二次根式除法

合集下载

二次根式乘除法则

二次根式乘除法则

二次根式乘除法则1. 二次根式的定义与性质二次根式是指形如√a的数,其中a是一个非负实数。

二次根式可以表示为分数形式,即a的平方根除以b的平方根,其中a和b是正实数。

下面是一些二次根式的性质: - 乘法性质:√a * √b = √(a * b) - 除法性质:√a / √b = √(a / b),其中b不等于0 - 同底数相加减:√a ± √b = √(a± b)2. 二次根式的乘法法则a) 同底数相乘当两个二次根式具有相同的底数时,可以将它们相乘,并将底数保持不变。

例如:√2 * √3 = √(2 * 3) = √6b) 不同底数相乘当两个二次根式具有不同的底数时,可以将它们相乘,并合并为一个二次根式。

例如:√2 * √6 = √(2 * 6) = √12 = 2√33. 二次根式的除法法则a) 同底数相除当两个二次根式具有相同的底数时,可以将它们相除,并将底数保持不变。

例如:√6 / √2 = √(6 / 2) = √3b) 不同底数相除当两个二次根式具有不同的底数时,可以将它们相除,并合并为一个二次根式。

例如:√12 / √2 = √(12 /2) = √64. 二次根式乘除法的综合运用a) 乘法与除法的结合运算在一个表达式中同时使用乘法和除法时,我们可以先进行乘法运算,再进行除法运算。

例如:(√3 * √5) / (√2 * √4) = (√15) / (√8)b) 化简复杂的二次根式当一个二次根式较为复杂时,我们可以通过化简来简化计算。

例如:√(18/9) = (√18) / (√9) = (√2 * √9) / (√3 * √3) = (3√2) / 3 = √25. 实际问题中的应用二次根式乘除法经常在解决实际问题中被使用。

下面是一些实际问题的例子:a) 计算面积和体积当计算图形的面积或体积时,我们经常会遇到涉及二次根式乘除法的问题。

例如,计算一个圆的面积可以使用公式A = πr²,其中r是圆的半径。

二次根式的除法1

二次根式的除法1

(4)
2y 2 4 xy
1 3 1 (1)- 19 ÷ 95 (2) 9 ÷ (- 2 ) 48 2 4 B 4、如图,在Rt△ABC中,∠C=900, ∠A=300,AC=2cm,求斜边AB的长
A
C
课堂小结:
1. 利用商的算术平方根的性质化简二次根式。 2. 二次根式的除法有两种常用方法: (1)利用公式: a
4 9 4 9
两个二次根式相除,等于把被开方数相除, 作为商的被开方数
4 2 1. , 9 3
16 4 2. , 49 7
4 2 9 3
16 4 49 7
16 16 49 49
a b
(1)在二次根式的运算中,最 后结果一般要求分母中不含 有二次根式.
8 8 2a 4 a 2 a 2a a 2a 2a 2a
(2)在二次根式的运算中,最后 结果中的二次根式要求写成 最简的二次根式的形式.
1.被开方数不含分母 2.被开方数不含开的尽 方的因数或因式
练习:把下列各式的分母有理化:
二次根式的乘法:
a b ab ( a 0, b 0)
算术平方根的积等于各个被开方数积的算术平方根
ab a ( b a 0, b 0)
积的算术平方根等于积中各因式的算术平方根. 思考:二次根式的除法有没有类似的法则呢? 请试着自己举出一些例子.
a b
a b
a 0, b 0
a b
24 3
a 0, b 0
2
2 1 3 18
两个二次根式相除,等于把被开方数相除, 作为商的被开方数 例4:计算 解:
1
1

