电工技术第3章3ppt电工电子技术
合集下载
电工技术3正弦交流电路
j 30
A
求:
i1、 2 i
rad s
解: 2 f 2 1000 6280
i1 100 i 2 10
2 sin( 6280 t 60 ) A 2 sin( 6280 t 30 ) A
小结:正弦波的四种表示法
u
波形图
U
m
T
t
瞬时值
u U m sin t
第三章 正弦交流电路
3-1 正弦交流电路的基本概念 交流电的概念 如果电流或电压每经过一定时间 (T )就重复变 化一次,则此种电流 、电压称为周期性交流电流或
电压。如正弦波、方波、三角波、锯齿波 等。
记做: u(t) = u(t + T )
u
t
T
u
t
T
正弦交流电路 如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。 正弦交流电的优越性:
角频率 :每秒正弦量转过的弧度 (一个周期的弧度为2 )
2f 2 T
(单位:rad/s)
例
已知:f=50 Hz, 求 T和
解:T=1/f=1/50=0.02s=20ms
2 f 2 3 . 14 50 314 rad / s
二、幅值和有效值 瞬时值—正弦量任意瞬间的值(用i、u、e表示)
j 1 j 2
r1 r2
e
j( 1 2 )
A /B
r1 1 r2 2
r1 r2
(1 2 )
3.讨论 (1) e
j
A
求:
i1、 2 i
rad s
解: 2 f 2 1000 6280
i1 100 i 2 10
2 sin( 6280 t 60 ) A 2 sin( 6280 t 30 ) A
小结:正弦波的四种表示法
u
波形图
U
m
T
t
瞬时值
u U m sin t
第三章 正弦交流电路
3-1 正弦交流电路的基本概念 交流电的概念 如果电流或电压每经过一定时间 (T )就重复变 化一次,则此种电流 、电压称为周期性交流电流或
电压。如正弦波、方波、三角波、锯齿波 等。
记做: u(t) = u(t + T )
u
t
T
u
t
T
正弦交流电路 如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。 正弦交流电的优越性:
角频率 :每秒正弦量转过的弧度 (一个周期的弧度为2 )
2f 2 T
(单位:rad/s)
例
已知:f=50 Hz, 求 T和
解:T=1/f=1/50=0.02s=20ms
2 f 2 3 . 14 50 314 rad / s
二、幅值和有效值 瞬时值—正弦量任意瞬间的值(用i、u、e表示)
j 1 j 2
r1 r2
e
j( 1 2 )
A /B
r1 1 r2 2
r1 r2
(1 2 )
3.讨论 (1) e
j
《电工电子技术》(曹建林) PPT课件:3.1 磁路
磁滞回线
3.1磁路
磁性材料的磁性能
磁路的概念
磁路中的磁通,通常是由通入励磁线圈的励磁电流产生,改变励磁电流I或线圈匝数N,磁通 的大小就会变化。I愈大,所产生的磁通Ф愈大;线圈的匝数愈多,所产生的磁通Ф也愈大。因 此把励磁电流I和线圈匝数N的乘积称为磁动势,用IN表示,单位为A。 磁路中磁通的大小除与磁动势IN有关外,还与铁心材料的导磁率μ、铁心磁路的截面积S、铁心 磁路的长度l等有关,它们之间的关系是
当外磁场被去除后,即H=0时,磁性材料将产生剩磁,如图中Br点 所示。但有时又需去掉剩磁,如当工件在平面磨床上加工完毕后,由 于电磁吸盘有剩磁,还将工件吸住,为此,应加反方向的外磁场,即 通入反向去磁电流,去掉剩磁,才能将工件取下。使B=0所需的Hc值, 称为矫顽磁力,如图中Hc点所示。
铁磁性材料按其磁滞回线形状不同,可分成三类:一类是软磁材 料,另一类是硬磁材料,第三类是矩磁材料。
式中Rm称作磁阻,表示磁路对磁通起阻碍作用的物理量,它仅与磁路的材料及几何尺寸有 关。式子与电路欧姆定律相似,故称为磁路欧姆定律。但由于μ不是常数,它随励磁电流而变, 所以不能直接应用磁路欧姆定律来计算,只能用来作定性分析。
— The End —
第3章 磁路与变压器
3.1 磁路
无锡科技职业学院
Wuxi Professional College of Science and Technology
1 磁性材料的磁性能 2 磁路的概念
能
磁路的概念
电工设备中常见的磁路
磁通集中通过的闭合路径称为磁路。 用来产生磁通的电流叫励磁电流,流过励磁电流的线圈叫励磁线圈。由直流电流励磁 的磁路叫直流磁路,由交流电流励磁的磁路叫交流磁路。
电工技术基础与技能ppt单元3 电感和电容
22 0.22F
电 容
2)数码标志法。
一般用三位数表示容量的大小,前面两位数字为电 容器标称电容量的有效数字,第三位数字表示有效数字 后面零的个数,单位是pF。如果用四位表示电容量的大 小,数字大于1时,单位为pF,当数字部分大于0小于1 时,其单位为微法(µF)。
例: 3300表示3300皮法(pF) 680表示680皮法(pF) 7表示7皮法(pF) 0.056表示0.056微法(µF)
C1C2 220 220 C μF 110μF C1 C2 220 220
