飞思卡尔智能车

合集下载

飞思卡尔智能车总结模版(2篇)

飞思卡尔智能车总结模版(2篇)

飞思卡尔智能车总结模版脚踏实地艰苦风斗我有幸能够参加____年全国点学生飞思____智能车竞赛,在这次竞赛中我们学到了很多,有专业方面的知识,比如单片机,各类传感器,不同芯片间的通信等等,也学会了一些书本上没有的东西,比如团队合作,如何网上购买到好的元器件,如何布局pcb板上各个元器件的位置等。

为了这次比赛,学校提前好久就开始准备了。

只是我们的课程比较多,平时去实验室的机会不是很多,为此我们也很伤脑筋。

终于等到寒假了,我们几个全身心的投入到这次比赛的准备中。

每天早上起来买点早餐就直奔实验室,白天动手做下硬件,晚上回到宿舍在就看下理论,联系编程。

这样的日子我们一点都没有感觉到累,每天都希望自己会学到更懂得东西,好似饿了许久的动物,得到了食物一般。

每天感觉都那么充实,想想大学里前两年学到的东西还没有那个寒假学到的东西多。

寒假里我们把历届的技术报告都看了看,这期间学到不少东西,尤其是对各类元器件的认识及使用。

真是受益匪浅。

接下来就是一些以前失败的经验,希望能有所参考。

比赛前在不注重实际赛道和自己练习赛道的区别,赛道一变,以前调试的结果都将无效。

所以,谨记一点,一定要吧硬件做好,比赛前一定好好利用好试车时间,多注意自己的赛道和比赛的赛道的区别,注意摩擦程度,光线的亮暗,空气的潮湿程度等。

其次是传感器的____,这次我们选用的是激光做传感器。

这个传感器相比其它传感器有很多优点,比光电的射的远,而且稳定性高,但是激光的很贵,所以提前一定要看好电路图,____一定要够稳固,不然后期传感器坏起来就头疼了。

我们以前有好多关键时刻传感器出问题失败的例子,不胜枚举,经验惨痛。

如果____不好,系统不够稳定,导致在比赛失败,而且平时调试浪费了好多宝贵的调试时间。

这一点,谨记,硬件固定一定要牢固。

其次是装配,各个模块间的连接线固定不牢靠。

使得导线接触不良,导致小车参赛时好几次冲出跑道(其中一个传感器的输入信号接触不良造成的)。

2024年飞思卡尔直立车经验总结范本

2024年飞思卡尔直立车经验总结范本

2024年飞思卡尔直立车经验总结范本标题:2024年飞思卡尔直立车经验总结一、背景介绍2024年,飞思卡尔推出了全新的直立车型,为用户提供了更加方便快捷的出行方式。

在过去一年中,我作为一位直立车用户,深入体验了该车型的特点和性能,并在实际使用中积累了一些宝贵的经验。

在此,我将对2024年飞思卡尔直立车的使用体验进行总结和分享。

二、操作便捷性2024年飞思卡尔直立车在操作上非常简单便捷,只需借助生物感测技术和智能控制系统,倾斜身体即可控制车辆前进、后退、转弯等基本操作。

整个学习过程只需要一点点时间和耐心,我很快就能熟练地驾驶该车型,并在城市中自由穿梭。

三、平稳性和稳定性飞思卡尔直立车的底盘设计以及智能平衡系统保证了其在行驶过程中的平稳性和稳定性。

无论是面对起伏不平的道路、转弯时的侧倾还是突然的加速和减速,车辆都能够稳定地保持平衡,给用户带来安全感和舒适体验。

四、便携性和储存空间飞思卡尔直立车的设计非常轻便,便于携带。

其折叠式设计使得在不使用时可以方便地收纳在车上或者携带袋内,极大地方便了用户的出行。

此外,车辆后方还设计了一个储物空间,可以放置一些日常所需物品,提高了出行的便利性。

五、智能功能和安全性飞思卡尔直立车配备了丰富的智能功能,如防盗系统、智能导航、远程遥控等。

其中,智能导航系统能够为用户提供详细的路径规划和实时交通情况,帮助用户选择最佳路线。

而防盗系统能够有效地保护车辆的安全,减少偷盗风险。

六、电池续航能力和充电便利性飞思卡尔直立车的电池续航能力非常出色,一次充电能够满足日常通勤和出行的需求。

而且,充电也非常便利。

车辆配备了快速充电技术,只需几十分钟就能完成充电,用户无需长时间等待,大大提高了使用效率。

七、交通环保性作为一款电动交通工具,飞思卡尔直立车具有绿色环保的特点。

相比传统燃油车辆,它不产生废气污染和噪音,为改善空气质量和城市交通环境做出了贡献。

八、用户体验和建议总体而言,2024年飞思卡尔直立车给我带来了出乎意料的便捷和愉悦的用户体验。

(毕业设计)飞思卡尔智能车及机器视觉

(毕业设计)飞思卡尔智能车及机器视觉

图像处理在智能车路径识别中的应用摘要机器视觉技术在智能车中得到了广泛的应用,这项技术在智能车的路径识别、障碍物判断中起着重要作用。

基于此,依据飞思卡尔小车的硬件架构,研究机器视觉技术应用于飞思卡尔小车。

飞思卡尔智能车处理器采用了MC9S12XS128芯片,路况采集使用的是数字摄像头OV7620。

由于飞思卡尔智能车是是一款竞速小车,因此图像采集和处理要协调准确性和快速性,需要找到其中的最优控制。

因此本设计主要需要完成的任务是:怎样用摄像头准确的采集每一场的图像,然后怎样进行二值化处理;以及怎样对图像进行去噪处理;最后也就是本设计的难点也是设计的核心,怎样对小车的轨迹进行补线。

