八年级数学期末试卷及答案
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。
2023-2024学年云南省昆明市五华区八年级上期末数学试卷及答案
五华区2023-2024学年上学期学业质量监测八年级数学参考答案及评分标准一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)题号123456789101112131415答案B C B C A D C D B A A D D B B二、填空题(本大题共4小题,每小题2分,共8分)16.o +1)(−1)17.1x ≠-18.2019.5三、解答题(本大题共8小题,共62分)20.(本题满分6分)解:原式=23+1−4+1−4………………………………………………5分=23−6……………………………………………………………………6分21.(本题满分7分)解:原式()222222455a b ab a b ab b =+---+-………………………………………3分=2+2−2B −2+42+5B −52………………………………………………4分3ab =…………………………………………………………………………………5分当1,33a b =-=时,原式13333⎛⎫=⨯-⨯=- ⎪⎝⎭.……………………………………………7分22.(本题满分6分)解:原式()()()11121141x x x x x x +-+⎛⎫=-÷ ⎪+++⎝⎭………………………………………3分=1411-⋅+-x x x ……………………………………………………………………5分41x =+.……………………………………………………………………6分23.(本题满分6分)证明:在ABD △和ACE △中,⎪⎩⎪⎨⎧=∠=∠∠=∠AE AD A A C B ∴ABD △≌ACE △(AAS ).……………………………………………………………………6分24.(本题满分8分)(1)如图所示,111A B C △即为所求,………………………………………3分由图知,1A 的坐标为(﹣1,﹣3)………………………………………5分(2)如图所示,点P 即为所求.………………………………………8分(注:若用其他方法证明,参照此标准评分)25.(本题满分8分)解:设甲工程队单独完成此项工程需x 天,则乙工程队需1)5.11112=+xx (………………………………………解得:20x =………………………………………经检验:20x =是原方程的解,且符合题意.30205.15.1=⨯=x ………………………………………答:甲单独完成此项工程需要20天,乙需要==,由(2)可知,PH PM PG。
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
八年级数学(上册)期末试卷及答案(真题)
八年级数学(上册)期末试卷及答案(真题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .305.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)+=__________.1.已知a、b为两个连续的整数,且11a b<<,则a b2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、13k <<.4、72°5、706、20三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-33a +,;12-.3、(1)102b -≤≤;(2)24、(1)略;(2).5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
2023-2024学年四川省自贡市八年级(上)期末数学试卷+答案解析
2023-2024学年四川省自贡市八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知某新型流感病毒的直径约为米,将用科学记数法表示为( )A. B. C. D.2.下列几何图形中,是轴对称图形的是( )A. B. C. D.3.能与长为20cm,30cm的两根木条首尾顺次相接钉成一个三角形的木条长度是( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列计算正确的是( )A. B. C. D.5.如图,在中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,连接若,,则为( )A.B.C.D.6.下列等式从左到右的变形,是因式分解的是( )A. B.C. D.7.如图,的和的外角角平分线交于点D,若,,则的度数是( )A.B.C.D.8.如图,在和中,,,,,连接AC,BD交于点H,连接OH,下列结论:①;②;③OH平分;④HO平分;⑤直线BD平分线段其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本题共6小题,每小题3分,共18分。
9.若分式有意义,则x的取值范围是______.10.约分:______.11.如图,在中,AD是高,角平分线AE,BF相交于点O,,,则的度数是______.12.已知,则______.13.一个多边形的内角和是它的外角和的3倍,则从这个多边形的一个顶点出发共有______条对角线.14.如图,已知锐角的面积为42,,,点C是AB边上一动点,点E,F是OA,OB边上异于端点的两个动点,当的周长最小时,点O到线段EF的距离是______.三、解答题:本题共10小题,共58分。
解答应写出文字说明,证明过程或演算步骤。
15.本小题5分计算:16.本小题5分解方程:17.本小题5分如图,在中,,D为BC的中点,,,垂足分别为E、F,求证:18.本小题5分计算:19.本小题5分如图,在中,,,要把图纸上的这块三角形土地均分给甲、乙、丙三家农户,并使这三家农户所得土地的大小、形状都相同,请在图上画出分割图要求;尺规作图,要写出作法,并保留作图痕迹20.本小题6分自贡彩灯文化历史悠久,盐、龙、灯被称为自贡的“大三绝”.师徒二人制作某种彩灯,师父每天比徒弟多做5个,师父做80个所用的时间与徒弟做60个所用的时间相等.求师父每天做彩灯多少个?春节前夕,有600个该种彩灯需要制作.若师父工价是每天300元,徒弟每天250元,总预算费用不超过9200元,则最多可安排徒弟做多少天?21.本小题6分如图,在中,点A,B,C的坐标分别为,,画出关于y轴对称的图形,并写出点D,E,F的坐标;求以A,C,F,D为顶点的四边形的面积.22.本小题6分如图,在中,,AD是BC边上的中线,交AB于点求证:23.本小题7分如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:,,,因此4,12,20都是“神秘数”.请说明36是否为“神秘数”;证明:“神秘数”一定是4的倍数;是“神秘数”吗?请说明理由.24.本小题8分如图1所示,在中,,点D是线段CA延长线上一点,且点F是线段AB 上一点,连接DF,以DF为斜边作等腰,连接EA,且若,垂足为G,求证:如图2,若点F是线段BA延长线上一点,其他条件不变,请写出线段AE,AF,BC之间的数量关系,并说明理由.答案和解析1.【答案】B【解析】解:故选:用科学记数法表示较小的数,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂.本题主要考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】D【解析】解:A,B,C选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:根据轴对称图形的定义进行逐一判断即可.本题主要考查了轴对称图形,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3.【答案】B【解析】解:设要选取的木条长度是x cm,,,要选取的木条长度是30cm,故选:三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,设要选取的木条长度是x cm,由此得到,即可得到答案.本题考查三角形三边关系,关键是掌握三角形三边关系定理.4.【答案】A【解析】解:,此选项计算正确,故此选项符合题意;B.,此选项计算错误,故此选项不符合题意;C.,此选项计算错误,故此选项不符合题意;D.,此选项计算错误,故此选项不符合题意;故选:A.根据幂的乘方法则进行计算,然后判断即可;B.根据同底数幂相乘法则进行计算,然后判断即可;C.根据负整数指数幂的性质进行计算,然后判断即可;D.根据同底数幂相除法则进行计算,然后判断即可.本题主要考查了整式的有关运算,解题关键是熟练掌握同底数幂的乘除法则、幂的乘方法则和负整数指数幂的性质.5.【答案】C【解析】解:,,,是AC的垂直平分线,,,故选:首先利用等腰三角形的性质求得的度数,然后利用三角形的外角的性质求得答案即可.本题考查了等腰三角形的性质及垂直平分线的性质,解题的关键是了解线段的垂直平分线上的点到线段两端点的距离相等.6.