基桩低应变检测技术(内容清晰)
桩基低应变高应变简介
桩基低应变及高应变检测一、定义根据建筑基桩检测技术规范JGJ106-2003第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。
第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
二、何种桩需要检测建筑基桩检测技术规范JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:1 施工质量有疑问的桩;2 设计方认为重要的桩;3 局部地质条件出现异常的桩;4 施工工艺不同的桩;5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;6 除上述规定外,同类型桩宜均匀随机分布。
解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。
三、低应变与高应变适用范围低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
低应变法的理论基础以一维线弹性杆件模型为依据。
因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。
另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。
本方法对桩身缺陷程度只做定性判定,尽管利用实测曲线拟合法分析能给出定量的结果,但由于桩的尺寸效应、测试系统的幅频相频响应、高频波的弥散、滤波等造成的实测波形畸变,以及桩侧土阻尼、土阻力和桩身阻尼的耦合影响,曲线拟合法还不能达到精确定量的程度。
对于桩身不同类型的缺陷,低应变测试信号中主要反映出桩身阻抗减小的信息,缺陷性质往往较难区分。
例如,混凝土灌注桩出现的缩颈与局部松散、夹泥、空洞等,只凭测试信号就很难区分。
因此,对缺陷类型进行判定,应结合地质、施工情况综合分析,或采取钻芯、声波透射等其他方法。
低应变法检桩
低应变法检桩低应变法(Low strain method)是一种常用于桩基检测的无损检测方法。
该方法基于桩与周围土体之间的互作用,并通过测量桩体表面产生的应变来评估桩的质量和完整性。
下面将介绍低应变法的原理、设备以及在桩基工程中的应用。
1. 原理:低应变法是基于桩体与周围土体之间的相互应变影响的原理。
当施加一个小幅度的交变载荷时,桩体表面出现微小的应变变化。
这些变化将沿着桩体传播到土体中,并通过受土体约束的地表上产生的应变信号进行检测和分析。
通过分析这些信号的特征,可以评估桩的质量和完整性。
2. 设备:低应变法的主要设备包括振动器、传感器和数据采集系统。
振动器用于施加小幅度的交变载荷到桩体上,通常通过压电元件或振动器激励器来实现。
传感器用于测量桩体表面产生的应变信号,常用的传感器有应变计和纤维光栅传感器。
数据采集系统用于记录和分析传感器捕获到的数据,通常由计算机软件和硬件组成。
3. 应用:低应变法在桩基工程中有广泛的应用。
它可以用于评估桩的质量、完整性和嵌入深度。
以下是低应变法在桩基工程中的几个常见应用:a. 桩基质量评估:通过监测桩体表面的应变信号,可以评估桩的质量和完整性。
当桩体有缺陷或损坏时,应变信号会显示出特定的图案,可用于判断桩的质量状况。
b. 桩身变形识别:低应变法还可以用于监测桩身在荷载作用下的变形情况。
通过比较不同荷载条件下的应变信号,可以确定桩体的变形特征,并评估其变形性能。
c. 桩基嵌入深度确定:利用低应变法可以确定桩体的嵌入深度。
通过测量桩体表面的应变信号,可以确定桩体与土体之间的互作用区域,并进一步确定桩体的嵌入深度。
d. 桩基施工质量监控:低应变法还可以用于监控桩基施工质量。
在桩基施工过程中,通过实时监测桩体的应变信号,可以及时发现施工质量问题,并采取相应的措施进行调整。
综上所述,低应变法是一种常用的桩基检测方法,通过测量桩体表面产生的应变信号来评估桩的质量和完整性。
它在桩基工程中可以广泛应用于桩基质量评估、桩身变形识别、桩基嵌入深度确定和桩基施工质量监控等方面。
基桩低应变检测2
