物理发展史
物理学发展简史
物理学发展简史物理学是自然科学中研究物质、能量和它们之间相互作用的学科。
它的发展可以追溯到古代,随着时间的推移,物理学经历了许多重要的里程碑和发展阶段。
本文将为您详细介绍物理学的发展历程。
1. 古代物理学古代物理学主要集中在希腊和中国。
在希腊,早期的物理学家如毕达哥拉斯、阿那克西曼德和柏拉图提出了一些关于自然界的基本理论。
他们认为世界是由基本元素构成的,这些元素具有不同的性质和特征。
在中国,古代科学家如张衡和沈括对自然现象进行了观察和研究,并提出了一些关于地震、天文学和气象学的理论。
2. 文艺复兴时期的物理学文艺复兴时期是物理学发展的重要时期。
伽利略·伽利莱是这一时期最重要的物理学家之一。
他通过实验和观察,提出了地球并不是宇宙的中心的理论,并发展了运动学和力学的基本原理。
同时,伽利略的研究也为后来牛顿的力学定律奠定了基础。
3. 牛顿力学的革命艾萨克·牛顿的力学定律是物理学史上的一个重大突破。
牛顿提出了万有引力定律,解释了行星运动、物体的自由落体和天体力学等现象。
他的工作为后来的科学家提供了重要的思想和方法,对物理学的发展产生了深远的影响。
4. 电磁学的诞生19世纪,电磁学成为物理学的一个重要分支。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦等科学家的工作,奠定了电磁学的基本原理。
麦克斯韦提出了电磁场的理论,并预言了电磁波的存在。
这一理论为后来的无线电通信和电磁辐射等领域的发展奠定了基础。
5. 相对论和量子力学的兴起20世纪初,爱因斯坦的相对论和量子力学的兴起引起了物理学界的巨大震动。
爱因斯坦的相对论理论彻底改变了人们对时间、空间和物质的认识。
量子力学则研究微观世界的行为,提出了不确定性原理和波粒二象性等重要概念。
这两个理论的提出对物理学的发展产生了深远的影响,并为现代物理学的诞生奠定了基础。
6. 当代物理学的发展当代物理学涉及了广泛的领域,如粒子物理学、宇宙学、量子场论等。
物理学发展史
物理学发展史公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。
伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。
公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。
公元1646年,法国科学家帕斯卡实验验证大气压的存在。
公元1654年,德国科学家格里开发明抽气泵,获得真空。
公元1662年,英国科学家波义耳实验发现波义耳定律。
十四年后,法国科学家马里奥特也独立的发现此定律。
公元1663年,格里开作马德堡半球实验。
公元1666年,英国科学家牛顿用三棱镜作色散实验。
公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。
公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。
公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。
公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。
公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。
不过直到1791年他才发表这方面的论文。
公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。
在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。
公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。
盖·吕萨克的研究发表于1802年。
公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。
公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。
公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。
公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。
公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。
物理学发展简史
物理学发展简史一、引言物理学作为自然科学的一门学科,研究物质的性质、运动和相互作用规律。
它的发展可以追溯到古代的希腊和中国,经历了数千年的演变和进步。
本文将从古代物理学的起源开始,逐步介绍物理学的发展历程,包括经典物理学和现代物理学的重要里程碑。
二、古代物理学的起源1. 古希腊物理学的开端古希腊是物理学发展的重要起源地之一。
早在公元前6世纪,古希腊哲学家毕达哥拉斯提出了宇宙是由数字和几何构成的观念,奠定了物理学的基础。
他的学生们继续探索自然界,包括提出了著名的原子论和运动学理论。
2. 古代中国的物理学贡献古代中国也有独特的物理学贡献。
中国古代科学家对天文学和地球物理学有着深入的研究,例如天文观测和地震测量。
此外,中国古代还有许多发明和发现,如指南针、火药等,对物理学的发展起到了重要作用。
三、经典物理学的发展1. 牛顿力学的奠基17世纪,英国科学家牛顿提出了经典力学的三大定律,即牛顿运动定律。
这一理论解释了物体的运动规律,并建立了质点力学的基础。
牛顿力学成为了经典物理学的重要组成部分,对后来的物理学发展产生了深远影响。
2. 热力学与热学定律18世纪,热力学的发展成为了物理学的另一个重要分支。
热力学研究了物体的热力学性质,如温度、热量和热力学定律。