【答案】D【解析】解:是整式乘法运算,则A不符合题意;是单项式的变形,则B不符合题意;的右边不是积的形式,则C不符合题意;符合因式分解的定义,则D符合题意;故选:将一个多项式化为几个整式的积的形式即为因式分解,据此逐项判断即可.本题考查因式分解的识别,熟练掌握其定义是解题的关键.7.【答案】C【解析】解:如图,延长CA至E,使,连接BD,ED,ED交BA的延长线于点N,,,,平分,,,,在和中,,≌,,设,,,,的和的外角角平分线交于点D,平分,,,,,,,,,即,故选:延长CA至E,使,连接BD,ED,由“SAS”可证≌,可得,设,由等腰三角形的性质可得,根据角平分线定义求出,,根据平角定义求出,再根据三角形外角的性质可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.8.【答案】B【解析】解:,,,,,即,在和中,,≌,,,故①正确,符合题意;由三角形的外角性质得:,,故②正确,符合题意;作于G,于M,如图所示,则,在和中,,≌,,平分,故④正确,符合题意;假设OH平分,则,,平分,,在和中,,≌,,与矛盾,故③错误,不符合题意;根据题意,无法求证直线BD平分线段OC,故⑤错误,不符合题意;正确的个数有3个;故选:由SAS证明≌得出,,①正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;作于G,于M,如图所示:则,由AAS证明≌,得出,由角平分线的判定方法得出HO平分,④正确;假设OH平分,则,由HO平分,,利用ASA推出≌,得,而,故③错误;根据题意,无法求证直线BD平分线段OC,故⑤错误,即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.9.【答案】【解析】解:分式有意义,,故答案是:根据分式有意义的条件计算即可.本题主要考查了分式有意义的条件,准确计算是解题的关键.10.【答案】【解析】解:原式故答案为:先把分子因式分解,然后把分子分母都约去m即可.本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.11.【答案】【解析】解:角平分线AE,BF相交于点O,,,,是高,,,,,,故答案为:由角平分线的定义可得,,由高线可得,从而可求得,再由三角形的内角和可得,即可求的度数,从而可求的度数.本题主要考查三角形的内角和定理,解答的关键是结合图形分析清楚各角的关系.12.【答案】【解析】解:,,,,,,,,,,故答案为:先利用多项式乘多项式法则计算已知条件中等式的左边,然后根据右边得到,,再灵活利用完全平方公式求出即可.本题主要考查了多项式乘多项式,解题关键是熟练掌握完全平方公式和灵活运用完全平方公式解决问题.13.【答案】5【解析】解:设这个多边形有n条边,由题意得:,解得,从这个多边形的一个顶点出发的对角线的条数是,故答案为:首先设这个多边形有n条边,由题意得方程,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出条对角线可得答案.此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.14.【答案】【解析】解:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,垂直平分CG,OB垂直平分CH,,,,,,,,,作于点I,则,,,,,连接GE、HF,则,,,,,作于点D,的面积为42,,,解得,,当点C与点D重合时,,此时OC的值最小,当时,的值最小,的周长最小,,,点O到线段EF的距离是,故答案为:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,则,所以,,则,求得,作于点I,则,,求得,所以,连接GE、HF,则,,所以,则,作于点D,由的面积为42,,求得,则当点C与点D重合时,,此时OC的值最小,当时,的周长最小,由,求得,于是得到问题的答案.此题重点考查轴对称的性质、等腰三角形的性质、直角三角形中角所对的直角边等于斜边的一半、两点之间线段最短、垂线段最短、根据面积等式求线段的长度等知识与方法,正确地作出辅助线是解题的关键.15.【答案】解:【解析】根据完全平方公式、单项式乘多项式的法则计算即可.本题考查了完全平方公式、单项式乘多项式,熟练掌握公式和运算法则是解题的关键.16.【答案】解:原方程去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:,检验:将代入得,故原分式方程的解为【解析】利用解分式方程的步骤解方程即可.本题考查解分式方程,熟练掌握解方程的方法是解题的关键.17.【答案】证明:,,又,,,点D为BC中点,,在和中,≌,【解析】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出根据等腰三角形的性质得出,根据全等三角形的判定和性质得出即可;18.【答案】解:【解析】先算乘方,再算乘除,即可得出结果.本题考查了分式的乘方、乘除法,熟练掌握分式的混合运算法则是解题的关键.19.【答案】解:作法:作AB边的垂直平分线,分别交BC、AB于点E、F,连接、、即为分出的三块地.【解析】作AB边的垂直平分线EF,连接本题考查了应用与设计作图,三角形内角和定理.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.【答案】解:设师父每天做彩灯x个,则徒弟每天做彩灯个,由题意得:,解得,经检验,是原方程的解,且符合题意,答:师父每天做彩灯20个;设可安排徒弟做b天,则安排师父做天,即天,由题意得:,解得:,答:最多可安排徒弟做8天.【解析】设师父每天做彩灯x个,则徒弟每天做彩灯个,关键师父做80个所用的时间与徒弟做60个所用的时间相等.列出分式方程,解方程即可;设可安排徒弟做b天,则安排师父做天,即天,根据总预算费用不超过9200元,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;找出数量关系,正确列出一元一次不等式.21.【答案】解:如图所示,即为所求,由图知,、、;由图知,,以A,C,F,D为顶点的四边形的面积为【解析】分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得出答案;根据梯形的面积公式求解即可.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.22.【答案】证明:,,,在中,,,是BC上的中线,是的角平分线,,,,,,,即【解析】首先利用和,推导出,,进而得到,进一步推导出,,进而得证.本题主要考查了平行线的性质,解答本题的关键是熟练掌握平行线的性质以及等腰三角形“三线合一”的性质,23.【答案】解:假设36是神秘数,则能表示为两个连续偶数的平方差,设较小的偶数为x,则较大的偶数为解得:是“神秘数”.设较小的偶数为2k,则较大的偶数为为正整数,为正整数.“神秘数”一定是4的倍数.不是“神秘数”.理由:假设2000是“神秘数”,由得解得:不是整数,假设不成立.不是“神秘数”.【解析】假设36是神秘数,看36是否能表示为两个连续偶数的平方差即可判断是否为“神秘数”;可设较小的偶数为2k,则较大的偶数为,看较大偶数与较小偶数的平方差是否是4的倍数即可;把2000代入得到的式子中,看是否符合实际意义.本题考查新定义的应用.理解新定义的意义是解决本题的关键.注意应用已得到的结论.24.【答案】证明:如图1,,,,,,,在和中,,≌,,是以DF为斜边的等腰直角三角形,,,,在和AFE中,,≌,,,,解:,理由:如图2,作交AE的延长线于点H,则,,在和中,,≌,,,,在和AFE中,,≌,,,【解析】由,,得,而,,则,,即可根据“AAS”证明≌,得,再证明≌,得,则;作交AE的延长线于点H,可证明≌,得,再证明≌,得,则此题重点考查等腰直角三角形的性质、同角的余角相等、全等三角形的判定与性质等知识,正确地作出辅助线是解题的关键.。
2023-2024学年北京市西城区八年级(上)期末数学试卷+答案解析
2023-2024学年北京市西城区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.火纹是一种常见的装饰图案,多用于建筑、家具设计等.下列火纹图案中,可以看成处轴对称图形的是( )A. B.C. D.2.下列运算中,正确的是( )A. B. C. D.3.在平面直角坐标系xOy中,点关于x轴的对称点坐标是( )A. B. C. D.4.下列各式从左到右变形一定正确的是( )A. B. C. D.5.如图,在中,,,BD是的角平分线.若点D到BC的距离为3,则AC的长为( )A. 12B.C. 9D. 66.如果,那么代数式的值为( )A. B. C. 6 D. 137.如图,在平面直角坐标系xOy中,已知点,,且,则点C的横坐标为( )A. B. C. D.8.如图,在中,,,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,的大小是( )A. B. C. D.二、填空题:本题共8小题,每小题2分,共16分。
