八年级上数学期末测试题一

合集下载

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和44.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.10.(3分)当x=时,分式的值为零.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.12.(3分)已知y﹣x=3xy,则代数式的值为.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是.14.(3分)已知=+,则整式A﹣B=.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为cm.16.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1=(2)+=18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)若关于x的方程+2=有增根,求增根和k的值.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF ⊥CD,垂足为F,求证:EF=AP.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.【解答】解:由题意可知:﹣2+=0x2﹣2x(x﹣5)+(x﹣5)(x+1)=0x2﹣2x2+10x+x2﹣4x﹣5=06x=5x=经检验,x=是分式方程的解故选:B.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和4【解答】解:∵数据3,4,x,6,7的平均数是5,∴3+4+x+6+7=5×5解得:x=5,∴中位数为5,方差为s2= [(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选:B.4.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等【解答】解:A、等边三角形的三个角都是60°,正确;B、平行于同一条直线的两直线平行,正确;C、直线经过外一点有且只有一条直线与已知直线平行,正确;D、两边及一角分别对应相等的两个三角形全等,错误;故选:D.5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°【解答】解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4【解答】解:分式方程去分母得:2x+a=﹣x+2,移项合并得:3x=2﹣a,解得:x=,∵分式方程的解为非负数,∴≥0,且≠2,解得:a≤2,且a≠﹣4.故选:C.二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.10.(3分)当x=3时,分式的值为零.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.12.(3分)已知y﹣x=3xy,则代数式的值为4.【解答】解:∵y﹣x=3xy,∴x﹣y=﹣3xy,则原式====4.故答案是:4.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是3.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是(2x1﹣1+2x2﹣1+2x3﹣1+2x4﹣1+2x5﹣1)=3.故答案为:3.14.(3分)已知=+,则整式A﹣B=﹣1.【解答】解:∵=+=,∴3x﹣4=A(x﹣2)+B(x﹣1),整理得出:3x﹣4=(A+B)x﹣2A﹣B,∴,解得:,则整式A﹣B=1﹣2=﹣1,故答案为:﹣1.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为8cm.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE 的周长是:CD +DE +CE=AE +DE +CD=AD +CD=8,故答案为:8.16.(3分)如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,△ABC 的面积是 42 .【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD=×4×(AB +AC +BC )=×4×21=42,故答案为:42.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1= (2)+=【解答】解:(1)方程两边都乘以2(x+3),得:4x+2(x+3)=7,解得:x=,当x=时,2(x+3)=≠0,所以分式方程的解为x=;(2)方程两边都乘以(1﹣3x)(1+3x),得:(1﹣3x)2﹣(1+3x)2=12,解得:x=﹣1,当x=﹣1时,(1﹣3x)(1+3x)=﹣8≠0,所以分式方程的解为x=﹣1.18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.(6分)若关于x的方程+2=有增根,求增根和k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.【解答】解:(1)∵两组数据:3,a,2b,5与a,6,b的平均数都是8,∴,解得:;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,即众数为12.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.【解答】(1)证明:过点D作DF∥AC交BC于点F,∴∠ACB=∠DFB,∠FDP=∠E,∵AB=AC(已知),∴∠ACB=∠ABC,∴∠ABC=∠DFB,∴DF=DB;又∵CE=BD(已知),∴CE=DF;又∵∠DPF=∠CPE,∴△ECP≌△DFP,∴PE=PD;(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),∴BD:AB=1:5,∵DF∥AC,∴△BDF∽△BAC,∴==;∵BC=10,∴BF=2,FC=8,∵△DFP≌△ECP,∴FP=PC,∴PF=4,则BP=BF+FP=6.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:在线段BC上截取BE=BA,连接DE,如图所示.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.【解答】证明:连接PC,∵四边形ABCD是正方形,∴∠BCD=90°,∠ABD=∠CBD=45°,BA=BC,∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∴AP=EF.。

八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷一、选择题:每空3分,共30分.1.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠12.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,93.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形5.如图,每个小正方形的边长为1,△ABC的三边a、b、c的大小关系式正确的是()A.c<a<b B.a<b<c C.a<c<b D.c<b<a6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为()A.60°B.62°C.64°D.66°9.(2x)n﹣81分解因式后得(4x2+9)(2x+3)(2x﹣3),则n等于()A.2 B.4 C.6 D.810.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.二、填空题:每空3分,共18分.11.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.12.当x=时,2x﹣3与的值互为倒数.13.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,若∠BAC=80°,则∠BOD的度数为.14.因式分解:(x2+4)2﹣16x2=.15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.16.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是.三、解答题:第17-21题各8分,第22-23题各10分,第24题12分,共72分。

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.13.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.下列运算正确的是()A.B.C.D.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为.12.(1)(a2)3•(a2)4÷(a2)5=;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=.13.等腰三角形一个角为50°,则此等腰三角形顶角为.14.已知4x2+mx+9是完全平方式,则m=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.若分式有意义,则x的取值范围是.17.已知x+y=6,xy=4,则x2y+xy2的值为.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.19.已知关于x的分式方程=1有增根,则a=.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.23.计算:(1)﹣a﹣1(2)(﹣)÷.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.26.解方程:.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.1【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0)进而得出答案.【解答】解:(π﹣2013)0=1.故选:D.【点评】此题主要考查了零指数幂:a0=1(a≠0),正确根据定义得出是解题关键.3.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x【考点】整式的混合运算.【专题】计算题.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用同分母幂的乘法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、(x3)2=x6,故选项错误;B、2a﹣5•a3=2a﹣2,故选项错误;C、3﹣2=,故选项正确;D、6x3÷(﹣3x2)=﹣2x,故选项错误.故选C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【考点】解分式方程.【分析】根据等式的性质:两边都乘以(x﹣2),可得答案.【解答】解:去分母,得1+(1﹣x)=x﹣2,故D正确;故选:D.【点评】本题考查了解分式方程,利用了等式的性质.5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】根据三角形的内角和定理就可以求出∠DAB=∠CBA,由等式的性质就可以得出∠DAE=∠CBE,根据AAS就可以得出△DEA≌△CEB;由△DEA≌△CEB就可以得出CE=DE,∠1=∠2就可以得出AE=BE,就可以得出结论.【解答】解:∵∠1+∠C+∠ABC=∠2+∠D+∠DAB=180°,且∠1=∠2,∠C=∠D,∴∠ABC=∠DAB,∴∠ABC﹣∠2=∠DAB﹣∠1,∴∠DAB=∠CBA.故A正确;在△DEA和△CEB中,∴△DEA≌△CEB(AAS),故B错误;∴AC=BD.∵∠1=∠2,∴BE=AE,∴△EAB是等腰三角形,AC﹣AE=BD﹣BE,故D正确;∴CE=DE.故C正确.故选B.【点评】本题考查了三角形全等的判定及性质的运用,等腰三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形全等是关键.6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【考点】因式分解的意义.【专题】因式分解.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【考点】因式分解的应用;因式分解-运用公式法.【专题】计算题.【分析】把已知等式左边分解得到(a﹣b)2=0且(b+c)(b﹣c)=0,则a=b且b=c,即a=b=c,然后根据等边三角形的判定方法矩形判断.【解答】解:∵a2﹣2ab+b2=0且b2﹣c2=0,∴(a﹣b)2=0且(b+c)(b﹣c)=0,∴a=b且b=c,即a=b=c,∴△ABC为等边三角形.故选D.【点评】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.8.下列运算正确的是()A.B.C.D.【考点】分式的乘除法;分式的加减法.【分析】利用分式的乘除运算与加减运算法则求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、,故本选项错误;B、,=•=,故本选项错误;C、,==,故本选项正确;D、==﹣,故本选项错误.故选C.【点评】此题考查了分式的乘除运算与加减运算法则.此题难度不大,注意掌握符号的变化是解此题的关键.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】开放型.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为 6.08×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000608用科学记数法表示为6.08×10﹣4,故答案为6.08×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(1)(a2)3•(a2)4÷(a2)5=a4;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=2y2﹣4xy.【考点】整式的混合运算.【分析】(1)利用整式的乘方法则,积的乘方法则以及单项式的乘法法则化简即可.(2)先提公因式,然后再化简可以简便运算.【解答】解:(1)原式=a6•a8÷a10=a14﹣10=a4.故答案为a4.(2)原式=(2x﹣y)(2x﹣y﹣2x﹣y)=(2x﹣y)•(﹣2y)=2y2﹣4xy.故答案为2y2﹣4xy.【点评】本题考查整式的乘方法则,积的乘方法则以及单项式的乘法法则,灵活掌握运算法则是正确解题的关键.13.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.已知4x2+mx+9是完全平方式,则m=±12.【考点】完全平方式.【分析】这里首末两项是2x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【解答】解:∵4x2+mx+9是完全平方式,∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.【点评】此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.若分式有意义,则x的取值范围是x≠.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于0列式计算即可.【解答】解:由题意得,1﹣2x≠0,解得,x≠,故答案为:x≠.【点评】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.17.已知x+y=6,xy=4,则x2y+xy2的值为24.【考点】因式分解的应用.【专题】因式分解.【分析】先提取公因式xy,整理后把已知条件直接代入计算即可.【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.【点评】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.19.已知关于x的分式方程=1有增根,则a=1.【考点】分式方程的增根.【专题】计算题.【分析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.【解答】解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为80度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和和折叠的性质计算即可.【解答】解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴△EGF∽△CAF,∴α=∠EAC=80°.故填80°.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.【考点】作图-轴对称变换.【分析】(1)先找出对称轴,再从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)从图中可以看出四边形ABED是一个梯形,根据梯形的面积公式计算.【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)【点评】本题的关键是找出各点的对应点,然后顺次连接.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式ab,进而利用平方差公式分解因式得出答案;(2)直接提取公因式xy,进而利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)x3y3﹣2x2y2+xy=xy(x2y2﹣2xy+1)=xy(xy﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.计算:(1)﹣a﹣1(2)(﹣)÷.【考点】分式的混合运算.【分析】(1)先通分,再进行加减即可;(2)根据运算顺序,先算括号里面的,再进行分式的除法运算.【解答】解:(1)原式=﹣﹣==;(2)原式=(﹣)÷=•==﹣.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式被除数括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,将x与y 的值代入计算,即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=5,y=﹣6时,原式=﹣5﹣(﹣6)=﹣5+6=1.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【专题】证明题.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.26.解方程:.【考点】解分式方程.【专题】计算题.【分析】方程右边分子分母提取﹣1变形后,两边都乘以x﹣3去分母后,去括号,移项合并将x系数化为1,求出x的值,将x的值代入检验,即可得到分式方程的解.【解答】解:方程变形为+2=,去分母得:1+2(x﹣3)=x﹣4,去括号得:1+2x﹣6=x﹣4,解得:x=1,将x=1代入得:x﹣3=1﹣3=﹣2≠0,则分式方程的解为x=1.【点评】此题考查了解分式方程,做题时注意分式方程要检验.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【考点】分式方程的应用;二元一次方程的应用.【分析】(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=C Q,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