各电容的电荷量为: q1 q2 CU 110106 220C 2.42102 C
两电容器两端的电压分别为:
q1 2.42102 U1 U 2 V 110V 6 C1 22010
q1 q2 CU 3.33106 300C 1103 C
各电容器上的电压为: 结论:电容器 C1C2 可能会被击穿。
q1 1 103 U1 V 200V 6 C1 5 10
q2 1 103 U2 V 100 V 6 C 2 10 10
q 6 104 连接后的共同电压为: U V 20 V 5 C 3 10
电磁感应
观察与思考:
谁有如此“神力”托起这庞然大物并控制其闪电般在城际间 疾驰的呢? 磁悬浮列车
向前推力
磁 场
一、磁场与磁力线 磁体的周围存在磁力作用的空间,这种作用的空 间就称为磁场。
磁场的方向:将小磁针放入磁场中某一点,当磁 针静止时,其N极所指的方向即为该点磁场的方向。
1 1 1 1 C C1 C2 C3
例 题
例:如图,电容C1和C2串联,C1 = C2= 220 F,额定工作 电压为 150 V,电源电压 U =220 V,求串联电容器的等效电 容是多大?两只电容器两端的电压是多大?在此电压下工作是 否安全? (电容器在此电压下是安全的) 解: 两只电容器串联后的等效电容为:
《电工技术》教学课件 第三章 三相电路 知识点:防触电安全技术
安全防范措施
(二)预防触电的技术防护措施
(2)保护接地 电气设备外壳未装保护接地时:
I
C分布电容
eI
R'
b
'
对地绝缘电阻
图 电气设备外壳未装保护接地时
三、操作训练
安全防范措施
(二)预防触电的技术防护措施
当电气设备内部绝缘损坏发生一相碰壳时: 由于外壳带电,当人触及外壳,接地电流 Ie 将经过人体入地后,再经
按接地目的的不同,主要分为工作接地、保护接地和保护接零。
三、操作训练
安全防范措施
(二)预防触电的技术防护措施
(1)工作接地 ① 降低触电电压 ② 迅速切断故障 在中性点接地的系统中,一相接地
后的电流较大,保护装置迅速动作,断 开故障点。
③ 降低电气设备对地的绝缘水平
R0
图1-6 工作接地
三、操作训练
二、知识准备
触电形式
(2)两相触电
图 两相触电示意图
二、知识准备
触电形式
(3)跨步电压触电
当一根带电导线断落在地上或运行中的电气设 备绝缘损坏漏电时,电流会以导线落地点或设备接 地体为圆心向大地流散,在半径20m的圆面积内形 成分布电场,当人进入此范围时,两脚之间的电位 不同,形成跨步电压如图。
三、操作训练
安全防范措施
(一)严格遵守用电安全制度和操作规程
3、安全操作 (4)尽量单手操作电工作业。 (5)遇到大容量的电容器要先行放电,方可进行检修。 (6)不在带病或疲倦的状态下从事电工作业。
三、操作训练
安全防范措施
(二)预防触电的技术防护措施
为了防止人身触电事故,通常采用的技术防护措施有电气设备的接地 和接零、安装低压触电保护器两种方式。 1、接地和接零
(二)预防触电的技术防护措施
(2)保护接地 电气设备外壳未装保护接地时:
I
C分布电容
eI
R'
b
'
对地绝缘电阻
图 电气设备外壳未装保护接地时
三、操作训练
安全防范措施
(二)预防触电的技术防护措施
当电气设备内部绝缘损坏发生一相碰壳时: 由于外壳带电,当人触及外壳,接地电流 Ie 将经过人体入地后,再经
按接地目的的不同,主要分为工作接地、保护接地和保护接零。
三、操作训练
安全防范措施
(二)预防触电的技术防护措施
(1)工作接地 ① 降低触电电压 ② 迅速切断故障 在中性点接地的系统中,一相接地
后的电流较大,保护装置迅速动作,断 开故障点。
③ 降低电气设备对地的绝缘水平
R0
图1-6 工作接地
三、操作训练
二、知识准备
触电形式
(2)两相触电
图 两相触电示意图
二、知识准备
触电形式
(3)跨步电压触电
当一根带电导线断落在地上或运行中的电气设 备绝缘损坏漏电时,电流会以导线落地点或设备接 地体为圆心向大地流散,在半径20m的圆面积内形 成分布电场,当人进入此范围时,两脚之间的电位 不同,形成跨步电压如图。
三、操作训练
安全防范措施
(一)严格遵守用电安全制度和操作规程
3、安全操作 (4)尽量单手操作电工作业。 (5)遇到大容量的电容器要先行放电,方可进行检修。 (6)不在带病或疲倦的状态下从事电工作业。
三、操作训练
安全防范措施
(二)预防触电的技术防护措施
为了防止人身触电事故,通常采用的技术防护措施有电气设备的接地 和接零、安装低压触电保护器两种方式。 1、接地和接零
电工与电子技术第三章 集成运算放大器及其应用
各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2
徐淑华电工电子技术ppt第三章
u
Um
wt
u U m sin( w t )
有效值:
与交流热效应相等的直流 定义为交流电的有效值
10
热效应相当
有 效 值 概 念
T 0
i R dt I RT
2
2
交流
直流
I
1 T
T
i dt
2
(方均根值)
0
当 i I m sin
w
t 时, 可得,
I
Im 2
11
w t
i
相量图 相量式
.