9.计算:______;______.10.若分式有意义,则x的取值范围是______.11.计算:______.12.如图,为等腰三角形,,,连接BD,只需添加一个条件即可证明≌,这个条件可以是______写出一个即可13.如图,有甲、乙、丙三种正方形和长方形纸片,用1张甲种纸片、4张乙种纸片和4张丙种纸片恰好拼成无重叠、无缝隙一个大正方形,则拼成的大正方形的边长为______用含a,b的式子表示14.甲、乙两名同学作为志愿者帮助图书馆清点一批图书,甲3h清点完这批图书的,乙加入清点剩余的图书,两人合作清点完剩余的图书.如果乙单独清点这批图书需要几小时?若设乙单独清点这批图书需要xh,则根据题意可列方程为______.15.在正三角形纸片ABC上按如图方式画一个正五边形DEFGH,其中点F,G在边BC上,点E,H分别在边AB,AC上,则的大小是______16.如图,动点C与线段AB构成,其边长满足,,点D在的平分线上,且,则a的取值范围是______,的面积的最大值为______.三、解答题:本题共10小题,共84分。
八年级(上学期)期末数学试卷(含答案)
八年级(上学期)期末数学试卷(含答案)(时间90分钟,满分120分)一、选择题(本大题共16小题,共42.0分)1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2.分式在实数范围内有意义,则实数x的取值范围是()A. x>4B. x>-4C. x≠4D. x≠-43.小明作△ABC中AC边上的高线,下列三角板的摆放位置正确的是()A. B.C. D.4.下列各组线段中,能组成三角形的是()A. a=2,b=3,c=8B. a=7,b=6,c=13C. a=4,b=5,c=6D. a=2,b=1,c=15.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形6.下列运算正确的是()A. a2+a2=a4B. a3•a3=a9C. (ab)2=a2b2D. (a2)3=a57.下列说法正确的有()①平分弦的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.③一条弧所对的圆周角等于它所对的圆心角的一半.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.A. 1个B. 2个C. 3个D. 4个8.如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么x的值是()A. 30°B. 45°C. 50°D. 85°9.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BAC;④∠PEC=∠PEB,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有()A. 1个B. 2个C. 3个D. 4个11.等腰三角形的一腰长为6cm,底边长为6cm,则其底角为()A. 120°B. 90°C. 60°D. 30°12.若关于x的分式方程=无解,则m的值为()A. 2B. -2C. 3D. -313.如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A. ASAB. SSSC. SASD. AAS14.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()A. =B. =C. =D. =15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列结论正确的个数有()①EF=BE+CF;②设OD=m,AE+AF=n,则S△AEF=mn;③∠BOC=90°+∠A;④点O到∠BAC两边的距离相等;A. 1个B. 2个C. 3个D. 4个16.如图,在△ABC中,BC∥x轴,点A在x轴上,AB=AC=5,点M、N分别是线段BC与BA上两点(与三角形顶点不重合),当△BMN≌△ACO,时,反比例函数(k>0,x>0)的图象经过点M,则k的值是()A. 2B. 3C. 4D. 6二、填空题(本大题共4小题,共12.0分)17.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示______ m.18.等腰三角形一个角为50°,则此等腰三角形顶角为______.19.△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为______ ,△ABC的面积为______ .20.已知103=1000,113=1331,123=1728,133=2197,143=2744,153=3375,…,203=8000,213=9261,223=10648,233=12167,243=13824,253=15625,…,则______3=110592.三、解答题(本大题共6小题,共66.0分)21.计算:(1)(-1)2020+π0-2-2;(2)x5•x3-(x2)4+x8÷x.22.(1)计算:;(2)先化简,再求值:,其中3x2+3x-2=0.23.如图1所示,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN.(2)当MN=2BN时,求α的度数.(3)如图2,过P点作PQ⊥AB交AC于Q,连接BQ,判断△ABQ的形状并证明.24.作图并回答问题:(1)如图,在平面直角坐标系中,将坐标分别是(0,3),(1,0),(2,2),(3,0),(4,3)的五个点用线段依次连接起来得到图案①,请画出图案①;(2)若将上述各点的坐标进行如下变化:横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来得到图案②,请画出图案②;(3)图案②与图案①的位置关系是______;(4)如果某图案与图案①关于x轴对称,则由图案①得到该图案,图案①的上述五个点的坐标进行的变化是:______.25.学习“分式方程应用”时,老师出示例题:为防控“新型冠状病毒”,某药店分别用400元、600元购进两批单价相同的消毒液,第二批消毒液的数量比第一批多20瓶,请问药店第一批消毒液购进了多少瓶?唐唐和瑶瑶根据自己的理解分别列出了如图所示的两个方程.根据以上信息,解答下列问题:(1)唐唐同学所列方程中的x表示______,瑶瑶同学所列方程中的y表示______;(2)两个方程中任选一个,写出它的等量关系;(3)利用(2)中你所选择的方程,解答老师的例题.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF 与射线CA相交于点Q.(1)如图1,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图2,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当.BP=a,CQ=时,P,Q两点间的距离(用含a的代数式表示).答案和解析1.【答案】C【解析】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:分式在实数范围内有意义,故x+4≠0,解得:x≠-4.故选:D.直接利用分式有意义的条件得出答案.此题主要考查了分式有意义的条件,正确把握相关性质是解题关键.3.【答案】D【解析】解:作△ABC中AC边上的高线,即过B点作AC的垂线,垂线段为AC边上的高.故选:D.根据三角形高的定义进行判断.本题考查了三角形的高:三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.4.【答案】C【解析】解:A、2+3<8,不能构成三角形,故此选项不合题意;B、6+7=13,不能构成三角形,故此选项不合题意;C、5+4>6,能构成三角形,故此选项符合题意;D、1+1=2,不能构成三角形,故此选项不合题意.故选:C.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.5.【答案】C【解析】【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°,此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求多边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.6.【答案】C【解析】解:A.a2+a2=2a2,故本选项不合题意;B.a3•a3=a6,故本选项不合题意;C.(ab)2=a2b2,故本选项符合题意;D.(a2)3=a6,故本选项不合题意.故选:C.选项A根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项B根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘.本题考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,掌握幂的运算法则是解答本题的关键.7.【答案】B【解析】解:①平分弦的直径垂直于弦,错误,应该是平分弦(此弦非直径)的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.正确.③一条弧所对的圆周角等于它所对的圆心角的一半.正确.