八年级(上)期末数学试卷(附答案解析)

八年级(上)期末数学试卷(附答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6 4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.45.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.58.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.810.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=.12.多项式3x2﹣6x的公因式为.13.若a2﹣b2=,a﹣b=,则a+b的值为.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做件.16.已知关于x的分式方程的解是非负数,则m的取值范围是.17.若m为正实数,且m2﹣m﹣1=0,则m2+=.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=.三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.20.先化简,再求值:÷(x+1+),其中x=2018.21.解方程:(1)﹣=1(2)=﹣1.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选B.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数【考点】62:分式有意义的条件.【分析】直接利用分式有意义则分母不为零,进而得出答案.【解答】解:要使分式有意义,则x﹣1≠0,解得:x≠1.故选:C.3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6【考点】49:单项式乘单项式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据单项式的乘法,同底数幂的除法,积的乘方,可得答案.【解答】解:A、3a×2b=6ab,故A不符合题意;B、﹣a2×a=﹣a3,故B不符合题意;C、(﹣x)9÷(﹣x)3=(﹣x)3,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.4【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,即可求解.【解答】解:根据三角形的三边关系定理可得:7﹣4<AC<7+4,即3<AC<11,故选:A.5.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5【考点】KA:全等三角形的性质.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC﹣AE=3,故选:B.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.8【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质.【分析】先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【解答】解:连接CF,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴EB=EC,当B、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,∴EF+BE的最小值为6,故选B10.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/小时,B的速度是1.5x千米/小时,根据甲、乙行使相等距离而时间不同可列分式方程求解.【解答】解:设甲的速度是x千米/小时,B的速度是1.5x千米/小时,﹣1+=,x=40,经检验x=40是分式方程的解.答:甲的速度40千米/小时.二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=1.【考点】6E:零指数幂.【分析】根据非零的零次幂等于,可得答案.【解答】解:(π﹣2)0=1,故答案为:1.12.多项式3x2﹣6x的公因式为3x.【考点】52:公因式.【分析】根据因式分解,可得答案.【解答】解:3x2﹣6x=3x(x﹣2),公因式是3x,故答案为:3x.13.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】4F:平方差公式.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=8cm.【考点】K2:三角形的角平分线、中线和高.【分析】设AB=xcm,BD=ycm,由三角形中线的定义得到BC=2BD=2ycm,再根据△ABC的周长为27cm,△ABD周长为19cm列出关于x、y方程组,解方程组即可.【解答】解:设AB=xcm,BD=ycm,∵AD是BC边的中线,∴BC=2BD=2ycm.由题意得,解得,所以AB=8cm.故答案为8cm.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做24件.【考点】B7:分式方程的应用.【分析】设每天应多做x件.根据实际所用的时间比原计划所用的时间提前5天列方程求解.【解答】解:设每天应多做x件,则依题意得:﹣=5,解得:x=24.经检验x=24是方程的根,答:每天应多做24件,故答案为24.16.已知关于x的分式方程的解是非负数,则m的取值范围是m ≥2且m≠3.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.17.若m为正实数,且m2﹣m﹣1=0,则m2+=3.【考点】4C:完全平方公式.【分析】在m2﹣m﹣1=0同时除以m,得到,然后利用完全平方公式展开整理即可得解.【解答】解:在m2﹣m﹣1=0同时除以m,得:m﹣1﹣=0∴,=3,故答案为:3.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=1:4.【考点】KA:全等三角形的性质.【分析】根据三角形的内角和定理分别求出,∠A、∠ABC、∠ACB,再根据全等三角形对应角相等求出∠B′,∠A′CB′,全等三角形对应边相等可得BC=B′C,再求出∠BC A′,∠BC B′,然后相比即可.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△A′B′C≌△ABC,∴∠B′=∠B=50°,∠A′CB′=∠C=100°,BC=B′C,∴∠BC B′=180°﹣2×50°=80°,∠BC A′=100°﹣80°=20°,∴∠BC A′:∠BC B′=1:4.故答案为:1:4三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=4(a2﹣9)=4(a+3)(a﹣3);(2)原式=x2﹣4xy+4y2+8xy=x2+4xy+4y2=(x+2y)2.20.先化简,再求值:÷(x+1+),其中x=2018.【考点】6D:分式的化简求值.【分析】根据分式的混合运算顺序和法则化简原式,再将x的值代入即可得.【解答】解:原式=÷(+)=•=,当x=2018时,原式=.21.解方程:(1)﹣=1(2)=﹣1.【考点】B3:解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣2x+2=x2﹣x,移项合并得:﹣x=﹣2,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.【考点】KD:全等三角形的判定与性质.【分析】先证明BC=EF,然后依据AAS证明△ABC≌△DEF,最后依据全等三角形的性质进行证明即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF.∴AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.【考点】P7:作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)利用(1)中图形得出各点坐标.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)A′(1,2)、B′(4,1)、C′(2,﹣2).24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)根据线段垂直平分线和等边三角形的性质可得AD=DC,∠ABD=30°,再由正弦定理可以证明DA+DC=DB;(2)延长DA到E,使得∠EBD=60,由已知可知△EBD是一个等边三角形,再证明△EBD≌△CBD,得出EA=DC,从而证明BD=ED=EA+AD=DC+AD;(3)可直接得DA,DC,DB的数量关系.【解答】证明:(1)点D只能在AC的下边,容易得到BD是AC的中垂线,因此AD=DC,∠ABD=30°,在三角形内由正弦定理可以得到=,可以很快得到BD=2AD=AD+AC;(2)延长DA到E,使得ED=BD,又因为∠ADB=60°因此△EBD是一个等边三角形,所以BE=ED=BD,∠EBD=60°,又因为△ABC是等边三角形,所以AB=BC,∠ABC=60°,所以∠EBA=∠DBC,在△EBA与△DBC中,因为,所以△ABE≌△CBD(SAS),因此EA=DC,所以BD=ED=EA+AD=DC+AD;(3)DC<DA+DB.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.【考点】KY:三角形综合题.【分析】(1)①根据非负数的性质列出算式,求出a、b的值;②根据等腰直角三角形的性质求出AC、BC,根据三角形的面积公式计算即可;(2)作FG⊥y轴,FH⊥x轴垂足分别为G、H,证明四边形FHOG是正方形,得到OG=FH,∠GFH=90°,证明△AFG≌△BFH,根据全等三角形的性质计算即可.【解答】解:(1)①∵a2+b2﹣8a﹣4b+20=0,∴(a﹣4)2+(b﹣2)2=0,∴a=4,b=2;②∵A(0,4),B(2,0),∴AB==2,∵△ABC是等腰直角三角形,∴AC=BC=,∴四边形AOBC的面积S=×OA×OB+×AC×BC=4+5=9;(2)结论:FA=FB,FA⊥FB,理由如下:如图2,作FG⊥y轴,FH⊥x轴垂足分别为G、H,∵A(0,a)向右平移a个单位到D,∴点D坐标为(a,a),点E坐标为(a+b,0),∴∠DOE=45°,∵EF⊥OD,∴∠OFE=90°,∠FOE=∠FEO=45°,∴FO=EF,∴FH=OH=HE=(a+b),∴点F坐标为(,),∴FG=FH,四边形FHOG是正方形,∴OG=FH=,∠GFH=90°,∴AG=AO﹣OG=a﹣=,BH=OH﹣OB=﹣b=,∴AG=BH,在△AFG和△BFH中,,∴△AFG≌△BFH,∴FA=FB,∠AFG=∠BFH,∴∠AFB=∠AFG+∠BFG=∠BFH+∠BFG=90°,∴FA=FB,FA⊥FB.第21页(共21页)。