本设计的先进性,在众多的图像处理技术中找到了适合飞思卡尔智能车的图像处理方法。

充分发挥了摄像头的有点。

经过小车的实际测试以及相关的MATLAB 仿真,最终相关设计内容都基本满足要求。

小车的稳定性和快速性得到显著提高。

关键词:OV7620,视频采集,图像处理,二值化The Application of Image Processing in the Recognition ofIntelligent Vehicle PathABSTRACTCamera Machine vision technology in the smart car in a wide range of applications, the technology identified in the path of the smart car, and plays an important role in the obstacles to judge. Based on this, based on the architecture of the Freescale car, machine vision technology used in the Freescale car. Freescale smart car the processor MC9S12XS128 chip traffic collected using a digital camera OV7620. Freescale's Smart car is a racing car, so the image acquisition and processing to coordinate the accuracy and fast, you need to find the optimal control. This design need to complete the task: how to use the camera to accurately capture every image, and then how to binarization processing; and how to image denoising; last is the difficulty of this design is the design of the core, how to fill line on the trajectory of the car.The advanced nature of the design found in many image processing techniques of image processing methods for Freescale Smart Car. Give full play to the camera a bit. The actual testing of the car and MATLAB simulation, the final design content can basically meet the requirements. The car's stability and fast to get improved significantly.KEY WORDS: OV7620,Video Capture,Picture Processing,Binarization目录前言 (1)第1章飞思卡尔赛车及机器视觉的概述 (2)1.1 智能车的研究背景 (2)1.1.1 智能车的发展历史 (2)1.1.2 应用前景 (2)1.2 智能车设计要求介绍 (3)1.3 机器视觉介绍 (4)1.4 小结 (4)第2章主要思路及技术方案概要 (5)2.1 总体设计主要方法步骤 (5)2.2 摄像头的对比与选择 (5)2.2.1 摄像头的选取 (5)2.2.2 模拟摄像头 (6)2.2.3 数字摄像头 (6)2.2.4 摄像头的选定 (7)2.3 二值化方案的选取 (7)2.3.1 双峰值法 (7)2.3.2 迭代法 (8)2.3.3 大津法 (8)2.3.4 灰度拉伸-一种改进的大津法 (9)2.3.5 二值化方案的最终选定 (9)2.4对图像进行去噪 (9)2.4.1 传统的去噪法 (9)2.4.2 小波去噪 (11)2.4.3 去噪方法的最终确定 (13)2.5小结 (13)第3章硬件设计 (14)3.1 硬件总体方案设计 (14)3.2 核心控制板 (15)3.3 摄像头的安装 (15)3.4 小结 (16)第4章软件设计 (17)4.1 系统软件总体设计方案 (17)4.2 图像二值化软件设计 (17)4.3 去噪设计 (19)4.3.1 实验信号的产生 (19)4.3.2各参数下去噪效果对比 (20)4.4 二值化后补线 (24)4.5 小结 (32)第5 章结果分析 (33)5.1 采集到的灰度值去噪前的MATLAB仿真 (33)5.1.1 去噪前MATLAB函数和仿真结果 (33)5.1.2 去噪后MATLAB仿真结果 (34)5.2 边界扣取 (35)5.2.1 边界扣取函数 (35)5.2.2 边界扣取仿真结果 (36)5.3 补线后效果 (37)5.4 小结 (38)结论 (39)谢辞 (40)参考文献 (41)附录 (42)外文资料翻译 (45)前言机器视觉技术近几十年来已经得到广泛的应用,并且已经取得了巨大的成功,大大改善了人们的日常生活。