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,错误,弦所对的圆周角有两个,这两个角也可能互补.故正确的有②③.故选:B.根据垂径定理,三角形的外角的定义,圆周角定理一一判断即可.本题考查垂径定理,圆周角定理,三角形的外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】解:∵图中的两个三角形是全等三角形,∴第二个三角形中x是边长为3对应的角的度数,∵180°-85°-45°=50°,∴第一个三角形中边长为3对应的角的度数是50°,∴x=50°,故选:C.根据全等三角形的性质和三角形内角和,可以求得x的值.本题考查全等三角形的性质\三角形内角和,解答本题的关键是明确题意,利用全等三角形的性质解答.9.【答案】D【解析】解:∵AB=AC,PB=PC,∴AP⊥BC,AE平分∠BAC(三线合一),∵BP=PC,∠BPE=∠CPE=90°,PE=PE,∴△BPE≌△CPE,∴BE=EC,∠PEC=∠PEB,∴四个都正确,故选:D.根据等腰三角形的性质和全等三角形的判定与性质对各个选项进行分析,从而不难得到正确的结论.此题主要考查等腰三角形的性质及全等三角形的判定与性质的综合运用.10.【答案】A【解析】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=AD,∵BE=AD,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,,∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在△ABH和△DCF中,,∴△ABH≌△DCF(ASA),∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE的垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误;∵∠AHG=67.5°,∴∠ABH=22.5°,∵∠ABD=45°,∴∠ABH=ABD,∴BH平分∠ABE,故④正确;故选:A.此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.11.【答案】D【解析】解:如图,作AD⊥BC于D点.则BD=DC=3.∵AC=6,∴cos∠C==,∴∠C=30°.故选D.三角函数的定义和特殊角的三角函数值求解.此题的关键是作底边上的高,构造直角三角形,运用三角函数的定义问题就迎刃而解.这是解决等腰三角形问题时常作的辅助线.12.【答案】A【解析】解:将方程两边都乘以最简公分母(x-3),得:x-5=-m,∵当x=3时,原分式方程无解,∴-2=-m,即m=2;故选:A.将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.13.【答案】B【解析】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.由作图可得CO=DO,CE=DE,OE=OE,可利用SSS定理判定三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【答案】C【解析】【分析】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.【解答】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:=.故选:C.15.【答案】C【解析】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A;故③正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故②错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,∴点O到∠BAC两边的距离相等,故④正确.故选:C.由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得∠BOC=90°+A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF 正确;由角平分线的性质得出点O到△ABC各边的距离相等,正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=mn,错误.此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.16.【答案】C【解析】解:当△BMN≌△ACO时,可得BM=AC=5,过A作AD⊥BC于点D,如图,∵AB=AC,∴BC=2CD=2OA=6,∴CM=BC-BM=6-5=1,∵sin∠ACO=,∴OC=4,∴M点坐标为(1,4),∴k=1×4=4.故选:C.由△BMN≌△ACO可知BM=AC,过A作AD⊥BC,可求得CD、BC的长,从而可求得CM的长,可求得M 点的坐标,代入可求得k.本题主要考查反比例函数的综合应用,涉及反比例函数解析式、全等三角形的性质、等腰三角形的性质、勾股定理等知识点.在本题中求得M点的坐标是解题的关键,注意反比例函数中k=xy的灵活应用.本题所考查知识比较基础,难度不大.17.【答案】【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000835=8.35×10-9,故答案为8.35×10-9.18.【答案】50°或80°【解析】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°-50°×2=80°故答案为50°或80°.已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.19.【答案】12cm;8cm2【解析】【分析】此题主要考查了轴对称图形的性质,得出两图形全等是解题关键.利用关于直线对称图形的性质得出△ABC 和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.20.【答案】48【解析】解:∵103=1000,203=8000,303=27000,403=64000,503=125000,∴403<110592<503,∵110592=483,∴483=110592,故答案为:48.根据题目中的数据,可以发现数字的变化规律,从而可以确定110592处于哪两个整拾数之间,然后即可得到哪个数的立方是110592,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出所求的数字.21.【答案】解:(1)原式=1+1-=;(2)原式=x8-x8+x7=x7.【解析】(1)根据有理数的乘方的定义,任何非0数的0次幂定义1以及负整数指数幂的定义计算即可;(2)根据同底数幂的乘除法法则以及幂的乘方运算法则化简即可.本题主要考查了实数的运算以及整式的混合运算,熟记相关定义与运算法则是解答本题的关键.22.【答案】解(1)原式=--1+3-+2×=-+=;(2)原式=•-=-===由3x2+3x-2=0.得x2+x=.∴原式==.【解析】本题考查了实数运算与分式的化简求值,熟练掌握实数运算公式与分式混合运算法则是解题的关键.(1)先分别计算负指数幂、零指数幂、绝对值,三角函数值,然后算加减法;(2)先化简,然后将3x2+3x-2=0变形为x2+x=,代入求值即可.23.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)△ABQ是等腰三角形,理由如下:由(1)知:△APM≌△BPN,∴AP=PB,∵PQ⊥AB,∴PQ是线段AB的垂直平分线,∴QB=QA,∴△ABQ是等腰三角形.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)由全等三角形的性质可得AP=BP,由线段垂直平分线的性质可得BQ=AQ,可得结论.本题是三角形综合题,考查全等三角形的判定和性质,等腰三角形的性质,线段垂直平分线的性质,灵活运用这些性质解决问题是解题的关键.24.【答案】(1)如下图①即为所求;(2)如下图②即为所求;(3)关于y轴对称(4)横坐标保持不变,纵坐标分别乘以-1【解析】解:(1)见答案;(2)见答案;(3)图案②与图案①的位置关系是关于y轴对称.故答案为:关于y轴对称;(4)∵两图案关于x轴对称,∴横坐标保持不变,纵坐标分别乘以-1.故答案为:横坐标保持不变,纵坐标分别乘以-1.【分析】(1)在坐标系内描出各点,再顺次连接即可;(2)将(1)中各点的横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来即可;(3)根据两个图案中各点坐标的关系可得出结论;(4)根据关于x轴对称的点的坐标特点即可得出结论.本题考查的是作图-轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.25.