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线;(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴CD=OD=2,∴阴影部分的面积=S△COD﹣S扇形DOE=×2×2﹣=2﹣.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了扇形面积的计算.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣(t﹣1)2+.利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,m2﹣m﹣3).如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=.则根据图形得到:S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m),把相关线段的长度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).解答:解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)设运动时间为t秒,则AP=3t,BQ=t.∴PB=6﹣3t.由题意得,点C的坐标为(0,﹣3).在Rt△BOC中,BC==5.如图1,过点Q作QH⊥AB于点H.∴QH∥CO,∴△BHQ∽△BOC,∴=,即=,∴HQ=t.∴S△PBQ=PB•HQ=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+.当△PBQ存在时,0<t<2∴当t=1时,S△PBQ最大=.答:运动1秒使△PBQ的面积最大,最大面积是;(3)设直线BC的解析式为y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得,解得,∴直线BC的解析式为y=x﹣3.∵点K在抛物线上.∴设点K的坐标为(m,m2﹣m﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,m﹣3).∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=.∴S△CBK=.S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m)=×4•EK=2(﹣m2+m)=﹣m2+3m.即:﹣m2+3m=.解得m1=1,m2=3.∴K1(1,﹣),K2(3,﹣).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.。
2014年中考数学复习专题:数与式
知识结构
典例精选
能力评估检测
(2013· 恩施州 )把 x2y- 2y2x+y3 分解因式正 确的是 ( C ) B. x2y- y2(2x- y) D. y ( x + y )
2 2
A. y(x2-2xy+ y2) C. y(x- y)
【思路点拨】 首先提取公因式 y, 再利用完全平方 公式进行二次分解即可.
知识结构
典例精选
能力评估检测
1 1 2 3 4.(2013· 苏州)已知 x- = 3,则 4- x + x 的值 2 2 x 为( D ) 3 B. 2 5 C. 2 7 D. 2
A. 1
1 解析:把 x- = 3 两边同乘 x,得 x2- 1= 3x,即 x 1 2 3 1 2 1 x - 3x= 1,所以 4- x + x= 4- (x - 3x)= 4- ×1 2 2 2 2
知识结构
典例精选
能力评估检测
m- 3 m - 9 解:原式= ÷ 3mm- 2 m- 2 m- 3 m- 2 1 = × = . 3mm- 2 m+ 3m-3 3mm+ 3 ∵m 是方程 x + 3x+ 1= 0 的根, ∴m 2+ 3m+ 1= 0, ∴m 2+ 3m=- 1,即 m(m+ 3)=- 1, 1 1 ∴原式= =- . 3×- 1 3
D
)
D.a- 2a=-a
【思路点拨】本题考查了分式的乘除法,合并同 类项,以及二次根式的性质与化简,熟练掌握运算法 则是解本题的关键.
知识结构
典例精选
能力评估检测
规律方法 求一个字母的绝对值要对字母进行分情况讨论, 根据字母的符号得出绝对值的符号;求一个字母的平 方根时,同样也要对字母分情况讨论 .
2
名师指导:2014中考数学选择题精妙解题法
名师指导:2014中考数学选择题精妙解题法在中考数学试题中,选择题占相当大的比例,因此,解答选择题对考试成绩影响很大。
解数学选择题,常可以从选择支出发进行思考,充分利用选择支所提供的信息与只有一个正确答案的方向,改变解题策略,充分发挥直观的作用,发现其特殊的数量关系和图形位置特征,迅速解题。
下面举例谈谈解数学选择题的五种常用方法,供大家复习时参考。
一. 直接法例1. 若有意义,则( )。
解:根据题设,注意到alt;0,直接化简原式,可得。
选C。
点拨:直接法就是直接从条件出发,通过合理运算和严密推理,最后推出正确的结果,再对照选择支解答的一种解题思路。
二. 特例法例2. 若alt;0,-1解:取a=-1,b=-1/2,很容易得到答案为D。
点拨:特例法就是用符合已知条件的特例或考虑特殊情况、特殊位置,检验选择支或化简已知条件,得出答案。
当已知条件中有范围时可考虑使用特例法。
三. 检验法例3. 方程的解是( )A. 3B. 2C. 1D.3/7解:把四个选择支的数值代入方程中,很快就可知道答案为C。
点拨:检验法就是将选择支分别代入题设中或将题设代入选择支中检验,从而确定答案。
解答本题时若直接解方程,要浪费很多时间和精力。
当结论为具体值时可考虑使用检验法。
四. 排除法例4. 在同一坐标平面内,函数与的图象只可能是( )解:选择支A中抛物线肯定错误,B中直线肯定错误(若为抛物线也错误),C中直线和抛物线不是同时正确的,故选D。
点拨:排除法就是利用一些基本概念、定理和简单的运算,通过排除容易发现错误的选择支,从而推断正确答案的方法。
(完整word版)2014年河北省中考数学试题及答案解析版,推荐文档
2014年河北省中考数学试卷参考答案与试题解析一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2B.3C.4D.5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D.7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D.80°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集.专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A.0B.1C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2B.3C.4D.5考点:图形的剪拼.分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0B.1C.D.考点:展开图折叠成几何体.分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出PA=PB.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质.分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象.专题:新定义.分析:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.6考点:正多边形和圆.分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S空白=a•a=a2,∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D.31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而判断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则五个数的和一定大于等于21且小于等于29.