飞思卡尔智能车光电组技术报告

飞思卡尔智能车光电组技术报告

飞思卡尔智能车光电组技术报告一、智能车光电组概述智能车光电组是指智能车中的关键性能元件——光电传感器集合体。

它能对车辆运动状态、线路、红绿灯等信息进行感知,实现智能驾驶的基础。

智能车光电组主要包括红外线传感器、光耦传感器、光电限位传感器等。

这些传感器通过感知周围环境中的光电信息,将其转化为电信号,再与控制电路进行通信,完成车辆的控制和判断。

二、红外线传感器红外线传感器是智能车光电组中最常用的传感器之一,其主要作用是对赛道上各种异物或者障碍进行探测,从而实现自主避障。

红外线传感器有两种,一种是红外线避障传感器,主要检测前方是否有障碍物。

另一种是寻迹传感器,主要检测车辆行进轨迹及车轮边界。

这两种传感器都通过发射一束红外线,然后检测红外线反射信号的强弱,来判断当前道路状态。

智能车中多数采用两种红外线传感器的组合,一个用于永久性突出物体的检测和避障功能,一个用于寻迹,检测当前赛道行驶的状态。

这种组合方案在实际使用中既能够减小了智能车的体积,同时也能够同时满足避障和寻迹两种功能的需求。

三、光耦传感器光耦传感器主要是测量霍尔电压,电容电压,电阻电压等物理量,全局范围内掌握智能车行驶的状态,构成智能车控制系统的重要部分。

通过对各种物理量的感应,对智能车进行动态实时控制。

如针对车速问题,可以采用霍尔电压测量方法,对车辆运动状态进行简单的判断。

智能车中采用光电传感器和电路配合的方法,还可以实现车辆行驶过程中的速度随时控制和加速度调整。

四、光电限位传感器光电限位传感器是一种可以控制智能车极限运动状态的传感器。

传感器通过实时控制智能车运动状态,避免车辆因超出极限而出现事故。

光电限位传感器一般分为三种,分别是机械限位传感器、磁性限位传感器和光电限位传感器。

传感器固定在车架上,在车辆行驶过程中限定车辆的行驶限度,从而确保车辆的安全性。

五、结论智能车光电传感器组是智能车控制系统中的重要组成部分。

它通过对周围环境的感知和探测来确保车辆的安全和自主导航。

飞思卡尔智能车光电资料

飞思卡尔智能车光电资料

飞思卡尔智能车光电资料概述飞思卡尔智能车(Smart car)系列是一款基于飞思卡尔公司的光电传感技术的自动驾驶小车。

光电传感技术是利用光电元件将感受到的光信号转化为电信号,并通过处理电信号得到有用的信息。

飞思卡尔智能车光电资料提供了有关自动驾驶小车的光电传感器的详细信息,包括工作原理、技术规格和应用案例等。

工作原理飞思卡尔智能车光电传感器是通过感受周围的光线来实现环境感知和障碍物检测的。

光电传感器通常由发射器和接收器两部分组成,发射器将红外线或其他光束发射出去,接收器则接收到从目标物体反射回来的光线。

通过测量发射光束和接收光束之间的差异,可以判断目标物体的位置、形状和距离等。

光电传感器可以分为两种类型:距离传感器和线路传感器。

距离传感器主要用于测量目标物体与车辆之间的距离,常用于自动驾驶小车的防碰撞系统。

线路传感器主要用于检测车辆行驶的路径,常用于自动驾驶小车的导航系统。

技术规格飞思卡尔智能车光电传感器具有以下技术规格:•工作电压:3.3V•工作电流:10mA•输出信号:数字信号•工作距离:10cm - 100cm•发射角度:60度•接收灵敏度:高于5000Lux应用案例飞思卡尔智能车光电传感器广泛应用于自动驾驶小车的各个方面,包括但不限于以下应用案例:防碰撞系统飞思卡尔智能车光电传感器可以配备在车辆的前部,用于检测前方是否有障碍物。

当传感器检测到前方有障碍物时,会向控制系统发出警告信号,控制系统则会采取相应措施,如减速或避让,以防止碰撞事故的发生。

导航系统飞思卡尔智能车光电传感器可以配备在车辆的底部,用于检测车辆行驶路径。

传感器将红外线发射到地面上的线路上,通过接收反射回来的光线来确定车辆的行驶方向和位置。

导航系统可以根据传感器的信号来控制车辆的行驶轨迹,以实现自动驾驶。

环境感知系统飞思卡尔智能车光电传感器可以配备在车辆的四周,用于感知周围的环境。

传感器可以检测到周围物体的位置、形状和距离等信息,以帮助车辆做出相应的决策,如避让行人或停车等。

2024年飞思卡尔智能车总结

2024年飞思卡尔智能车总结

2024年飞思卡尔智能车总结
2024年飞思卡尔智能车在技术、市场和发展方面取得了重要进展。

在技术方面,飞思卡尔智能车在感知、决策和控制方面取得了显著的提升。

通过引入先进的传感器技术、深度学习算法和决策系统,智能车能够更准确地感知周围环境,并作出更精准的决策。

此外,智能车的控制系统也得到了改进和优化,使得车辆在各种复杂的道路条件下能够更安全、稳定地行驶。

在市场方面,飞思卡尔智能车取得了良好的销售业绩和市场份额。

随着智能汽车的普及,越来越多的消费者开始关注智能车的安全性、效率和便利性。

飞思卡尔智能车凭借其卓越的技术和可靠的性能,获得了广大消费者的认可和信赖,进一步扩大了市场份额。

在发展方面,飞思卡尔智能车与各大汽车制造商、科技公司和城市机构建立了紧密的合作关系。

通过合作,飞思卡尔能够更好地了解市场需求,持续改进和创新智能车技术。

此外,飞思卡尔还积极参与智能交通系统和城市智能化建设,为城市提供更安全、高效的交通解决方案。

综上所述,2024年飞思卡尔智能车在技术、市场和发展方面都取得了显著的进展,为智能汽车行业的发展做出了积极贡献。

未来,飞思卡尔将继续致力于推动智能车技术的发展,为用户提供更智能、更安全的出行体验。

第 1 页共 1 页。

飞思卡尔智能车新手入门解决方案

飞思卡尔智能车新手入门解决方案

目录目录 (1前言 (3一、基于飞思卡尔芯片的智能循迹车 (11、智能循迹车简介 (12、摄像头组方案 (1(1CMOS模拟摄像头 (2(2CMOS数字摄像头 (33、光电组方案 (4(1红外传感器 (4(2激光传感器 (64、电磁组方案 (10(1工型电感传感器 (10(2色环电感传感器 (10(3硬件设计 (105、道路识别策略 (11(1摄像头信号采集 (12(2红外传感器信号采集 (13(3电磁传感器信号采集 (136、电机驱动 (147、速度检测 (168、调试策略 (17(1速度调试(以摄像头组为例子 (17(2综合调试 (18二、入门级别智能车方案——基于STC89C52单片机智能小车 (191、简介 (192、方案 (19(1基于红外传感器循迹方案 (19(2基于激光传感器循迹方案 (203、利用中断调制PWM占空比驱动直流电机 (23 (1直流电机的实物图片 (23(2直流电机的介绍 (23(3直流电机的驱动 (234、利于中断调制PWM占空比驱动舵机摇头 (24 1、舵机的原理及其应用 (24(1舵机的实物图片: (24(2舵机的介绍 (25(3舵机的工作原理 (255、数码管显示 (251、数码管原理 (256、LED流水灯控制 (27LED灯参考电路图 (277、液晶显示 (28(11602液晶显示 (28a主要技术参数 (28b信号接脚 (29c基本操作时序 (29d电路图接法 (29(212864液晶显示 (30a主要技术参数 (30b信号接脚 (30c基本操作时序 (30d电路图接法 (318、ADC0804 (319、DAC0832 (3210、I2C总线 (3411、矩阵控制 (3512、蜂鸣器控制 (36前言智能化是21世纪机电一体化技术发展的一个重要发展方向。

