2014年普通高等学校招生全国统一考试·全国卷Ⅱ

合集下载

2014-2017年高考英语试题第二卷

2014-2017年高考英语试题第二卷

2014年普通高等学校招生全国统一考试英语第Ⅱ卷第三部分英语知识运用第一节(共10 小题;每小题1.5分,满分15分)阅读下面材料,在空白处填入适当的内容(不多于3个单词)或括号内单词的正确形式。

One morning, I was waiting at the bus stop, worried about __61___ (be) late for school.There were many people waiting at the bus stop, ___62____ some of them looked very anxious and ___63__(disappoint) . when the bus finally came, we all hurried on board. I got a place next ____64___ the window, so I had a good view of the sidewalk. A boy on a bike ____65___ (catch ) my attention.He was riding beside the bus and waving his arms. I heard a passenger behind me shouting to the driver, but he refused ____66___(stop) until we reached the next stop. Still, the boy kept ____67___(ride). He was carrying something over his shoulder and shouting. Finally, when we came to the next stop, the boy ran up the door of the bus. I heard an excited conversation. Then the driver stood up and asked,“____68___ anyone lose a suitcase at the last stop?” A woman on the bus shouted, “Oh, dear! It …s ____69___ (I )”. She pushed her way to the driver and took the suitcase thankfully, Five others on the bus began talking about what the boy had done and the crowd of strangers ___70__(sudden) became friendly to one another.第二节短文改错(共10小题;每小题1分,满分10分)假定英语课上老师要求同桌之间交换修改作文,请你修改你同桌写的以下作文。

2014年全国新课标卷Ⅱ(纯word解析版)

2014年全国新课标卷Ⅱ(纯word解析版)

2014年普通高等学校招生全国统一考试(全国新课标卷Ⅱ)文 科 数 学第Ⅰ卷一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( ) A .∅ B. {}2 C. {0} D. {2}- 【答案】:B . 【解析】:∵2{2,0,2},{|20}{1,2}A B x x x =-=--==-,∴{2}A B =.2.131ii+=-( ) A .12i + B. 12i -+ C. 12i - D. 12i -- 【答案】:B . 【解析】:化简可得====﹣1+2i3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件 【答案】:C . 【解析】:函数3()f x x =的导数为2()3f x x '=,由2()30f x x '==,得00x =,但此时函数()f x 单调递增,无极值,充分性不成立.根据极值的定义和性质,若0x x =是()f x 的极值点,则0()0f x '=成立,即必要性成立,故p 是q 的必要条件,但不是q 的充分条件, 4.设向量a ,b 满足10+=a b ,6-=a b ,则⋅a b =( )A. 1B. 2C. 3D. 5 【答案】:A . 【解析】:∵10+=a b ,6-=a b ,∴分别平方两式相减得44⋅=a b ,即1⋅=a b . 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n -【答案】:A .【解析】:由题意可得2428a a a =,即2448(4)(4)a a a =-+,解得48a =,∴14322a a =-⨯=,∴1(1)(1)22(1)22n n n d n n S na n n n --⨯=+=+=+. 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,学科网则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31【答案】:C . 【解析】:几何体是由两个圆柱组成,一个是底面半径为3,高为2;一个是底面半径为2,高为4,组合体体积是:22322434πππ⨯+⨯=.底面半径为3cm ,高为6cm 的圆柱体毛坯的体积为:23654ππ⨯=.切削掉部分的体积与原来毛坯体积的比值为:5434105427πππ-=.7.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( ) A .3 B .32 C .1 D .32【答案】:C .【解析】:∵正三棱柱111ABC A B C -的底面边长为2,侧棱长为,D 为BC 中点,∴底面11B DC B 1DC 1的面积:12332⨯⨯=,A 到底面的距离就是底面正三角形的高:3.三棱锥11A B DC -的体积为:13313⨯⨯=.8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6 D .7【答案】:D .【解析】:若2x t ==,则第一次循环,12≤成立,则1221M =⨯=,235S =+=,2k =,第二次循环,22≤成立,则2222M =⨯=,257S =+=,3k =,此时32≤不成立,输出7S =,9.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A .8B .7C .2D .1 【答案】:B .【解析】:作出不等式对应的平面区域,由2z x y =+,得122z y x =-+,平移直线122z y x =-+,由图象可知当直线122z y x =-+经过点A 时,直线122zy x =-+的截距最大,此时z 最大.由10,330,x y x y +-=⎧⎨-+=⎩,得3,2,x y =⎧⎨=⎩,即(3,2)A ,此时z 的最大值为3227z =+⨯=.10.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A .303 B .6 C .12 D .73 【答案】:C .【解析】:由2=3y x 得其焦点3(,0)4F ,准线方程为34x =-.则过抛物线2=3y x 的焦点F 且倾斜角为30︒的直线方程为333tan 30()()434y x x =︒-=-.代入抛物线方程,消去y ,得 21616890x x -+=.设11(,)A x y ,22(,)B x y 则1216821162x x +==,所以1233||1244AB x x =+++=.11.若函数()f x kx lnx =-在区间()1,+∞单调递增,则k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞ 【答案】:D .【解析】:函数()f x kx lnx =-在区间()1,+∞单调递增,∴当1x >时,1()0f x k x'=-≥,10k ∴-≥,1k ∴≥,故选:D12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[1,1]--B .11[,]22-C .[2,2]-D .22[,]22-【答案】:A .【解析】:由题意画出图形如图:∵点()0,1M x ,∴若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,∴圆上的点到MN 的距离的最大值为1,要使1MN =,才能使得45OMN ∠=︒,图中M '显然不满足题意,当MN 垂直x 轴时,满足题意,∴0x 的取值范围是[1,1]--.二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、网白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______. 【答案】:.【解析】:所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为3193=.14.函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.【答案】:1. 【解析】:∵x x x f cos sin 2)sin()(ϕϕ-+=sin cos cos sin 2sin cos sin cos sin cos sin()x x x x x x ϕϕϕϕϕϕ=+-=-=-. ()f x ∴的最大值为1.15.偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.【答案】:3. 【解析】:因为偶函数)(x f y =的图象关于直线2=x 对称,所以(2)(2)(2)f x f x f x +=-=-,即(4)()f x f x +=,则(1)(14)(3)3f f f -=-+==.16. 数列}{n a 满足2,1181=-=+a a a n n ,则=1a ________.【答案】:.【解析】:由题意得,111n na a +=-,82a =, 令7n =代入上式得,8711a a =-,解得712a =;令6n =代入上式得,7611a a =-,解得61a =-;令5n =代入上式得,6511a a =-,解得52a =;根据以上结果发现,求得结果按2,12,1-循环,832÷=……2,故112a =.三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.【解析】:(Ⅰ)由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ① 2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD =.(Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅011(1232)sin 6022=⨯⨯+⨯⨯23=18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.【解析】:(Ⅰ)设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又 E 为PD 的中点,所以EO//PB. EO ⊂平面AEC ,PB ⊄平面AEC, 所以PB//平面AEC.(Ⅱ)V 1366PA AB AD AB =⋅⋅=.由34V =,可得32AB =.作AH PB ⊥交PB 于H .由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC . 又PA AB AH PB ⋅=31313=. 所以A 到平面PBC 的距离为31313. 19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙学科网两部门的评价. 【解析】:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75 .50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为6668672+=,所以该市的市民对乙部门评分的中位数的估计值是67. (Ⅱ)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为50.150=,80.1650=,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. (Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.) 20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .【解析】:(Ⅰ)根据22c a b =-及题设知22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去)故C 的离心率为12.(Ⅱ)由题意,原点O 为12F F 的中点,2MF //y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a = ①由15MN F N =得112DF F N =.设11(,)N x y ,由题意知10y <,则112()22c x c y --=⎧⎨-=⎩,即113,21x c y ⎧=-⎪⎨⎪=-⎩ 代入C 的方程,得2229114c a b+=.将①及22c a b =-代入②得229(4)1144a a a a-+= 解得27,428a b a ===,故7,27a b ==.21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点. 【解析】:(I )'()f x =236x x a -+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为2y ax =+.由题设得22a-=-,所以1a =.(Ⅱ)由(Ⅰ)知,32()32f x x x x =-++,设()g x ()2f x kx =-+323(1)4x x k x =-+-+,由题设知10k ->.当x ≤0时,'()g x 23610x x k =-+->,()g x 单调递增,(1)10g k -=-<,(0)4g =, 所以()g x =0在(],0-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()g x ()(1)()h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增, 所以()()(2)0g x h x h >≥=,所以()0g x =在(0,)+∞没有实根.综上,()g x =0在R 有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 学科网于点E .证明: (Ⅰ)BE EC =;(Ⅱ)22AD DE PB ⋅= .【解析】:(Ⅰ)连结AB,AC.由题设知PA=PD,故∠PAD=∠PDA. 因为∠PDA=∠DAC+∠DCA∠PAD=∠BAD+∠PAB ∠DCA=∠PAB,所以∠DAC=∠BAD ,从而BE EC =. 因此BE=EC.(Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA=PD=DC ,所以DC=2PB,BD=PB . 由相交弦定理得AD DE BD DC ⋅=⋅, 所以22AD DE PB ⋅=.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ,[0,]2πρθθ=∈.(Ⅰ)求C 得参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标. 【解析】:(Ⅰ)C 的普通方程为22(1)1(01)x y y -+=≤≤. 可得C 的参数方程为: 1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t x ≤≤) (Ⅱ)设(1cos ,sin )D t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与t 垂直,所以直线GD 与t 的斜率相同,tan 3,3t t π==.故D 的直角坐标为(1cos ,sin )33ππ+,即33(,)22.24.(本小题满分10分)选修4-5:不等式选讲设函数1()||||(0)f x x x a a a=++->(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.【解析】:(I )由0a >,有()f x 111|||||()|2x x a x x a a a a a=++-≥+--=+≥.所以()2f x ≥.(Ⅱ)1(3)|3||3|f a a=++-.当时3a >时,(3)f =1a a +,由(3)5f <得52132a +<<.当03a <≤时,(3)f =16a a -+,由(3)5f <得1532a +<≤. 综上,a 的取值范围是15521(,)22++.。