二次根式的计算方法

二次根式的计算方法

添加标题
乘法运算的应用:二次根式的乘法运算在解决实际问题中具有广泛的应用,例如在计算面积、 体积、长度等物理量时,常常需要进行二次根式的乘法运算。
除法运算
公式:a√b/c√d = (a/c)√(b/d) 例题:(2√3)/(3√2) = (2/3)√(3/2) 注意事项:除法运算中,分母不能为0 应用:二次根式的除法运算在解决实际问题中具有广泛应用
二次根式的定义
概念:二次根式是形如√a(a≥0)的代数式,其中a称为被开方数,√a称为根号。
性质:二次根式具有非负性,即√a≥0(a≥0)。
运算:二次根式的运算包括加法、减法、乘法和除法,遵循一定的运算法则。
应用:二次根式在数学、物理、工程等领域有着广泛的应用,如求解方程、计算面积、体积 等。
二次根式的性质
转化为同类二次根式
概念:非同类二次根式是指 根号下含有不同字母的二次 根式
加减运算:将转化后的同类 二次根式进行加减运算,得
到结果
加减法运算规则
二次根式与有理数相加减, 先化成最简二次根式,再相 加减
不同底二次根式相加减,先 化成同底二次根式,再相加 减
同底二次根式相加减,底数 不变,被开方数相加减
03
二次根式的乘除法
乘法运算
添加标题
乘法运算的定义:二次根式的乘法运算是将两个二次根式相乘,得到一个新的二次根式。
添加标题
乘法运算的法则:二次根式的乘法运算法则是:(a√b)(c√d)=(ac)√(bd)。
添加标题
乘法运算的步骤:首先,将两个二次根式相乘,得到新的二次根式;然后,将新的二次根式的 被开方数相乘,得到新的被开方数;最后,将新的二次根式的系数相乘,得到新的系数。
乘除法运算规则

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件

二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。

表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。

乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。

非负性$sqrt{a} geq 0$($a geq 0$)。

除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。

二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。

根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。

计算$frac{sqrt{20}}{sqrt{5}}$。

根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。

化简$sqrt{18}$。

首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。

典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。

如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。

不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。

初二数学二次根式的乘法与除法运算

初二数学二次根式的乘法与除法运算

初二数学二次根式的乘法与除法运算二次根式是初中数学中的重要概念之一,学好二次根式的乘法与除法运算对于学生正确理解和解决相关的数学问题至关重要。

本文将详细介绍二次根式的乘法与除法运算方法,旨在帮助初二学生掌握这一知识点。

一、二次根式的乘法运算二次根式的乘法运算是指两个二次根式相乘的操作。

具体方法如下:首先,我们需要将两个二次根式进行合并,合并的规则是将根号内的数相乘,并将外面的系数相乘。

例如:√a * √b = √(a * b)当然,在实际运算中还需要注意一些特殊情况,如二次根式的下标、系数与被开方数的关系等。

下面通过例子来说明:例1:化简√8 * √3解析:根据乘法运算的规则,√8 * √3可以合并为√(8 * 3),即√24。

进一步化简:√24 = √(4 * 6) = √4 * √6 = 2√6例2:化简2√5 * 3√5解析:根据乘法运算的规则,2√5 * 3√5可以合并为(2 * 3)√(5 * 5),即6√(25)。

进一步化简:6√(25) = 6 * 5 = 30通过以上两个例子,我们可以看出,二次根式的乘法运算主要是对根号内的数进行运算,并根据规则进行合并化简。

二、二次根式的除法运算二次根式的除法运算是指两个二次根式相除的操作。

具体方法如下:首先,我们需要根据乘法的逆运算,将除数的根号有理化为整数。

例如,将√a有理化为√(a * a)。

然后,将被除数的根号与除数的有理化结果进行合并,并化简。

例3:化简√32 / √8解析:首先,我们有理化除数:√8 = √(8 * 8) = 8然后,将被除数的根号与除数的有理化结果进行合并:√32 / 8 =√(32 / 8) = √4 = 2例4:化简3√12 / 2√3解析:首先,我们有理化除数:2√3 = 2 * √3然后,将被除数的根号与除数的有理化结果进行合并:3√12 / (2 * √3) = 3 * (√(12 / 3)) / (2 * √3) = 3 * √4 / 2 = 3 * 2 / 2 = 3通过以上两个例子,我们可以看出,二次根式的除法运算主要是对根号内的数进行运算,并根据规则进行合并化简。