人工智能在机电一体化及自动控制领域日益得到重视,现阶段在机电一体化及自动化专业教学方式上,部分院校较重视实践而轻理论,部分院校较重视理论而轻实践,但有一个共同点就是:通过一些相关技能竞赛能够有效地提高学生的综合能力,在比赛过程中充分锻炼了参赛者理论知识和实操能力;如:飞思卡尔智能汽车竞赛,电子设计竞赛,机械创新设计竞赛,瑞萨竞赛等。

飞思卡尔智能车原理

飞思卡尔智能车原理

飞思卡尔智能车原理飞思卡尔智能车是一种基于嵌入式系统和人工智能技术的智能交通工具。

它通过搭载各种传感器、控制器和算法,在无人驾驶、自动泊车等场景下发挥重要作用。

本文将介绍飞思卡尔智能车的原理,并分析其在实际应用中的优势和挑战。

一、飞思卡尔智能车的硬件组成飞思卡尔智能车的硬件组成主要包括以下几个方面:1. 主控单元:主控单元是飞思卡尔智能车的核心组件,通常采用高性能的嵌入式处理器。

它负责接收来自各种传感器的信息,并根据预设的算法进行数据处理和决策。

2. 传感器:飞思卡尔智能车搭载多种传感器,如摄像头、激光雷达、超声波传感器等。

这些传感器可以实时感知周围环境的信息,包括道路状况、障碍物位置等,为智能车提供必要的数据支持。

3. 电机与驱动系统:飞思卡尔智能车搭载电机和对应的驱动系统,用于控制车辆的行驶和转向。

这些系统通常采用先进的电子控制技术,能够实现精确的转向和速度控制。

4. 通信模块:飞思卡尔智能车通过通信模块与其他车辆、交通基础设施等进行信息交互。

这种通信方式可以实现车辆之间的协同工作,提高交通系统的整体效率。

二、飞思卡尔智能车的工作原理飞思卡尔智能车的工作原理可以归结为以下几个关键步骤:1. 环境感知:飞思卡尔智能车通过搭载的传感器对周围环境进行感知。

摄像头可以捕捉到道路状况、交通标志和其他车辆的信息;激光雷达可以检测到障碍物的位置和距离;超声波传感器可以测量车辆与前方障碍物的距离等。

通过这些传感器获取到的数据,智能车可以对周围环境做出准确判断。

2. 数据处理与决策:主控单元接收传感器传来的数据,并根据预设的算法进行数据处理和决策。

它会将传感器的信息与事先建立的模型进行比对,进而判断车辆应该采取何种动作,如加速、刹车、转向等。

3. 控制指令生成:基于数据处理与决策的结果,主控单元生成相应的控制指令,通过驱动系统控制车辆的行驶和转向。

这些控制指令可以通过电机和驱动系统精确地控制车辆的运动。

4. 数据通信与协同:飞思卡尔智能车通过通信模块与其他车辆以及交通基础设施进行信息交互。

聊城大学飞思卡尔智能车

聊城大学飞思卡尔智能车

聊城大学“飞思卡尔”智能车
简介:
“飞思卡尔”智能车是采用飞思卡尔半导体公司的8位、16位、32位MCU作为微控制器,按照官方要求的车体尺寸、零部件(舵机,马达、传感器等)、技术规范,利用学生们的自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等专业学科方面的知识,并发挥学生的创新能力制作而成的智能车。

其基本类型有光电组,摄像组以及磁导航组三种,每组都有自己的特色的机械结构及跑道,可以充分满足学生的兴趣爱好。

赛事:
全国大学生“飞思卡尔”杯智能车大赛是以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。

该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。

参赛情况:
聊城大学飞思卡尔智能车研发团队今年第一次参加全国大学生“飞思卡尔”智能车竞赛,在没有经验积累、很多专业知识和技能零起步的情况下,短短两个月的时间内完成了三辆光电组智能车、两辆电磁组直立行走智能车的设计与改装工作,并且能够稳定运行。

聊城大学“飞思卡尔”团队一定会再接再厉不断创造更加辉煌的成绩。

基于飞思卡尔k芯片控制下的智能汽车

基于飞思卡尔k芯片控制下的智能汽车

基于飞思卡尔k芯片控制下的智能汽车随着科技的不断发展,智能汽车已经成为人们关注的热点。

智能汽车的理念是将各种计算机技术、信息技术、通讯技术等应用于汽车制造中,从而提高汽车的运行效率、安全性和舒适性。

而基于飞思卡尔k芯片控制下的智能汽车,则是一种应用飞思卡尔k芯片技术的智能汽车,其运行效率、安全性和舒适性都有极大的提升。

一、飞思卡尔k芯片的概述:飞思卡尔k芯片是飞思卡尔半导体公司推出的一款8位单片机芯片,该芯片结构简单、体积小、功能强大。

飞思卡尔k芯片具有低功耗、高速、高精度、易于编程和调试等特点,因此被广泛应用于智能汽车领域。

二、基于飞思卡尔k芯片控制下的智能汽车的功能:1.自动驾驶:基于飞思卡尔k芯片的智能汽车配备了高精度的定位系统、激光雷达、高清摄像头和超声波传感器等多种传感器设备,它能够感受周围的环境信息,进行自主导航、避障、停车等操作,实现自动驾驶。