I
I
I I
瞬时值 -- 小写 u, i, e; 最大值 --大写+下标m;
有效值 – 大写 U, I, E; 复数、相量 --- 大写 + ―.‖
34
例6
判断下列各式的正误:
u 100 sin w t 10000
瞬时值 复数
U 50 e
复数
j15 °
2. 正弦波的相量表示方法
1) 正弦量的相量表示
在线性正弦交流电路中的电源频率单一时,电路中所有 的电压电流为同频率正弦量,此时,w 可不考虑,主要 研究正弦量的幅度与初相位的变化 可用一个有向线段(矢量)表示正弦量: 其长度表示正弦量的有效值; 其与横轴的夹角表示正弦量的初相位。
描述正弦量的有向线段称为相量 (phasor ):
3.2 单一参数的正弦交流电路
3.2.1. 电阻元件的正弦交流电路
u iR
设
u
i
R
i 2 I sinw t Im sinw t
R R u i · = 2I · sinw t
电工电子技术 ppt课件
2020/11/24
11
实际电路器件品种繁多,其电磁特性多元而复杂,采取 模型化处理可获得有意义的分析效果
白炽灯电路
消耗电能的电 特性可用电阻 元件表征
由于白炽灯中耗能 的因素大大于产生 磁场的因素,因此
R L 可以忽略。
i
产生磁场的电 特性可用电感 元件表征
白炽灯的电
L 路模型可表
示为:
R
理想电路元件是实际电路器件的理想化和近似,其电特性惟 一、精确,可定量分析和计算。
当外界电场的作用力超过原子核对外层 电子的束缚力时,绝缘体的外层电子同样 也会挣脱原子核的束缚成为自由电子,这 种现象我们称为“绝缘击穿”。绝缘体一 旦被击穿,就会永久丧失其绝缘性能而成 为导体。
半导体的导电性虽然介于导体和绝缘体之间,但半 导体在外界条件发生变化时,其导电能力将大大增强 ;若在纯净的半导体中掺入某些微量杂质后,其导电 能力甚至会增加上万乃至几十万倍,半导体的上述特 殊性,使它在电子技术中得到了极其广泛地应用。
2020/11/24
15
(2)电压
高中物理学中对电压的定义:电场力把单位正电荷从电 场中的一点移到另一点所做的功。表达式为:
u ab
dw ab dq
直流情况下
U ab
W ab Q
注意:物理量用小字表示变量,用大写表示恒量。
从工程应用的角度来讲,电路中的电压是产生电流的根 本原因;在数值上,电压等于电路中两点电位的差值。
2.对于集总参数元件,任何时刻,从元件一端流入的电 流,恒等于从元件另一端流出的电流,并且元件两端的 电压值是完全确定的。
2020/11/24
14
4. 电路中的电压、电流及其参考方向
(1)电流
电工电子技术课件3.3-3.4
3. 在低压配电系统中,通常采用三相四线制(三 根火线,一根中线),如果为三相对称负载,可以不 接中线,如果三相负载不对称,必需接中线才能保证 负载正常工作,所以,中线不允许接开关或熔断器。
4. 三相负载可以星形联接,也可以三角形联接 ,采用何种联接方式由负载的额定电压决定。
5. 三相对称负载星形联接 6. 三相对称负载三角形联接 7. 三相对称负载的功率
相电压、相电流。
L1 i1
解:(1) 负载对 称时,可以不接中 线,负载的相电压 与电 源 的相电压
U1
N
Z1
U3
U1 N
Z2
U2 L2 i2
Z3 U2
相等(在额定电压 下工作)。
U3 L3 i3
U1
U 2
U 3
380 3
220V
I1
I2
I3
220 400
0.55A
(2) 如果1相断开时,其他两相负载相电压、相电流;
380 10
38A
式中, 每相阻抗为:
i31
Z
i12
ZZ
i2
i3
i23
Z R2 X 2 62 82 10
则线电流为:Il 3IP 3 38 65.8A