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。

八年级(上)期末数学试卷(含答案解析)

八年级(上)期末数学试卷(含答案解析)

八年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a22.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)24.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=.15.a+2﹣=.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是.17.因式分解:(x﹣1)(x+4)+4.18.解分式方程:.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a2【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a2•a=a3.故选:C.2.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.【考点】L1:多边形;K4:三角形的稳定性.【分析】根据三角形的稳定性进行解答.【解答】解:含有三角形结构的支架不容易变形.故选:B.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2【考点】6F:负整数指数幂;1E:有理数的乘方;6E:零指数幂.【分析】结合负整数指数幂、有理数的乘方以及零指数幂的概念和运算法则进行求解即可.【解答】解:A、﹣31=﹣3,本选项正确;B、(﹣3)0=1≠﹣3,本选项错误;C、3﹣1=≠﹣3,本选项错误;D、(﹣3)2=9≠﹣3,本选项错误.故选A.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变【考点】65:分式的基本性质.【分析】根据题意将10x与10y代入原式后化简即可求出答案.【解答】解:由题意可知:==故选(D)5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、正方形是轴对称图形,不合题意;B、等腰直角三角形是轴对称图形,不合题意;C、等边三角形是轴对称图形,不合题意;平行四边形不是轴对称图形,符合题意;D、含30°的直角三角形不是轴对称图形,符合题意;故选:D.6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac【考点】51:因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°【考点】KH:等腰三角形的性质.【分析】由等腰三角形中有一个角等于40°,可分别从①若40°为顶角与②若40°为底角去分析求解即可求得答案.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角的度数为:40°或100°.故选:C.8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO【考点】KB:全等三角形的判定.【分析】根据ASA可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAA不能推出两三角形全等.【解答】解:A、∵在△AOB和△DOC中∴△AOB≌△DOC(ASA),正确,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;C、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;D、根据三个角对应相等的两个三角形不全等,错误,故本选项正确;故选D.9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°【考点】PB:翻折变换(折叠问题);K7:三角形内角和定理.【分析】连接AF交DE于G,由翻折的性质可知点G是AF的中点,故此DG是△ABF的中位线,于是得到DG∥BF,由平行线的性质可求得∠ADE=50°.【解答】解:如图所示:连接AF交DE于G.∵由翻折的性质可知:AG=FG.∴点G是AF的中点.又∵D是AB的中点,∴DG是△ABF的中位线.∴DG∥FB.∴∠ADE=∠B=∠EDF=50°.故选B.10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:A二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为x≠1.【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于6cm.【考点】KJ:等腰三角形的判定与性质.【分析】根据题意,可得∠AOC=∠BOC,又因为CD∥OB,求得∠C=∠AOC,则CD=OD可求.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC;又∵CD∥OB,∴∠C=BOC,∴∠C=∠AOC;∴CD=OD=6cm.故答案为:6cm.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=135.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.15.a+2﹣=.【考点】6B:分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:a+2﹣=+=.故答案为:.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是0<BC<10.【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的性质和三角形的三边关系即可得到结论.【解答】解:∵AB的垂直平分线DE交AB于点D,∴AE=BE,∴AE+CE=AC=10,∴0<BC<10,故答案为:0<BC<10.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:(x﹣1)(x+4)+4.【考点】53:因式分解﹣提公因式法.【分析】首先去括号,进而合并同类项,再利用提取公因式法分解因式得出答案.【解答】解:原式=x2+3x﹣4+4=x2+3x=x(x+3).18.解分式方程:.【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣2),得3(x﹣2)=x,解得x=3.检验:把x=3代入x(x﹣2)=3≠0.∴原方程的解为:x=3.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ABD和∠△CDB中,,∴△ABD≌△CDB,∴AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后选取合适的值代入化简后的式子即可解答本题,注意x不能取0或1.【解答】解:(﹣)+======,当x=2时,原式==3.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.【考点】P7:作图﹣轴对称变换;PA:轴对称﹣最短路线问题.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用对称点求最短路线的性质得出答案.【解答】解:(1)如图所示:△A1B1C1为所求作的三角形;(2)如图,点P的坐标为:(0,1).22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义求出∠ACB,再利用三角形的内角和等于180°列式计算即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:(1)∵CD平分∠ACB,∠BCD=31°,∴∠ACD=∠BCD=31°,∴∠ACB=62°,∵在△ABC中,∠A=72°,∠ACB=62°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣72°﹣62°=46°;(2)在△BCD中,由三角形的外角性质得,∠ADC=∠B+∠BCD=46°+31°=77°.五、解答题(三)(共3个小题,每小题9分,满分27分)23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.【考点】B7:分式方程的应用.【分析】设货车原来的速度为x km/h,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可【解答】解:设货车原来的速度为x km/h,根据题意得:﹣=,解得:x=75.经检验:x=75是原方程的解.答:货车原来的速度是75 km/h.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.【考点】K7:三角形内角和定理.【分析】(1)根据三角形内角和定理和角平分线的定义计算求解;(2)在AC上截取AG=AE,则EF=FG;根据ASA证明△FCD≌△FCG,得DF=FG,故判断EF=FD.【解答】解:(1)∵△ABC中,∠ACB=90°,∠B=60°∴∠BAC=30°,∵AD、CE分别是∠BAC、∠BCA的平分线∴∠FAC=∠BAC=15°,∠FCA=∠ACB=45°∴∠AFC=180°﹣∠FAC﹣∠FCA=120°,∴∠EFD=∠AFC=120°;(2)FE与FD之间的数量关系为FE=FD;证明:在AC上截取AG=AE,连接FG,∵AD是∠BAC的平分线,∴∠1=∠2又∵AF为公共边在△EAF和△GAF中∵,∴△AEF≌△AGF∴FE=FG,∠AFE=∠AFG=60°,∴∠CFG=60°,又∵FC为公共边,∠DCF=∠FCG=45°在△FDC和△FGC中∵,∴△CFG≌△CFD,∴FG=FD∴FE=FD.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.【考点】KD:全等三角形的判定与性质;KM:等边三角形的判定与性质.【分析】(1)根据等边三角形的性质,可证明△ABE≌△DBC,可求得∠BAE=∠BDC,则可证得∠ABD=∠DMA=60°;(2)由等边三角形的性质,结合(1)中的结论可证明△ABP≌△DBQ,可得BP=BQ,则可证得结论.【解答】证明:(1)∵△ABD、△BCE均为等边三角形,∴AB=DB,EB=CB,∠ABD=∠EBC=60°,∴∠ABD+∠DBE=∠EBC+∠DBE,即∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC (SAS),∴∠BAE=∠BDC,在△ABP和△DMP中,∠BAE=∠BDC,∠APB=∠DPM,∴∠DMA=∠ABD=60°;(2)∵△ABD、△BCE均为等边三角形,∴AB=DB,∠ABD=∠EBC=60°,∵点A、B、C在一条直线上,∴∠DBE=60°,即∠ABD=∠DBE,由(1)得∠BAE=∠BDC,在△ABP和△DBQ中∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形.。