2.智能行车:基于飞思卡尔k芯片的智能汽车配备了智能巡航系统、自适应巡航系统、车道保持系统等智能驾驶辅助系统,它们可以对汽车的速度、方向、行驶路线等进行控制和优化,使得汽车在行驶过程中更加平稳和安全。

3.智能安全:基于飞思卡尔k芯片的智能汽车配备了多个传感器装置、高清摄像头和行人识别系统等多种安全措施,它们可以准确地感知周围环境信息,对可能出现的危险情况提前做出反应,从而保障汽车乘客的安全。

4.智能娱乐:基于飞思卡尔k芯片的智能汽车配备了多媒体中心、智能语音助手、虚拟现实系统、视频通话系统等多种智能娱乐设施,乘客可以在愉悦的氛围中轻松度过一段旅途。

三、基于飞思卡尔k芯片控制下的智能汽车的优势:1.低功耗:基于飞思卡尔k芯片控制下的智能汽车采用了高效低功耗的8位单片机芯片,使得整个系统运行更加节能,延长了电池寿命。

2.高精度:基于飞思卡尔k芯片控制下的智能汽车采用多种高精度传感器,可以实现高精度的导航、定位和行车控制,提高了汽车的行驶精度。

3.易于编程和调试:飞思卡尔k芯片具有标准的编程接口和调试工具,使得开发人员可以快速高效地进行开发、调试和测试工作。

飞思卡尔智能车简介

飞思卡尔智能车简介

智能车制作F R E E S C A L E学院:信息工程学院班级:电气工程及其自动化132 学号:6101113078姓名:李瑞欣目录:1. 整体概述2.单片机介绍3.C语言4.智能车队的三个组5.我对这门课的建议一、整体概述智能车的制作过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作。

内容涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科多专业。

下面是一个智能车的模块分布:总的来说智能车有六大模块:信号输入模块、控制输出模块、数据处理模块、信息显示模块、信息发送模块、异常处理模块。

1、信号输入模块:智能车通过传感器获知赛道上的路况信息(直道,弯道,山坡,障碍物等),同时也通过传感器获取智能车自身的信息(车速,电磁电量等)。

这些数据构成了智能车软件系统(大脑)的信息来源,软件系统依靠这些数据,改变智能车的运行状态,保证其在最短的时间内按照规定跑完整个赛道。

2、控制输出模块:智能车在赛道上依靠转向机构(舵机)和动力机构(电机)来控制运行状态,这也是智能车最主要的模块,这个模块的好坏直接决定了你的比赛成绩。

电机和舵机都是通过PWM控制的,因此我们的软件系统需要根据已有的信息进行分析计算得到一个合适的输出数据(占空比)来控制电机和舵机。

3数据处理模块:主要是对电感、编码器、干簧管的数据处理。

信号输入模块得到的数据非常原始,有杂波。

基本上是不能直接用来计算的。

因此需要有信号处理模块对采集的数据进行处理,得到可用的数据。

4信息显示模块:智能车调试过程中,用显示器来显示智能车的部分信息,判断智能车是否正常运行。

正式比赛过程中可关闭。

主流的显示器有:Nokia 5110 ,OLED模块等,需要进行驱动移植。

5信息发送模块智能车的调试过程中,我们需要观察智能车的实时状态(采集的信号是否正常,输出是否正常),这个时候就需要用到信息发送模块,将智能车运行时的数据发送到电脑上就行分析处理。

2024年飞思卡尔直立车经验总结

2024年飞思卡尔直立车经验总结

2024年飞思卡尔直立车经验总结飞思卡尔直立车是一种创新的交通工具,它能够以直立的方式行驶,具有灵活性和高度适应性。

作为一个交通工具,它在2024年的出行方式中扮演了重要的角色。

在过去一年中,我有幸亲身体验了飞思卡尔直立车的使用,并深深感受到了它给我带来的便利和乐趣。

在此,我想分享一下我对飞思卡尔直立车的经验和总结。

首先,飞思卡尔直立车的操控非常简单。

它采用了先进的电子控制系统,只需通过轻松的手势操作就可以控制车辆的转向、前进和停止。

无论是驾驶经验丰富的司机还是初学者,都可以轻松上手,享受到驾驶的乐趣。

此外,车辆的座椅和方向盘都可以调节,可以根据个人喜好进行调节,提供更加个性化的驾驶体验。

其次,飞思卡尔直立车的性能表现出色。

它搭载了高性能的电动马达和先进的电池技术,能够提供强劲的动力输出和长久的续航能力。

在城市道路上行驶时,车辆可以轻松应对各种路况,灵活穿梭于车流之间。

而且,车辆还具有智能导航和避障系统,能够自动避免障碍物和实时规划最优路线,确保行驶的安全和畅通。

另外,飞思卡尔直立车的外观设计时尚动感,给人一种时尚前卫的感觉。

车身采用了流线型设计,减小了空气阻力,提高了行驶的稳定性和安全性。

车辆还配置了LED大灯和尾灯,提供了良好的照明效果,增强了夜间行驶的安全性。

整体来说,飞思卡尔直立车的外观设计非常吸引人,充满了青春活力和科技感。

此外,飞思卡尔直立车还具有丰富的智能科技功能。

它配备了触摸屏显示器和语音控制系统,可以实时显示车辆信息和提供导航功能。

另外,车辆还支持蓝牙连接和移动互联网功能,可以根据个人需求下载APP,实现更加个性化的驾驶体验。

这些智能科技功能为驾驶者提供了更多的便利,提升了驾驶乐趣和舒适度。

最后,我想谈一下对于飞思卡尔直立车未来的期望。

随着科技的不断进步和消费者对出行方式的需求不断增长,我相信在未来飞思卡尔直立车会有更多的创新和发展,为我们的出行方式带来更多的便利和乐趣。

我期待未来飞思卡尔直立车的续航能力和性能进一步提升,以应对更长时间的行驶和更复杂的道路条件。

飞思卡尔智能车总结范本(二篇)