这一领域的突破包括卡诺循环和热力学第一、第二定律的提出,为工业革命和能源利用提供了理论基础。
3. 电磁学的崛起19世纪,电磁学的发展成为经典物理学的又一个重要分支。
电磁学研究了电荷和电磁场的相互作用规律,包括库仑定律和麦克斯韦方程组的建立。
这一领域的发展推动了电力工业和通信技术的进步。
四、现代物理学的重要里程碑1. 相对论的提出20世纪初,爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空和物质的认识。
相对论解释了运动物体的性质,揭示了质能等价原理,并预言了黑洞和引力波等现象。
2. 量子力学的建立20世纪20年代,量子力学的建立标志着物理学的又一次革命。
物理学发展史
物理学发展史物理学作为一门科学,探求自然界的规律和现象变化,已经有着悠久的发展历史。
从古代的哲学思考到现代的实验研究,物理学的进展不仅拓宽了人们对宇宙的认识,也给人类社会带来了巨大的变革和进步。
本文将从古希腊的自然哲学开始,梳理物理学发展的主要里程碑,以展现物理学的辉煌历程。
1. 古希腊与自然哲学古希腊的自然哲学家们是物理学发展的奠基者。
他们以观察自然界为出发点,试图用理性来解释宇宙的起源和运行规律。
毕达哥拉斯提出了宇宙的几何结构理论,赋予了几何学在物理学中的重要地位。
而亚里士多德则系统地构建了大自然学说,他的观点成为整个中世纪物理学的基石。
2. 文艺复兴与科学革命文艺复兴时期,人类开始重视实验和观察,并且进行了丰富的科学实践。
由于哥白尼提出的地心说受到挑战,伽利略通过实验和观察发现了行星运动的真相,奠定了实验物理学的基础。
随后,牛顿在《自然哲学的数学原理》中提出了经典力学,奠定了物理学的基石。
牛顿的贡献使物理学成为现代科学的重要组成部分。
3. 电磁学的诞生19世纪初,电磁学的发展成为物理学里程碑式的事件之一。
法拉第的电磁感应定律和麦克斯韦的电磁场方程串联起自然界中的电和磁现象,揭示出电磁波的存在。
这一发现不仅对电通信和能量传输技术产生了巨大影响,也为后来的电子学和无线通信技术的发展奠定了基础。
4. 相对论与量子力学20世纪初,爱因斯坦的相对论以及量子力学的诞生,彻底颠覆了经典物理学的观念。
相对论揭示了时空的弯曲和时间的相对性,为宇宙的起源和结构提供了新的视角。
而量子力学则揭示了微观世界的奇妙现象,如波粒二象性和量子纠缠等。
这些突破性的发现让人们对物质和能量的本质有了更深刻的理解。
5. 现代物理学的进展现代物理学不断涌现出一系列重要的理论和实验突破。
相对论与量子力学的融合为物理学带来了新的挑战和发展方向,统一场论理论的探索给出了一种解释自然界基本力的可能性,高能物理学的发展使人们对基本粒子和宇宙起源有了更深入的认知。
高中物理学发展史
高中物理学发展史定律是对客观事实的一种表达形式,通过大量具体的客观事实归纳而成的结论.定理是经过受逻辑限制的证明为真的叙述.一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快。
并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。
2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。
3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。
得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5.英国物理学家胡克对物理学的贡献:胡克定律,胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。
6.1638年,伽利略在《两种新科学的对话》一书中,运用观察——假设——数学推理的方法,详细研究了抛体运动。
7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表。
而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8.17世纪,德国天文学家开普勒提出开普勒三大定律。
9.牛顿于1687年正式发表万有引力定律。
1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。
10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。
1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
11.我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同。
但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比)。
物理学发展简史
物理学发展简史物理学是自然科学的一门重要学科,研究物质、能量以及它们之间的相互作用。
它涵盖了广泛的领域,如力学、热学、光学、电磁学、量子力学等。
本文将为您介绍物理学的发展历程,以及其中的重要里程碑和贡献。
1. 古代物理学古代物理学的起源可以追溯到古希腊时期。
古希腊的哲学家和科学家,如亚里士多德、阿基米德等,对物质的本质、力量和运动进行了探索和研究。
亚里士多德提出了天体运动的地心说,阿基米德则研究了浮力和杠杆原理。
2. 中世纪物理学在中世纪,物理学的发展受到了宗教和哲学观念的限制。
然而,一些学者,如伽利略·伽利莱和约翰内斯·开普勒,通过实验和观察,对运动和天体运动提出了新的理论和观点。
伽利略提出了自由落体和斜面上滚动的定律,开普勒则发现了行星运动的三大定律。
3. 近代物理学17世纪是物理学发展的重要时期。
伊萨克·牛顿的《自然哲学的数学原理》(Principia Mathematica)成为了物理学的里程碑之一。
牛顿的力学定律和万有引力定律为后来的物理学研究奠定了基础。