二次根式乘除法

二次根式乘除法

二次根式乘除法二次根式乘除法是高中数学中的重要内容之一,它涉及到了根式的运算。

在进行二次根式的乘除运算时,我们需要掌握一些基本的规则和技巧。

一、二次根式的乘法对于二次根式的乘法,我们可以利用分配律来进行计算。

例如,对于√a * √b,我们可以将其化简为√(a * b)。

这个规则可以推广到包含更多项的二次根式的乘法。

例如,对于√a * √b * √c,我们可以将其化简为√(a * b * c)。

需要注意的是,当二次根式中含有负数时,我们应该先将负号提取出来,然后再进行乘法运算。

例如,对于√(-a) * √b,我们可以将其化简为-√(a * b)。

二、二次根式的除法对于二次根式的除法,我们可以先将被除数和除数的根号内的数相乘,然后再进行化简。

例如,对于√a / √b,我们可以将其化简为√(a / b)。

需要注意的是,当被除数和除数都是正数时,我们才可以进行化简。

当被除数和除数中含有负数时,我们应先将负号提取出来,然后再进行除法运算。

例如,对于√(-a) / √b,我们可以将其化简为-√(a / b)。

三、二次根式的乘除组合运算在实际问题中,我们经常会遇到需要进行多步运算的情况。

在进行二次根式的乘除组合运算时,我们需要按照一定的顺序进行,以保证计算的准确性。

我们应该先进行括号内的运算,然后再进行乘法和除法的运算。

当遇到多个乘法或除法时,我们可以按照从左到右的顺序进行运算。

例如,对于表达式√a * (√b + √c),我们应该先将括号内的二次根式化简为√(b + c),然后再进行乘法运算,得到结果√(a * (b + c))。

四、应用举例下面通过一些具体的例子来说明二次根式的乘除法的应用。

例1:计算√2 * √3根据乘法的规则,我们可以将其化简为√(2 * 3),即√6。

例2:计算√(-2) * √3我们将负号提取出来,得到-√(2 * 3)。

然后,再进行乘法运算,得到结果-√6。

例3:计算√(4a) * √(9b)根据乘法的规则,我们可以将其化简为√(4a * 9b),即√(36ab)。

二次根式加减乘除的运算法则

二次根式加减乘除的运算法则

二次根式加减乘除的运算法则二次根式是数学中的一种特殊形式,它常常出现在代数表达式中。

在进行二次根式的加减乘除运算时,需要遵循一定的运算法则。

本文将从加法、减法、乘法和除法四个方面,详细介绍二次根式的运算法则。

一、加法运算法则对于两个二次根式的加法运算,要求根号下的数相同,即根号内数值和根号外系数相等。

例如√3+√3=2√3。

二、减法运算法则对于两个二次根式的减法运算,同样要求根号下的数相同。

例如√5-√2不能直接进行运算,需要进行化简。

化简的方法是将二次根式的根号内数值和根号外系数相同的项合并在一起,即(√5-√2)=(√5+√2)(√5-√2)=5-2=3。

三、乘法运算法则对于两个二次根式的乘法运算,可以运用分配律进行展开。

例如(√3+√2)(√3-√2)=3-2=1。

四、除法运算法则对于两个二次根式的除法运算,需要将被除数和除数进行有理化处理。

有理化处理的方法是将被除数和除数同除以一个数的平方,使得根号内只剩下一个数。

例如(√7+√3)/(√7-√3)可以进行有理化处理,得到[(√7+√3)(√7+√3)]/[(√7-√3)(√7+√3)]=10。

运用以上的加减乘除运算法则,可以解决二次根式的各种运算问题。

接下来,我们通过一些例题来加深理解。

例题1:计算√5+√2+2√5-3√2的值。

解:根据加法运算法则,可以将√5和2√5合并,将√2和-3√2合并,得到(1+2)√5+(-1-3)√2=3√5-4√2。

例题2:计算(√7+√3)(√7-√3)的值。