飞思卡尔智能车总结范本(二篇)

飞思卡尔智能车总结范本先静下心来看几篇技术报告,可以是几个人一起看,边看边讨论,大致了解智能车制作的过程及所要完成的任务。

看完报告之后,对智能车也有了大概的了解,其实总结起来,要完成的任务也很简单,即输入模块-控制-输出。

(1)输入模块。

各种传感器(光电,电磁,摄像头),原理不同,但功能都一样,都是用来采集赛道的信息。

这里面就包含各种传感器的原理,选用,传感器电路的连接,还有传感器的____、传感器的抗干扰等等需要大家去解决的问题。

(2)控制模块。

传感器得到了我们想要的信息,进行相应的ad转换后,就把它输入到单片机中,单片机负责对信息的处理,如除噪,筛选合适的点等等,然后对不同的赛道信息做出相应的控制,这也是智能车制作过程中最为艰难的过程,要想出一个可行而又高效的算法,确实不是一件容易的事。

这里面就涉及到单片机的知识、c语言知识和一定的控制算法,有时为了更直观地动态控制,还得加入串口发送和接收程序等等。

(3)输出模块。

好的算法,只有通过实验证明才能算是真正的好算法。

经过分析控制,单片机做出了相应的判断,就得把控制信号输出给电机(控制速度)和舵机(控制方向),所以就得对电机和舵机模块进行学习和掌握,还有实现精确有效地控制,又得加入闭环控制,pid算法。

明确了任务后,也有了较为清晰的控制思路,接下来就着手弄懂每一个模块。

虽然看似简单,但实现起来非常得不容易,这里面要求掌握电路的知识,基本的机械硬件结构知识和单片机、编程等计算机知识。

最最困难的是,在做的过程中会遇到很多想得到以及想不到的事情发生,一定得细心地发现问题,并想办法解决这些问题。

兴趣是首要的,除此之外,一定要花充足的时间和精力在上面,毕竟,有付出就会有收获,最后要明确分工和规划好进度。

飞思卡尔智能车总结范本(二)刚进入大学半年,我就有幸参加飞思____智能车比赛。

说实话,刚报名参加这项赛事的时候我只是抱着好奇的心态去参加,可是真的进入了这个团队的时候,我发现这个活动是多么的吸引我,让我顿时在枯燥的学习生活中找到了乐趣。

基于飞思卡尔单片机的智能车及其调试系统设计

基于飞思卡尔单片机的智能车及其调试系统设计

基于飞思卡尔单片机的智能车及其调试系统设计基于飞思卡尔单片机的智能车及其调试系统设计摘要:本文介绍了一种基于飞思卡尔单片机的智能车设计方案,并详细阐述了其调试系统的设计和实现过程。

通过对传感器、驱动器和控制算法的整合与优化,实现了智能车对环境的感知、路径规划和自主导航功能。

调试系统包括软件调试和硬件调试两个方面,通过实验验证了系统的可行性和稳定性。

实验结果表明,该智能车具备了较高的精确性和响应速度,能够在复杂的环境中实现准确导航。

关键词:飞思卡尔单片机;智能车;调试系统;感知;路径规划;自主导航1.引言智能车作为人工智能领域的一个重要应用方向,在交通运输、环境监测等许多领域有着广泛的应用价值。

随着单片机技术的不断发展和普及,基于飞思卡尔单片机的智能车设计方案逐渐成为研究的热点。

本文旨在利用飞思卡尔单片机开发一种具备感知、控制和规划等功能的智能车,并设计相应的调试系统来验证其工作状态和性能。

2.智能车硬件设计智能车的核心是以飞思卡尔单片机为主控制器的控制系统。

该系统由多个模块组成:传感器模块、驱动器模块、通信模块和电源管理模块。

传感器模块用于感知环境,包括超声波传感器、红外传感器等。

驱动器模块用于控制车轮的转动,实现车辆的前进、后退和转向功能。

通信模块用于与外部设备进行数据交互,电源管理模块用于管理车辆的电力供应和充放电管理。

3.智能车软件设计智能车的软件系统主要包括感知模块、控制模块和规划模块。

感知模块利用传感器获取环境信息,并将其转化为数字信号。

控制模块根据感知模块的数据进行判断和决策,控制车辆的运动。

规划模块根据车辆当前位置和目标位置,采用路径规划算法计算最优路径,并通过控制模块实现车辆的导航功能。

4.智能车调试系统设计智能车的调试系统包括软件调试和硬件调试两个方面。

软件调试主要涉及程序的编写、调试和验证,通过仿真、调试和测试等手段,确保软件系统的正确性和稳定性。

硬件调试主要涉及电路连接、传感器的调试和驱动器的测试,通过检查电路连通性、校准感知模块和测试驱动器的工作状况来验证硬件系统的可靠性和性能。

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计方案清晨的阳光透过窗帘,洒在书桌上那厚厚一摞方案草稿上。