这个时期还涌现出了其他重要的科学家,如罗伯特·赫丁、安德斯·开尔文等。
电学也开始被研究,奥托·冯·瓦尔塔发现了电流和磁场之间的关系。
4. 19世纪物理学19世纪是物理学发展的黄金时代。
在这个时期,热力学、电磁学和光学等领域取得了重大突破。
詹姆斯·克拉克·麦克斯韦的电磁场方程组成为电磁学的基础,赫尔曼·冯·亥姆霍兹提出了能量守恒定律。
热力学的发展由卡诺提出的热力学第一定律和第二定律,以及麦克斯韦的统计物理学假设推动。
光学方面,托马斯·杨的干涉和衍射理论为光的波动性提供了解释。
5. 20世纪物理学20世纪是物理学的革命性时期,量子力学和相对论的发展成为了物理学的两大支柱。
阿尔伯特·爱因斯坦的相对论理论彻底改变了我们对时空和引力的理解。
(完整版)物理学发展简史
欢迎共阅一、古典物理学与近代物理学:1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支。
2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。
理12341)和化(1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。
(2)半导体制成二极管具整流能力。
(3)集成电路(IC):(A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集成电路。
(B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。
(C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。
(4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。
2、雷射:(一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并放射同频率之光子,藉以将光加以增强。
(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。
(三)应用:(1)工业上:测量、切割、精密加工……(2)医学上:切割手术(肿瘤、近视)……(3)军事上:定位、导引……(4)生活、娱乐上:激光视盘、光纤通讯……3、光纤:(一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包层)两层。
(二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而传递至另一端。
(三)特性:(核2。
(1)向量:兼具大小及方向性者,如:速度、力……(2)纯量:仅具大小无方向性者,如:体积、时间、功……(二)依定义方式而分:(1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强度(光度)、物质的量(物量)七种。
物理的发展史
物理的发展史物理是一门研究自然界中物质、能量及其相互关系的科学。
它已经经历了漫长而丰富的发展历程,以下是物理学发展史中的一些重要里程碑:古代:- 古希腊的哲学家如亚里士多德和柏拉图开始思考关于自然的问题,提出了一些基础性的观点和理论。
- 古代中国、印度、波斯等地也有独特的自然哲学思想。
中世纪:- 纪元初的欧洲发生了科学的低潮,欧洲学术界主导的是天主教教会的教义,科学研究受到限制。
- 宋代的中国在天文学、光学等方面取得了重大进展,但在之后的元明清时期逐渐衰落。
文艺复兴与启蒙时期:- 文艺复兴时期的欧洲重新燃起了对知识的追求,科学研究逐渐得到推崇。
- 伽利略、凯瑟琳·德·波尔二世等人的实验和观测为数理科学打下了基础。
- 牛顿的力学定律和万有引力定律为经典力学奠定了基础。
19世纪:- 麦克斯韦的电磁理论解释了电磁现象,确定了光是一种电磁波。
- 能量守恒定律、热力学三定律和熵增定律等热力学定律被发现。
20世纪:- 狭义相对论和广义相对论揭示了时空结构和引力的本质,由爱因斯坦提出。
- 量子力学的发展解释了微观领域的现象和粒子行为,建立了波粒二象性理论。
- 大爆炸理论为宇宙的起源和演化提供了重要的解释。
此外,在20世纪和21世纪,物理学的发展还涉及了高能物理、凝聚态物理、粒子物理实验、宇宙学、量子计算和纳米技术等领域。
这些新发现和理论的发展为人类认识世界提供了更深入和全面的视角。
物理学的发展史也是人类智慧与知识积累的历程。
当代:- 当代物理学在各个领域都取得了重大突破和进展,推动了科学和技术的发展。
- 量子力学的进一步发展包括了量子场论、量子力学的解释和基础研究等方面。
- 高能物理领域的加速器技术和大型实验装置使得对微观世界的研究更加深入。
- 等离子体物理、原子物理、凝聚态物理等领域的研究推动了新材料和新技术的发展。
- 宇宙学的研究通过各种天文观测和模拟,对宇宙的起源、结构和演化提供了更深入的理解。
物理学发展时间史
物理学发展时间史
公元前6世纪-公元前4世纪:古希腊的自然哲学家们提出了许多有
关物质本质、宇宙起源和运动规律的猜测和理论。
其中,代表性人物有毕
达哥拉斯、赫拉克利特、安贡和柏拉图等。
公元前3世纪-公元2世纪:亚历山大港的奥巴斯和其他希腊学者在
研究机械学和光学方面作出了重要贡献,如奥巴斯的“杠杆原理”和光的
折射定律。
公元16世纪-17世纪:伽利略提出了强调实验结果和运动的相对性
的思想。
比利时科学家斯涅耳提出了光的波动理论。
牛顿发现万有引力定律,并用自己的三大定律创立了经典力学的基础。
18世纪-19世纪:法国科学家拉普拉斯、拉格朗日和欧拉在力学方面
的研究造就了经典力学的完整体系。
苏格兰物理学家开普勒发现了电荷和
电场的概念。
英国数学家法拉第和美国科学家菲尔德研究了磁场和电磁感应。
20世纪初:爱因斯坦提出了相对论,揭示了质量、时间、空间和能