现在经常使用的加速度传感器的频率响应在(0— 5000Hz)之间,对低应变反射波法已经足够,但地震检波 器的频率响应在(0—500Hz)之间,对低应变反射波法有 点欠缺,应采用高阻尼速度传感器。 但传感器的安装条件对传感器的频响特性有很大的影 响,传感器的安装条件不同,其安装谐振频率也不同,应 将安装谐振频率提高到振动测试系统的响应频率之外。 传感器与桩头的接触以刚性连接为最好,采用石膏 安装也是一个好方法,用牙膏或橡皮泥安装效果不太好。 现代电子技术环境下制造的桩基动测仪一般频响特 性非常好,远远超过传感器的响应频率范围,只要仪器正 常,操作正确,一般问题不大。
低应变反射法检测是对桩身完整性类别进行判定 。 而对缺陷位臵的判定有较多的影响因素,应慎重。 完整性检测的目的仅在于大体查清工地成桩状况,为 后续检测提供技术支持。其重要意义在于缩小了整个工地 的不可知范围。对于一个具体的工地,通过低应变反射法 检测,人们知道哪些成桩质量好、哪些成桩质量差,哪些 成桩质量需用其它方法再进行检测。 对于一个具体的工地,如大多数桩有较明显的桩底反 射信号,应认为成桩质量还是好的。 检测单位作为丙方,往往受到甲乙方的非检测因素干 扰,检测人员自己要有一个对工地的成桩质量总体判断, 以保护自己。
桩基低应变反射波法的过程实质是一个振动测量的过 程,要对该过程的频率响应作系统的分析,现场测试,由 于振源,桩土系统的衰减以及传感器等多方面的因素,很 难有覆盖全频域的信号出现。 考虑时域和频域: 深部缺陷: x >25m,f=(30,200)Hz; 中深部缺陷:x>10m, f=(20,500)Hz; 中浅部缺陷: x>2m, f=(20,2500)Hz; 浅部缺陷: x<2m, f=(20,5000)Hz
在工程检测实践中,检测人员要不断地学习应力波理 论知识,岩土工程知识、特别是桩基工程设计知识。对不 同打桩机械要有了解,这些能帮助检测人员增加桩基检测 正确性的判定概率。
基桩低应变检测方法分析
基桩低应变检测方法分析摘要:目前,基础桩的检测方法很多,但各有其适用范围和局限性。
为此,基于前人研究成果,研究出一种适用于基础桩的低应变检测技术,为建筑工程基础桩的安全检验提供方法,以保证建筑工程验收质量。
下面本文就基桩低应变检测方法进行简要分析。
关键词:基桩;低应变;检测方法;1 基桩低应变检测的价值相对于一般建筑,住宅建筑基础桩的质量要求更高,一旦出现缺陷或者问题,后期处理十分复杂和困难[1]。
住宅建筑工程基础桩完工后需要进行质量检测。
低应变检测是住宅建筑工程基础桩检测中最关键的一项,主要检测桩身缺陷及位置,判定桩身完整程度,以便及时掌握基础桩状态,判断该工程是否达到建筑工程质量验收标准。
而桩体结构质量缺陷问题的发生,比如桩体有结构面变化、局部截面面积变化、局部物理性质变化出现的质量问题,如断裂问题、扩缩径问题、离析问题、局部孔洞问题等,会导致桩体有局部波阻抗方面的差异性,对弹性波的正常传播造成影响,使弹性波在质量缺陷的上界面、下界面、桩底的位置出现反射,反射系数K不等于0,主要的表达公式为:式中,A1、A2代表不同界面桩身截面积;ρ1、ρ2代表不同界面桩身质量密度;V1、V2代表不同界面弹力波的波传播速度。
在检测过程中按照反射波信号的正负变化特点、大小变化特点等能够准确进行桩体完整度的分析、缺陷性质的分析、缺陷位置和程度的分析,能够精准对桩体结构质量进行判断[2]。
基础桩低应变检测的目的是识别基桩是否存在缺陷以及缺陷的位置,而缺陷判断的前提条件是获取大量的能够反映基础桩缺陷的数据。
基桩低应变检测数据采集装置如图 1 所示。
通过激振设备,在桩顶周围不同位置多次进行敲击,生成应力波,之后进行波形图的保存、研究、计算,将波形图打印出来,如果桩体结构非常完整,就会表现出完整的波形图,为桩体质量的认定和判断提供准确的依据。
对于存在缺陷问题的桩基结构,在观察波形图的过程中会发现下行压缩波不断减小,就会出现反射波与透射波,通过对波形图的分析以及对反射波的研究,可以认定和判定桩基的质量缺陷。
基桩小应变检测
基桩小应变检测
桩小应变检测(也叫低应变动测法)是使用小橡胶锤敲击桩顶,通过粘接在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号、频率信号,从而获得桩的完整性。
该方法检测简便,且检测速度较快,但如何获取好的波形,如何较好地分析桩身完整性是检测工作的关键。
测试过程是获取好信号的关键,测试中应注意:
①测试点的选择。
测试点数依桩径不同、测试信号情况不同而有所不同,一般要求桩径在120cm以上,测试3~4 点。
②锤击点的选择。
锤击点宜选择距传感器 20~30 cm 处不必考虑桩径大小。
③传感器安装。
传感器根据所选测试点位置安装,注意选择好粘贴方式,一般有石蜡、黄油、橡皮泥在保证桩头干燥,没积水的情况下。