2014年普通高等学校招生全国统一考试分类汇编2—常用逻辑用语(文科)

2014年普通高等学校招生全国统一考试分类汇编2—常用逻辑用语(文科)

2014年普通高等学校招生全国统一考试分类汇编(2)常用逻辑用语(一)、命题及其关系、充分条件、必要条件1.[2014·北京卷] 5.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析] 5.D当ab<0时,由a>b不一定推出a2>b2,反之也不成立.2.[2014·广东卷] 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件[解析].A设R是三角形外切圆的半径,R>0,由正弦定理,得a=2R sin A,b=2R sin B.故选A.∵sin≤A sin B,∴2R sin A≤2R sin B,∴a≤b.同理也可以由a≤b推出sin A≤sinB.3.[2014·江西卷]6.下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β[解析] 6.D对于选项A,a>0,且b2-4ac≤0时,才可得到ax2+bx+c≥0成立,所以A错.对于选项B,a>c,且b≠0时,才可得到ab2>cb2成立,所以B错.对于选项C,命题的否定为“存在x∈R,有x2<0”,所以C错.对于选项D,垂直于同一条直线的两个平面相互平行,所以D正确.4.[2014·辽宁卷] 5.设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧q C.(非p)∧(非q) D.p∨(非q)[解析]5.A由向量数量积的几何意义可知,命题p为假命题;命题q中,当b≠0时,a,c一定共线,故命题q是真命题.故p∨q为真命题.5.[2014·新课标全国卷Ⅱ]3.函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件[解析]3.C函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0 ,所以p是q的必要不充分条件.6.[2014·山东卷] 4.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根[解析] 4.A方程“x2+ax+b=0至少有一个实根”等价于“方程x2+ax+b=0有一个实根或两个实根”,所以该命题的否定是“方程x2+ax+b=0没有实根”.故选A.7.[2014·陕西卷] 8.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假[解析] 8.A 由a n +a n +12<a n ,得a n +1<a n ,所以数列{a n }为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.8.[2014·四川卷]. 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+x x 2+1(x >-2,a ∈R )有最大值,则f (x )∈B . 其中的真命题有________.(写出所有真命题的序号)[解析] 15.①③④ 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+x x 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=x x 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确9.[2014·浙江卷] 设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 2.A 若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.故选A.10.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有|x |≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧非qB .非p ∧qC .非p ∧非 qD .p ∧q[解析]6.A 由题意知 p 为真命题,q 为假命题,则綈q 为真命题,所以p ∧綈q 为真命题.(二) 基本逻辑联结词及量词11.[2014·安徽卷] 2.命题“∀x ∈R ,|x |+x 2≥0”的否.定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0[解析] .C易知该命题的否定为“∃x0∈R,|x0|+x20<0”.12.[2014·福建卷]5.命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(-∞,0),x3+x<0 B.∀x∈(-∞,0),x3+x≥0C.∃x0∈[0,+∞),x30+x0<0 D.∃x0∈[0,+∞),x30+x0≥0[解析] 5.C “∀x∈[0,+∞),x3+x≥0”是含有全称量词的命题,其否定是“∃x0∈[0,+∞),x30+x0<0”,故选C.13.[2014·湖北卷] 命题“∀x∈R,x2≠x”的否定是()A.∀x∈/R,x2≠x B.∀x∈R,x2=x C.∃x0∈/R,x20≠x0D.∃x0∈R,x20=x0[解析]3.D特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x∈R,x2≠x”的否定是“∃x0∈R,x20=x0”. 故选D.14.[2014·湖南卷] 设命题p:∀x∈R,x2+1>0,则非p为()A.∃x0∈R,x20+1>0 B.∃x0∈R,x20+1≤0C.∃x0∈R,x20+1<0 D.∀x∈R,x2+1≤01.B[解析] 由全称命题的否定形式可得綈p:∃x0∈R,x20+1≤0.15.[2014·天津卷] 已知命题p:∀x>0,总有(x+1)e x>1,则綈p为()A.∃x0≤0,使得(x0+1)e x0≤1 B. ∃x0>0,使得(x0+1)e x0≤1C. ∀x>0,总有(x+1)e x≤1D. ∀x≤0,总有(x+1)e x≤1[解析] 3B.含量词的命题的否定,先改变量词的形式,再对命题的结论进行。

2014年全国高考理综试题及答案-新课标2卷(解析版)