量之间的密切关系。
玻尔通过研究原子结构得出了量子力学的理论。
康普
顿研究了光的散射现象。
静电场和磁场的方程组成为麦克斯韦方程组。
20世纪中期:美国物理学家汤普森分离出了第一批基本粒子。
磁单
极的假设被证明是错误的。
英国天文学家霍金证明了发射黑洞的辐射现象,称之为“霍金辐射”。
20世纪末至今:对相对论和量子力学的研究和发展造就了现代物理
学的面貌。
超弦理论和黑洞理论成为热门研究领域。
量子计算和量子通信
被提出。
人类研究了宇宙的起源,证明了宇宙膨胀和加速扩张等现象。
物理学发展史
一、物理学发展史1.牛顿(英):在伽利略和笛卡尔等人研究的基础上总结出:牛顿三定律;在伽利略,开普勒,笛卡尔,胡克,哈雷等人研究的基础上建立了:万有引力定律2.伽利略(意):用理想斜面实验十逻辑推理得出力不是维持物体运动状态的原因,而是改变物体运动状态的原因,推翻了亚里士多德的观点:力是维持物体蘑动状态盼原因;用实验+数学推理和合理外推的方法研究了自由落体运动。
3.哥白尼(波兰):提出“日心说”大胆反驳托勒密为代表的“地心说”4.开普勒(德):在丹麦天文学家第谷的观测数据基础上分析提出:行星运动三定律—一开普勒三定律。
5.卡文迪许(英):利用扭秤实验装置比较准确测出万有引力常量G,被称为能称出地球质量的人。
6.亚当斯(英)和勒维烈(法):应用万有引力定律计算并观测到海王星。
汤苞(美):用同样的方法发现冥王星。
7.富兰克林(美):最早提出正电荷、负电荷,发明避雷针。
8.密立根(美):最早测出元电荷e的数值和测量普朗克常量。
9.库仑(法):用扭秤实验发现点电荷问的作用规律——库仑定律,并测出了静电力常量K的值。
10.奥斯特(丹麦):发现电流的磁效应,说明电和磁互相联系。
11.安培(法):提出了分子电流假说,解释了磁现象的电本质,研究发现同向电流的平行导线相吸,反向电流的平行导线相斥,并总结出安培定则(右手螺旋定则)。
12.洛仑兹(荷兰):提出洛仑兹力公式。
F=qvB13.楞次(俄):分析实验事实,总结出楞次定律。
14.享利(美):发现自感现象,日光灯工作原理即为应用之一15.劳伦兹(美):发明回旋加速器在实验室产生高能粒子。
16.阿里斯顿:设计质谱仪,测带电粒子质量和分析同位素17.昂纳斯(荷兰):发现超导现象(大多数金属降到某一值时,电阻突然变为0)。
18.焦耳:总结焦耳定律19.法拉第(英):最先提出电场,磁场概念,并引入电场线和磁感线描述电场和磁场。
最早发现了由磁场产生电流的条件——电磁感应现象。
物理学发展简史
物理学发展简史引言概述:物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用规律。
本文将从物理学的起源开始,逐步介绍物理学的发展历程,包括古代物理学、经典物理学、现代物理学以及当代物理学的发展。
一、古代物理学1.1 古希腊物理学的兴起古希腊哲学家们开始对自然现象进行观察和思考,提出了一些关于宇宙和自然的理论。
例如,毕达哥拉斯学派认为世界是由数字和几何形状构成的,而柏拉图则提出了“理念”和“物质”之间的关系。
1.2 亚里士多德的自然哲学亚里士多德对物质的性质和运动进行了深入研究,提出了“四元素”(土、水、火、气)的理论,并认为天体运动是由“天体之神”驱动的。
他的理论在中世纪成为主流观点。
1.3 阿拉伯物理学的传承阿拉伯学者在古希腊物理学的基础上进行了进一步的研究和发展,尤其是在光学和力学方面取得了重要成果。
他们的工作为欧洲文艺复兴时期的科学发展奠定了基础。
二、经典物理学2.1 牛顿力学的建立伽利略和牛顿的工作使得力学成为物理学的重要分支。
牛顿三大定律和万有引力定律为物理学提供了统一的理论框架,解释了物体的运动和天体的运动规律。
2.2 热学的发展热学的发展始于卡尔文和卡诺等科学家的研究,随后由卡尔·弗里德里希·高斯和鲁道夫·克劳修斯等人进一步完善。
他们提出了热力学定律和热力学循环,为工业革命的进展做出了重要贡献。
2.3 电磁学的兴起奥斯特和法拉第等科学家的研究奠定了电磁学的基础,而麦克斯韦的电磁场理论进一步推动了电磁学的发展。
电磁学的成就包括电磁波的发现和电磁感应定律的提出。
三、现代物理学3.1 相对论的提出爱因斯坦的狭义相对论和广义相对论彻底改变了我们对时空和引力的认识。
狭义相对论解释了高速运动物体的行为,广义相对论则描述了引力的本质。
3.2 量子力学的建立普朗克和波尔等科学家的研究揭示了微观世界的奇妙规律,量子力学诞生。
量子力学描述了微观粒子的行为,其基本原理包括波粒二象性、不确定性原理等。
物理学发展简史
物理学发展简史物理学是自然科学的一门重要学科,研究物质的本质、运动和相互作用规律。
它的发展历程可以追溯到古代,经历了数千年的演进和创新。
本文将为您详细介绍物理学的发展简史。
1. 古代物理学的起源古代物理学的起源可以追溯到古埃及、古希腊和古印度等文明。
古埃及人在建造金字塔时,已经掌握了一些力学和光学的基本原理。
古希腊的伟大思想家亚里士多德提出了自然哲学的理论,他认为万物都是由四种元素(地、水、火、气)组成,并且运动都是由于物体的本质。
古印度的毗湿奴学派也有类似的理论,认为物质由原子构成。
2. 中世纪的停滞在中世纪,由于宗教和哲学的影响,物理学的发展停滞不前。
教会对科学的压制导致了许多科学家的思想受限,这一时期的物理学研究相对较少。
3. 文艺复兴时期的突破文艺复兴时期,人们开始重新审视自然界,并对物理学进行了一系列的突破。
伽利略·伽利莱是这一时期最杰出的物理学家之一,他通过实验和观察提出了地球自转和物体自由落体的理论,为现代物理学的发展奠定了基础。
同时,克里斯托弗·哥伦布的航海探索也为物理学的发展提供了新的观测和数据。
4. 牛顿力学的诞生17世纪末,英国科学家艾萨克·牛顿提出了经典力学的三大定律,即牛顿运动定律。
他通过这些定律解释了物体的运动和力的作用,建立了经典力学的基本框架。
牛顿力学的诞生对物理学的发展产生了深远的影响,成为后续研究的重要基础。