④尽量多采集信号。
一根桩不少于10 锤,在不同点,不同激振情
况下,观测波形的一致性,以保证波形真实且不漏测。
本文来源:网络收集。
桩的低应变检测技术
实验报告一、实验目的实验主要以低应变测量桩身的刚度,然后再根据刚度换算桩身的强度,主要目的是检测桩身砼强度,再根据桩身砼强度换算桩本身的承载力,检测桩身完整性。
判断是否有缺陷然后划定类别。
二、实验器材低应变检测仪,手锤。
三、实验原理低应变法目前国内普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩项加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此基桩必须符合--维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。
四、实验过程及步骤1.资料的收集及现场勘查2.抽查桩的数量位置及开始的时间3.施工单位做好桩头的处理4.传感器的安装实心桩:传感器安装点宜在距桩中心2/3半径处空心桩:激振点与传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90°,传感器安装位置宜为桩壁厚的1/2处根据桩径大小,桩心对称布置2~4个安装传感器的检测点5.激振点及锤击振源a现场测试时,准备几种锤头、锤垫,根据实际情况进行选用。
b激振点的位置:实心桩:激振点位置应选择在桩中心空心桩:激振点与传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90°,激振点位置宜为桩壁厚的1/2处c激振的要求:激振方向垂直于桩面,激振点平整,激振干脆,形成单扰动,激振点应远离钢筋笼的主筋,激振应通过现场敲击试验,选择合适重量的激振力锤和软硬适宜的锤垫,宜用宽脉冲获取桩底或桩身下部缺陷反射信号,宜用窄脉冲获取桩身上部缺陷反射信号6.仪器参数设置时域信号记录的时间段长度应在2L/c时刻后延续不少于5ms;幅频信号分析的频率范围上限不应小于2000Hz,桩长设定为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积,桩身波速可根据本地区同类型桩的测试值初步设定,采样时间间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024点,传感器的设定值应按计量检定或校准结果设定7.数据采集a通过现场对比试验选定激振锤和激振参数。
低应变法检测桩身完整性
低应变反射波法目前国内外普遍采用瞬态冲击方式,实测桩顶加速度或速度响应时域曲线。
籍一维波动理论分析来判定基桩的桩身完整性,这种方法称之为反射波法(或瞬态时域分析法)。
传感器的安装方法:实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90度,激振点和测量传感器安装位置宜为桩壁厚的1/2处。
-来源网络,仅供个人学习参考传感器藕合:把藕合剂抹在传感器底部,再把传感器放入桩顶部,松手后传感器不会移动和侧斜为佳。
传感器安装地点,一点要平整。
不然会影响采集效果,藕合可以用牙膏,黄油,口香糖,但不可用泥巴。
敲击:敲击以力棒自由落体来敲击桩头,力棒落到桩头反弹后,立马抓住力棒。
落距为5cm—15cm为佳。
视桩的长度而定,桩稍长可稍加大落距。
长桩用的锤头最好为橡胶头,短桩用铝合金头。
波形分析完整桩:入射波与反-来源网络,仅供个人学习参考也有桩底反射和初始入射波先反相再同相的扩底桩下图为,某小区的住宅楼,长7.2米人工挖孔桩,设计砼强度为C25。
V=3675,经检测桩底反射明显,底部扩底属完整桩缩径桩:在时程曲线上反映比较规则,缩径部位和缺陷呈先同相再反相,或仅现其同相反射信号,视严重程度,可能有多次反射,此类缺陷桩一般可见桩底信号离析:由于离析部位的混凝土松散,对应力波能量吸收较大,形成缺陷波不规则,后续信号杂乱,而且频率较低,波速偏小,通常很难看到桩底反射。
断桩:测试曲线呈等距多次同相反射。
上部断裂往往趾呈高频多次同时反射,反射幅值较高,衰减较慢,中部断裂反映为多次同相反射,缺陷的反射波幅值较低,而深部断裂波形反映下,类是摩擦桩桩底反桩头偏软:桩头疏软和强度偏低的桩,测试结果无法反映桩的完整性,曲线反应为入射波峰较低,而且后续波形呈低频,此类现象均属桩头强度偏低。
-来源网络,仅供个人学习参考。
(整理)基桩低应变检测技术.