解:根据乘法运算法则,展开括号得到(√7+√3)(√7-√3)=7-3=4。

例题3:计算(√5+√3)/(√5-√3)的值。

解:根据除法运算法则,进行有理化处理,得到[(√5+√3)(√5+√3)]/[(√5-√3)(√5+√3)]=8/2=4。

通过以上例题的解答,我们可以看到,只要掌握了二次根式的运算法则,就能够轻松解决各种二次根式的加减乘除运算问题。

§21.2.2-二次根式的除法

§21.2.2-二次根式的除法
正确!
1. 二次根式的除法有两种常用方法:
(1)利用公式:
a a (a 0,b 0) bb
(2)把除法先写成分式的形式,再进行分母有理化运算。
a= a
b
b
a 0,b 0
2.最简二次根式、分母有理化及有理化因式的概念;
注意: 在进行分母有理化之前,可以先观察把能化 简的二次根式先化简,再考虑分母有理化。
那么2 a - 3 b和2 a + 3 b互为有理化因式。
一般地,a x与 x互为有理化因式; a x + b y与a x - b y互为有理化因式。
练一练:
1、化简下列各式(分母有理化):
(1)-8 3 8
(2)3 2 27
(3) 5a 10a
(4)2y 2 4xy
说明;1、在进行分母有理化之前,可以先观察把 能化简的 二次根式先化简,再考虑如何化去分母 中的根号。
作业本: 第12页习题21.2 第2、 3、6题
练习本: 第11页练习 第1、2、3题 选作:第12页习题21.2 第7、8、9题
3、如图,在Rt△ABC中,∠C=900,∠A=300,
AC=2cm,求斜边AB的长
B
解:设BC x,因为在RtΔABC中,
C 900,A 300,所以,AB 2x A
解:原式 64 64 8 11 49 49 7 7
辨析训练
判断下列各等式是否成立。
× √ (1) 16 9 4 3( )(2) 3 3 ( ) 22
× × (3) 41 2 1 ( 22
)(4) 2
52 99
5(

(5) 4 4 4 4( √ )(6)5 5 5 5 ( √)

二次根式的除法(1)

二次根式的除法(1)

课堂展示
课堂展示
规则: 同学们先在草稿纸上完成题目,5分钟后,随机抽取三名同学进行展示。
第二轮
1、计算:
① 18 8
2 5 ② 1 3 6
③ 27 50 6
2、化简:
9 ① 49
a 2b ② 4c 2
2a 2 ③ 9
课堂小结:
1、利用商的算术平方根的性质化简二次根式。 2、二次根式的除法常用方法: 利用公式:
a b = a (a ≥0,b > 0) b
b ( a 0,b 0) a
b a
作业 :
1、计算
54 ① 3
1 7 ② 4 5 15
(x>2)
3 ③ (x - 2) x - 2
2、化简
4x 2 ① 81
8 ② 2 a
1 ③ 4 4
思考:二次根式的除法有没有类似的法则呢? 请试着自己举出一些例子.
新知探究
1、填空


4 9 9 16 16 25
2 3 3 4
4 5
4 9 9 16 16 25
2 3
3 4
4 5

2、由此可以得到二次根式除法的运算法则:
a b
a b
(a≥0,b>0)
a b
a b

X)
1 (3)选择:化简 过程正确的是 ( 4
C

A Байду номын сангаас
1 (B) 4
1 1 (C) 2 4
1 1 4 2
总结:商的算术平方根性质的运用一定要注意 被开方数的取值范围。
之规 后 ,则 第一轮 随: 机同 1、计算: 抽学 72 取们 ( ) 18 2 ; 2) 1 ( ; 6 三先 名在 b b (3) 2a 6a; 4) ( 同草 5 20a 2 学稿 2、把下列二次根式化成 最简二次根式: 进 纸 行上 3 展完 (1) 32 ( 2) 40 (3) 1.5 ( 4) 4 示成 。题 目 ,