5. 电磁学和热力学的兴起19世纪,电磁学和热力学成为物理学研究的热点。
安德烈-玛丽·安培和迈克尔·法拉第等科学家的工作推动了电磁学的发展,他们提出了电流和磁场之间的关系,并发现了电磁感应现象。
同时,詹姆斯·克拉克·麦克斯韦通过数学方程描述了电磁场的传播,奠定了电磁学的理论基础。
热力学的发展也是这一时期的重要成果,卡诺和克劳修斯等科学家对热的转化和能量守恒提出了重要理论。
6. 相对论和量子力学的革命20世纪初,爱因斯坦的相对论和量子力学的提出彻底改变了物理学的面貌。
物理学发展简史
物理学发展简史物理学作为一门自然科学,研究物质、能量以及它们之间相互作用的规律和现象。
它的发展可以追溯到古代,随着人类对自然界的认识不断深入,物理学也在不断演变和发展。
本文将按照时间顺序,简要介绍物理学的发展历程。
1. 古代物理学的起源古代物理学的起源可以追溯到古埃及和古希腊时期。
古埃及人通过观察天象,研究光的传播和反射现象,提出了光的直线传播理论。
古希腊哲学家亚里士多德提出了四个元素理论,认为宇宙是由地、水、火和空气构成的。
2. 中世纪的物理学中世纪的物理学主要受到宗教和哲学的影响。
在这个时期,人们对自然界的研究相对较少,更多的关注于宗教信仰和神学问题。
然而,一些学者如托勒密和阿尔哈齐就天文学和光学等领域做出了一些重要的贡献。
3. 文艺复兴时期的物理学文艺复兴时期,人们开始重新研究自然界,物理学逐渐成为一门独立的学科。
伽利略·伽利莱通过实验和观察,提出了物体自由下落的定律,并运用望远镜观察了天体。
他的研究为现代物理学的发展奠定了基础。
4. 牛顿力学的诞生17世纪末,英国科学家艾萨克·牛顿提出了经典力学的三大定律,即惯性定律、动力学定律和作用-反作用定律。
牛顿的力学理论解释了物体的运动和相互作用,并被广泛应用于天体力学、机械工程等领域。
5. 电磁学的发展19世纪初,丹麦物理学家奥斯特·安普尔和法国物理学家安培分别发现了电流产生磁场和磁场产生电流的现象,奠定了电磁学的基础。
随后,英国物理学家迈克尔·法拉第提出了电磁感应定律,进一步推动了电磁学的发展。
而詹姆斯·克拉克·麦克斯韦通过数学模型将电磁学理论完善,并预言了电磁波的存在。
6. 相对论的提出20世纪初,德国物理学家阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论。
狭义相对论改变了人们对时间和空间的观念,广义相对论则提出了引力是由物体弯曲时产生的现象。
爱因斯坦的相对论理论对于解释宇宙的结构和运动具有重要意义。
物理学的历史与发展
物理学的历史与发展物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用规律,是我们理解世界的基础。
下面我将为大家介绍物理学的历史和发展。
一、早期物理学的发展物理学的起源可以追溯到古代的希腊时期。
古希腊哲学家如泰勒斯、安纳克西曼德和毕达哥拉斯等人开始探索自然界的真相。
毕达哥拉斯提出了数学与自然之间的联系,并发现了音乐和数学之间的关系。
这一时期的物理学主要集中在对自然界现象的观察、实验和推理。
进入中世纪,阿拉伯学者的贡献对物理学的发展起到了推动作用。
他们翻译和传播了古希腊的著作,使这些知识在欧洲得以传播。
此外,他们还进行了一些探索,如阿拉伯数学家阿尔哈齐进行了对浮力和光学的研究。
随着文艺复兴的到来,物理学的研究得到了进一步的推动。
伽利略·伽利莱是物理学史上的重要人物之一,他通过实验和观察,建立了运动规律和测量的方法,为经典物理学奠定了基础。
伽利莱的研究为我们认识运动和力的基本规律提供了重要的线索。
二、经典物理学时期伽利略的工作为牛顿的发现铺平了道路。
伊萨克·牛顿通过对物体运动的研究,提出了万有引力定律和三大运动定律,这些定律解释了地球和天体的运动。
牛顿的工作极大地推动了物理学的发展,形成了经典力学的基础。
在18世纪,物理学的研究领域不断扩展。
拉普拉斯提出了著名的拉普拉斯行星形成假说,开辟了宇宙学研究的新领域。
欧姆定律的发现推动了电学的发展,研究者们开始关注电流、电磁场等现象。
Maxwell的电磁学理论成果将电磁学发展到了一个新的高度。
他的方程组统一了电磁学的各个方面,提出了电磁波的概念,为后来无线电通信的发展起到了重要作用。
此外,克劳修斯和卡尔·费尔迪南·韦尔兹尔等研究者们的热力学理论也为物理学领域的发展带来了重要贡献。
三、现代物理学的发展20世纪初,物理学的研究领域发生了革命性的变化。
爱因斯坦的相对论理论在理解光的行为和运动的基础上取得了重要突破。
世界物理发展史
世界物理发展简史世界物理发展史是一个漫长而丰富的过程。
一、古希腊时期公元前6世纪的希腊哲学家泰勒斯被公认为物理学的奠基人。
他开始研究物质和运动的关系,提出了“万物皆数”的观点,认为宇宙是由数字和形状所构成的。
此外,他也进行了对自然界中物体运动的研究,包括对重力、磁力、摩擦力等方面的研究。
二、中世纪欧洲中世纪欧洲是物理学发展的第二个阶段。
在这个时期,学者们开始研究光和机械学,其中最著名的是罗吉尔·培根和阿维森纳。
罗吉尔·培根是一位12世纪的哲学家和科学家,他进行了许多实验,包括对折射定律的初步研究。
阿维森纳是一位14世纪的波斯医生,他对物理学和哲学都有很大的贡献,尤其是在光学领域。
三、文艺复兴时期文艺复兴时期是物理学发展的第三个阶段。
在这个时期,许多学者开始重新审视古希腊的科学遗产,并通过实验来验证和发展新的理论。
其中最著名的是伽利略·伽利莱和艾萨克·牛顿。
伽利略·伽利莱是现代实验科学的奠基人之一,他对物理学做出了巨大的贡献。
他提出了自由落体定律,推翻了亚里士多德的理论,并提出了运动的新概念。
他还研究了惯性、速度和加速度等概念,为牛顿的运动定律奠定了基础。
艾萨克·牛顿是物理学发展的第四个阶段,也是最后一个阶段。
他的贡献包括万有引力定律、三大牛顿运动定律以及在光学和微积分上的开创性工作。