注意 三相负载采用何种联接方式由负载的额定电压决定。 当负载额定电压等于电源线电压时采用三角形联接;
当负载额定电压等于电源相电压时采用星形联接。
22 173.1A
例3.2 图中电源电压对称,线电压U=380 V ,负载为 电灯组,
每相电灯(额定电压220V)负载的电阻400。试计算:
(1) 求负载相电压、相电流;
(2) 如果1相断开时,其他两相负载相电压、相电流;
(3) 如果1短路时,其他两相负载相电压、相电流;
4. 三相负载可以星形联接,也可以三角形联接 ,采用何种联接方式由负载的额定电压决定。
5. 三相对称负载星形联接 6. 三相对称负载三角形联接 7. 三相对称负载的功率
相电压、相电流。
L1 i1
解:(1) 负载对 称时,可以不接中 线,负载的相电压 与电 源 的相电压
U1
N
Z1
U3
U1 N
Z2
U2 L2 i2
Z3 U2
相等(在额定电压 下工作)。
U3 L3 i3
U1
U 2
U 3
380 3
220V
I1
I2
I3
220 400
0.55A
(2) 如果1相断开时,其他两相负载相电压、相电流;
380 10
38A
式中, 每相阻抗为:
i31
Z
i12
ZZ
i2
i3
i23
Z R2 X 2 62 82 10
则线电流为:Il 3IP 3 38 65.8A
注意 三相负载采用何种联接方式由负载的额定电压决定。 当负载额定电压等于电源线电压时采用三角形联接;
当负载额定电压等于电源相电压时采用星形联接。
22 173.1A
例3.2 图中电源电压对称,线电压U=380 V ,负载为 电灯组,
每相电灯(额定电压220V)负载的电阻400。试计算:
(1) 求负载相电压、相电流;
(2) 如果1相断开时,其他两相负载相电压、相电流;
(3) 如果1短路时,其他两相负载相电压、相电流;
电工电子技术及技能(程周)第三章
(2)缺点:电动机、变压器的绕组电感都很大,在切断电路的瞬间,电流迅速减小,产生很 强的自感电动势,这样会在开关的闸刀和固定夹片之间产生电弧,有时会烧坏开关,甚至会危 及工作人员的安全。
14
15
谢谢!
图3.4 可变电容和微调电容的外形、符号及实物图
9
3.1 电容
3.1.4电容的类型和额定值
2.电容的额定值 (1)电容器的成品上都标明电容值、允许误差和额定电压等,这些数值统称为额定值。 (2)标称容量:电容器上所标明的电容值称为标称容量。 (3)误差及允许误差:电容器的标称容量与实际容量之间的差值称为电容器的误差。实际电容 器的误差限定在允许误差范围之内,此误差称为允许误差。 (4)额定工作电压:电容器上所标明的额定工作电压通常指直流工作电压。在交流电路中,所 加的交流电压最大值不能超过额定工作电压值,否则电容器有被击穿的危险,因此,该电压也 称为击穿电压或耐压。 3.电容器的作用 (1)在电力系统中,其主要功能是改善电力系统的运行条件,提高功率因数。 (2)在电子电路中主要起获得振荡、滤波、移相、旁路、隔直、耦合等作用。
电工电子技术及技能(程周)第三章
3 电容和电感 1 3.1电容 2 3.2电感
2
3.1 电容 观察与思考
3
3.1 电容
3.1.1电容器
1.任何两个彼此绝缘而又相互靠近的导体,都可以看成一个电容器,这两个导体称为电容 器的两个极。 2.平行板电容器:两块靠近而且平行放置的金属板组成的电容器称为平行板电容器。 3.在电容器两个极施加电压U时,在介质中建立起电场,能量被存储在介质中,如图3.1所 示。
10
3.2 电感 3.2.1电感器 1.空心电感线圈:绕在非铁磁材料骨架上的线圈,称为空心电感线圈,常见的空心电感线圈如 图3.7所示。
14
15
谢谢!