基桩低应变检测技术(祝龙根,同济大学) 2008/11/18一、引言1. 建筑基桩检测的现行技术规范(1)上海市工程建设规范《建筑基桩检测技术规程(DGJ08-218-2003)》,2003年(2)上海市工程建设规范《地基基础设计规范(DGJ08-11-1999)》,1999年(3)中华人民共和国行业标准《建筑基桩检测技术规范(JGJ06-2003)》,2003年2. 建筑基桩(桩基中的单桩)的主要检测内容如下:(1) 桩基的承载力,包括:竖向抗压承载、抗拔承载力和水平承载力。
(2) 基桩的完整性。
3. 何谓基桩的完整性?反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合指标。
4. 检测基桩完整性的常用方法(1) 低应变法;(2) 高应变法;(3) 超声波透射法;(4) 钻孔取芯法等。
5. 何谓低应变法?在桩顶施加低能量的荷载,实测桩顶速度(或同时实测力)的响应,通过时域或频域分析,判定桩身完整性的检测方法。
6. 低应变法检测桩身完整性的主要方法(1) 弹性波反射法;(2) 机械阻抗法;(3) 超声波透射法。
7. 何谓弹性波反射法?根据反射波与入射波的波形特征、幅值、相位、频率的比较,对混凝土桩的完整性作出判别的一种方法。
8. 弹性波反射法检测桩身完整性的检测仪器布置框图P35 图8.3.29. 低应变法检测桩身完整性的适用范围(1)本方法适用于在上海地区应用的各种混凝土预制桩、灌注桩的完整性检测,判定桩身是否存在缺陷、缺陷程度及其位置;(2)本方法检测缺陷的有效深度,40m以上的长桩宜按长径比不大于50控制,对任何类型超长桩,宜慎重使用;(3)不能检测桩基承载力、桩身混凝土强度、桩长。
10. 低应变法检测桩身完整性最终提示的检测成果P7, 3.0.7条二、弹性波反射法1. 桩身完整性时域检测方法(1) 弹性波在桩内的传播规律 1) 阻抗、界面的基本概况 a) 阻抗阻抗ρ⋅⋅=C A Z )/(m S kN ⋅式中:A ——桩身横截面积)(2m ;ρ——桩身质量密度(342/,/m kg m S kN ⋅);gr =ρ; r ——桩身的重度)/(3m kN ; g ——重力加速度()/2S m ;C ——纵波在桩身内传播速度)/(S m 。
低应变法检测基桩完整性
桩身完整
Ⅱ 射波,有桩底反射波
频差Δf c/,轻微缺陷产生的谐振峰与桩 桩身有轻微缺陷 底谐振峰之间的频差 Δf´>c/
Ⅲ
有明显缺陷反射波,其他特征介于Ⅱ类和Ⅳ类之间
桩身有明显缺陷
/c时刻前出现严重缺陷反 缺陷谐振峰排列基本等间距,相邻频
射波或周期性反射波,无 差 Δf´>c/无桩底谐振峰;
桩底反射波;
目录
1 、概述 2、反射波法检测原理 3、现场检测 4、桩身完整性的判定
1、检测依据
《建筑基桩检测技术规范》JGJ 106-2014
2、适用范围
本方法适用于检测混凝土桩的桩身完整性,判定 桩身缺陷的程度及位置。桩的有效检测桩长范围 应通过现场试验确定。
对桩身截面多变且变化幅度较大的灌注桩,应采 用其他方法辅助验证低应变法检测的有效性。
每个检测点记录有效信号数不少于3个。
检测流程
桩头处理 仪器连接 传感器安装 程序设置 手锤锤击 信号采集 信号分析 结果打印
类别 时域信号特性
幅频信号特征
分类原则
/c时刻前无桩底反射
频差Δf c/
/c时刻前出现轻微缺陷反 桩底谐振峰排列基本等间距,其相邻
低应变法基本原理是基于一维杆的波动理论,将 桩等价于一维杆,在桩顶初始扰力作用下产生的 应力波沿桩身向下传播,并且满足一维波动方程:
2u t 2
c2
2u x 2
式中: u -- s方向位移;
c -- 桩身材料的纵波速度。