2014年全国高考理综试题及答案-新课标2卷(解析版)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科综合试卷第Ⅰ卷一、选择题(每小题6分,只有一个符合题意)1、关于细胞的叙述,错误的是A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的粘着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖【答案】D【解析】本题考查的是细胞结构和化学成份这两个知识点。

细胞膜的功能之一信息传递,其方式如通过胞间连丝,A项正确。

糖蛋白与细胞相互识别有关,又与细胞间的粘着性有关,癌变后的细胞由于糖蛋白减少所以易转移和扩散, B项正确。

ATP水解后有能量可用于各项生命活动,如电能、热能等其他细胞内的吸能反应,C项正确。

蔗糖是植物内的一种二糖,在哺乳动物的细胞不可以合成,故D项是错误的。

2.同一动物个体的神经细胞与肌肉细胞在功能上是不同的,造成这种差异的主要原因是A.两者所处的细胞周期不同B.两者合成的特定蛋白不同C.两者所含有的基因组不同D.两者核DNA复制的方式不同【答案】B【解析】本题考查的是细胞分化这个知识点。

同一生物个体的不同细胞,在形态结构与功能上是不同的,是基因的选择性表达的结果,其DNA分子或遗传物质并没有差异,A、C、D都不正确,基因的选择性表达之后,形成了不同的蛋白质,使各细胞中的蛋白质有所不同,故B项正确。

3.关于在正常情况下组织液的生成与回流的叙述,错误的是A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液【答案】D【解析】本题考查的是内环境成份这一个知识点。

内环境中的各种成份是处于动态平衡之中,氧气在生成的组织液中会高于回流的组织液,因为组织细胞在不断消耗氧气,这样氧气就能以自由扩散形式从组织液进入组织细胞,故A不正确,B正确。

因为毛细血管壁有一定通透性,所以血浆中的小分子物质可以透过毛细血管动脉端进入组织液,同理,组织液中的有些物质经毛细血管静脉端进入血液,血浆与组织液可以发生物质相互渗透。

2014年高考新课标全国2卷数学(文)

2014年高考新课标全国2卷数学(文)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学试题卷(文史类)注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={2-,0,2},B={x |022=--x x },则A B= (A )∅ (B ){}2 (C ){}0 (D ){}2-(2)131ii+=- (A )12i + (B )12i -+ (C )12i - (D )12i --(3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足||a b +=,||a b -=,则a b =(A )1 (B )2 (C )3 (D )5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A )()1n n + (B )()1n n -(C )()12n n + (D )()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727 (B )59 (C )1027 (D )13(7)正三棱柱的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)2(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S = (A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D)⎡⎢⎣⎦ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个考试考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大概题共4小题,每小题5分.(13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为________.(14)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为________.(15)偶函数)(x f y =的图像关于直线x =2对称,3)3(=f ,则(1)f -=________. (16)数列{}n a 满足111n na a +=-,82a =,则1a =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的角A 与C 互补,AB =1,BC =3,CD =DA =2. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA 平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P-ABD 的体积V =43,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设F 1,F 2分别是椭圆C :12222=+by a x (0>>b a )的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为43,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(21)(本小题满分12分)已知函数()f x =3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.4 97 97665332110 98877766555554443332100 6655200 632220 甲部门 乙部门 59 0448 122456677789 011234688 00113449 123345 011456 000 3 4 56 7 8910请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. (22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明: (Ⅰ)BE =EC ; (Ⅱ)AD ·DE =2PB 2.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,2π].(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l:2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x =|x +a1|+|x a -|(a >0). (Ⅰ)证明:()f x ≥2;(Ⅱ)若(3)5f <,求a 的取值围.2014年普通高等学校招生全国统一考试(课标卷Ⅱ卷)数学(文科)参考答案一、选择题 1.B解析:把2-,0,2代入202x x --=验证,只有2满足不等式.故选B . 考点:考查集合的知识.简单题. 2.B 解析:13(13)(1)121(1)(12)42i i i i i i i i+++===-+---++.故选B . 考点:考查复数的基本知识.简单题.3.C解析:函数()f x 在0x=x 处导数存在,则极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/,从而p 是q 的必要但不充分的条件.故选C .考点:考查充要条件与极值的基础知识.简单题. 4.A解析:222210,226,a a b b a a b b ⋅-+++=⋅=44a b ∴⋅=,1a b ∴⋅=.故选A . 考点:考查平面向量的数量积.中等题. 5.A解析:∵数列{}n a 是等差数列,公差等于2,∴2141812,6,14a a a a a a =+=+=+.∵248,,a a a 成等比数列,∴22428111()6)214()(a a a a a a ⋅⇒=++=+,解得122(221)n a a n n ==+-⇒⋅=,∴(1)(222)=n n nS n n ⋅=++.故选A . 考点:考查等差数列的通项公式与求和公式.中等题. 6.C解析:毛胚的体积23654V ππ⋅⋅==,制成品的体积221322434V πππ⋅⋅+⋅⋅==,∴切削掉的体积与毛胚体积之比为134********V V ππ-=-=.故选C . 考点:考查三视图于空间几何体的体积.中等题. 7.C解析:∵正三棱柱的底面边长为2,D 为BC 中点,∴AD ==∵1112,BC CC ==1111111222B DC B C S C C ⋅=⋅⋅==,∴111111133AB C B DC V S AD ⋅⋅===.故选C . 考点:考查空间点,线,面关系和棱锥体积公式.中等题. 8.D解析:第1次循环M=2,S=5,k=1. 第2次循环,M=2,S=7,k=2.第3次循环k=3>2,故输出S=7.故选D . 考点:考查算法的基本知识.简单题. 9.B解析:作图即可.考点:考查二元一次不等式组的应用.中等题. 10.C解析:∵23y x =,∴抛物线C 的焦点的坐标为()3,04F ,所以直线AB 的方程为330an )t (4y x ︒-=,故23),343,y x y x ⎧=-⎪⎨⎪=⎩从而2122161689012x x x x -+=+=⇒, ∴弦长12||=3122x x AB ++=.故选C . 考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力.中等题. 11.D 解析:()ln f x kx x =-,1()(0)f x k x x∴'=->.()f x 在区间(1,)+∞上递增,()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞,1k ∴≥.故选D . 考点:考查导数与函数单调性的关系.中等题. 12.A解析:过点M 作圆O 的切线,切点为N .设θ=∠OMN ,则︒≥45θ,22sin ≥θ,即22≥OM ON ,2120≤+x ,011x -≤≤.故选A . 考点:三角不等式,两点间距离公式.难题. 二、填空题 13.13解析:1.3333P =⋅=考点:考查古典概型的概念.简单题. 14.1解析:因为()f x si s n in cos s n c (o i )s x x x ϕϕϕ==--,所以最大值为1. 考点:考查和差角公式.简单题. 15.3解析:因()f x 是偶函数,所以(1)(1)f f -=.因()f x 图像关于2x =,所以(1)(2)(332)1f f f ⋅-===. 考点:考查偶函数的概念,轴对称的概念.简单题. 16.12解析:∵111n na a +=-,122111111(1)111n n n n n a a a a a +----∴==-=--=--, 822a a ∴==,12111112112a a a a =⇒-==⇒-. 考点:考查递推数列的概念.简单题. 三、解答题17.解析:(Ⅰ)由题设及余弦定理得222cos 1312c s 2o BD C BC CD BC D C C =+⋅=--, ① 2222cos 54cos AD AB BD AB AD A C =⋅=++-. ② 由①,②得1cos 2C =,故60C =︒,BD =(Ⅱ)四边形ABCD 的面积S =11sin sin 22AB DA A BC CD C ⋅+⋅111232)sin 6022(⨯⨯+⨯︒==⨯ 考点:考查余弦定理的应用.中等题.18.解析:(Ⅰ)设BD 与AC 的交点为O ,连结EO .因为四边形ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥AEC .(Ⅱ)616PA AB A V AD B ⋅⋅⋅==.由V =,可得32AB =.作AH ⊥PB 交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 到面PBC考点:考查空间点线面的位置关系与空间距离.中等题.19.解析:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的数是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计数是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的数是66,68,故样本中位数为6668627+=,所以该市的市民对乙部门评分的中位数的估计数是67. (Ⅱ)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为50.150=,850=0.16,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异大.(注:考生利用其他统计量进行分析,结论合理的同样给分)考点:考查使用茎叶图及样本的数字特征估计总体的能力.中等题.20.解析:(Ⅰ)根据c =2(,)b M c a,223b ac =.将222b a c =-代入223b ac =,解得12c a =,2c a =-(舍去).故C 的离心率为12.(Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a =. ① 由1||5||MN NF =得11||2||DF F N =.设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得222911c a b+=. ②将①及c =229(4)1144a a a a-+=. 解得7a =,2428b a ==.故7a =,b =考点:考查椭圆的几何性质以及直线与椭圆的位置关系.难题. 21.解析:(Ⅰ)26()3f x x x a =-'+,'(0)f a =. 曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,∴1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++. 设32()()(2)3(1)4g x f x kx x x k x =--=-+-+. 由题设知10k ->.当0x ≤时,2()36(1)x g x x k -+-'=0>,()g x 单调递增,(1)10g k -=-<,(0)4g =,所以()g x =0在(,0]-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()g x =0在(0,)+∞没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 考点:考查利用导数综合研究函数性质的能力.难题. 22.解析:(Ⅰ)连结AB ,AC . 由题设知PA PD =,故PAD PDA ∠=∠. 因为PDA DAC DCA ∠=∠+∠,.. .... .. .. PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =.由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.考点:考查与圆有关的角的知识和圆幂定理的应用.中等题.23.解析:(Ⅰ)C 的普通方程为2201)1(1()x y y -+=≤≤. 可得C 的参数方程为,n 1i cos s y x tt =+⎧⎨=⎩(t 为参数,0t π≤≤).(Ⅱ)设D (1cos n ),si t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆. 因为C 在D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan t =3t π=,故D 的直角坐标为(1cos ,sin )33ππ+,即3(2. 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用.中等题.24.解析:(Ⅰ)由0a >,有111()|||||()|2f x x x a x x a a a a a =++-≥+--=+≥, ∴()2f x ≥. (Ⅱ)1(3)|3||3|f a a=++-. 当3a >时,1(3)f a a=+,由(3)5f <得523a <<+. 当03a <≤时,(3)61a f a =-+,由(3)5f <3a <≤. 综上,a的取值围是15(22++. 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系.中等题.。