这些成就使得牛顿成为了物理学发展史上的重要人物之一。
四、近代物理学时期从19世纪末到20世纪初,随着电磁学、热力学和量子力学等领域的快速发展,物理学进入了一个新的阶段。
这个时期的代表人物包括马克斯·普朗克、尼尔斯·波尔、阿尔伯特·爱因斯坦等。
马克斯·普朗克在1900年提出了著名的普朗克公式,揭示了能量量子化的奥秘。
尼尔斯·波尔则提出了著名的波尔模型,解释了氢原子光谱的规律性。
阿尔伯特·爱因斯坦则提出了相对论理论,揭示了时间和空间的本质属性。
物理学发展简史
物理学发展简史物理学是自然科学的一门重要学科,研究物质、能量以及它们之间的相互关系和规律。
本文将为您介绍物理学的发展历程,从古代到现代的重要里程碑和突破。
1. 古代物理学的起源古代物理学起源于人类对自然界的观察和实验。
公元前6世纪的古希腊,出现了一些重要的物理学思想家,如泰勒斯和毕达哥拉斯。
泰勒斯认为万物皆由水构成,而毕达哥拉斯则提出了宇宙是由数学规律支配的观点。
2. 古典物理学时期17世纪至19世纪是古典物理学的时期,这一时期的重要突破包括:- 牛顿的力学:牛顿提出了经典力学的三大定律,解释了物体的运动和力的作用。
他的《自然哲学的数学原理》被认为是物理学的里程碑之作。
- 热力学的发展:卡诺和卢瓦西耶等科学家对热力学进行了重要的研究,提出了热力学第一和第二定律。
- 电磁学的兴起:法拉第和麦克斯韦等科学家对电磁现象进行了研究,提出了电磁场理论和麦克斯韦方程组。
3. 20世纪的物理学革命20世纪是物理学发展的重要时期,出现了一系列的革命性理论和实验发现,包括:- 相对论的提出:爱因斯坦的狭义相对论和广义相对论颠覆了牛顿力学的观念,提出了时间和空间的相对性以及引力的几何解释。
- 量子力学的建立:普朗克和玻尔等科学家提出了量子理论,解释了微观世界的行为和粒子的波粒二象性。
- 核物理学的突破:居里夫人和其他科学家的研究发现了放射性现象和核裂变,开创了核物理学的新时代。
- 粒子物理学的发展:通过加速器实验和探测器技术的进步,科学家们发现了更多的基本粒子,如夸克和轻子,揭示了物质的基本构成。
4. 当代物理学的前沿当代物理学依然在不断发展,以下是一些前沿领域的研究方向:- 弦理论:弦理论是一种试图统一量子力学和引力理论的理论,研究弦的振动和超弦的存在。
- 宇宙学:宇宙学研究宇宙的起源、演化以及宇宙学常数等问题,探索宇宙的奥秘。
- 凝聚态物理学:凝聚态物理学研究固体和液体等凝聚态物质的性质和行为,如超导和量子材料等。
物理学发展历史
物理学的发展史公元前600年以前公元前650-前550年,古希腊人发现摩擦琥珀可使之吸引轻物体,发现磁石吸铁。
公元前600--1年公元前480-前380年间战国时期,《墨经》中记有通过对平面镜、凹面镜和凸面镜的实验研究,发现物像位臵和大小与镜面曲率之间的经验关系(中国墨子和墨子学派)。
公元前480-前380年间战国时期,《墨经》中记载了杠杆平衡的现象(中国墨子学派)。
公元前480-前380年间战国时期,研究筑城防御之术,发明云梯(中国墨子学派)。
公元前四世纪,柏拉图学派已认识到光的直线传播和光反射时入射角等于反射角。
公元前350年左右,认识到声音由空气运动产生,并发现管长一倍,振动周期长一倍的规律(古希腊亚里士多德)。
公元前三世纪,实验发现斜面、杠杆、滑轮的规律以及浮力原理,奠定了静力学的基础(古希腊阿基米德)。
公元前三世纪,发明举水的螺旋,至今仍见用于埃及(古希腊阿基米德)。
公元前250年左右,战国末年的《韩非子〃有度篇》中,有“先王立司南以端朝夕”的记载,“司南”大约是古人用来识别南北的器械(或为指南车,或为磁石指南勺)。
《论衡》叙述司南形同水勺,磁勺柄自动指南,它是后来指南针发明的先驱。
公元前221年,秦始皇统一中国度、量、衡,其进位体制沿用到二十世纪。
公元前二世纪,中国西汉记载用漏壶(刻漏)计时,水钟使用更早。
公元前二世纪,发明水钟、水风琴、压缩空气抛弹机(用于战争)(埃及悌西比阿斯)。
公元前一世纪,最先记载过磁铁石的排斥作用和铁屑实验(罗马卢克莱修)。
公元前31年,中国西汉时创用平向水轮,通过滑轮和皮带推动风箱,用于炼铁炉的鼓风。
1—400年一世纪左右,发明蒸汽转动器和热空气推动的转动机,这是蒸汽涡轮机和热气涡轮机的萌芽(古希腊希隆)。
一世纪,发现盛水的球状玻璃器具有放大作用(罗马塞涅卡)。
300年至400年,中国史载晋代已有指南船,可能是航海罗盘的最早发明。
401-1000年根据敦煌等地出土文物,在公元七、八世纪,中国唐朝已采用刻板印书,是世界上最早的印刷术。
考生必知:物理的历史发展
考生必知:物理的历史发展物理学史在高考中是占有一席之地的,学生在物理学习过程要是了解掌握物理发展的历史,在学习物理的过程中也能够增加学习的乐趣。
今天小编就为大家来介绍一下物理的历史发展,让大家能够更加详细的了解。
一、力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
人类物理发展史
人类物理发展史
人类物理发展史可以追溯到古代文明时期。
早在公元前3世纪,古希腊的自然哲学家就开始探索物质和运动的本质。
阿里斯多德尔通过观察天体运动和物体的自由落体等现象,提出了一些关于物理的理论。
然而,真正的科学革命发生在17世纪。
伽利略通过实验和数
学的方法,研究了运动和力的关系,并提出了质点力学的基本原则。
同时,牛顿发表了《自然哲学的数学原理》,建立了经典力学的理论框架,并提出了著名的万有引力定律。
18世纪和19世纪是物理学快速发展的时期。
在这个时期,光
的波动性和电磁学的理论得到了深入探究。
小分子运动理论也开始成为研究热力学和统计物理学的基础。
20世纪是物理学的黄金时代。
大量的基础理论和实验成果被
提出,包括相对论、量子力学和粒子物理学等领域的突破性发现。
相对论提供了对于高速运动和引力的理论描述,而量子力学解释了微观世界的行为。
此外,原子核的结构和粒子物理学的发现也为人类对物质结构和基本粒子的理解提供了深入的洞察。