八年级上数学期末检测题1

八年级上数学期末检测题1

期末检测题1一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5 ,3.14,39 ,227 中,无理数的个数有( ) A .1 B .2 C .3 D .52.在平面直角坐标系中,与点A (5,-1)关于y 轴对称的点的坐标是( ) A .(5,1) B .(-5,-1) C .(-5,1) D .(-1,5)3.(2020·孝感)某公司有10名员工,每人年收入数据如下表:则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,54.(2020·长沙)如图,一块直角三角板的60°角的顶点A 与直角顶点C 分别在两平行线FD ,GH 上,斜边AB 平分∠CAD ,交直线GH 于点E ,则∠ECB 的大小为( )A .60°B .45°C .30°D .25° 第4题图 第5题图 第6题图5.(2020·海淀期末)如图,在下列条件中,能判断AB ∥CD 的是( )A .∠1=∠2B .∠BAD =∠BCD年收入/万元 4 6 8 10人数/人 3 4 2 1C.∠3=∠4 D.∠BAD+∠ADC=180°6.如图,在△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是( )A.59°B.60°C.56°D.22°7.某商场购进商品后,加价40%作为销售价.商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元,两种商品原售价之和为490元,甲、乙两种商品的进价分别是( )A.200元,150元B.210元,280元C.280元,210元D.150元,200元8.(德州中考)假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有( )第8题图A.4种B.6种C.8种D.10种9.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A,P,D为顶点的三角形的面积为y,则下列图象能大致反映y与x的函数关系的是( )10.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位:天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A .第24天的日销售量为200件B .第10天销售一件产品的利润是15元C .第12天与第30天这两天的日销售利润相等D .第30天的日销售利润是750元第10题图二、填空题(每小题3分,共24分) 11.16 的平方根是 ;-125的立方根是 .12.“垂直于同一条直线的两条直线互相平行”这个命题的条件是13.(2020·永州)方程组⎩⎪⎨⎪⎧x +y =4,2x -y =2 的解是 . 14.(2020·衢州)某班五个兴趣小组的人数分别为4,x ,4,6,5.已知这组数据的平均数是 ,则这组数据的中位数是 .15.在平面直角坐标系中,点P (m ,3)在第一象限的角平分线上,点Q (2,n )在第四象限角平分线上,则m +n 的值为 .16.一次函数y =2x -b 的图象与两坐标轴所围成的三角形的面积为8,则b = .17.(2020·通辽)如图,在△ABC 中,∠ACB =90°,AC =BC ,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,∠PCQ =90°,则P A 2,PB 2,PC 2三者之间的数量关系是 .第17题图 第18题图18.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在正比例函数y =kx 的图象l 上,则点B 2021的坐标是 .三、解答题(共66分)19.(8分)(1)计算:(2 +3 )(2 -3 )+212 ;(2)解方程组:⎩⎪⎨⎪⎧3x -y =7,①5x +2y =8.②20.(8分)如图,已知直线AB∥CD,EH,FH分别是∠FEB,∠EFD 的平分线.求证:EH⊥FH.21.(9分)(2020·贵阳)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.22.(9分)(2020·荆州)6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为100分),收集数据为:七年级:90,95,95,80,90,80,85,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”?23.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用A型车3辆,B 型车5辆,一次运完,且恰好每辆车都载满货物,请求出该物流公司有多少吨货物要运输.24.(10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个平面直角坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更划算.25.(12分)如图,一次函数y =-34 x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB 沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D .(1)求A ,B 两点的坐标;(2)求OC 的长;(3)设P 是x 轴上一动点,若使△P AB 是等腰三角形,写出点P 的坐标.。

八年级上数学期末测试题1

八年级上数学期末测试题1

一、选择题1、在平面直角坐标系中,已知一次函数y=kx-b 的图象大致如图所示,则下列结论正的是( ) (A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, b <0. 2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3、判断下列几组数据中,可以作为直角三角形的三条边的是 ( ) (A ) 6,15,17 (B ) 7,12,15 (C ) 13,15,20 (D) 7,24,254、函数1xy x =- 中自变量x 的取值范围是 ( ) A.x ≠0 B.x ≠1 C.x>1 D.x<1且x ≠0 5、关于函数x y 21=,下列结论正确的是 ( ) A .函数图像必经过点(1,2) B .函数图像经过二、四象限 C .y 随x 的增大而增大 D .y 随x 的增大而减小6经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识是( )(A )平均数 (B )中位数 (C )众数 ( D 7、如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) (A )-3 (B )3 (C )-1 (D )18、在平面直角坐标系中,已知一次函数b kx y += )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k 9、下列说法正确的是( )(A )矩形的对角线互相垂直 (B )等腰梯形的对角线相等(C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形 二、填空题:(每小题4分,共16分)1、下图是用黑白两种颜色的正六边形地砖,按规律拼成的若干个图案,按此规2、律请你写出:第4个图案中有白色地砖 块;第n 块图案中有白色地砖 块。