我泡了杯咖啡,打开电脑,准备着手写这个“飞思卡尔智能车竞赛设计方案”。

10年的方案写作经验告诉我,这是一个充满挑战的任务,但也是展示自己才华的舞台。

一、项目背景飞思卡尔智能车竞赛是一场针对大学生的科技竞赛,旨在培养创新精神和实践能力。

参赛队伍需要设计一款智能车,通过传感器、控制器、执行器等部件,使车辆在规定的赛道上自主行驶,完成各种任务。

这场比赛既考验技术,也考验团队协作。

二、设计方案1.车辆整体设计车辆整体设计要兼顾美观、实用和稳定性。

外观上,我们采用流线型设计,减少空气阻力;内部结构紧凑,降低重心,提高稳定性。

车辆尺寸符合比赛规定,确保在赛道上行驶自如。

2.传感器配置(1)激光雷达:用于实时获取车辆周围环境信息,绘制三维地图。

(2)摄像头:用于识别赛道标志、障碍物等。

(3)超声波传感器:用于检测前方障碍物距离,避免碰撞。

(4)红外传感器:用于检测赛道边缘,防止车辆出轨。

3.控制器设计(1)路径规划:根据传感器信息,实时规划车辆行驶路径。

(2)速度控制:根据赛道状况,调整车速,确保稳定行驶。

(3)避障策略:当检测到前方有障碍物时,及时调整行驶方向。

4.执行器设计(1)电机驱动:驱动车辆前进、后退、转向。

(2)舵机:用于调整摄像头角度,获取更多赛道信息。

(3)电磁阀:用于控制车辆制动。

三、团队协作一个优秀的团队是项目成功的关键。

我们团队成员各司其职,密切配合:1.项目经理:负责整体进度把控,协调各方资源。

2.硬件工程师:负责车辆整体设计和传感器、执行器选型。

3.软件工程师:负责控制器设计和程序编写。

4.测试工程师:负责车辆调试和性能测试。

四、项目实施1.初期准备:收集比赛相关信息,了解赛道状况,确定设计方案。

2.设计阶段:根据设计方案,绘制图纸,选型采购。

3.制作阶段:组装车辆,调试传感器、控制器和执行器。

4.测试阶段:进行多次试验,优化控制策略,提高车辆性能。

2024年飞思卡尔直立车经验总结范例(2篇)

2024年飞思卡尔直立车经验总结范例(2篇)