到了21世纪,物理学仍然是科学的核心领域之一。
人们继续
探索更微观的世界,如量子场论和弦理论等前沿领域,以及在宇宙学、天体物理学和能源等应用领域的研究。
同时,也有更多的跨学科研究,将物理学与生物学、化学、计算机科学等领域相结合,探索更广阔的科学前沿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 “未来的物理学真理将粒子的运动过程,并与一切经验相—致。事实上,它甚至部分地证明了我们关于分子、原子、甚至更小的基本粒子的实验。力学又成为声学、热学、光学、电磁学赖以存在的基础。 诚如德国物理学家劳厄所说,当时经典力学和经典物理学已“结合成一座具有庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。物理学家们莫不对此顶礼膜拜,他们踌躇满志,以为宇宙秘密无不尽辟,后人只需墨守成规,稍加修补。至于发现新事物,创造新原理,前人已不留余蕴,根本无须为此劳心竭力。 著名的美国物理学家迈克耳孙就持有类似的观点。1888年,在美国科学促进协会的克里夫兰年会上,作为物理组副主席的迈克耳孙谈到他的专业光学时说:“无论如何,可以肯定,光学比较重要的事实和定律,以及光学应用比较有名的途径,现在已经隙如指掌了,光学未来研究和发展的动因已经荡然无存了。” 六年后,即1894年,他在芝加哥大学赖尔逊实验室的献辞中重申了上述观点。这时,他把范围从光学扩大到整个物理学。迈克耳孙这样讲道:“虽然任何时候也不能担保,物理学的未来不会隐藏比过去更使人惊讶的奇迹,但是似乎十分可能,绝大多数重要的基本原理已经牢固地确立起来了,下一步的发展看来主要在于把这些原理认真地应用到我们所注意的种种现象中去。正是在这里,测量科学显示了它的重要性——定量的结果比定性的工作更为重要。一位杰出的物理学家指出:未来的物理学真理将不得小在小数点后第六位去寻找”。 据迈克耳孙年轻的同事密立根回忆,迈克耳孙在这里所说的“杰出的物理学家”指的是开耳芬勋爵,即威廉·汤姆逊。 迈克耳孙的观点在当时是颇有代表性的。的确,盲目乐观情绪一度在物理学家中间蔓延开来。在这里,列举两位著名的物理学家的轶事也许是耐人寻味的。 1932年,德国物理学会在柏林举行宴会,庆祝普朗克从事科学活动五十周年,普朗克在答辞中回顾了自己的科学生涯。他从事科学活动是从慕尼黑大学开始的,当时,他向自己的老师约里表示,他决心献身于理论物理学。约里回答说:“年轻人,你为什么要断送自己的前途呢?要知道,理论物理学已经终结。微分方程已经确立,它们的解法已经制定,可供计算的只是个别的局部情况。可是,把自己的一生献给这一事业,值得吗?” 1894年,正读研究生的密立根也受到过类似的劝告。据密立根回忆,当时与他住在一起的三位从事社会学和政治学研究的同学经常和他开玩笑说:社会科学这一新颖的、“活生生的”领域正在敞开着大门,密立根这个傻瓜却钻在物理学这样一门“没有搞头的”、而且“已经僵死了的”学科之中。物理学的现有理论已经完美无缺了,物理学的发展前景已经暗淡无光了。往后的研究只能是追求较高的精确性和下一个小数位,可用的方法无非是单调而机械地提供科学数据。在十九世纪后期,许多物理学家的看法就是如此。
牛顿抛弃了亚里土多德的天地截然不同的信条,澄清了自亚里士德以来一直含混不清的力和运动的观念,明确了时间、空间、质量,动量等基本的物理概念。
牛顿以运动三定律和万有引力定律为主线,以他发明的微积分为工具,巧妙地构造出他的力学体系。牛顿力学既成功地描述了天上行星、卫星、彗星的运动,又完满地解释了地上潮汐和其他物体的运动。在牛顿之前,还没有一个关于物理因果性的完整体系能够表示经验世界的任何深刻特征。
(会飞的鱼)
1687年,依萨克·牛顿经过多年的潜心研究,终于出版了他的《自然哲学的数学 原理》(以下简称《原理》),它标志着物理学的真正诞生。
牛顿,这位集实验家、理论家、机械师和讲解能手于一身的大师,出生在英国林肯郡的一个农民家庭里。他从小喜欢手工劳动,他做的风车、风筝、日晷、漏壶等都十分精巧。他早年在学校里并未表现出将来要成为伟人的任何迹象。他生性腼腆,体弱多病,学习也很落后,为此常受到一个“小霸王”的欺侮。但是,牛顿却有过人的意志和刚毅的精神,他横下一条心与“小霸王”干了一仗,结果把那个家伙狠狠揍了一顿。体力上的胜利增强了他的自信心,他下定决心要在智力搏斗中全面获胜,经过艰苦卓绝的努力,他终于在班上名列前茅。十八岁时,牛顿说服了想让他务农的母亲,进入剑桥三一学院专攻数学。1665年,他获得了学土学位,但是还没有什么突出的作为。1665年仲夏,大规模的瘟疫在伦敦流行。牛顿只好回到他的故乡避难。在乡下居住的十八个月是他一生中硕果累累的时期。他发现了二项式定理、正切方法、直接流数法及其逆运算(即微积分),思考了力学原理和引力问题。 二十六岁时,牛顿被任命为剑桥大学的教授,三十岁时被选为皇家学会的会员,这是英格兰最高的科学荣誉。据牛顿的传记作者说,牛顿是一个呆心教授的典型,他“从不作任何娱乐和消遣,他不骑马外出换换空气,不散步不玩球,也不做其他任何运动,认为不花在研究上的时间都是损失。”他经常“穿着一双磨掉了后跟的鞋,袜子乱糟糟,披着衣裳,头也几乎不梳。”在剑桥期间,他每天工作到半夜三更,一直致力于发展他在乡居时孕育出的光辉思想,但是他却长期秘而不宣,直到1687年夏,才在《原理》中公诸于世。《原理》是人类自然科学知识的首次大综合。在这里,牛顿把伽利略“地上的”物体运动规律,与开普勒“天上的”星球运动规律天才地统一起来,建立了牛顿力学(也称经典力学或古典力学)的完整理论体系。