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.=±3 B.|﹣3|=﹣3 C.=3 D.﹣32=92.(3分)下列根式中,不是最简二次根式的是()A. B.C.D.3.(3分)若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍4.(3分)若分式的值为0,则x的值是()A.﹣1 B.1 C.±1 D.不存在5.(3分)不等式组的解在数轴上表示为()A.B.C.D.6.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°7.(3分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x8.(3分)下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等9.(3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为()A.B.C.D.10.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°二、填空题(每小题3分,共24分)11.(3分)16的算术平方根是.12.(3分)已知,且|a+b|=﹣a﹣b,则a﹣b的值是.13.(3分)分式方程的解是.14.(3分)化简二次根式的正确结果是.15.(3分)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.16.(3分)关于x的不等式组的解集为x<3,那么m的取值范围是.17.(3分)在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=.18.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…,则a2018的值为.三、解答题(共46分)19.(10分)(1)计算:|﹣3|﹣(2)计算:(2)﹣()20.(6分)先化简再求值:(),其中x=2.21.(6分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.22.(8分)已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE ⊥DF,点E、F在AC、BC上,求证:DE=DF.23.(8分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?24.(8分)如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.=±3 B.|﹣3|=﹣3 C.=3 D.﹣32=9【解答】解:A、原式=3,错误;B、原式=3,错误;C、原式=3,正确;D、原式=﹣9,错误,故选:C.2.(3分)下列根式中,不是最简二次根式的是()A. B.C.D.【解答】解:因为==2,因此不是最简二次根式.故选:B.3.(3分)若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【解答】解:∵==,∴分式的值不变,故选:B.4.(3分)若分式的值为0,则x的值是()A.﹣1 B.1 C.±1 D.不存在【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.5.(3分)不等式组的解在数轴上表示为()A.B.C.D.【解答】解:由不等式①,得2x>2,解得x>1,由不等式②,得﹣2x≤﹣4,解得x≥2,∴数轴表示的正确是C选项,故选:C.6.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C.7.(3分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x【解答】解:∵0<x<1,∴取x=,∴=2,x2=,∴x2<x<,故选:C.8.(3分)下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等【解答】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选:D.9.(3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为()A.B.C.D.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选:B.10.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.二、填空题(每小题3分,共24分)11.(3分)16的算术平方根是4.【解答】解:∵42=16,∴=4.故答案为:4.12.(3分)已知,且|a+b|=﹣a﹣b,则a﹣b的值是﹣1或﹣7.【解答】解:∵|a+b|=﹣a﹣b,∴a+b<0,∵,∴分两种情况:①当a<0,b<0时,此时a=﹣4,b=﹣3,a﹣b=﹣4﹣(﹣3)=﹣1;②当a<0,b>0,此时a=﹣4,b=3,a﹣b=﹣4﹣3=﹣7.故答案为:﹣1或﹣7.13.(3分)分式方程的解是x=﹣1.【解答】解:去分母得:x﹣1=2x,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣1.14.(3分)化简二次根式的正确结果是﹣a.【解答】解:∵有意义,∴﹣a3≥0,∴a≤0,∴=﹣a.故答案为:﹣a.15.(3分)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.16.(3分)关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.17.(3分)在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=9.【解答】解:∵直线MP为线段AB的垂直平分线(已知),∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NQ为线段AC的垂直平分线(已知),∴NA=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC(等量代换),又BC=9,则△AMN的周长为9.故答案为:918.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…,则a2018的值为﹣1.【解答】解:由题意可知:a1=,a2=1﹣2=﹣1,a3=1+1=2,a4=,故该数列是以,﹣1,2为一组进行循环,∴2018÷3=672 (2)∴a2018=﹣1故答案为:﹣1三、解答题(共46分)19.(10分)(1)计算:|﹣3|﹣(2)计算:(2)﹣()【解答】解:(1)原式=3﹣1+4﹣2=4;(2)原式=(2﹣10)﹣(5﹣3)=2﹣10﹣5+3=﹣3﹣7.20.(6分)先化简再求值:(),其中x=2.【解答】解:原式=×=×=当x=2时原式==.21.(6分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.22.(8分)已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE ⊥DF,点E、F在AC、BC上,求证:DE=DF.【解答】证明:连接CD.∵在等腰直角三角形ABC中,D是AB的中点.∴CD为等腰直角三角形ABC 斜边BC上的中线.∴CD⊥AB,∠ACD=∠BCD=45°,CD=BD=AD.又∵DE⊥DF∴∠EDC=∠FDB在△ECD和△FBD中∴△ECD≌△FDB(ASA)∴DE=DF23.(8分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.24.(8分)如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.【解答】(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠EFD=15°.。

八年级数学上册期末练习卷

八年级数学上册期末练习卷

八年级数学上册期末练习卷(1)姓名:一、单项选择题(每小题3分,共30分)1.(3分)下列各数是无理数的是()A.﹣B.﹣1C.﹣D.02.(3分)在平面直角坐标系中,点M(﹣3,6)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列各组数中,不能作为直角三角形的三边的是()A.3,4,5B.2,3,C.8,15,17D.32,42,524.(3分)一次函数y=x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列计算中,正确的是()A.+=B.3+2=5C.×=3D.2﹣2=6.(3分)我校八年级“汉字听写大会”比赛中,各班代表队得分(单位:分)如下:9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分7.(3分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠3=∠5B.∠1=∠5C.∠4+∠5=180°D.∠2=∠48.(3分)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y的值为()A.9B.1C.8D.﹣89.(3分)下列命题正确的是()A.数轴上的每一个点都表示一个有理数B.三角形的一个外角大于任意一个内角C.甲、乙两人五次考试平均成绩相同,且S甲2=0.9,S乙2=1.2,则乙的成绩更稳定D.在平面直角坐标系中,点(4,﹣2)与点(4,2)关于x轴对称10.(3分)如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,点E(1,0),D为线段BC的中点,P为y轴上的一个动点,连接PD、PE,当△PED的周长最小时,点P的坐标为()A.(0,)B.(0,1)C.(1,0)D.(0,)二、填空题(每小题3分,共24分)11.(3分)9的算术平方根是.12.(3分)某跳远队甲、乙两名运动员最近20次跳远成绩的平均数均为600cm,若甲跳远成绩的方差为S甲2=284,2=65.则成绩比较稳定的是.(填“甲”或“乙“)乙跳远成绩的方差为S乙13.(3分)以方程组的解为坐标的点(x,y)在第象限.14.(3分)如图,若一次函数y=kx+3与正比例函数y=2x的图象交于点(1,m),则方程组的解为.15.(3分)生活中常见的探照灯、汽车大灯等灯具都是凹面镜.如图,从光源P点照射到凹面镜上的光线PA、PB 等反射以后沿着与直线PF平行的方向射出,若∠CAP=36°,∠DBP=58°,则∠APB的度数为.16.(3分)如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.17.(3分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.18.(3分)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.三、解答题(7道小题,共46分)19.(5分)计算:.20.(5分)解方程组:.21.(7分)已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出△CEF的面积.22.(6分)深圳市教育局印发的《深圳市义务教育阶段学校课后服务实施意见》明确中小学课后延时服务从2021年3月5日开始实施.某校积极开展课后延时服务活动,提供了“有趣的生物实验、经典影视欣赏、虚拟机器人竞赛、趣味篮球训练、国际象棋大赛……”等课程供学生自由选择.一个学期后,该校现为了解学生对课后延时服务的满意情况,随机对部分学生进行问卷调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如图所示的两幅不完整的统计图:请你根据图中信息,解答下列问题:(1)该校抽样调查的学生人数为人,请补全条形统计图;(2)样本中,学生对课后延时服务满意情况的“中位数”所在等级为,“众数”所在等级为;(填“A、B、C或D”)(3)若该校共有学生2100人,据此调查估计全校学生对延时服务满意(包含A、B、C三个等级)的学生有人.23.(7分)列方程组解应用题.全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速的测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?(1)函数图象与坐标轴围成的三角形的面积是.(2)观察图象,当x>2时,y的取值范围是.(3)将直线y=2x﹣4平移后经过点(﹣3,1),求平移后的直线的函数表达式.25.(9分)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.八年级数学上册期末练习卷(2)姓名:一、选择题(每小题3分,共30分)1.16)A.4B.4± C.2D.2±2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A.1、2、3B.2、3、4C.3、4、5D.4、5、63.把△ABC 各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是()A.B.C.D.4.下列命题中,为真命题的是【】A.对顶角相等B.同位角相等C.若22a b =,则=a bD.若a b >,则22a b->-5.(2011贵州安顺)我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是()A.27,28B.27.5,28C.28,27D.26.5,276.下列计算正确的是()A.2ab ab ab ⋅=B.33(2)2a a =C.33(0)a a a =≥D.0,0)a b ab a b =≥≥7.若函数y =(2m +1)x 2+(1﹣2m )x (m 为常数)是正比例函数,则m 的值为()A.m >12B.m =12C.m <12D.m =-128.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是()A.∠3=∠4B.∠A +∠ADC =180°C.∠1=∠2D.∠A =∠59.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A.50°B.60°C.70°D.80°10.在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,所得直线的解析式为()A .y =x +1B.y =x -1C.y =xD.y =x -2二、填空题(每小题3分,共30分)11.若三元一次方程组512x y x z y z +=⎧⎪+=-⎨⎪+=-⎩的解使20ax y z +-=,则a 的值是__________.最高气温(℃)25262728天数112312.平面直角坐标系中,过点()2,3-的直线l 经过第一、二、三象限,若点()0,a ,()1,b -,(),1c -都在直线l上,则下列判断正确的是__________.①a b<②3a <③3b <④2c <-13.已知点(3,1)P -关于y 轴的对称点Q 的坐标是(,1)a b b +-,则a b 的值为___.14.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这个桌面_____(填”合格”或”不合格”).15.某中学举行广播操比赛,六名评委对某班打分如下:7.5分,8.2分,7.8分,9.0分,8.1分,7.9分,则去掉一个最高分和一个最低分后的平均分是__________分.16.如果一次函数y =x +b 经过点A (0,3),那么b =_______.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_________.18.-x x 1x +=__________.19.如图,已知直线DE 经过点A 且1B ∠=∠,260∠=︒,则3∠=__________度.20.如图,点B 、C 分别在两条直线2y x =和y kx =上,点A 、D 是x 轴上两点,已知四边形ABCD 是正方形,则k 值为______.三、解答题(60分)21.计算:(118232;(2)(232.21.解方程组:(1)21y x x y =⎧⎨-=⎩(2)421x y x y +=⎧⎨-=-⎩.23.在一分钟投篮测试中,甲、乙两组同学的一次测试成绩如下:成绩(分)456789甲组(人)124215乙组(人)113523(1)求甲、乙两组一分钟投篮测试成绩的平均数和方差;(2)从统计学的角度看,你认为哪组同学的测试成绩较好?为什么?24.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F 在CB 上,且满足∠FOB=∠AOB,OE 平分∠COF.(1)求∠EOB 的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长的数值与面积的数值相等,则点P 是和谐点.(1)判断点()1,2M ,()4,4N 是否为和谐点,并说明理由;(2)若和谐点()(),30P a a >在直线y x b =-+(b 为常数)上,求,a b 的值.26.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y (元)与用电量x (度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:(2)小明家某月用电120度,需交电费元(3)求第二档每月电费y (元)与用电量x (度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度,交电费153元,求m 的值.档次第一档第二档第三档每月用电量x (度)0<x≤140八年级数学上册期末练习卷(3)姓名:一、单选题(共42分,1~10题每题3分,11~16每题2分)1.下列实数中,无理数是()A. 3.14- B.21C.7D.492.下列运算中,正确的是()A.2462= B.255=± C.225= D.532=3.已知点()1P a -,和点()6Q b ,关于y 轴对称,则 a b +的值为()A.-5B.5C.-7D.74.下列说法正确的是()A.2xB.立方根等于它本身的数是1-和1C.648± D.81算术平方根是9-5.如图,两个较大正方形的面积分别为576、625,则字母A 所代表的正方形的边长为()A.1B.49C.16D.76.为庆祝世界杯夺冠,学校开展球赛知识抢答活动.经过几轮筛选,八(1)班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分2)如表所示:如果要选出一名成绩好且状态稳定的同学,那么应该选择()A.甲B.乙C.丙D.丁7.下列命题中的真命题是()A.相等的角是对顶角B.若两个角的和为180°,则这两个角互补C .若实数a ,b 满足22 a b =,则a b =D.同位角相等8.在ABC 中,A ∠,B ∠, C ∠的对边分别记为a ,b ,c ,下列结论中不正确的是()A.如果222a b c =-,那么ABC 是直角三角形且90B ∠=︒B.如果345A B C ∠∠∠=∶∶∶∶,那么ABC 是直角三角形C.