二次根式的除法

二次根式的除法
计算或化简:
1 3 5
(2) 3 6
3 25 64 4 132 122 5 b a
ab
6 5 2 3 18 7 18 8 54 9 500
(10) 36x3
4 9 49 100 25 64
4 9 49 100 25 64
一般地,有 a __a______, (a 0,b 0) bb
二次根式化简后,分母中不含二次根 号,且二次根号里是一个不含完全平 方因数的整数,像这样的二次根式称 为最简二次根式.
下列哪些是最简二次根式?
2 5,36,12,27,0.4,1 3
把下列各二次根式化为最简二次根式:
(1) 1.2;(2) 2 ;(3) 2 3 ;(4) 3 ;
a
2
2 1
练习:
1 72 ;2 11 1 ;(3) 40 ;
6
2 6 45
化简:15 12 2 45
15 12 2 45 15 2 3 5 3 15 23 5 5
二次根式除法法则:
两个算术平方根的商,等于被开方数 的商的算术平方根;
这个公式反过来写,得到:___ba_____ba____( a 0,b 0)
例1.计算
(1) 15 (2) 24
3
3
15 3
5
24 3
8 2 2
(3) 24 6
24 6 4 2
(4) 根式乘法中,我们学习过把被开方数开出完全平方数而留下一个 整数,因此二次根式化简后的结果一般保证根号里留下的是一个整数, 所以(4)的结果并不符合我们化简的要求.
例2.化简下列二次根式,使得分母中不含二次根式,并且 被开方数中不含分母.
(1) 1 5
(2) 1 (3) 3

二次根式的除法

二次根式的除法
21.2 二次根式的乘除
二次根式除法
二次根式乘法法则:
a b a b
(a≥0,b≥0)
最简二次根式的要求: 被开方数中不含能开得尽方的因数或因式.
探 究
计算下列各式,观察计算结果,你能发现什 么规律?
2 4 4 (1) =( ), =( 3 9 9
2 ) 3 4 4 16 16 (2) =( ), =( ) 25 5 5 猜想: 25
3( x 1) 2( x 1) 3
4、若等式 是_________
x x 5
x x 5 成立,则x的取值范围
5、已知, a 5 2 则a与b的关系是( ) (A) a
6
(C)
1 b , 52 6
b
(B) a
b
ab 1
(D)
ab
小 结
1、二次根式的除法:
3
4 3
4
1.5
最简二次根式的要求:
被开方数不含分母. 例 题
1、计算:
24 (1) 3
2、化简:
3 1 (2) 2 18
3 (3) 15 5
3 (1) 100
25 y (2) 2 9x
3
4 3
4
1.5
(1)被开方数不含分母; (2)被开方数中不含能开得尽 方的因数或因式.
满足上述两个条件的二次根式, 叫做最简二次根式.
3、计算:
3 (1) 5
3 2 (2) 27
8 (3) 2a
4、计算:
3 1 (1)9 45 1 2 2
(2) 18 2 x y 3 2 xy
3 2
(3)(4 27 5 48) 2 3

二次根式的除法法则

二次根式的除法法则

含字母的二次根式的除法
法则描述
含字母的二次根式相除,同样遵 循同类二次根式的除法法则,但
需注意字母的取值范围。
示例
$frac{asqrt{b}}{csqrt{b}} = frac{a}{c} quad (b > 0)$
注意事项
确保字母的取值使二次根式有意 义,且除数不为0。同时,对于 含字母的表达式,还需考虑其定
义域。
04 二次根式除法的应用
在数学领域的应用
1 2 3
简化根式表达式
通过二次根式的除法,可以将复杂的根式表达式 简化为更简单的形式,便于进一步的计算和分析。
解方程和不等式
在解方程和不等式的过程中,经常需要用到二次 根式的除法,以消去根号或化简表达式,从而得 到解或证明不等式。
推导数学公式
二次根式的除法在数学公式的推导中起到重要作 用,例如在三角函数、数列、概率统计等领域的 公式推导中经常涉及。
在物理和工程领域的应用
计算物理量
在物理学中,很多物理量需要通过二次根式的除法来计算,例如速度、加速度、 力等。这些物理量的计算往往涉及到复杂的数学表达式和根式的处理。
工程设计
在工程设计中,经常需要用到二次根式的除法来求解各种问题,例如计算结构 的强度、稳定性等。通过合理的数学建模和计算,可以保证工程设计的准确性 和安全性。
通过与共轭式相乘,可以消去分母中的根号,从而将除法转 化为乘法运算。
避免分母出现根号
在进行二次根式除法时,应尽量避免分母中出现根号。如 果分母中出现根号,可以通过乘以适当的表达式来消去根 号。
例如,当分母为√a + √b时,可以乘以√a - √b来消去分母 中的根号。
06 二次根式除法的注意事项