2014年高考语文全国卷2及答案

2014年高考语文全国卷2及答案

语文试卷 第1页(共10页)语文试卷 第2页(共10页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)语文使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

满分150分,考试时间150分钟。

考生注意:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2. 答题时请按要求用笔。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 阅读题甲 必考题一、现代文阅读(9分,每小题3分) 阅读下面的文字,完成1~3题。

周代,尽管关于食品安全事件的记载不多,但我们还是看到,由于食品安全关系重大,统治者对此非常重视并做出了特别规定。

周代的食品交易是以直接收获采摘的初级农产品为主,所以对农产品的成熟度十分关注。

据《礼记》记载,周代对食品交易的规定有:“五谷不时,果实未熟,不鬻于市。

”这是我国历史上最早的关于食品安全管理的记录。

汉唐时期,食品交易活动非常频繁,交易品种十分丰富。

为杜绝有毒有害食品流入市场,国家在法律上作出了相应的规定。

汉朝《二年律令》规定:“诸食脯肉,脯肉毒杀、伤、病人者,亟尽孰燔其余。

……当燔弗燔,及吏主者,皆坐脯肉赃,与盗同法。

”即肉类因腐坏等因素可能导致中毒者,应尽快焚毁,否则将处罚当事人及相关官员。

唐朝《唐律》规定:“脯肉有毒,曾经病人,有余者速焚之,违者杖九十。

若故与人食并出卖,令人病者,徒一年;以故致死者,绞。

即人自食致死者,从过失杀人法。

”从《唐律》中可以看到,在唐代,知脯肉有毒不速焚而构成的刑事犯罪分为两种情况,处罚各不相同:一是得知脯肉有毒时,食品的所有者应当立刻焚毁所剩有毒食品,以绝后患,否则杖九十;二是明知脯肉有毒而不立刻焚毁,致人中毒,则视情节及后果加以科罚。

2014年高考文综全国卷2(含详细答案)

2014年高考文综全国卷2(含详细答案)

文科综合能力测试试卷 第1页(共38页) 文科综合能力测试试卷 第2页(共38页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科综合能力测试使用地区:宁夏、辽宁、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分300分,考试时间150分钟。

考生注意:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷本卷共35小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

珠江三角洲某中心城市周边的农民竞相在自家的宅基地上建起了“握手楼”(图1)。

据此完成1,2题。

图11. 农民建“握手楼”的直接目的是( )A. 吸引外来人口定居B. 吸引市民周末度假C. 增加自住房屋面积D. 出租房屋增加收入2. “握手楼”的修建反映该中心城市 ( )A. 居住人口减少B. 城区房价昂贵C. 人居环境恶化D. 城区不再扩大总部位于江苏徐州(约34°N ,117°E )的某企业承接了甲国(图2)价值7.446亿美元的工程机械订单。

据此完成3~5题。

图23. 甲国位于( )A. 欧洲B. 非洲C. 北美洲D. 南美洲4. 2011年6月21日,该订单的首批产品从徐州发货。

这一日,徐州与甲国首都相比( ) A. 徐州的正午太阳高度较高 B. 徐州的白昼较短 C. 两地正午物影方向相同D. 两地日出方位角相同5. 该批产品运往甲国,最近的海上航线需经( )A. 好望角B. 苏伊士运河C. 巴拿马运河D. 麦哲伦海峡降水在生态系统中被分为蓝水和绿水。

2014年高考英语全国卷2-答案

2014年高考英语全国卷2-答案

2014普通高等学校招生全国统一考试(全国新课标卷2)英语答案解析第Ⅰ卷第一部分听力第一节1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】A第二节6.【答案】B7.【答案】C8.【答案】A9.【答案】C10.【答案】A11.【答案】A12.【答案】C13.【答案】B14.【答案】C15.【答案】A16.【答案】C17.【答案】B18.【答案】C19.【答案】A20.【答案】B第二部分阅读理解第一节21.【答案】B【解析】根据第一段内容可知,作者的丈夫只身一人到达悉尼之后就开始找房子。