【答案】第一批消毒液购进的数量消毒液的单价【解析】解:(1)x表示:第一批消毒液购进的数量,y表示:消毒液的单价,故答案为:第一批消毒液购进的数量;消毒液的单价;(2)选唐唐所列方程,等量关系:药店购进两批消毒液的单价相同;选瑶瑶所列方程,等量关系:第二批消毒液的数量比第一批多20瓶;(3)①选唐唐所列的方程,解:设第一批消毒液购进x瓶,由题意得,,去分母,得2(x+20)=3x,解得x=40,经检验x=40是原分式方程的解;答:药店第一批消毒液购进40瓶;②选瑶瑶所列方程.去分母,得600-400=20y.解得y=10,经检验y=10是原分式方程的解.所以,答:药店第一批消毒液购进40瓶.(1)根据题意即可得到结论;(2)根据药店购进两批消毒液的单价相同解答即可;(3)①解:设第一批消毒液购进x瓶,由题意得到方程为,②选瑶瑶所列方程.解方程即可得到结论.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】解:(1)∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°.∵AP=AQ,BP=CQ.∵E是BC的中点,BE=CE.在△BPE和△CQE中,∵BP=CQ,∠B=∠C,BE=CE,∴△BPE≌△CQE.(2)∵∠BEF=∠C+∠CQE,∠BEF=∠DEF+∠BEP,且∠DEF=∠C=45°,∴∠BEP=∠CQE.在△BPE和△CEO中,∵∠BEP=∠CQE,∠B=∠C,∴△BPE∽△CEQ.∴.又BE=CE,∴BE2=BP·CO.当BP=α,CQ=a时,BE2=a·.∴BE=,BC=.∵△ABC是等腰直角三角形,∴AB=AC=3 a.∴AP=AB-BP=2 a,AQ=CQ-AC=.∴P,Q两点间的距离PQ=.【解析】本题考查图形变换能力,需要学生在变换过程中抓住不变的因素,此题用到了全等三角形的证明,相似三角形的应用,勾股定理以及三角函数的相关知识.。
武汉市八年级数学上册期末测试卷(含答案)
湖北省武汉市八年级(上)期末测试数学试卷一、选择题(每小题3分,共30分)1.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 2.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°3.(3分)在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为()A.120° B.110° C.100° D.40°4.(3分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°5.(3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°6.(3分)以下图形中对称轴的数量小于3的是()A. B. C. D.7.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为() A.12 B.16 C.20 D.16或20 8.(3分)下列计算正确的是()A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5 9.(3分)下列计算正确的是() A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣110.(3分)下列分式中,最简分式是()[来源:]二、填空题(每小题3分,共18分)11.(3分)以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是.12.(3分)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC= 度.13.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.14.(3分)分解因式:(2a+b)2﹣(a+2b)2= .15.(3分)若代数式与的值相等,则x= .16.(3分)如图,OB平分∠MON,A为OB的中点,AE⊥ON于点E,AE=3,D为OM上一点,BC∥OM交DA于点C,则CD的最小值为.三、解答题(共9小题,共72分) 17.(4分)分解因式:2x2﹣8.18.(4分)解方程:19.(8分)计算:21.(8分)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.22.(3分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明.23.(10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:24.(10分)在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC外侧作∠ACM,使得∠ACM=∠ABC,点D是射线CB上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是;(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.25.(12分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值./-/-/-//-/-/-/湖北省武汉市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误; B、因为2+4<6,所以不能构成三角形,故B错误; C、因为3+4<8,所以不能构成三角形,故C错误; D、因为3+3>4,所以能构成三角形,故D正确.故选:D.2.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.3.(3分)在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为()A.120° B.110° C.100° D.40°【解答】解:∵在四边形ABCD中,∠A+∠B+∠C+∠D=360°,且∠A+∠B+∠C=260°,/-/-/-//-/-/-/∴∠D=100°,故选:C.4.(3分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.5.(3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B./-/-/-//-/-/-/6.(3分)以下图形中对称轴的数量小于3的是() A.B.C.D.【解答】解:A、有4条对称轴; B、有6条对称轴; C、有4条对称轴; D、有2条对称轴.故选:D.7.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为() A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.8.(3分)下列计算正确的是()A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5 【解答】解:A、x2+x2=2x2,故此选项错误; B、2x3﹣x3=x3,正确; C、x2•x3=x5,故此选项错误; D、(x2)3=x6,故此选项错误;故选:B.9.(3分)下列计算正确的是() A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣1【解答】解:A、(x+y)2=x2+y2+2xy,故此选项错误; B、(x﹣y)2=x2﹣2xy+y2,故此选项错误; C、(x+1)(x﹣1)=x2﹣1,正确;/-/-/-//-/-/-/D、(x﹣1)2=x2﹣2x+1,故此选项错误;故选:C.10.(3分)下列分式中,最简分式是() A.B.C. D.【解答】解:A、原式为最简分式,符合题意; B、原式==,不合题意; C、原式==,不合题意;D、原式==,不合题意,故选:A.二、填空题(每小题3分,共18分)11.(3分)以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是 3 .【解答】解:分成四种情况:①4cm,6cm,8cm;②4cm,6cm,10cm;③6cm,8cm,10cm;④4cm,8cm,10cm,∵5+6=11,∴②不能够成三角形,故只能画出3个三角形.故答案为:3.12.(3分)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC= 35 度./-/-/-//-/-/-/【解答】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠A,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.13.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【解答】解:∵AD⊥BC于D,BE⊥AC于 E ∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45./-/-/-//-/-/-/14.(3分)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【解答】解:(2a+b)2﹣(a+2b)2 =(2a+b+a+2b)(2a+b﹣a﹣2b) =(3a+3b)(a﹣b) =3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).15.