二次根式除法

二次根式除法

课题: 21.2二次根式的除法学习目标:1.会利用二次根式的除法法则进行二次根式的除法运算,运用商的算数平方根的性质化简二次根式。

2.经历探索二次根式的除法以及商的算术平方根的过程,掌握其应用方法。

一、正心驱动:填空:, =94 ;, =2516 ; 由计算的结果可得:=ba (a ≥0,b>0) 即:两个算术平方根的商,等于被开方数商的算术平方根。

二、正心共生:计算:(1)672(2)2113-÷2116 (3) 513÷531 .三、正心互享;由上边的式子反过来可得:a b =b a (a ≥0,b >0),可以用来化简二次根式。

自学课本例4,仿照例题完成下面的题目:化简:(1(2)21 (3)271 (4)x x 1(x>0)最简二次根式:化简后,被开方数中不含分母,并且被开方数中所有因数(或因式)的幂的指数都小于2,像这样的二次根式叫最简二次根式。

二次根式的运算结果必须是最简二次根式。

下列二次根式中是最简二次根式的有 。

(1)31 (2)23 (3)a 8 (4)3x (5) 22b a + 五、正心提升:1、等式2a a 1+-=2a a -1+成立的的条件是 。

2、计算:161411÷)( (2)-22531311÷ (33、化简:(1)482 (2) x x 823 (34、直击中招:==== 数学上将这种把分母的根号去掉的过程称作“分母有理化”。

利用上述方法化简:(1)(2)181 (3)121 (4。

二次根式除法

二次根式除法
下列那些是最简二次根式: 1 2 2 5 36 12 27
二次根式的化简要求满足以下三点: (1)被开方数的因数是整数,因式是整式,也就是说 “被开方数不含分母”. (2)被开方数中不含能开得尽的因数或因式,也就是 说“被开方数的每一个因数或因式的指数都小于 2”. (3)被开方数中不含分母且分子与分母中也不含有 开的尽的因式时,须将分母中的二次根式有理化。
1 2 3
2 2 2 3 3 3 3 8 4 4 4 15 2 3 3 8 4 15
n
n n 1
2
n
n n 1
2
n 2
5 5 4 5 5 24 24
1.二次根式的乘法 : 二次根式的除法 :
a b a b
ab , ( a 0, b 0)
练习:
1 2
72 6 1 1 1 2 6
3 4
40 45 m n 5 m n
5 4 4 3
例1.计算或化简: (1)
15 3
24 (2) 3
1 (3) 5
2 (4) 1 3
8 (5) 20
二次根式化简后,被开方数 不含分母,并且被开方数中所有因式 的幂的指数小于2,像这样的二次根 式称为最简二次根式.
化简:
1 2 3 4 5 6
4 16 36 256 30000 13 12
2 2 2 2
7 18 8 5 2 3 18 9 45 48 10
1 1 ab a b 1 x
a (b c) b a a b
4
b a b
2
2 2
b a b
2【分母有理化作业 】 Nhomakorabea• 1.已知 求