故选B。

【解析】根据倒数第二段最后一句可知,那位女孩的父母是在一封写了一半的信里发现作者丈夫留给朋友的新电话号码的。

故选C。

23.【答案】D【解析】根据“not only...but also...”所连接的“restore”后面的宾语,并结合上文可知,小女孩一家人把那些重要的文件还给了作者的丈夫,所以此处应选D项,意为“恢复”。

24.【答案】C【解析】文章主要讲述了作者的丈夫丢失的重要文件被人扔在垃圾箱里面,然后又被一家好心人捡到重新归还给作者的丈夫的故事,这使作者的丈夫又重拾了对人性的信任。

作者丈夫的这些东西之所以能够失而复得离不开垃圾箱这一线索。

因此C项做标题最恰当。

文章大意:本文是一篇说明文,主要介绍了“地球日”的来历以及它在唤起人们的环保意识、节能减排、保护环境等方面所做的贡献。

25.【答案】C【解析】根据文章第一段可知,在1970年以前人们不知道什么是“环境”,更不知道环境问题。

故选C。

26.【答案】A细节理解题。

难度中等。

【解析】根据第二段第二句可知,文中的“millions of”与题干中的“mainly”相符,所以对环保的支持主要来自美国的草根民众。

故选A。

27【答案】D【解析】根据倒数第二段尤其是该段最后一句内容可知,美国通过采取有效的措施大大降低了污染。

C项干扰性很强,但是与原文第三段第二句“The number of cities producing CO beyond the standard has been reduced from 40 to 9.”不符,原文意思是说CO超标的城市数量从40个减少到9个。

2014年高考英语全国卷II试题及答案

2014年高考英语全国卷II试题及答案

2014年普通高等学校招生全国统一考试新课标II卷英语本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

考试结束后,将本试卷和答案卡一并交回.注意事项:1.答第I卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.选出每小题答案前,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号框,不能答在本试卷上,否则无效。

第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分40分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。

并在答题卡上将该选项涂黑.AArriving in Sydney on his own from India,my husband,Rashid,stayed in a hotel for a short time while looking for a short time while looking for a house for me and our children。

During the first week of his stay, he went out one day to do some shopping。

He came back in the late afternoon to discover that his suitcase was gone。

He was extremely worried as the suitcase had all his important papers, including his passport.He reported the case to the police and then sat there,lost and lonely in strange city,thinking of the terrible troubles of getting all the paperwork organized again from a distant country while trying to settle down in a new one.Late in the evening,the phone rang。

2014年高考英语真题(新课标全国卷Ⅱ)及答案详细解析

2014年高考英语真题(新课标全国卷Ⅱ)及答案详细解析

2014年普通高等学校招生全国统一考试(新课标全国卷Ⅱ)英语本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

考试结束后,将本试卷和答案卡一并交回。

注意事项:1.答第I卷前考生务必将自己的姓名、准考证号填写在答题卡上。

2.选出每小题答案前,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号框,不能答在本试卷上,否则无效。

第I卷第一部分:听力(共两节,满分30分)第一部分听力(共两节,满分30分)做题时,现将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题。

从题中所给的A,B,C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£ 19.15B.£ 9.18C.£ 9.15答案是C。

1. What does the woman want to do?A. Find a place.B. Buy a map.C. Get an address.2. What will the man do for the woman?A. Repair her car.B. Give her a ride..C. Pick up her aunt.3. Who might Mr. Peterson be?A. A new professor.B. A department head.C. A company director.4. What does the man think of the book?A. Quite difficult..B. Very interesting.C. Too simple.5. What are the speakers talking about?A. Weather.B. Clothes.C. News.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2014年(全国卷II)(含答案)高考文科数学

2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。

2014年全国卷2(物理)含答案

2014年全国卷2(物理)含答案

绝密★启用前2014年普通高等学校招生全国统一考试理科综合·物理(全国Ⅱ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14. 甲乙两汽车在一平直公路上同向行驶。

在t =0到t =t 1的时间内,它们的v -t 图像如图所示。

在这段时间内【A 】A. 汽车甲的平均速度比乙的大B. 汽车乙的平均速度等于v 1+v 22C. 甲乙两汽车的位移相同D. 汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大15. 取水平地面为重力势能零点。

一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。

不计空气阻力。

该物块落地时的速度方向与水平方向的夹角为【B 】A. π6B. π4C. π3D. 5π1216. 一物体静止在粗糙水平地面上,现用一大小为F 1的水平拉力拉动物体。

经过一段时间后其速度变为v 。

若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v 。

对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f 1、W f 2分别表示前后两次克服摩擦力所做的功,则【C 】A. W F 2>4W F 1,W f 2>2W f 1B. W F 2>4W F 1,W f 2=2W f 1C. W F2<4W F1,W f2=2W f1D. W F2<4W F1,W f2<2W f117. 如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。

2014高考全国二卷文综政治试题与答案

2014高考全国二卷文综政治试题与答案

适用于:贵州甘肃青海西藏黑龙江吉林宁夏内蒙古新疆云南新课标全国卷Ⅱ(适用省:贵州甘肃青海西藏黑龙江吉林宁夏内蒙古新疆云南海南语数外辽宁综合)2014年普通高等学校招生全国统一考试及答案文科综合能力测试政治(课标卷Ⅱ)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

12.劳动价值论认为,货币是从商品中分离出来固定地充当一般等价物的商品。

在货币产生后,下列关于价格的说法正确的是(D)①流通中商品价格的高低是由流通中货币的多少决定的②价格是通过一定数量的货币表现出来的商品价值③价格是商品使用价值在量上的反映,使用价值越大价格越高④价格是一种使用价值与另一种使用价值相交换的量的比例A.①③B.①④C.②③D.②④13.2013年12月,财政部公布了《2014年关税实施方案》,宣布对760多件进口商品实施低于最惠国税率的年度进口暂定税率。

作为世界最大的外汇储备国,在其他条件不变的情况下,我国降低进口关税能(A)①改善国际收支结构②鼓励企业海外投资③刺激居民消费需求④缩小居民收入差距A.①③B.①④C.②③D.②④14.近年来,我国多地多次出现了空气严重污染的雾霾天气,PM2.5(细颗粒物)是导致雾霾的重要因素。

图5为某市PM2.5主要污染物来源的构成图。

为治理空气污染,该市政府可采取的经济措施是(C)A.提高燃煤企业排污标准B.加强环境保护执法力度C.增加财政投入扶持清洁能源技术研发与推广D.限制企业和居民对机动车的购买和使用15.经济活动中各产业之间的技术经济联系被称为产业关联,关联性强的产业发展有利于带动相关产业的协同发展。

如房地产业的发展向上可带动建筑业,向下可带动家电业,形成建筑业-房地产业-家电产业协同发展。

下列选项中构成产业链上下游协同发展关系的是(B)①钢铁产业②信息产业③保险业④汽车产业A.①-②-③B.①-④-③C.②-③-④D.④-③-①16.某地乡村的“民主恳谈会”大致经历了从公民对具体问题进行沟通和交流的“对话型恳谈”,到参与公共事务决策管理的“决策型恳谈”,再到参与政府财政预算的“参与式预算恳谈”三个发展阶段。

2014年全国高考新课标2卷理综试题(含答案)