图3.4 可变电容和微调电容的外形、符号及实物图
9
3.1 电容
3.1.4电容的类型和额定值
2.电容的额定值 (1)电容器的成品上都标明电容值、允许误差和额定电压等,这些数值统称为额定值。 (2)标称容量:电容器上所标明的电容值称为标称容量。 (3)误差及允许误差:电容器的标称容量与实际容量之间的差值称为电容器的误差。实际电容 器的误差限定在允许误差范围之内,此误差称为允许误差。 (4)额定工作电压:电容器上所标明的额定工作电压通常指直流工作电压。在交流电路中,所 加的交流电压最大值不能超过额定工作电压值,否则电容器有被击穿的危险,因此,该电压也 称为击穿电压或耐压。 3.电容器的作用 (1)在电力系统中,其主要功能是改善电力系统的运行条件,提高功率因数。 (2)在电子电路中主要起获得振荡、滤波、移相、旁路、隔直、耦合等作用。
电工电子技术及技能(程周)第三章
3 电容和电感 1 3.1电容 2 3.2电感
2
3.1 电容 观察与思考
3
3.1 电容
3.1.1电容器
1.任何两个彼此绝缘而又相互靠近的导体,都可以看成一个电容器,这两个导体称为电容 器的两个极。 2.平行板电容器:两块靠近而且平行放置的金属板组成的电容器称为平行板电容器。 3.在电容器两个极施加电压U时,在介质中建立起电场,能量被存储在介质中,如图3.1所 示。
10
3.2 电感 3.2.1电感器 1.空心电感线圈:绕在非铁磁材料骨架上的线圈,称为空心电感线圈,常见的空心电感线圈如 图3.7所示。
《电工技术基础与技能》(第3章)直流电路-全电路欧姆定律-基尔霍夫定律-支路电流法-戴维宁定理-课件
《电工技术基础与技能》
第3章 直流电路
L/O/G/O
课件
第3章 直流电路
3.1 全电路欧姆定律 3.2 电阻的连接方式 3.3 电源的两种类型 3.4 基尔霍夫定律 3.5 支路电流法 3.6 叠加定理 3.7 戴维宁定理 实训项目一 实训项目二
学习目标
L/O/G/O
✓掌握全电路欧姆定律,了解负载获得最大功率的条件。 ✓掌握电阻串联、并联、混联的连接方式,能够计算等效电阻、电流、电压和功率。 ✓了解电压源和电流源的基本概念,以及实际电源的电路模型。 ✓掌握支路、节点、回路和网孔的概念。 ✓掌握基尔霍夫电流定律、电压定律,能够用支路电流法求解多网孔电路。 ✓能够应用叠加定理、戴维宁定理分析和计算线性电路。 ✓能够对导线进行剖削、连接和绝缘恢复,了解电阻性电路故障的检查与排除方法。
3.1 全电路欧姆定律
3.1.1 全电路欧姆定律
部分电路欧姆定律是针对电阻元件而言的,而全电路欧姆定律针 对的则是由电源和负载组成的闭合电路,即全电路,如图所示。对全 电路进行分析研究时,必须考虑电源的内阻。
全电路欧姆定律电路图
3.1.1 全电路欧姆定律
全电路(包括电源)中,电路中的电流与电源的电动势成正比,
基尔霍夫定律包括基尔霍夫电流定律(Kirchhoff's Current Law,简 称KCL)和基尔霍夫电压定律(Kirchhoff's Voltage Law,简称KVL)。
3.4.1 支路、节点、回路和网孔
在介绍基尔霍夫定律之前,首先引入几个相关的 名词。
(1)支路 由一个或几个元件组成的任何一段都无分支的电 路称为支路。支路具有以下性质: ① 支路至少包含一个以上的元件。当有几个元件 时,这些元件必须是串联。若是并联,就变成了分叉, 因而不叫支路。 ② 在同一支路上,电流处处相等。 例如,图中 有bafe,be和bcde三条支路。 (2)节点 电路中三条或三条以上支路的汇交点称为节点。 例如,图中有b和e两个节点。 (3)回路 电路中任一闭合路径称为回路。例如,图中有 abefa,bcdeb和abcdefa三个回路。 (4)网孔 内部不包含支路的回路称为网孔。例如,在图中, 三个回路只有两个是网孔,即:abefa和bcdeb,而 abcdefa中包含有一个支路be,所以不是网孔。
第3章 直流电路
L/O/G/O
课件
第3章 直流电路
3.1 全电路欧姆定律 3.2 电阻的连接方式 3.3 电源的两种类型 3.4 基尔霍夫定律 3.5 支路电流法 3.6 叠加定理 3.7 戴维宁定理 实训项目一 实训项目二
学习目标
L/O/G/O
✓掌握全电路欧姆定律,了解负载获得最大功率的条件。 ✓掌握电阻串联、并联、混联的连接方式,能够计算等效电阻、电流、电压和功率。 ✓了解电压源和电流源的基本概念,以及实际电源的电路模型。 ✓掌握支路、节点、回路和网孔的概念。 ✓掌握基尔霍夫电流定律、电压定律,能够用支路电流法求解多网孔电路。 ✓能够应用叠加定理、戴维宁定理分析和计算线性电路。 ✓能够对导线进行剖削、连接和绝缘恢复,了解电阻性电路故障的检查与排除方法。