经典力学不可思议的成功使人们无条件地接受了这一理论,把它看作是科学解释的最高权威和最后标准。而且直到十九世纪末,它一直充当着物理学家在各个领域中的研究纲领。人们普遍认为,经典力学是整个物理学的基础,只要把经典力学的基本概念和基本原理稍加扩充,就能够处理面临的一切物理现象。 情况正如赫尔姆霍兹1847年在《论力的守恒》中所说的:“我们最终发现,所有涉及到的物理学问题都能归结为不变的引力和斥力”,“只要把自然现象简化为力,科学的使命就终结了”。他还宣称:“整个自然科学的最终目的溶化在力学之中。”当时,在物理学家中间,出现了“把一切都归结为机械运动的狂热”(恩格斯:《自然辩证法》)。 声学在早期几乎是独立地发展的。自牛顿以后,力学原理首先被顺利地应用于声学研究,声音被看成是在弹性介质中传播的机械振动。 热学是继经典力学之后发展起来的又一个成功的理论体系。热现象的研究起初是以“热质”这一力学模型为先导的。到了十九世纪中叶,克劳修斯、麦克斯韦、玻耳兹曼等人利用统计方法,把热学中的宏观物理量归结为与之对应的微观分子或原子运动的统计平均值。就这样,热力学以及统计力学先后在经典力学的基础上形成了。 光学也是如此。牛顿本人一开始就试图把他的力学观念应用于光学,他假定光是由惯性微粒组成的,以此解释已知的光学现象。虽然牛顿以后的两百年间一直交织着微粒说和波动说的斗争,但是在牛顿运动定律应用到连续分布的媒质以后,甚至连光的波动论也不得不求助于这些定律。 十九世纪初,逐步发展起来的波动光学体系已初具规模,其中以托马斯·杨和菲涅耳的著作为代表。他们两人都把以太看作是传播光振动的实体。菲涅耳弄清楚光是横波,因此光以太必须具有传播横波媒质那样的弹性。从力学角度讨论这种弹性体的振动,必然能够用数学方法推导出光学定律。尽管以太在性质上还有不甚明确之处,但是它作为光现象的媒质,在相当长一段时间内并未引起根本的异议。 电磁现象的早期研究是在“电流体”和“磁流体”两种力学模型的前提下进行的。电磁学从真正进入定量研究的第一天起就打上了力学的印记。 库仑1785年所做的著名的扭秤实验,虽然确定了电荷之间作用力与距离平方的反比关系,但他对自己的主张并未提出足够的证据,因为当时还没有电荷的量度,库仑定律本身就是对万有引力定律的类比。 后来,法拉第、麦克斯韦、赫兹在电磁学的发展史上谱写了动人的三步曲。1831年,法拉第发现了电磁感应定律,并首次把“场”这一崭新的概念引入物理学;1864年,麦克斯韦把法拉第等人的研究成果概括为一组优美的偏微分方程式,并由此预言存在着电磁波,其传播速度等于光速,而光不过是波长在某一狭小范围内的电磁波;1887年,赫兹用实验证实了电磁波,弄清楚电磁波和光波一样,也具有波动性。 已经十分习惯于力学模型的物理学家同样乞灵于臆想出的媒质电磁以太,认为它与光以太一样,弥漫于整个空间,电磁被正是通过以太的振动传播的。
1.2 经典力学的完善与机械自然观
牛顿力学的辉煌成就,使其得以决定后来物理学家的思想、研究和实践的方向。《原理》采用的是欧几里得几何学的表述方式,处理的是质点力学问题,以后牛顿力学被推广到流体和刚体,并逐渐发展成严密的解析形式。 1736年,欧拉写成了《力学》一书,把牛顿的质点力学推广到刚体的场合,引入了惯量的概念,论述了刚体运动的问题;1738年,伯努利出版了《流体力学》,解决了流体运动问题;达朗贝尔进而于1743年出版了《力学研究》,把动力学问题化为静力学来处理,提出了所谓达朗贝尔原理;莫培督接着在1744年提出了最小作用原理。 把解析方法进一步贯彻到底的是拉格朗日1788年的《分析力学》和拉普拉斯的《天体力学》(在1799~1825年间完成)。前者虽说是一本力学书,可是没有画一张图,自始至终采用的都是纯粹的解析法,因而十分出名,运用广义坐标的拉格朗日方程就在其中。后者专门用牛顿力学处理天体问题,解决了各种各样的疑难。《分析力学》和《天体力学》可以说是经典力学的顶峰。 在分析力学方面做出杰出贡献的还有其他一批人,他们使经典力学在逻辑上和形式上更加令人满意。就这样,经过牛顿的精心构造和后人的着意雕饰,到了十八世纪初期,经典力学这一宏伟建筑巍然矗立,无论外部造型之雅致,还是内藏珍品之精美,在当时的科学建筑群中都是无与伦比的。 经典力学理论体系的完美和实用威力的强大使物理学家深信,天地四方、古往今来发生的一切现象都能够用力学来描述。只要给出系统的初始条件,就能够毫无遗漏地把握它的因果性链条。 牛顿早在《原理》中就把宇宙看成是符合力学原理的机械图像。他在该书第一版的“序言”中写道,正如用万有引力推演出行星、彗星、月球和潮汐的运动一样,“我希望能够用同样的方法从力学原理推导出自然界的其他许多现象”。 另一位同时代的科学泰斗惠更斯在1690年说:“在真正的哲学里,所有自然现象的原因都应该用力学用语来思考,依照我的意见,我们必须这样做”。 拉普拉斯在1812年所著的《概率解析理论》的绪论中,更是典型的道出了机械决定论的特征。他说:“我么必须把目前的宇宙状态看作是它以前状态的结果及其以后发展的原因。如果有一种智慧能了解在一定时刻支配着自然界的所有的力,了解组成它的实体的各自的位置,如果它还伟大到足以分析所有这些事物,它就能够用一个单独的公式概括出宇宙万物的运动。从最大的天体到最小的原子都毫无例外,而且对于未来,就象对于过去那样,都能—目了然。” 物理学家由于确信这样的决定论,终于完全和上帝断绝了关系。据说,拉普拉斯把《天体力学》奉献给拿破仑皇帝时,拿破仑问道:“你为什么在书中不提上帝?”拉普拉斯自信地回答:“陛下,我不需要那种假设!” 就象给拉普拉斯的断言作证一样,经典力学的神奇力量通过海工星的发现戏剧性地表现出来。 1791年后,随着对天王星观测资料的积累,人们发现它实际运行的轨道与理论计算的结果并不一致。即使考虑到其他行星的影响加以修正,也依然难以消除偏差。为此,巴黎天文台台长阿拉果启发年轻的天文学家勒维烈,让他依据“逆摄动”(即给出一个摄动,求引起摄动的行星)计算未知行星的大小和位置。 勒维烈经过一年时间的努力,终于在1846年8月31日把新行星的比置、光度等计算值送交给各国天文台。二十三天后,柏林天文台的加勒在预言的区域内发现了这颗未知的新行星,它就是海王星。其实,早在勒维烈的前一年,年轻的英国天文学家亚当斯就计算出了结果,只是因为没有及时观测而失去了取得优先权的机会。 1.3 经典物理学的发展