(3分)若代数式与的值相等,则x= 4 .【解答】解:根据题意得: =,去分母得:6x=4(x+2),移项合并同类项得:2x=8,解得:x=4.故答案为:4.16.(3分)如图,OB平分∠MON,A为OB的中点,AE⊥ON于点E,AE=3,D为OM上一点,BC∥OM交DA于点C,则CD的最小值为 6 .【解答】解:由题意可得,当CD⊥OM时,CD取最小值,∵OB平分∠MON,AE⊥ON于点E,CD⊥OM,∴AD=AE=3,∵BC∥OM,∴∠DOA=∠B,/-/-/-//-/-/-/∵A为OB的中点,∴AB=AO,在△ADO与△ABC中,∴△ADO≌△ABC(SAS),∴AC=AD=3,∴CD=AC+AD=3+3=6,故答案为:6.三、解答题(共9小题,共72分) 17.(4分)分解因式:2x2﹣8.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).18.(4分)解方程:+1=.【解答】解;方程两边都乘以x﹣2得:x﹣3+x﹣2=﹣3,解得:x=1,检验,把x=1代入x﹣2≠0,所以x=1是原方程的解,即原方程的解为x=1.19.(8分)计算:(1)(﹣2a2b)2•(ab)3(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【解答】解:(1)原式=4a4b2•a3b3=a7b5;(2)原式=2x2+x﹣2x﹣1﹣2x2﹣4x+10x+20 =5x+19./-/-/-//-/-/-/20.(8分)先化简,再求值:(﹣)÷(﹣1),其中x=2.【解答】解:当x=2时,∴原式=(+)÷=×==21.(8分)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.【解答】解:(1)△AOB的面积=3×3﹣×3×1﹣×3×2﹣×2×1 =9﹣1.5﹣3﹣1 =3.5.故△AOB的面积是3.5;(2)如图,由题意得C(﹣1,3),D(3,﹣2),四边形ABCD的面积=5×4﹣×5×4﹣×2×1 =20﹣10﹣1 =9.故四边形ABCD的面积是9./-/-/-//-/-/-/22.(3分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【解答】解:△BEF为等腰三角形,理由如下:连CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中,,∴△ADC≌△CBE,∴∠DCF=∠BEC,CD=CE,∵CD=CE,∴∠CDF=∠CED,又∠BFE=∠CDF+∠DCF,∠BEF=∠BEC+∠CED,∴∠BFE=∠BEF,∴BF=BE,即△BEF为等腰三角形.23.(10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A/-/-/-//-/-/-/型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:A型车 B型车进货价格(元)11001400 销售价格(元)今年的销售价格2000【解答】解:(1)设去年售价为a,销售量为b,则今年售价为(a﹣400),销售量为b,依据题意可得,解得a=2000元,b=25辆∴今年A型车每辆售价为1600元.(2)设购进A型车x辆,则购进B型车60﹣x辆,依题意可得 500x+600(60﹣x)≧33000,解得x≤30,∴A型车至多购进30辆.24.(10分)在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC 外侧作∠ACM,使得∠ACM=∠ABC,点D是射线CB上的动点,过点D作直线CM 的垂线,垂足为E,交直线AC于F.(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是 DF=2EC ;(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.【解答】解:(1)如图1,DF=2EC,理由是:延长BA、CM交于点N,/-/-/-//-/-/-/∵∠BAC=∠BEC=90°,∠AFB=∠EFC,∴∠ABE=∠ACM=∠ABC,∴BE平分∠ABC,∵BE⊥CN,∴BC=BN,∴E是CN的中点,∴NC=2CE,∵AB=AC,∠BAC=∠CAN=90°,∴△BAF≌△CAN,∴BF=CN,∴BF=2EC,即DF=2EC;(2)仍然成立,DF=2EC;理由如下:如图2,作∠PDE=22.5,交CE的延长线于P点,交CA的延长线于N,∵DE⊥PC,∠ECD=67.5,∴∠EDC=22.5°,∴∠PDE=∠EDC,∠NDC=45°,∴∠DPC=67.5°,在△DPE和△DEC中,,∴△DPE≌△DEC(AAS),∴PD=CD,PE=EC,∴PC=2CE,∵∠NDC=45°,∠NCD=45°,∴∠NCD=∠NDC,∠DNC=90°,∴△NDC是等腰直角三角形∴ND=NC且∠DNC=∠PNC,在△DNF和△PNC中,,∴△DNF≌△PNC(ASA),/-/-/-//-/-/-/∴DF=PC,∴DF=2CE.25.(12分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.【解答】(1)①证明:如图1中,/-/-/-//-/-/-/∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK./-/-/-//-/-/-/∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CBF=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4 ∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.。
八年级数学下册期末试卷(附答案解析)
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
2022-2023学年四川省南充市八年级(上)期末数学试卷+答案解析(附后)
2022-2023学年四川省南充市八年级(上)期末数学试卷1. 以下是2022年北京冬奥会和另外三届冬奥会会徽的一部分,其中是轴对称图形的是( )A. B. C. D.2. 下列计算正确的是( )A. B. C. D.3. 下列长度的三条线段能组成三角形的是( )A. 2,3,6B. 5,8,13C. 4,4,7D. 3,4,84. 若a,b的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A. B. C. D.5. 如图,在中,,D,E分别是边AB,AC上的点,,CD与BE交于点F,则图中全等三角形的对数为( )A. 2B. 3C. 4D. 56. 若的运算结果中不含x的一次项,则m的值等于( )A. 2B. 1C.D.7. 如图,点A,E,C在同一直线上,≌,,,则BC的长为( )A. 3B. 5C. 8D. 118.若实数m,n满足,且,则的值为( )A. B. C. D.9.如图,在中,,,D为BC上一点,,则BC的长为( )A. 10B. 12C. 14D. 1610. 如图,D为边BC延长线上一点,与的平分线交于点,与的平分线交于点,,与的平分线交于点,若,则的值为( )A. B. C. D.11. 新冠病毒的直径约为,数据可用科学记数法表示为______.12. 若一个正多边形的内角是其外角的5倍,则这个正多边形的边数是______ .13. 分式的值为零,则a的值为______ .14.如果,那么______ .15. 如图,绕点C旋转得到,点E在边AB上,若,则的度数是______ .16. 如图,中,,,,EF垂直平分AC分别交边AC,AB于点E,为线段EF上一动点,D为边BC的中点,则周长的最小值是______ .17. 计算:;18. 如图,在中,AD平分交BC于D,于E,,,求的度数.19. 先化简,再求值:,其中m满足,取一个整数即可.20. 分解因式:;21. 在直角坐标系xOy中,的顶点坐标分别是,,作关于y轴对称的,并写出顶点,,的坐标;若以B,C,D为顶点的三角形与全等,请直接写出所有符合条件的点D的坐标点D与点A不重合22. 如图,,,求证:;若,,,求的度数.23. 如图,为庆祝2022年北京冬奥会圆满落幕,学校开展了以冬奥为主题的体育活动,计划购买A,B两种钢笔用来奖励表现突出的学生,已知B种单价比A种单价多5元,且用200元购买A种的支数与用300元购买B种的支数相同.求购买A,B两种钢笔的单价各是多少元;若购买A种钢笔的数量是B种钢笔数量的2倍,且资金不超过600元,则购买B种钢笔的数量最多是多少支?24. 如图,在等边中,,点M以的速度从点B出发向点A运动不与点A重合,点N以的速度从点C出发向点B运动不与点B重合,设点M,N同时运动,运动时间为在点M,N运动过程中,经过几秒时为等边三角形?在点M,N运动过程中,的形状能否为直角三角形,若能,请计算运动时间t;若不能,请说明理由.25. 在直角坐标系中,的顶点O与原点重合,,如图1,过点A作轴于C,过点B作轴于D,若点A的坐标为,求点B的坐标.