如果222 91625a b c =∶∶∶∶,那么ABC 是直角三角形D.如果A B C ∠-∠=∠,那么 ABC 是直角三角形9.183-的值在()A.3到4之间B.4到5之间C.1到2之间D.2到3之间甲乙丙丁平均数99969799方差 1.20.60.60.810.已知点()3,2M 与点(),N a b 在同一条平行于x 轴的直线上,且N 到y 轴的距离是4,则点N 的坐标是()A.()4,2或()4,2-B.()4,2-或()1,2--C.()4,2-或()4,2--D.()4,2-或()5,2--11.今年9月22日是第三个中国农民丰收节,小彬用3D 打印机制作了一个底面周长为20cm ,高为10cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为()A.20cmπ B.40cmπ C.102cmD.202cm12.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,本长几何?”意思是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺.向木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为()A. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ B. 4.521y x y x =+⎧⎨=-⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.521y x y x =-⎧⎨=+⎩13.如图,直线CE DF ∥,135CAB ∠=︒,85ABD ∠=︒,则12∠+∠=()A.30°B.35°C.36°D.40°14.一次函数1y ax b =+与2y bx a =+在同一坐标系的图象正确的是()A.B.C.D.15.如图,Rt ABC △中,90B ∠=,4AB =,8BC =,将Rt ABC △折叠,使点C 与AB 的中点D 重合,折痕交 AC 于点M ,交BC 于点N ,则线段BN 的长为().A.73B.154C.4D.10316.甲乙两车从A 城出发匀速驶向B 城,在整个行驶过程中,两车离开A 城的距离()km y 与甲车行驶的时间()h t 之间的函数关系如图,则下列结论错误的是()①A 、B 两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t 的或54或56或156或254A .①②B.②③C.①④D.③④第II 卷(非选择题)二、填空题(共10分,17、18每题3分,19题共4分,每空2分)17.2(11)-的平方根是____________.18.用一组a ,b 的值说明“若a b <,则22a b <”是假命题,若小明取 2a =-,则b =__________.19.如图,在平面直角坐标系中,点()1A 1,1在直线=图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作第一个正方形111111A B C D C D ,所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作第二个正方形2222A B C D …依此类推,按照图中反映的规律,第3个正方形的边长是______;第100个正方形的边长是______.三、解答题(共68分)20.计算(写出详细的计算过程)(1(0382515342--+-⨯+-(2((27532323÷--+21.如图,在ABC 中,CG AB ⊥,垂足为G ,点F 在BC 上,EF AB ⊥,垂足为E .(1)GC 与EF 平行吗?为什么?(2)如果12∠=∠,且360∠=︒,求ACB ∠的度数.22.北京冬奥会的成功举办掀起了全民“冬奥热”,某校组织全校七、八年级学生举行了“冬奥知识”竞赛,现分别在七、八两个年级中各随机抽取10名学生,统计这部分学生的竞赛成绩,相关数据统计整理如下:【收集数据】七年级10名同学测试成绩统计如下:85788679729179726989,,,,,,,,,八年级10名同学测试成绩统计如下:85807684807292747582,,,,,,,,,【整理数据】两组数据各分数段,如下表所示:成绩6070x ≤<7080x ≤<8090x ≤<90100x ≤<七年级1531八年级451【分析数据】两组数据的平均数、中位数、众数、方差如下表:平均数中位数众数方差七年级80ab 2S 八年级c808033【问题解决】根据以上信息,解答下列问题:(1)填空:=a ,b =,c =;(2)求七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上为优秀,若该校七年级学生共1500人,八年级学生共1200人,请估计这两个年级竞赛成绩达到优秀学生的总人数.(4)该校想让一半以上的学生得到80分及以上,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由23.共享电动车是一种新理念下的交通工具:主要面向310km ~的出行市场,现有A 、B 两种品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)B 品牌10分钟后,每分钟收费元;(2)写出B 品牌的函数关系式;(3)如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h ,小明家到工厂的距离为9km ,那么小明选择哪个品牌的共享电动车更省钱呢?(4)直接写出两种收费相差2元时x 的值是.24.如图所示,在平面直角坐标系xOy 中,ABC 的三个顶点坐标分别为()()()122441A B C ,,,,,.(1)如果ABC 关于y 轴对称的图形是111A B C △,则111A B C △的顶点坐标为1A (,),1B (,),1C (,);(2)若()224B -,与点B 关于一条直线成轴对称,则这条对称轴是,此时A 点关于这条直线的对称点2A 的坐标为;(3)ABC 的面积为;(4)若点P 在x 轴上,求出PA PC +的最小值.(注:不需要作图)25.防疫期间,某药店销售一批外科口罩,如果一次性购买40个以上的外科口罩,超过40个部分按优惠价出售.上个月小王家一次性买了外科口罩90个,花了65元;小李家一次性买了外科口罩120个,花了80元.(1)求销售一个外科口罩的原价和优惠价分别是多少?(2)设一次性购买外科口罩x 个,花费y 元,写出y 与x 之间的函数关系式.(3)这个月学校一次性购买该外科口罩1080个,花了多少钱?26.如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P )始终以3km/min 的速度在离地面5km 高的上空匀速向右飞行,2号试飞机(看成点Q )一直保持在1号机P 的正下方.2号机从原点O 处爬升到(4,4)A 处便立刻转为水平飞行,再过1min 到达B 处开始沿直线BC 降落,要求1min 后到达()10,1C 处.(1)求OA 的h 关于s 的函数解析式,并直接写出2号机的爬升速度;(2)求BC 的h 关于s 的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ 不超过2km 的时长是多少?八年级数学上册期末练习卷(4)姓名:一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是符合题意的)1.点P (1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.估计25-).A.0和1之间B.1和2之间C.0和1-之间D.1-和2-之间3.以下命题的逆命题为真命题的是().A.对顶角相等B.同旁内角互补,两直线平行C.若a=b ,则a 2=b 2D.若a >0,b >0,则a 2+b 2>04.如图,直线AE BF ∥,BC 平分ABF ∠,AC BC ⊥,140∠=︒,则2∠的度为()A.20︒B.40︒C.70︒D.140︒5.某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s 2=23.后来小颖进行了补测,成绩是92分,关于该班50人的数学测试成绩,下列说法正确的是()A.平均分不变,方差变小B.平均分不变,方差变大C.平均分和方差都不变D.平均分和方差都改变6.直线y kx b =+经过第二、三、四象限,则直线y bx k =+的图象可能是图中的().A. B. C. D.7.若关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为()A.﹣34B.34C.43 D.﹣438.如图,在ABC ∆中,6045C B AD BC EF ∠︒∠︒⊥=,=,,垂直平分AC 交AD 于点E ,交AC 于点F ,8=AB ,则EF 的长为().A.324B.364C.423D.4639.如图,在平面直角坐标系中,点A 的坐标是(3,0)-,点B 的坐标是(0,4),点C 是OB 上一点,将ABC 沿AC 折叠,点B 恰好落在x 轴上的点B '处,则点C 的坐标为()A.3,02⎛⎫ ⎪⎝⎭B.30,2⎛⎫ ⎪⎝⎭C.5,02⎛⎫⎪⎝⎭D.50,2⎛⎫⎪⎝⎭10.如图,90MON ∠=︒,在直角三角形ABD 中,90BAD ∠=︒,顶点A ,B 分别在边OM ON ,上,当B 在边ON 上运动时,点A 随之在边OM 上运动,直角三角形ABD 的形状保持不变,其中21AB AD ==,.运动过程中,点D 到点O 的最大距离为().A.21+ B.5C.1455D.52二、填空题(本大题共7小题,每小题3分,共21分)11.16的平方根是___________.12.若230a b ++-=,则点(),P a b 关于x 轴对称的点的坐标为______.13.如图,直线:AB y kx b =+与直线:CD y mx n =+交于点E (3,1),则关于x ,y 的二元一次方程组y kx by mx n=+⎧⎨=+⎩的解为___.14.如图是叠放在一起的两张长方形卡片,则1∠,2∠,3∠中一定相等的两个角是__________.15.自然数4,5,5,x ,y 从小到大排列后,其中位数是4,如果这组数据唯一的众数是5,那么所有满足条件的x ,y 中,x y +的最大值是_____.16.关于x ,y 的方程组10210x ay bx y ++=⎧⎨++=⎩有无数组解,则a b +的值为_____17.如图,△ABC 中,AC =DC =3,BD 垂直∠BAC 的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为________.三、解答题(本大题共8小题,共69分.解答应写出过程)18.(1)计算:(1125282-⎛⎫-+-+- ⎪⎝⎭(2)解方程组:1434123x y x y ⎧⎛⎫-- ⎪⎪⎪⎝⎭⎨⎪-⎪⎩=19.如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分,(保留作图痕迹,不写作法)20.如图,∠A=∠BCD,CA=CD,点E在BC上,且DE∥AB,求证:AB=EC.22.I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min。