二次根式的四则运算

二次根式的四则运算

二次根式的四则运算知识梳理一、二次根式的乘除(1)积的算术平方根性质: b a b a •=•(a ≥0,b ≥0) (2)二次根式的乘法法则: b a b a •=•(a ≥0,b ≥0) (3)商的算术平方根的性质:bab a =(a ≥0,b >0) (4)二次根式的除法法则:b aba = (a ≥0,b >0) 二、分母有理化分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式. 三、同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式. 四、二次根式的(1)法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. (2)步骤: ①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简. ③合并被开方数相同的二次根式.(3)合并被开方数相同的二次根式的方法:二次根式化成最简二次根式,如果被开方数相同则可以进行合并.合并时,只合并根式外的因式,即系数相加减,被开方数和根指数不变. 五、二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的. ②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.例题讲解例1.计算:(1)52⨯ (2)3221⨯ (3)8326⨯- (4)1052⨯⨯ 例2.化简(1)54⨯ (2)24 (3)()()4936-⨯- (4)()0,0424>>y x y x例3.计算下列各题 (1)312 (2)8123÷ (3)()72214-÷(4)531513÷(5)xyy 24针对练习1.已知()22-=-•a a a a 成立,则a 的取值范围是 .2.能使88-=-x xx x成立,则x 的取值范围是 . 3.化简下列二次根式:=90 =5.2=29 =3127a b ()=-≤++41682a a a 4.计算并化简(1)2863⨯ (2)6331227⨯⨯(3)322214÷- (4)()0113>÷a a bb a b a5.计算(1)6122÷⨯ (2)27121331⨯÷(3)32223513459⨯÷ (4)⎪⎪⎭⎫⎝⎛÷b a b b a 16.若a =5,b =17,则85.0的值用a ,b 可以表示为 . 7.先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,这样()2+()2=m ,•=,那么便有=()2ba ±=±(a >b )例如:化简解:首先把化为,这里m =7,n =12; 由于4+3=7,4×3=12,即()2+()2=7,•=,∴==()234+=2+由上述例题的方法化简: (1); (2); (3).例题讲解例4.计算 (1)2324+ (2)12273+-(3)x x x x 1246932-+ (4)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+-6813225.024例5.计算(1)⎪⎪⎭⎫ ⎝⎛--12814482 (2)()6342221⨯-例6.计算 (1)()62322+- (2)()()22322232---针对练习1.若最简二次根式与可以合并,则a=.2.计算:2+++3﹣+(+5)﹣﹣+(+)(﹣)()(2﹣3)÷(﹣)(+)+2 ()2﹣(2)(2)(1+)()﹣(2)2 ()×﹣()()3.计算(1)()()322122-+ (2)()()201920182525+•-4.先化简,再求值:⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+xy y x x xy y x y x 364363,其中23=x ,27=y .5.已知()3521+=a ,()3521-=b ,求22b ab a ++ .。

二次根式除法公式

二次根式除法公式

二次根式除法公式好的,以下是为您生成的关于“二次根式除法公式”的文章:咱今天就来好好聊聊二次根式除法公式!记得我之前教过一个班,有个叫小李的同学,那可真是对二次根式除法公式头疼得要命。

这二次根式除法公式啊,就像是一把神奇的钥匙,能帮我们打开很多数学难题的大门。

公式是:$\sqrt{\frac{a}{b}} =\frac{\sqrt{a}}{\sqrt{b}}$($a\geq0$,$b>0$)。

看起来挺简单,可真要用起来,还真得费点心思。

比如说,给你一道题:计算$\sqrt{\frac{18}{2}}$。

那咱们就得按照公式来,先把 18 和 2 分别开方,$\sqrt{18} = 3\sqrt{2}$,$\sqrt{2}$还是$\sqrt{2}$,然后一除,就得到了$3$。

小李一开始总是搞混,他会把根号下的数字直接相除,那可就错得离谱啦。

我就给他举了个特别形象的例子,我说这就好比分苹果,18个苹果要平均分给 2 个人,不能直接把 18 和 2 一除,得一个一个地分。

先看看 18 个苹果能分成几个 2 个一组,这才是正确的分法。

在实际运用中,这个公式能帮我们简化很多复杂的计算。

比如说$\sqrt{\frac{24}{36}}$,先分别对 24 和 36 进行分解质因数,24 可以分解为$2×2×2×3$,36 可以分解为$2×2×3×3$,然后开方相除,约分之后就能得到$\frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}$。

还有的时候,我们会遇到分母有根号的情况,这时候就得把分母有理化。

比如说$\frac{1}{\sqrt{2}}$,要把分母变成有理数,就给分子分母同时乘以$\sqrt{2}$,变成$\frac{\sqrt{2}}{2}$。

这就像是给分数化个妆,让它变得更漂亮更好看。

小李后来慢慢掌握了这个公式,做题也越来越顺手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档