2024年飞思卡尔直立车经验总结范例引言随着科技的不断进步和人们生活水平的提高,交通工具也在不断创新和发展。

直立车作为一种新型的个人出行工具,已经逐渐走进人们的生活。

作为飞思卡尔公司的员工,我有幸参与了2024年飞思卡尔直立车的研发和试用,并且在实际使用中积累了一些经验和体会。

本文将针对我个人的使用经验,对2024年飞思卡尔直立车进行总结。

一、产品介绍2024年飞思卡尔直立车是一种个人出行工具,采用电动动力系统,配备直立式车架和平衡系统。

该车拥有轻巧便携的特点,使用者可以通过折叠和展开车架来方便地携带。

另外,该车配备了智能平衡系统,可以感知使用者的重心变化,实现自动平衡。

除此之外,该车还采用了悬浮式轮胎和磁悬浮技术,提供了平稳、舒适的骑行体验。

二、使用体验1. 稳定性2024年飞思卡尔直立车的平衡系统非常稳定,能够准确感知使用者的动作,并根据重心的变化自动调整车身的平衡。

在骑行过程中,我几乎感受不到晃动和颠簸,给人一种非常舒适的感觉。

此外,悬浮式轮胎和磁悬浮技术的运用使得车辆在不平坦路面上也具有很好的稳定性。

2. 操控性飞思卡尔直立车的操控性非常灵活,可以通过微调身体重心来控制车辆的前进、停止和转弯。

在我使用的过程中,我发现掌握操控的技巧后,可以非常准确地控制车辆的移动和方向变化。

同时,悬浮式轮胎的设计也为车辆的操控提供了更好的反应速度和转弯性能。

3. 便携性2024年飞思卡尔直立车在便携性方面也做得非常出色。

车架采用了可折叠设计,可以方便地收起来放入背包或行李箱中。

我曾经携带该车外出旅行,在旅途中非常方便地进行出行。

此外,车辆的轻巧和可折叠的设计也为用户提供了更多的场景和用途选择。

4. 安全性飞思卡尔直立车在安全性方面也有很好的保证。

首先,平衡系统的稳定性确保了车辆在骑行过程中的安全性。

其次,车辆配备了电子刹车系统和灵敏的感应器,在使用过程中能够快速响应用户的操作,提供安全的停车和刹车效果。

最后,车辆还配备了前后防护装置和智能警示系统,提高了车辆在复杂交通环境中的安全性。

飞思卡尔光电组套件智能车XS128K60介绍

飞思卡尔光电组套件智能车XS128K60介绍
2.1
此智能车模,配套的电机型号为RN260-CN-2875。智能车的控制采用的是双后轮驱动方案。智能车的外形大致如下:
智能汽车外形图
2.2
车模中的传感器包括有:速度传感器,车模姿态传感器(陀螺仪、加速度计)以及线形CCD。下面分别介绍这些传感器的安装。
2.2.1
速度编码器我们采用了编码器,安装方法如下:
为了保护模型车传感器支架,在车模机械设计的时候,增添了防撞保护装置,使一旦车模倾倒或者失控,防撞保护装置可保护车模机械的安全性,保证小车状态的稳定性。
飞思卡尔光电组套件智能车XS128 K60介绍
智能汽车外形图
第一章
智能汽车系统总体设计思路,后面将整个系统分为机械结构、控制模块、控制算法等三部分对智能汽车控制系统进行深入的介绍。光电组用了线性ccd,但是由于需要镜头成像,所以会带来成像失真,静电干扰严重等问题。由于平衡车的特殊性,车身在循迹前进的过程中,必须保持车身的平衡。根据最基本保持车身平衡的基本原理,需要知道车身当前的角度和角速度。因此在保持车身平衡方面,以加速度计作为角度传感器,陀螺仪作为角速度传感器。
用十字扳手套筒将车的后轮拆卸后,安装编码器,固定编码器的固定件是根据
车得尺寸及与编码器的相对位置手工制作的连接固定件。
在安装完后轮后,在利用十字扳手套筒将后轮装上。
安装时应注意调整好齿轮间隙。齿轮传动机构对车模的驱动能力有很大的影响。齿轮传动部分安装位置的不恰当,会大大增加电机驱动后轮的负载,会严重影响最终成绩。调整的原则是:两传动齿轮轴保持平行, 齿轮间的配合间隙要合适,过松容易打坏齿轮,过紧又会增加传动阻力,浪费动力;传动部分要轻松、顺畅,不能有迟滞或周期性振动的现象。判断齿轮传动是否良好的依据是,听一下电机带动后轮空转时的声音。声音刺耳响亮,说明齿轮间的配合间隙过大,传动中有撞齿现象;声音闷而且有迟滞,则说明齿轮间的配合间隙过小,或者两齿轮轴不平行,电机负载变大。调整好的齿轮传动噪音很小,并且不会有碰撞类的杂音,后轮减速齿轮机构就基本上调整好了,动力传递十分流畅。如图所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008.5 电子设计应用 www.eaw.com.cn
104应用方案 | 嵌入式应用
随着计算机技术
智能汽车成为汽车发展的一大趋势
并且可以使跷跷板保持平衡的电动车

用红外反射传感器和摄像头同时检测路面引导线
时时进行车速调整

持平衡状态
西南石油大学 高凤水 靳涛 赵书朵
摘要
它以飞思卡尔MC9S12DG128单片机作为控制核心显示模块
关键词
自平衡功能
图1 智能车系统电路组成框图
图2 红外反射传感器和摄像头安装位置示意图

智能车系统组成见图

其内部结构主要
由单片机基本部分和CAN功能块部
分组成
两个异步串行通信口
SCI
另有
8通道输入捕捉/输出比较定时器
在片内还拥有128KB
Flash RO

MC9S12DG128作为小车
整个控制部分的核心
控制驱
动伺服电机
以指引电动车的行
驶方向
设计成本低
检测距离近
Electronic Design & Application World-Nikkei Electronics China
105
Application Solution |
Embedded Applications
图5平衡调节杆
受力分析
稳定性
摄像头采集点数多
探测距离远
准确
将红外反射传感器和摄像
头有效结合在一起
引导小车前进
判断小车是否偏离轨道
大大提
高了小车运行的稳定性
利用
一对红外反射传感器检测跷跷板的起点和终点
也可以从终点倒退回起点
自动寻
迹的软件实现流程见图


要对跷跷板的倾角进行实时检测
飞车
因此系统中选用单轴倾角传感器
SCA61T
抗冲击能力强工作温度范围宽等
优点
它测量地球引力
在测量方向上的分量
然后通过MCU
将模拟输出电压转化为绝对倾角
其中
Sensitivity是设备的灵敏度(通常为
2V/g)
判断跷跷板是否处于平衡位置
小车行驶到平衡位置刹车时

至失去平衡

统在小车行驶到平衡位置附近时把
车速降到很低
在此情
况下
如图4所示
由图5可知T=(mgL/2)sinq
杆的质量m一定时T伺服器可以控制
此此装置可补偿力矩的范围是-
mgL/2  ̄ mgL/2
质量为184g的平衡杆
利用平
衡杆
-1.4cm ̄1.4cm
2008.5 电子设计应用 www.eaw.com.cn
106应用方案 | 嵌入式应用
利用力矩补偿装置进行微调

平衡杆
的调节也不能过快
跷跷板会
在平衡位置附近抖动
软件采取除干扰算法
才启动平衡报
警程序
结语
本设计在硬件上使用了红外反
射传感器和摄像头检测路面
导致影响电动车
正常运行的问题
本设计使用优化算

自动转

清华大学出版社
SJA1000_READ()为读SJA1000单个






#define SJA_IOREAD_DAT(U8)*((volatile U8*)0x10000000)
#define SJA_IOWRITE_ADD(d)*((volatile U8 *)0x10000001) =(U8)(d)
#define SJA_IOWRITE_DAT(d)*((volatile U8 *)0x10000000) =
(U8)(d)
static int SJA1000_READ(int
add)
{ int i;
 SJA_IOWRITE_ADD(add);i=SJA_IOREAD_DAT;
return i;}
static void SJA1000_WRITE(intadd,int data)

SJA_IOWRITE_ADD(add);SJA_IOWRITE_DAT(data);}
结语
通过外扩CAN
控制

本文提出的接口逻辑设计方案成本低

2. SS3C2410X 32-Bit RISC MicroprocessorUser's Manual, Revision 1.2 ?2003 SamsungElectronics
3. CAN Controller SJA1000 User's Manual
2000 NXP Electronics。

相关文档
最新文档