3.1 全电路欧姆定律
3.1.1 全电路欧姆定律
部分电路欧姆定律是针对电阻元件而言的,而全电路欧姆定律针 对的则是由电源和负载组成的闭合电路,即全电路,如图所示。对全 电路进行分析研究时,必须考虑电源的内阻。
全电路欧姆定律电路图
3.1.1 全电路欧姆定律
全电路(包括电源)中,电路中的电流与电源的电动势成正比,
基尔霍夫定律包括基尔霍夫电流定律(Kirchhoff's Current Law,简 称KCL)和基尔霍夫电压定律(Kirchhoff's Voltage Law,简称KVL)。
3.4.1 支路、节点、回路和网孔
在介绍基尔霍夫定律之前,首先引入几个相关的 名词。
(1)支路 由一个或几个元件组成的任何一段都无分支的电 路称为支路。支路具有以下性质: ① 支路至少包含一个以上的元件。当有几个元件 时,这些元件必须是串联。若是并联,就变成了分叉, 因而不叫支路。 ② 在同一支路上,电流处处相等。 例如,图中 有bafe,be和bcde三条支路。 (2)节点 电路中三条或三条以上支路的汇交点称为节点。 例如,图中有b和e两个节点。 (3)回路 电路中任一闭合路径称为回路。例如,图中有 abefa,bcdeb和abcdefa三个回路。 (4)网孔 内部不包含支路的回路称为网孔。例如,在图中, 三个回路只有两个是网孔,即:abefa和bcdeb,而 abcdefa中包含有一个支路be,所以不是网孔。
《电工技术》教学课件 第三章 三相电路 负载星形连接的三相电路
IU
UU ZU
U P00
Z Z
UP Z
(00
Z
)
IP Z
IV
UV ZV
U P(1200 )
Z Z
UP Z
(1200
Z
)
IP Z
120
IW
UW ZW
U P1200 Z Z
UP Z
(1200
Z)
IP
Z
120
由此可见,在负载对称的 情况下,每相负载上电流 的大小(有效值)相同, 相位彼此相差1200,即相 电流也是对称的。因而, 只需求出一个相电流,其 余推出即可 。
灯泡被烧毁;三楼的灯不亮。
R3 R2 V
W
三、操作训练
三相正弦交流电路负载星形联接分析
(3)根据以上分析,照明电路不能采用三相三线制供电方式。且中线上不
能接开关和保险丝。
U
中线的作用在于,使星形连接的不对称负载得到相等
一层楼 ...
N 的相电压。因为负载不对称而又没有中线时,负载上
可能得到大小不等的电压,有的超过用电设备的额定
五、归纳总结
(1)三相负载星形连接时,无论负载对称与否,负载上的相电压、线电压等于电 源的相电压、线电压。因而: 相电压对称,线电压对称;负载的相电流等于相应的线电流。 (2)当三相电路对称时,三个相电流也是对称的,所以中性线上的电流为零,所 以,三相负载对称的电路也可以采用三相三线制的联结方式。 (3)若负载不对称时,不能采用三相三线制!因为此时各相负载上的电压将会出 现不对称现象,负载不能正常工作。并且,中线上不能安装开关和保险丝!
三、操作训练
三相正弦交流电路负载星形联接分析
(2)若一楼断开,二、三楼接通。但两层楼灯的数量不等(设二楼灯的数量为三层的
电工电子技术第3章电路的暂态分析
电流通过N匝线圈产生 ψNΦ(磁链) 电感: L ψ NΦ ( H、mH)
ii
线性电感: L为常数; 非线性电感: L不为常数 线圈的电感与线圈的尺寸、匝数以及附近的介质
的导磁性能等有关。 L μ S N 2 l
L μS N2 (H)
i
l
S — 线圈横截面积(m2)
+
-
l —线圈长度(m)
3 .3 .1 RC电路的零输入响应
零输入响应: 无电源激励, 输 入信号为零, 仅由电容元件的 + 初实始质储:能RC所电产路生的的放电电路过的程响应。U -
2 t 0 R
1
S
+
iC
u
–
R
u
+ C–
c
图示电路
uC(0)U
换t =路0时前开电关路S已 处1稳, 电态容uCC(经0电)阻UR 放电
由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变
∵ C 储能:
WC
1 2
CuC2
∵ L储能:
WL
1 2
L iL2
\ u C 不能突变
iL不能突变
2. 换路定则
设:t=0 — 表示换路瞬间 (定为计时起点) t=0-— 表示换路前的终了瞬间 t=0+—表示换路后的初始瞬间(初始值)
1) 由t =0+的电路求其它电量的初始值; 2) 在 t =0+时的电压方程中 uC = uC( 0+)、
t =0+时的电流方程中 iL = iL ( 0+)。
例1.暂态过程初始值的确定
S C R2
已知:换路前电路处稳态,