如图2,将绕点O任意旋转.若点A的坐标为,求点B的坐标.若点A的坐标为,点B的坐标为,试求a,b的值.答案和解析1.【答案】D【解析】解:冬奥会会徽的一部分,其中是轴对称图形的是第四个图案.故选:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,由此即可判断.本题考查轴对称图形,关键是掌握轴对称图形的定义.2.【答案】B【解析】解:,故A选项错误,不符合题意;B.,故B选项正确,符合题意;C.,故C选项错误,不符合题意;D.,故D选项错误,不符合题意;故选:根据同底数幂的乘除法法则,幂的乘方与积的乘方进行计算即可判断.本题考查了同底数幂的乘除法法则,幂的乘方与积的乘方,解决本题的关键是掌握相关法则.3.【答案】C【解析】解:,不满足三角形三边关系,不能组成三角形,不符合题意;B.,不满足三角形三边关系,不能组成三角形,不符合题意;C.,满足三角形三边关系,能组成三角形,符合题意;D.,不满足三角形三边关系,不能组成三角形,不符合题意.故选:根据三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.本题考查三角形三边关系,掌握在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.【答案】A【解析】解:A、,故A符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D不符合题意;故选:利用分式的基本性质,进行计算逐一判断即可解答.本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.5.【答案】C【解析】解:全等三角形有≌,≌,≌,≌,理由是:,,,,,,,等角的补角相等,在和中,,≌,,,,,,在和中,,≌,在和中,,≌,同理≌,即全等三角形有4对,故选:根据等腰三角形的性质得出,根据平行线的性质得出,,求出,求出,,再根据全等三角形的判定定理逐个证明即可.本题考查了全等三角形的判定定理和性质定理,等腰三角形的判定等知识点,能熟练掌握全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有6.【答案】A【解析】解:,结果中不含x的一次项,,解得:故选:利用多项式乘多项式的法则进行运算,再结合条件进行求解即可.本题主要考查多项式乘多项式,解答的关键是对相应的运算法则的掌握.7.【答案】B【解析】解:≌,,,,,,,故选:根据全等三角形的性质得出,,再求出CE即可.本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,全等三角形的对应边相等,对应角相等.8.【答案】D【解析】解:实数m,n满足,,,,故选:求出,再把代入,再求出答案即可.本题考查了分式的化简求值,能正确根据分式的运算法则进行计算是解此题的关键.9.【答案】B【解析】解:,,,,,,,,,故选:由等腰三角形的性质推出,由含直角三角形的性质得到,求出BD 的长,即可求出BC的长.本题考查等腰三角形的性质,含角的直角三角形的性质,掌握以上知识点是解题的关键.10.【答案】D【解析】解:在中,,的平分线与的平分线交于点,,同理可得,,…以此类推,,,,即故选:根据角平分线的定义及三角形的内角和的定理及外角的性质可得,,,据此找规律可求解.本题主要考查三角形的内角和定理,角平分线的定义,图形的变化规律,找规律是解题的关键.11.【答案】【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:,故答案为:本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】12【解析】解:设多边形有n条边,由题意得:,解得:故答案为:设多边形有n条边,则内角和为,再根据内角和等于外角和的5倍可得方程,再解方程即可.本题主要考查了多边形的内角和和外角和,解题的关键是掌握多边形内角和定理:且n为整数13.【答案】2【解析】解:由题意得:且,解得:故答案为:根据分式的值为零的条件可得:且,再求出a的值.此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:分子为0;分母不为这两个条件缺一不可.14.【答案】27【解析】解:,,故答案为:由幂的乘方:,即可计算.本题考查有理数的乘方,关键是掌握幂的乘方公式.15.【答案】【解析】解:绕点C旋转得到,,,,,,,故答案为:根据旋转的性质得,,再利用三角形内角和定理可得的度数.本题主要考查了旋转的性质,等腰三角形的性质,三角形内角和定理等知识,熟练掌握旋转的性质是解题的关键.16.【答案】7【解析】解:连接AD,如图.中,,点D是BC边的中点,,,解得,是线段AC的垂直平分线,点C关于直线EF的对称点为点A,的长为的最小值,的周长最小值故答案为:连接AD,由于是等腰三角形,点D是BC边的中点,故,再根据三角形的面积公式求出AD的长,根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,等腰三角形三线合一的性质,线段垂直平分线的性质,三角形的面积,得出AD的长为的最小值是解答此题的关键.17.【答案】解:;【解析】直接利用积的乘方运算法则、同底数幂的乘法运算法则分别化简,再合并同类项得出答案;直接利用多项式乘多项式以及完全平方公式化简,再合并同类项得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18.【答案】解:在中,,,平分,在中,,,【解析】在中,利用三角形内角和定理,可求出的度数,结合角平分线的性质,可求出的度数,再在中,利用三角形内角和定理,即可求出的度数.本题考查了三角形内角和定理以及角平分线的性质,牢记“三角形内角和是”是解题的关键.19.【答案】解:原式,由,符合条件的整数m的值只能取2或当时,原式当时,原式【解析】直接将括号里面通分运算,再利用分式的混合运算法则化简,再把已知数据代入得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.20.【答案】解:;【解析】直接利用平方差公式分解因式得出答案;直接提取公因式,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.21.【答案】解:如图,即为所求.,,由图可知,点,,符合题意,符合条件的点D的坐标为或或【解析】根据轴对称的性质作图,即可得出答案.根据全等三角形的判定可画出图形,即可得出答案.本题考查作图-轴对称变换、全等三角形的判定,熟练掌握轴对称的性质以及全等三角形的判定是解答本题的关键.22.【答案】证明:,,,,,在和中,,≌,;解:由知,,,,,【解析】证明≌,即可解决问题;由得再根据,即可解决问题.本题考查了全等三角形的判定与性质,解决本题的关键是得到≌23.【答案】解:设购买A种钢笔的单价是x元,则购买B种钢笔的单价是元,根据题意得:,解得:,经检验,是所列方程的解,且符合题意,答:购买A种钢笔的单价是10元,B种钢笔的单价是15元;设购买m支B种钢笔,则购买2m支A种钢笔,根据题意得:,解得:,又为正整数,的最大值为答:购买B种钢笔的数量最多是17支.【解析】设购买A种钢笔的单价是x元,则购买B种钢笔的单价是元,利用数量=总价单价,结合用200元购买A种的支数与用300元购买B种的支数相同,可得出关于x的分式方程,解之经检验后可求出购买A种钢笔的单价,再将其代入中,可求出购买B种钢笔的单价;设购买m支B种钢笔,则购买2m支A种钢笔,利用总价=单价数量,结合总价不超过600元,可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值,即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:由题意得:,则当时,是等边三角形.解得:经过时为等边三角形;分两种情况:①如图1,当时,,②如图2,当时,在点M,N运动过程中,当运动时间或时,为直角三角形.【解析】由等边三角形的判定,当时,是等边三角形,由此即可解决问题;分两种情况,由直角三角形的性质即可求解.本题主要考查等边三角形的判定与性质,等腰三角形的性质,解答的关键是对等边三角形的判定定理与性质及等腰三角形的性质的掌握与灵活运用.25.【答案】解:,,,轴,轴,,,,,在和中≌,,,点B的坐标为;过A作轴于M,过B作轴于N,如图,若点在第一象限,则,,同可证≌,,,第四象限点B为,若点在第二象限,同理可得第一象限点B为;若点在第三象限,第二象限点B为;若点在第四象限,第三象限点B为;综上,若点A的坐标为,点B的坐标为;由的结论可得:,由①得,把代入②得,经检验,,是方程组的解,的值是,b的值是【解析】根据,,证明≌,可得,,即得点B的坐标为;过A作轴于M,过B作轴于N,若点在第一象限,则,,同可证≌,可得第四象限点B为,若点在第二象限,可得第一象限点B为;若点在第三象限,第二象限点B为;若点在第四象限,第三象限点B为,即可得到点B的坐标为;由的结论列方程组,即可解得答案.本题考查几何变换综合应用,涉及全等三角形的判断与性质,等腰直角三角形等知识,解题的关键是求出点A和B的坐标的关系.。
2023-2024学年八年级第二学期期末考数学试卷附答案