2014年全国高考新课标2卷理综试题(含答案)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科综合能力测试化学部分7.下列过程没有发生化学反应的是()A.用活性炭去除冰箱中的异味B.用热碱水清除炊具上残留的油污C.用浸泡过高锰酸钾溶液的硅藻土保鲜水果D.用含硅胶、铁粉的透气小袋与食品一起密封包装8.四联苯的一氯代物有( )A.3种B.4种C.5种D.6种9.下列反应中,反应后固体物质增重的是()A.氢气通过灼热的CuO粉末B.二氧化碳通过Na2O2粉末C.铝与Fe2O3发生铝热反应D.将锌粒投入Cu(NO3)2溶液10.下列图示实验正确的是()A.除去粗盐溶液中的不溶物B.碳酸氢钠受热分解C.除去CO气体中的CO2气体D.乙酸乙酯制备演示实验11.一定温度下,下列溶液的离子浓度关系式正确的是()A.pH=5的H2S溶液中,c(H+)=c(HS—)=1×10—5mol•L-1B.pH=a的氨水溶液,稀释10倍后,其pH=b,则a=b+1C.pH=2的H2C2O4溶液与pH=12的NaOH溶液任意比例混合:c(Na+)+c(H+)=c(OH—)+c(HC2O4-)D.pH相同的①CH3COONa②NaHCO3③NaClO三种溶液的c(Na+):①〉②〉③12.2013年3月我国科学家报道了如图所示的水溶液锂离子电池体系,下列叙述错误的是()A.a为电池的正极B.电池充电反应为LiMn2O4=Li1-x Mn2O x+xLiC.放电时,a极锂的化合价发生变化D.放电时,溶液中Li+从b向a迁移13.室温下,将1mol的CuSO4•5H2O(s)溶于水会使溶液温度降低,热效应为△H1,将1mol 的CuSO4(s)溶于水会使溶液温度升高,热效应为△H2,CuSO4•5H2O受热分解的化学方程式为:CuSO4•5H2O(s) 错误!CuSO4(s)+5H2O(l),热效应为△H3.则下列判断正确的是() A.△H2>△H3 B.△H1<△H3 C.△H1+△H3=△H2 D.△H1+△H2〉△H3 26.(13分)在容积为1。

2014年高考理科数学全国卷2含答案

2014年高考理科数学全国卷2含答案

绝密★启用前2014年普通高等学校招生全国统一考试理科数学(全国Ⅱ卷)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=【D 】A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =【A 】A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b ,|a-b ,则a ⋅b =【A 】 A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1, ,则AC=【B 】A. 5B.C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是【A 】 A. 0.8 B. 0.75 C. 0.6 D. 0.45 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为【C】A. 1727 B.59 C.1027 D.137.执行右图程序框图,如果输入的x,t均为2,则输出的S=【D】A. 4B. 5C. 6D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= 【D】A. 0B. 1C. 2D. 39.设x,y满足约束条件70310350x yx yx y+-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y=-的最大值为【B】A. 10B. 8C. 3D. 210.设F为抛物线C:23y x=的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为【D】A.B. C.6332 D.9411.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为【C】A.110 B.25C.D.12.设函数()xf xmπ=.若存在()f x的极值点0x满足()22200x f x m+<⎡⎤⎣⎦,则m的取值范围是【C】A. ()(),66,-∞-⋃∞B.()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a = 12 .(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为 1 .15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是(1,3-) .16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是 []1,1- .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12na +是等比数列,并求{}na 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+.解:(I )由131n n a a +=+得1113(22n n a a ++=+。

2014年全国新课标英语卷II详细解析

2014年全国新课标英语卷II详细解析

2. 2014年普通高等学校招生全国统一考试英语(全国新课标卷Ⅱ)【名师简评】本套试题难易适中,没有太多的难点。

阅读理解题涉及叙事故事,环境,文化和交通等。

在选材上具有鲜明的教育性和实用性,话题广泛,所选文章贴近生活,体现人文,易于理解。

试题难度适中,以细节题为主,兼具推理判断,词义猜测和主旨大意题。

阅读材料长度和词汇难度适中,少有生词,整体难度不高。

注重考查考生通过阅读获取信息并对所读取信息进行推理判断的能力。

七选五阅读的题目设置中等难度,没有难找的线索。

分别考察考生对信息概述、总结和承转的理解。

七选五文章一段集中于一个意思,做题时先抓段落大意,再对照选项。

七选五注意代词(如it,this),选项的句内关系(如因果、转折)及重现(文章与选项的复现提示),选择时要特别注意空白处与前文的关系。

完形填空是一篇记叙文。

故事情节紧凑,做题时注意上下文的逻辑关系,巧用关联词。

第一部分: 阅读理解第一节A【文章大意】本文是一篇夹叙夹议的文章。

讲述的是Rashid的重要文件被当作垃圾扔掉,然后又重新被找到的过程,作者失而复得的不只是文件,还得到了人和人之间的信任。

这段经历变成作者的财富。

1.【考点】细节理解题【答案】B【解析】根据第一段末while 1ooking for a house for me and our children可知,Rashid打算到悉尼给作者和孩子找房子。

2.【考点】词义推断题【答案】C【解析】根据第五段最后一句At last they had seen a half-written letter-to a friend可知我丈夫把新的电话号码写在了一封末完成的给他朋友的信里。