《电工电子技术基础》第3章三相交流电路.ppt
第1章
3.1 三相电源的连接方式 3.2 三相负载的连接方式 3.3 三相电路的功率
第1章
3.1 三相电源的连接方式
1. 对称三相交流电
A
定子 首端: A B C 三绕组在空间
↓↓↓
位置互差120o
Y×
N
Z
尾端: X Y Z
•
转子
转子装有磁极并以 的速度旋。三
个线圈中便产生三个单相电动势。
C×
S
中线的作用在于,使星形连接的不对称负载得到相 等的相电压。为了确保零线在运行中不断开,其上不允 许接保险丝也不允许接刀闸。
第3页
1.负载的Δ形连接:
iA 线电流
A
iAB
Δ接负载的端电压等于电源线电压;
火线上通过的电流称为线电流Il; 负载中通过的电流称为相电流IP;
接时 U l: U p
uAB uCA Z
三个线电压也是对称的,
e C uA
ZX
Y
u AB
u CA
N
且超前与其相对应的相电 压30°电角。
UC
A
-UA
N
-
30 UBN
30
UAB
- 30
UCN
uB
u BC
B C
•
•
•
•
•
UABUANUBN UAN(UBN)
•
•
•
•
•
UBC UBNUCN UBN(UCN)
•
•
•
•
•
UCA UCNUAN UCN(UAN)
由相量图还可看出,在三相对称情况下,线电流是相 电流的1.732倍,相位滞后与其相对应的相电流30°。
第3页
3.1 三相电源的连接方式 3.2 三相负载的连接方式 3.3 三相电路的功率
第1章
3.1 三相电源的连接方式
1. 对称三相交流电
A
定子 首端: A B C 三绕组在空间
↓↓↓
位置互差120o
Y×
N
Z
尾端: X Y Z
•
转子
转子装有磁极并以 的速度旋。三
个线圈中便产生三个单相电动势。
C×
S
中线的作用在于,使星形连接的不对称负载得到相 等的相电压。为了确保零线在运行中不断开,其上不允 许接保险丝也不允许接刀闸。
第3页
1.负载的Δ形连接:
iA 线电流
A
iAB
Δ接负载的端电压等于电源线电压;
火线上通过的电流称为线电流Il; 负载中通过的电流称为相电流IP;
接时 U l: U p
uAB uCA Z
三个线电压也是对称的,
e C uA
ZX
Y
u AB
u CA
N
且超前与其相对应的相电 压30°电角。
UC
A
-UA
N
-
30 UBN
30
UAB
- 30
UCN
uB
u BC
B C
•
•
•
•
•
UABUANUBN UAN(UBN)
•
•
•
•
•
UBC UBNUCN UBN(UCN)
•
•
•
•
•
UCA UCNUAN UCN(UAN)
由相量图还可看出,在三相对称情况下,线电流是相 电流的1.732倍,相位滞后与其相对应的相电流30°。
第3页
电工与电子技术基础课件第三章正弦交流电
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一阶RC高通滤波器具有高通滤波特性
3. RC带通滤波电路
(1) 电路
+
R
U 1jω 输入信号电压
C
U 2jω 输出信号电压
U 1jω
+
(2) 传递函数
R
R C U 2 jω
jω C
–
–
T jω
U 2 jω U1jω
R
R
1 jω C
1
jω C
R
R
jω
C 1
1
3 j( ω R C
1
)
ωRC
jω C
0
0
0 1/3
90 0
0 - 90
1
3 0.707
3
+
R
C
U 1jω
+
0
1 0 2
90
R C U2 jω
0
0
–
–
- 90
RC串并联电路具有带通滤波特性
由频率特性可知
在=0 频率附近,|T(j )|变化不大接近等于1/3; 当偏离0时,|T(j )|明显下降,信号衰减较大。
通频带:当输出电压下降到最大值的70.7%处,
1
2
1
0
ω arctan
ω 0
幅频特性:
相频特性: (3) 特性曲线
T jω
1
2
ω 1
ω0
ω arctan ω
ω 0
0
0
T jω 1 0.707 0
0 - 45 - 90
频率特性曲线
0
0
T j
1
0.707
T jω 1 0.707 0
0 - 45 - 90
0
0
+R
+
RC串联电路的频率特性
滤波:即利用容抗或感抗随频率而改变的特性,对不 同频率的输入信号产生不同的响应,让需要的某一频 带的信号通过,抑制不需要的其它频率的信号。
滤波电路主要有:
低通滤波器、高通滤波器、带通滤波器等。
1.低通滤波电路 (1) 电路
R
+
U 1jω
C
+
U 2 jω
U 1jω 输入信号电压 U 2jω 输出信号电压
3. 串联谐振特点
(1) 阻抗最小
Z R2 (X L XC )2 R
(2) 电流最大