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=2.考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2014•河北)若实数m,n 满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2014)2=0,m﹣2=0,n﹣2014=0,m=2,n=2014.m﹣1+n0=2﹣1+20140=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形=4cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法.专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数.分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A 处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质.专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题.专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是1,当BP经过点O时,∠ABA′=60°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义.专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出y1,y2(米)与t(分)的函数关系式,再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时,在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长,而成2号车到A出口的距离大于3个边长,进而得出结论;(2)分类讨论,若步行比乘1号车的用时少,就有,得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意,得情况一需要时间为:=16﹣,情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类讨论思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.参与本试卷答题和审题的老师有:王开东;2300680618;zhjh;73zzx;星期八;gbl210;sd2011;hdq123;sks;杨金岭;bjy;dbz1018;1160374;zcx;sjzx;gsls;lantin;zjx111(排名不分先后)菁优网2014年7月21日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1 (2012•白银)方程的解是()A.x=±1 B.x=1 C.x=﹣1 D.x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x2﹣1=0,即(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好.例2 (2012•常州)已知a、b、c、d都是正实数,且a cb d,给出下列四个不等式:①a c abcd <++;②c a c d a b <++;③ d b c d a b <++;④b d a b c d<++。
其中不等式正确的是( ) A .①③ B .①④C .②④D .②③思路分析:由已知a 、b 、c 、d 都是正实数,且 a cb d<,取a=1,b=3,c=1,d=2,代入所求四个式子即可求解。
解:由已知a 、b 、c 、d 都是正实数,且a cb d<,取a=1,b=3,c=1,d=2,则 1111,134123a c a b c d ====++++,所以a ca b c d <++,故①正确; 2233,123134d b c d a b ====++++,所以d bc d a b<++,故③正确。
故选A 。
点评:本题考查了不等式的性质,用特殊值法来解,更为简单. 对应训练 2.(2012•南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( ) A .3 B .1 C .1,3 D .±1,±3考点三:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。
使用筛选法的前提是“答案唯”.( )A .∠POQ 不可能等于90°B .12k PM QM k C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是12(|k 1|+|k 2|)考点四:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较的直线不经过第三象限的概率是( ) A .B .C .D . 1考点五:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。
这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例5 (2012•贵阳)已知二次函数y=ax 2+bx+c (a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是( )A .有最小值-5、最大值0B .有最小值-3、最大值6C .有最小值0、最大值6D .有最小值2、最大值6解:由二次函数的图象可知,∵-5≤x≤0,∴当x=-2时函数有最大值,y最大=6;当x=-5时函数值最小,y最小=-3.故选B.点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.对应训练5.(2012•南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A.k=n B.h=m C.k<n D.h<0,k<0考点六:特征分析法对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例6 (2012•威海)下列选项中,阴影部分面积最小的是()A.B.C.D.6.(2012•丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为()A.﹣1 B.1C.2D.﹣2考点七:动手操作法与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.例7 (2012•西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A .B .C .D .四、中考真题演练 1.(2012•衡阳)一个圆锥的三视图如图所示,则此圆锥的底面积为( )A .30πcm 2B . 25πcm 2C . 50πcm 2D . 100πcm 2 2.(2012•福州)⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是( )A .内含B . 相交C . 外切D . 外离3.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a ,则阴影部分的面积为( )A .2a 2B . 3a 2C . 4a 2D . 5a 2 4.(2012•安徽)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线ℓ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图象大致是( )A .B .C.D.5.(2012•黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=3 6.(2012•长春)有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图象可能是()A.B.C.D.7.