干扰项A,女孩的父母没有跟Rashid的朋友联系,所以不可能从他的朋友那得到号码。

3.【考点】细节理解题【答案】D【解析】根据文章的内容可知,作者的手提箱失而复得,所以restore有“重新获得,归还”之意。

故选D。

2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合,则中元素的个数为( )A .2B .3C .5D .72.已知角的终边经过点,则( )A .B .C .D .3.不等式组的解集为( )A .B .C .D .4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .B .C .D .{1,2,4,6,8},{1,2,3,5,6,7}M N ==MN α(4,3)-cos α=453535-45-(2)0||1x x x +>⎧⎨<⎩{|21}x x -<<-{|10}x x -<<{|01}x x <<{|1}x x>1661335.函数的反函数是( )A .B .C .D .6.已知为单位向量,其夹角为,则( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列的前n 项和为,若则( ) A .31 B .32 C .63 D .641)(1)y x =>-3(1)(1)x y e x =->-3(1)(1)xy e x =->-3(1)()x y e x R =-∈3(1)()xy e x R =-∈a b 、60(2)a b b -∙={}n a n S 243,15,S S ==6S =9. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为C 的方程为( )A .B .C .D .10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A.B .C .D .11.双曲线C :的离心率为2,则C的焦距等于()A .2B .C .4D .22221x y a b+=(0)a b >>1F 2F 32F l 1AF B ∆22132x y +=2213x y +=221128x y +=221124x y +=814π16π9π274π22221(0,0)x y a b a b-=>>12.奇函数的定义域为R ,若为偶函数,且,则( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的系数为 .(用数字作答)14.函数的最大值为 .()f x (2)f x +(1)1f =(8)(9)f f +=6(2)x -3x cos 22sin y x x =+15. 设x 、y 满足约束条件,则的最大值为 .16. 直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩4z x y =+1l 2l 222x y +=1l 2l 1l 2l 111()(21)nnk k k k a a k +==-=-∑∑△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1,因为A1C为∠ACC1的平分线,故A1D=A1131312︒tan tan1tan tanA CA C+--︒︒⊂⊂作DF ⊥AB ,F 为垂足,连结A 1F,由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB-C 的平面角,由,得D 为AC 的中点,DF=,tan ∠A 1FD=,所以二面角A 1-AB-C的大小为解法二:以C为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则(-2,1,0),,,由,即,于是①,所以.(2)设平面BCC 1B 1的法向量,则,,即,因,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,,点A到平面BCC 1B 1的距离为,又依题设,点A 到平面BCC 1B 1的距c=.代入①得a=3(舍去)或a=1.于是,设平面ABA 1的法向量,则,即.且-2p +q =0,令p,则q,r=1,,又为1=12AC BC AB ⨯⨯=1A DDF=AF =1(2,0,0),(2,0,)AC AA a c =-=-111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-12AA =2=2240a a c -+=11AC BA ⋅=2240a a c -+=11AC BA ⊥(,,)m x y z =m CB ⊥1,m CB m BB ⊥⊥10,0m CB m BB ⋅=⋅=11(0,1,0),(2,0,)CB BB AA a c ==-(,0,2)m c a =-cos ,CA m CA m CA c mc ⋅⋅<>===1(1AA =-(,,)n p q r =1,n AA n AB ⊥⊥10,0n AA n AB ⋅=⋅=0p -=(3,2n =(0,0,1)p =平面ABC 的法向量,故cos ,所以二面角A 1-AB-C 的大小为arccos20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2··CP(B)=0.6,P(C)=0.4,P(A i )=.所以P(D)=P(A 1·B ·C+A 2·B+A 2··C )= P(A 1·B ·C)+P(A 2·B)+P(A 2··C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p ()·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1),的判别式△=36(1-a ). (i )若a ≥1,则,且当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.1,4n p n p n p⋅<>==14B 220.5,0,1,2i C i ⨯=B B B 2()363f x ax x '=++2()3630f x ax x '=++=()0f x '≥()0f x '=(ii )由于a ≠0,故当a<1时,有两个根:, 若0<a<1,则当x ∈(-,x 2)或x ∈(x 1,+)时,,故f (x )在(-,x 2),(x 1,+)上是增函数;当x ∈(x 2,x 1)时,,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当且,解得. 综上,a 的取值范围是. 22. (本小题满分12分)已知抛物线C:的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由中得x 0=, 所以,由题设得,解得p =-2(舍去)或p =2.所以C 的方程为.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为,(m ≠0)代入中得,()0f x '=12x x ==∞∞()0f x '>∞∞()0f x '<()0f x '>(1)0f '≥(2)0f '≥504a -≤<5[,0)(0,)4-+∞22(0)y px p =>54QF PQ =l '22(0)y px p =>8p088,22p p PQ QF x p p ==+=+85824p p p+=⨯24y x =1x my =+24y x =2440y my --=设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),,有直线的斜率为-m ,所以直线的方程为,将上式代入中,并整理得. 设M(x 3,y 3),N(x 4,y 4),则. 故MN的中点为E(). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于,从而,即,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=02124(1)AB y m =-=+l 'l '2123x y m m=-++24y x =2244(23)0y y m m+-+=234344,4(23)y y y y m m+=-=-+23422223,),m MN y y m m ++-=-=12AE BE MN ==2221144AB DE MN +=222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=。

2014年高考文科数学全国卷2(含详细答案)

2014年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b |10=,|a -b |6=,则a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .328.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8 B .7 C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( )A .303B .6C .12D .7311.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]22-C .[2,2]-D .22[,]22-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= .16.数列{}n a 满足111n n a a +=-,82a =,则1a = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分) 设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选(1+3i)(1+i)-2+4i ==-1+2ii)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。

高考真题:2014年普通高等学校招生全国统一考试(课标II卷)

高考真题:2014年普通高等学校招生全国统一考试(课标II卷)

高考真题:2014年普通高等学校招生全国统一考试(课标II卷)2014年普通高等学校招生全国统一考试(课标II卷)语文注意事项:1.本试卷分第I卷(阅读题)和第II卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第I卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题。

周代,尽管关于食品安全事件的记载不多,但我们还是看到,由于食品安全关系重大,统治者对此非常重视并作出了特别规定.周代的食品交易是以直接收获采摘的初级农产品为主,所以对农产品的成熟度十分.据《礼记》记栽,用代对食品交易的规定有:五谷不时,果实未熟,不鬻于市.这是我国历史上最早的关于食品安全管理的记录.汉唐时期,食品交易活动非常频繁,交易品种十分丰富.为杜绝有毒有害食品流入市场,国家在法律上作出了相应的规定.汉朝《二年律令》规定:诸食脯肉,脯肉毒杀、伤、病人者,亟尽孰燔其余……当燔弗燔,及吏主者,皆坐脯肉赃,与盗同法.即肉类因腐坏等因素可能导致中毒者,应尽快焚毁,否则将处罚当事人及相关官员.唐朝《唐律》规定:脯肉有毒,曾经病人,有余者速焚之,违者杖九十.若故与人食并出卖,令人病者,徒一年;以故致死者,绞.即人自食致死者,从过失杀人法。

从《唐律》中可以看到,在唐代,知脯肉有毒不速焚而构成的刑事犯罪分为两种情况,处罚各不相同:一是得知脯肉有毒时,食品的所有者应当立刻焚毁所剩有毒食品,以绝后患,否则杖九十;二是明知脯肉有毒而不立刻焚毁,致人中毒,则视情节及后果以科罚。

宋代,饮食市场空前繁荣。

孟元老在《东京梦华录》中,追述了北宋都城开封府的城市风貌,并且以大量笔墨写到饮食业的昌盛,书中共提到一百多家店镝以及相关行会.商品市场的繁荣,不可避免地带来一些问题,一些商贩以物市于人,敝恶之场,饰为新奇;假伪之物,饰为真实.如绢帛之用胶糊,米麦之增温润,肉食之灌以水,药材之易以他物(《袁氏世范》)有的不法分子甚至采用鸡塞沙,鹅羊吹气、卖盐杂以灰之类伎俩谋取利润,为了加强对食品掺假,以次充好现象的监督和管理,宋代规定从业者必须加入行会,而行会必须对商品质量负责,市肆谓之行者,因官府料索而得此名,不以其物小大,但合充用者,皆置为行,虽医卜亦有职.(《都城纪胜》商人们依经营类型组成行会,商铺,手工业和其他服务性行业的相关人员必领加入行会组织,并按行业登记在籍,否则就不能从业经营.各个行会对生产经营的商品质量进行把关,行会的首领作为拉保人,负责评定物价和监察不法行为.除了由行会把关外,宋代法律也继承了《唐律》的规定,对有毒有害食品的销售者予以严惩上述朝代对食品流通的安全管理及有关法律举措,可以给我们很多启示,也可以为现今我国食品质量和安全监管模式的合理构建提供新的思路和路径选择.(摘编自张炸达《古代食品安全监管述略》)1.下列关于原文第一、二两段内容的表述,不正确的一项是A.周代统治者严禁未成熟的果实和谷物进入流通市场,以防止此类初级农产品引起食品安全方面的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试·全国卷Ⅱ理科数学(时间:120分钟分值:150分)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N=错误!未找到引用源。

,则M∩N= ( )A.{1}B.{2}C.{0,1}D.{1,2}2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2= ( )A.-5B.5C.-4+iD.-4-i3.设向量a,b满足|a+b|=错误!未找到引用源。