当电源电压一定时:I I0 (3) U、I 同相
arctan
U R
XL
X
C
0
R
电路呈电阻性,电源提供能量全部被电阻消耗,QL 和 QC
相互补偿。即电源与电路之间不发生能量互换。
(4) 电压关系
电阻电压:UR = Io R = U
串联谐振:L 与 C 串联时 u、i 同相 并联谐振:L 与 C 并联时 u、i 同相
研究谐振的目的,就是一方面在生产上充分利用谐 振的特点,(如在无线电工程、电子测量技术等许多 电路中应用)。另一方面又要预防它所产生的危害。
一、 串联谐振
串联谐振电路
i
+
+
R u_ R
u
L
+
u_ L
+
_ C u_ C
–
–
均为频率的函数
R
(2) 传递函数(转移函数)
+
电路输出与输入的比值。 U 1jω
C
1
–
T jω
U U
2jω 1jω
R
j ωC 1
1 1 j ωRC
设:
o
1 RC
j ωC
则:
T
jω
1
1 j
ω
ωo
1
arctan ω
1
ω ωo
2
ωo
T jω ω
+
U2 jω
–
频率特性
Tjω 1
1 j ω ω0
RC ω
相频特性: ω arctan 1 arctan ω0
ωRC
ω
+
U 2 jω
–
(3) 频率特性曲线
T j
0
0
1 0.707
T jω 0 0.707 1
90 45 0
0
0
通频带: 0<
90
截止频率: 0=1/RC
45
0
当 <0时,|T(j )| 较小,信号衰减较大0;
当 >0时,|T(j )|变化不大,接近等于1。
0
–
–
- 45
0
- 90
通频带:
把 0< 0的频率范围称为低通滤波电路的通频
带。0称为截止频率。 (半功率点或3分贝点)
2. RC高通滤波电路
(1) 电路 (2) 频率特性(转移函数)
+
U 1jω
C
R
–
T
jω
U 2jω U 1jω
R
R
1
1 j 1 1
jωC
ωRC
幅频特性:T jω
1
1
2
2
1 1 1 ω0
U 1jω C U 2 jω
0
- 45
0
–
–
- 90
当 <0时,|T(j )| 变化不大接近等于1; 当 >0时,|T(j )|明显下降,信号衰减较大。
一阶RC低通滤波器具有低通滤波特性
频率特性曲线
T j
1
通频带: 0< 0
0.707
截止频率: 0=1/RC
+R
+
0
0
U 1jω C U 2 jω
电容、电感电压:U L UC 大小相等、相位相差180
UL I0XL UC I0XC
当 X L X C R时:
有:U L UC U R U
UC 、UL将大于 电源电压U
由于 U L UC U 可能会击穿线圈或电容的
绝缘,因此在电力系统中一般应避免发生串联谐振。
在无线电工程上,利用串联谐振来达到选择信号的 作用。
频率特性 设:ω 1
0 RC
T jω
3
1 j(ω R C
1 ωRC
)
3
1 j( ω
ω0
ω0 ω
)
ω ω0
1
arctan ω0 ω
2
3
ห้องสมุดไป่ตู้
2 3
0
ω0 ω
幅频特性: T jω
1
2
32 ω ω0
ω0 ω
相频特性:
ω
ω 0
ω
arctan
ω 0
ω
3
(3) 频率特性曲线
T jω
T jω
1. 谐振条件
由定义,谐振时:U 、I 同相
即 arctan X L XC 0
R
谐振条件: X L X C
或:
o
L
1
oC
谐振时的角频率
2. 谐振频率
根据谐振条件得谐振频率:
0
1 LC
或
1
f0 2 LC
电路发生谐振的方法:
(1)电源频率 f 一定,调参数L、C 使 fo= f;
(2)电路参数LC 一定,调电源频率 f,使 f = fo
交流电路的频率响应及谐振
电源频率恒定条件下,在时间领域内对电路进行分 析,称为时域分析。 以频率为变量,在频率领域内对电路进行分析, 称 为频域分析。
当电源(激励)的频率改变时,容抗和感抗随之 改变,从而使电路中产生的电压和电流(响应)的 大小和相位也随之改变。
频率特性或频率响应: 研究响应与频率的关系 幅频特性: 电压或电流的大小与频率的关系。 相频特性: 电压或电流的相位与频率的关系。 重点分析RC电路和RLC串并联电路的频率特性。
(|T(j )|下降到 0.707/3 时),所对应的上下限频率
之差即: △ = (2-1)
仅当 ω ω0
1 RC
时,U 1 与
U 2 同相,U2=U1/3
为最大
值,对其它频率不会产生这样的结果。因此该电路具
有选频作用。常用于正弦波振荡器。
电路中的谐振
谐振的概念: 在同时含有L 和C 的交流电路中,如果总电压和总 电流同相,称电路处于谐振状态。此时电路与电源 之间不再有能量的交换,电路呈电阻性。