(2012•荆门)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3C.4D.58.(2012•河池)若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.a b>b29.(2012•南通)已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16 10.(2012•六盘水)下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x 11.(2012•郴州)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)12.(2012•莆田)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()A.甲队B.乙队C.丙队D.丁队13.(2012•怀化)为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定14.(2012•长春)如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A.27 B.29 C.30 D.31 15.(2012•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形16.(2012•江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长17.(2012•大庆)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(O,2)D.(2,0)18.(2012•长春)在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.19.(2012•凉山州)已知,则的值是()A.B.C.D.20.(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④21.(2012•朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆22.(2012•河池)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°23.(2012•长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1 24.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.B D=AC D.∠B=45°25.(2012•河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形26.(2012•随州)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°27.(2012•攀枝花)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A.1个B.2个C.3个D.4个28.(2012•莱芜)以下说法正确的有()①正八边形的每个内角都是135°②与是同类二次根式③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当x<0时,y随x的增大而增大.A.1个B.2个C.3个D.4个29.(2012•东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①②B.①②③C.①②③④D.②③④专题一选择题解题方法参考答案4.C5.A6.D解:∵点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点,∴四边形ABCD是矩形,∵四边形ABCD的面积是8,∴4×|﹣k|=8,解得|k|=2,又∵双曲线位于第二、四象限,∴k<0,∴k=﹣2.故选D.7.B.四、中考真题演练1.B2.C3.A解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,=×a×a=,∴S△ABC∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.4.D解:当P与O重合,∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣6x+6,∴S△ABP故此函数为二次函数,∵a=>0,∴当x=﹣=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.5.B解:根据题意得:7x+9y≤40,则x≤,∵40﹣9y≥0且y是非负整数,∴y的值可以是:1或2或3或4.当x的值最大时,废料最少,当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;当y=4时,x≤,则x=0(舍去).则最小的是:x=3,y=2.故选B.6.A7.D解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.8.A9.A10.D11.D12.A13.A14.C15.D16.D17.A解:如图,作AC⊥x轴于C点,BD⊥y轴于D点,∵点A的坐标为(,1),∴AC=1,OC=,∴OA==2,∴∠AOC=30°,∵OA绕原点按逆时针方向旋转30°得OB,∴∠AOB=30°,OA=OB,∴∠BOD=30°,∴Rt△OAC≌Rt△OBD,∴DB=AC=1,OD=OC=,∴B点坐标为(1,).故选A.18.D19.D20.C21.B22.C解:∵△GEF是含45°角的直角三角板,∴∠GFE=45°,∵∠1=25°,∴∠AFE=∠GEF﹣∠1=45°﹣25°=20°,∵AB∥CD,∴∠2=∠AFE=20°.故选C.23.B解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.24.A25.B26.B27.B解:∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;如图,∠C和∠D都对弦AB,但∠C和∠D不相等,即②是假命题;三角形有且只有一个外接圆,外接圆的圆心是三角形三边垂直平分线的交点,即③是真命题;垂直于弦的直径平分弦,且平分弦所对的两条弧,即④是真命题.故选B.28.C解:①正八边形的每个内角都是:=135°,故①正确;②∵=3,=,∴与是同类二次根式;故②正确;③如图:∵OA=OB=AB,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴长度等于半径的弦所对的圆周角为:30°或150°;故③错误;④反比例函数y=﹣,当x<0时,y随x的增大而增大.故④正确.故正确的有①②④,共3个.故选C.29.C解:①设D(x,),则F(x,0),由图象可知x>0,∴△DEF的面积是:×||×|x|=2,设C(a,),则E(0,),由图象可知:<0,a>0,△CEF的面积是:×|a|×||=2,∴△CEF的面积=△DEF的面积,故①正确;②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,故EF∥CD,∴FE∥AB,∴△AOB∽△FOE,故②正确;③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,∴x+3=,解得:x=﹣4或1,经检验:x=﹣4或1都是原分式方程的解,∴D(1,4),C(﹣4,﹣1),∴DF=4,CE=4,∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,∴A(﹣3,0),B(0,3),∴∠ABO=∠BAO=45°,∵DF∥BO,AO∥CE,∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,∴∠DCE=∠FDA=45°,在△DCE和△CDF中,∴△DCE≌△CDF(SAS),故③正确;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;正确的有4个.故选C.。