八年级(上)期末数学试卷带答案解析

八年级(上)期末数学试卷带答案解析

八年级(上)期末数学试卷一、选择题(本题共18分,每小题3分)1.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5 C.a6÷a2=a3D.a5+a5=2a102.下列各式中,正确的是()A.B.C.D.3.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°5.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()A.12 B.16 C.20 D.16或206.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.10二、填空题(本题共24分,每小题3分)7.因式分解:3x2﹣6x+3=.8.计算:a2b2÷()2=.9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=.10.使分式有意义的x的取值范围是.11.若分式的值为0,则x的值为.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.13.在平面直角坐标系xOy中,已知点A(2,﹣2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.14.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.三、解答题(本题共24分,每小题6分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.16.已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.17.先化简,(﹣x+1)÷,再选一个你喜欢的数代入求值.18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.四、解答题(本题共32分,每小题8分)19.解方程:(1)+=(2)﹣=.20.△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案与试题解析一、选择题(本题共18分,每小题3分)1.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5 C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.下列各式中,正确的是()A.B.C.D.【考点】分式的基本性质.【专题】计算题.【分析】利用分式的基本性质化简各项得到结果,即可作出判断.【解答】解:A、﹣=,本选项错误;B、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.3.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(2,1)关于y轴对称的点的坐标是(﹣2,1).故选A.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.5.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为三角形的底边与腰没有明确,所以分两种情况讨论.【解答】解:等腰三角形的一边长为4,另一边长为8,则第三边可能是4,也可能是8,(1)当4是底边时,4+4=8,不能构成三角形;(2)当8是底边时,不难验证,可以构成三角形,周长=8+4+4=20.故选C.【点评】本题主要考查分情况讨论的思想,利用三角形三边关系判断是否能构成三角形也是解好本题的关键.6.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.10【考点】勾股定理;角平分线的性质.【专题】计算题.【分析】要求BC,因为BC=BD+CD,且BD=2CD,所以求CD即可,求证△ADE≌△ADC即可得:CD=DE,可得BC=BD+DE.【解答】解:∵在△AD E和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故答案为:9.【点评】本题考查了全等三角形的证明,解本题的关键是求证△ADE≌△ADC,即CD=DE.二、填空题(本题共24分,每小题3分)7.因式分解:3x2﹣6x+3=3(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.计算:a2b2÷()2=a4.【考点】分式的乘除法.【分析】首先计算乘方,然后把除法转化为乘法,进行约分即可.【解答】解:原式=a2b2÷=a2b2•=a4.故答案是:a4.【点评】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题主要考查线段的垂直平分线的性质和直角三角形的性质.10.使分式有意义的x的取值范围是x≠3.【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣3≠0,解可得答案.【解答】解:由题意得:x﹣3≠0,解得:x≠3.故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.若分式的值为0,则x的值为﹣1.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x2﹣1=0且x﹣1≠0,解得x=﹣1.故答案为﹣1.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.13.在平面直角坐标系xOy中,已知点A(2,﹣2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的有4个.【考点】等腰三角形的性质;坐标与图形性质.【分析】要使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,则点P即为OA的垂直平分线和x轴的交点;当OA是腰时,则点P即为分别以O、A为圆心,以OA为半径的圆和x轴的交点(点O除外).【解答】解:当OA当底边时,则点P(2,0);当OA当腰时,则点P(4,0)或(2,0)或(﹣2,0).故答案为:4.【点评】此题综合考查了等腰三角形的性质以及坐标与图形的性质,注意分情况考虑.14.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.【考点】规律型:数字的变化类;列代数式.【专题】规律型;猜想归纳;实数.【分析】由前四个数可知,分子是序数与2和的平方,分母比分子小4,可得第n个数据.【解答】解:∵第1个数:;第2个数:;第3个数:;第4个数:;…∴第n个数据是:.故答案为:.【点评】本题主要考查数字的变化规律,解题的切入点在分子这一平方数,据此容易得到第n个数据.三、解答题(本题共24分,每小题6分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.【考点】配方法的应用;非负数的性质:偶次方.【分析】已知等式变形后,利用非负数的性质求出x与y的值,即可确定出所求式子的值.【解答】解:∵x2+y2+6x﹣4y+13=0,∴(x+3)2+(y﹣2)2=0,∴x+3=0,y﹣2=0,∴x=﹣3,y=2,∴(xy)﹣2=(﹣3×2)﹣2=.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.17.先化简,(﹣x+1)÷,再选一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的混合运算法则化简即可,取值时使得分式有意义.【解答】解:原式==•=,当x=0时,原式=1.【点评】本题考查分式的混合运算法则,熟练掌握法则是正确解题的关键,注意取值时使得分式有意义.18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【解答】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.四、解答题(本题共32分,每小题8分)19.解方程:(1)+=(2)﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4+3x+9=7,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)去分母得:x﹣3+2x+6=12,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.△ABC中,A B=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,【解答】证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC.∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC(AAS),∴DE=DF.【点评】此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【考点】全等三角形的判定与性质.【分析】在AE上取一点F,使AF=AB,即可得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.【点评】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】①在AN上截取AE=AC,连接CE,先证明△ACE是等边三角形,得出∠AEC=60°,AC=EC=AE,再证明△ADC≌△EBC,得出DC=BC即可;②由全等三角形的性质得出AD=BE,即可得出结论.【解答】证明:①在AN上截取AE=AC,连接CE,如图所示:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∴△ACE是等边三角形,∴∠AEC=60°,AC=EC=AE,又∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,在△ADC和△EBC中,,∴△ADC≌△EBC(AAS),∴DC=BC,AD=BE;②由①得:AD=BE,∴AB+AD=AB+BE=AE,∴AB+AD=AC.【点评】本题考查了全等三角形的判定与性质、角平分线的定义、等边三角形的判定与性质;通过作辅助线构造全等三角形是解决问题的关键.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)由等腰直角三角形的性质得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,证出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,证出结论.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.【点评】本题考查了等腰直角三角形的性质和全等三角形的判定与性质;证明三角形全等是解决问题的关键.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【考点】分式方程的应用.【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上数学期末测试题
满分150分
班级 姓名
一、选择题(每题3分) 1.下列运算正确的是( )
A.1243x x x =∙
B.1243)(x x =
C.326x x x =÷
D.743x x x =+
2.(-3x +1)(-2x) 2
等于( )
A .-6x 3-2x 2
B .6x 3-2x 2
C .6x 3+2x 2
D .-12x
3+4x 2
3.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根,其中正确的有( )
A .1个
B .2个
C .3个
D .4个 4.下列各式中,不能用平方差公式计算的是( ) A .(-a-1)(-a+1) B. (a-1)(-a-1) C. (a-1)(1+a) D.(a+1)(-a-1) 5.下列各等式从左到右的变形是因式分解,且分解正确的是( ) A.ax 2
+bx+x=x(ax+b) B.a 2
+2ab+b 2
-1=(a+b)2
-1 C.(x+5)(x-1)=x 2
-4x-5 D.x 2
-x+
41=(x-2
1)2
6. 如图4,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、
CE 交于点M 、N ,有如下结论:
① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN .其中,正确结论的个数是 ( ).
(A) 3个 (B )2个 (C) 1个(D )0个
7、.若2m-4与3m-1是同一个数的平方根,则m 为( )
A .-3
B .1 C.-1 D.-3或1
8. 如图,数轴上的点A 所表示的数为x
,则x 2
—10的立方根为( )
A ..2 D .-2 9、△ABC 中,A
B =15,A
C =13,高A
D =12, 则△ABC 的周长为( )
A .42
B .32
C .42 或 32
D .37 或 33
10.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( )
(A)4
(B)6
(C)
16
(D)55
二、填空题(每题4分)
11.在实数-2,
3
1
,0,-1.2,2中,无理数是 . 12.利用乘法公式计算,982
+×98+4=( + )2
= . 13.计算2x 3
·(-2xy)(-
12
xy) 3
的结果是 .
14、命题“等角的补角相等”可改写成“如果______________,那么_______________”. 15、如图2,∠ACB =∠DBC ,要想说明△ABC ≌△DCB ,只需增加的一个条件是 .(只需填一个你认为合适的条件)
16.如图3,BD 是∠ABC 的平分线,DE ⊥AB 于E ,S △ABC =36cm 2,AB =18cm ,BC =12cm ,则DE = cm .
17.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______________.
18、直角三角形的面积为120,斜边长为26,则它的周长是 三、解答题 19.计算:(每题6分)
① 3222323
()2()()x x y x y xy ⎡⎤-⋅-⎣⎦
②432211
(2)()22
x x x x +-÷-
20、把下列多项式分解因式:(每题8分)
①2
2
2
4)1(a a -+
②5
335y x y x +-
21、先化简:(2x ―1)2―(3x+1)(3x ―1)+5x(x ―1),再选取一个你喜欢的数代替x 求值.(8分)
22、.(12分)在学习“数据的收集与表示”这一章节时,前进中学曾经要求同学们做过“同学上学方式”的调查。

如图是前进中学八年级(3)班同学上学方式的条形统计图。

(1) 前进中学八年级(3)班共有_______名学生;
(2) 请你改用扇形统计图来表示前进中学八年级(3)班同学上学方式; (3) 从统计图中你可以获得哪些信息?
23、( 8分) 如图,在ABC ∆中,90C ∠=︒,点D 、E 分别在AC 、AB 上,BD 平分ABC ∠,DE AB ⊥,6AE =,DE :AD=4:5.求(1)DE 、CD 的长;(2)S △ABC .
24. (本题6分)先阅读下列因式分解的过程,再回答所提出的问题:
()ax ax ax +++111例()()ax ax ++=11()2
1ax +=
()()21112ax ax ax ax ax +++++例()()()2
111ax ax ax ax ++++=
()()2211ax ax ax +++=()()ax ax ++=112()3
1ax +=
(1)分解因式:()()()=++++++++n ax ax ax ax ax ax ax 11112……____________; (2)分解因式:()()()()()2004200332111111-+--+---+---x x x x x x x x x x x ……。

解:(2)
4
8步行乘车
骑车上学方式
25、(8分)如图3,E 为正方形ABCD 内的一点,EA=1,EB=2,EC=3,△ABE 绕点B 顺时针旋转得到△BCF ,试说明△EFC 是什么三角形。

26、( 8分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60
,得到DBE △,连结AD DC ,,
30DCB = ∠. 求证:222DC BC AC +=,即四边形ABCD 是勾股四边形.
27.(12分)已知,如图所示,正方形ABCD 的边长为1, G 为CD 边上的一个动点(点G 与
C 、
D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF,连接D
E 交BG 的延长线于点H. (1)求证:①ΔBCG ≌ΔDCE ②HB ⊥DE
(2)试问当G 点运动到什么位置时, BH 垂直平分DE?请说明理由.
F
E
D
C
B
A
A。

相关文档
最新文档