,|a-b|=错误!未找到引用源。

,则a·b= ( )A.1B.2C.3D.54.钝角三角形ABC的面积是错误!未找到引用源。

,AB=1,BC=错误!未找到引用源。

,则AC= ( )A.5B.错误!未找到引用源。

C.2D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.456.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

7.执行如图程序框图,如果输入的x,t均为2,则输出的S= ( )A.4B.5C.6D.78.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( )A.0B.1C.2D.39.设x,y满足约束条件错误!未找到引用源。

则z=2x-y的最大值为( )A.10B.8C.3D.210.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O 为坐标原点,则△OAB的面积为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

11.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

12.设函数f错误!未找到引用源。

=错误!未找到引用源。

sin错误!未找到引用源。

.若存在f错误!未找到引用源。

的极值点x0满足错误!未找到引用源。

+错误!未找到引用源。

<m2,则m的取值范围是( )A.错误!未找到引用源。

∪错误!未找到引用源。

B.错误!未找到引用源。

∪错误!未找到引用源。

C.错误!未找到引用源。

∪错误!未找到引用源。

D.错误!未找到引用源。

∪错误!未找到引用源。

第Ⅱ卷(非选择题)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.错误!未找到引用源。

的展开式中,x7的系数为15,则a= .(用数字填写答案)14.函数f错误!未找到引用源。

=sin错误!未找到引用源。

-2sinφcos错误!未找到引用源。

的最大值为.15.已知偶函数f错误!未找到引用源。

在错误!未找到引用源。

上单调递减,f 错误!未找到引用源。

=0.若f错误!未找到引用源。

>0,则x的取值范围是.16.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列错误!未找到引用源。

满足a1=1,a n+1=3a n+1.(1)证明错误!未找到引用源。

是等比数列,并求错误!未找到引用源。

的通项公式.(2)证明:错误!未找到引用源。

+错误!未找到引用源。

+…+错误!未找到引用源。

<错误!未找到引用源。

.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC.(2)设二面角D-AE-C为60°,AP=1,AD=错误!未找到引用源。

,求三棱锥E-ACD 的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:(1)求y关于t的线性回归方程.(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=错误!未找到引用源。

,=错误!未找到引用源。

-错误!未找到引用源。

.20.(本小题满分12分)设F1,F2分别是椭圆C:错误!未找到引用源。

+错误!未找到引用源。

=1错误!未找到引用源。

的左、右焦点,M是C上一点且MF2与x 轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为错误!未找到引用源。

,求C的离心率.(2)若直线MN在y轴上的截距为2,且错误!未找到引用源。

=5错误!未找到引用源。

,求a,b.21.(本小题满分12分)已知函数f错误!未找到引用源。

=e x-e-x-2x.(1)讨论f错误!未找到引用源。

的单调性.(2)设g错误!未找到引用源。

=f错误!未找到引用源。

-4bf错误!未找到引用源。

,当x>0时,g错误!未找到引用源。

>0,求b的最大值.(3)已知 1.4142<错误!未找到引用源。

<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,P是☉O外一点,PA是切线,A为切点,割线PBC与☉O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交☉O于点E.证明:(1)BE=EC.(2)AD·DE=2PB2.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈错误!未找到引用源。

.(1)求C的参数方程.(2)设点D在C上,C在D处的切线与直线l:y=错误!未找到引用源。

x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.24.(本小题满分10分)选修4-5:不等式选讲设函数f错误!未找到引用源。

=错误!未找到引用源。

+错误!未找到引用源。

(a>0).(1)证明:f错误!未找到引用源。

≥2.(2)若f错误!未找到引用源。

<5,求a的取值范围.答案解析1.【解题提示】将集合M中的每个元素代入集合N中的不等式中检验,得M∩N.D 把M={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足不等式.所以选D.2.【解题提示】由两复数关于虚轴对称,可求得复数z2,利用复数的乘法运算法则求得z1z2.A 因为z1=2+i,z1与z2关于虚轴对称,所以z2=-2+i,所以z1z2=-1-4=-5,故选A.3.【解题提示】将错误!未找到引用源。

,错误!未找到引用源。

两边平方,联立方程求解a·b.【解析】选A.因为|a+b|=错误!未找到引用源。

,|a-b|=错误!未找到引用源。

,所以a2+b2+2a·b=10,a2+b2-2a·b=6,联立方程解得a·b=1,故选A.4.【解题提示】利用三角形面积公式求得角B,然后结合条件,利用余弦定理,求得AC.B 因为S△ABC=错误!未找到引用源。

acsin B=错误!未找到引用源。

〓错误!未找到引用源。

〓1〓sin B=错误!未找到引用源。

,所以sin B=错误!未找到引用源。

,所以B=错误!未找到引用源。

或错误!未找到引用源。

.当B=错误!未找到引用源。

时,经计算△ABC为等腰直角三角形,不符合题意,舍去.所以B=错误!未找到引用源。

,使用余弦定理,b2=a2+c2-2accos B,解得b=错误!未找到引用源。

.故选B.5.【解题提示】设出所求概率为p,然后根据已知条件列出关于p的方程,求得p.【解析】选A.设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据题有0.6=0.75·p,解得p=0.8,故选A.6.【解题提示】由三视图,还原出几何体,然后根据几何体的形状,求得体积之比.C 因为加工前的零件底面半径为3,高为6,所以体积V1=9π·6=54π.因为加工后的零件,左半部分为小圆柱,底面半径为2,高为4,右半部分为大圆柱,底面半径为3,高为2.所以体积V2=4π·4+9π·2=34π.所以切削掉部分的体积与原体积之比=错误!未找到引用源。

=错误!未找到引用源。

.故选C.7.【解题提示】根据框图,列出每一次循环变量M,S,k的值的变化,确定最终S 的输出值.D x=2,t=2,变量变化情况如下:M S k1 3 12 5 22 7 3故选D.8.【解题提示】将函数y=ax-ln错误!未找到引用源。

求导,将x=0代入,利用导数的几何意义求得a.D 因为f(x)=ax-ln(x+1),所以f′(x)=a-错误!未找到引用源。

.所以f(0)=0,且f′(0)=2.解得a=3.故选D.9.【解题提示】结合约束条件,画出可行域,然后将目标函数化为斜截式,平移得最大值.【解析】选 B.画出可行域,可知可行域为三角形,经比较斜率,可知目标函数z=2x-y在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选B.10.【解题提示】将三角形OAB的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积.D 设点A,B分别在第一和第四象限,|AF|=2m,|BF|=2n,则由抛物线的定义和直角三角形知识可得,2m=2〓错误!未找到引用源。

+错误!未找到引用源。

m,2n=2〓错误!未找到引用源。

-错误!未找到引用源。

n,解得m=错误!未找到引用源。

(2+错误!未找到引用源。

),n=错误!未找到引用源。

(2-错误!未找到引用源。

),所以m+n=6.所以S△OAB=错误!未找到引用源。

〓错误!未找到引用源。

〓(m+n)=错误!未找到引用源。

.故选D.11.【解题提示】建立坐标系,利用空间向量法求解.C 如图,分别以C1A1,C1B1,C1C所在直线为x,y,z轴,建立坐标系.令AC=BC=C1C=2,则A(2,0,2),B(0,2,2),M(1,1,0),N(1,0,0).所以错误!未找到引用源。

相关文档
最新文档