第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DA BC八年级下册数学期末测试题一一、选择题(每题2分,共24分) 1、下列各式中,分式的个数有( )31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍 3、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是( )A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以(x -2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x -2D .1+(1-x)=x -2 7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对(第7题) (第8题) (第9题)ABC8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 ( ) A 、1516 B 、516 C 、1532 D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )A 、x <-1B 、x >2C 、-1<x <0,或x >2D 、x <-1,或0<x <2 10、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=。
下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。
其中正确的共有( ).11、小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A 、2n m + B 、n m mn + C 、 n m mn +2 D 、mnnm + 12、李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期。
收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表: 据调查,市场上今年樱桃的批发价格为每千克15元。
用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为( )A. 2000千克,3000元B. 1900千克,28500元C. 2000千克,30000元D. 1850千克,27750元 二、填空题(每题2分,共24分)13、当x 时,分式15x -无意义;当m = 时,分式2(1)(3)32m m m m ---+的值为零 14、各分式222111,,121x x x x x x ---++的最简公分母是_________________ABCDEGF l321S 4S 3S 2S 115、已知双曲线xky =经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上, 且1a <2a <0,那么1b 2b .16、梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B 直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值 。
(第16题) (第17题) (第19题) 17、已知任意直线l 把□ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是 _________18、如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60°,且DE=1,则边BC 的长为 .19、如图,在□ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ,其中正确的结论是__个20、点A 是反比例函数图象上一点,它到原点的距离为10,到x 轴的距离为8,则此函数表达式可能为_________________ 21、已知:24111A Bx x x =+--+是一个恒等式,则A =______,B=________。
22、如图,11POA 、212P A A 是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________.(第22题)AE DH CBFG DAM NC(第24题)23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为_____________分。
24、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______。
三、解答题(共52分)25、(5分)已知实数a 满足a 2+2a -8=0,求22213211143a a a a a a a +-+-⨯+-++的值.26、(5分)解分式方程:22416222-+=--+x x x x x -27、(6分)作图题:如图,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。
(保留作图痕迹,不要求写作法和证明)28、(6分)如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。
(1)求证:AF=GB ;(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.ABC ABC29、(6分)张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:利用表中提供的数据,解答下列问题: (1)填写完成下表:(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差2S 王=33.2,请你帮助张老师计算张成10次测验成绩的方差2S 张;(3)请根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由。
30、(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x 成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?31、(6分)甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。
甲、乙两队独做各需几天才能完成任务?32、(10分)E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G.求证:FG AE .ADC BEGF参考答案一、选择题1、C2、B3、A4、B5、B6、D7、A8、A9、D 10、D 11、C 12、C 二、填空题13、5x =,3 14、2(1)(1)x x x +- 15、< 16 17、经过对角线的交点 18、3 19、320、48y x =或48y x=- 21、A =2,B =-2 22、(0) 23、88分 24、4 三、解答题25、解:22213211143a a a a a a a +-+-⨯+-++=213(1)1(1)(1)(1)(3)a a a a a a a +--⨯++-++ =21(1)1(1)a a a --++=2221a a ++ ∵a 2+2a -8=0,∴a 2+2a =8 ∴原式=281+=2926、解:22(2)16(2)x x --=+ 22441644x x x x -+-=++816x -=2x =-经检验:2x =-不是方程的解 ∴原方程无解27、1°可以作BC 边的垂直平分线,交AB 于点D ,则线段CD 将△ABC 分成两个等腰三角形2°可以先找到AB 边的中点D ,则线段CD 将△ABC 分成两个等腰三角形3°可以以B 为圆心,BC 长为半径,交BA 于点BA 与点D ,则△BCD 就是等腰三角形。
28、(1)证明:∵四边形ABCD 为平行四边形 ∴AB ∥CD ,AD ∥BC ,AD =BC ∴∠AGD =∠CDG ,∠DCF =∠BFC ∵DG 、CF 分别平分∠ADC 和∠BCD ∴∠CDG =∠ADG ,∠DCF =∠BCF ∴∠ADG =∠AGD ,∠BFC =∠BCF ∴AD =AG ,BF =BC ∴AF =BG(2)∵AD ∥BC ∴∠ADC +∠BCD =180° ∵DG 、CF 分别平分∠ADC 和∠BCD∴∠EDC +∠ECD =90° ∴∠DFC =90°∴∠FEG =90° 因此我们只要保证添加的条件使得EF =EG 就可以了。
我们可以添加∠GFE =∠FGD ,四边形ABCD 为矩形,DG =CF 等等。
29、1)78,80(2)13(3)选择张成,因为他的成绩较稳定,中位数和众数都较高30、(1)915(05)300(5)x x y x x+≤<⎧⎪=⎨≥⎪⎩ (2)20分钟31、解:设甲、乙两队独做分别需要x 天和y 天完成任务,根据题意得:111169301x y x y⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:24x =,48y = 经检验:24x =,48y =是方程组的解。