弹性波沿桩身传播过程中,当遇到密度、截面积变化时波阻抗 将发生变化,产生反射与透射,采用高灵敏传感器及配套的波形 记录仪器,即可记录反射波在桩身中传播的波形,通过对反射波 曲线特征的分析研究,即可对桩身的完整性、缺陷的位置进行判 定,测定桩身混凝土纵波波速。
桩基低应变检测方案
桩基低应变检测方案1. 引言桩基作为土木工程中重要的基础构件,其质量和稳定性对工程的安全和耐久性有着重要的影响。
在桩基施工过程中,合理的检测方法和方案能够及时发现问题,保障工程质量。
本文将介绍一种桩基低应变检测方案,通过对桩基应变进行监测,及时发现并修复潜在的问题。
2. 桩基低应变检测方案的设计原则桩基低应变检测方案设计的基本原则如下:1.灵敏度高:能够检测到桩基的细微应变变化,保证对潜在问题进行及时发现。
2.准确性高:提供准确的应变值,用于准确评估桩基的质量和稳定性。
3.实时性强:能够实时监测桩基的应变变化,及时发现并解决问题。
4.可靠性强:方案应具备较高的可靠性,能够长期稳定地工作。
3. 桩基低应变检测方案的技术原理桩基低应变检测方案的技术原理主要包括以下几个方面:1.传感器的选择:选择合适的应变传感器,如电阻应变计、光纤传感器等。
该传感器能够将桩基的应变转化为电信号或光信号,并通过数据采集系统进行采集和处理。
2.数据采集系统:选用高精度和高采样率的数据采集系统,能够实时采集传感器输出的信号,并通过计算和分析得到桩基的应变值。
3.数据处理与分析:对采集到的数据进行处理和分析,得到桩基的应变变化情况,并结合设计要求进行评估。
4.实时监测与报警系统:通过建立实时监测系统,能够及时监测桩基的应变变化情况,并在出现异常情况时及时发出警报,以便采取相应的措施进行修复。
4. 桩基低应变检测方案的实施步骤桩基低应变检测方案的实施步骤如下:1.传感器安装:在桩基中选取合适的位置进行传感器的安装,确保传感器与桩基紧密接触,能够准确感知应变变化。
2.数据采集系统的搭建:选择合适的数据采集系统,根据传感器的输出信号进行连接和配置,确保能够高效地采集和处理数据。
3.数据处理与分析:利用专业的数据处理软件,对采集到的数据进行处理和分析,得到桩基的应变变化情况,并进行定量评估。
4.实时监测与报警系统的建立:建立实时监测系统,通过连续监测桩基的应变变化情况,及时发现潜在问题,并在需要时发出警报,通知相关人员采取相应的措施进行修复。
建筑基桩低应变检测技术
建筑基桩低应变检测技术建筑基桩低应变检测技术是一种用于评估基桩动态特性的方法。
该技术通过分析基桩在受到动态荷载作用时的应变响应,来评估基桩的质量和稳定性。
在建筑基桩的设计和施工过程中,低应变检测技术起到了重要的作用,可以帮助工程师确定合适的基桩长度和直径,以及确保基桩能够承受预期的荷载。
一、建筑基桩低应变检测技术的原理建筑基桩低应变检测技术基于应力-应变关系原理。
当基桩受到动态荷载作用时,会产生应变。
通过在基桩上安装应变片,可以测量基桩的应变响应。
根据应力-应变关系,可以通过测量到的应变值来计算基桩的应力水平。
通过分析应力水平与基桩长度和直径的关系,可以评估基桩的质量和稳定性。
二、建筑基桩低应变检测技术的方法建筑基桩低应变检测技术通常包括以下几个步骤:1. 基桩准备:在进行低应变检测之前,需要将基桩表面清理干净,去除污垢和油渍,确保应变片能够良好粘贴。
2. 应变片安装:在基桩上按照一定间距安装应变片。
应变片的安装位置通常选择在基桩的顶部、中部和底部,以评估基桩沿长度方向的应力分布。
3. 动态荷载施加:通过使用激振器或者其他激振设备,对基桩施加动态荷载。
动态荷载的频率和幅值根据基桩的设计和施工要求进行调整。
4. 应变测量:在动态荷载作用下,使用应变仪测量基桩上的应变值。
应变仪可以实时记录应变值的变化,并进行数据采集和分析。
5. 数据处理和分析:通过分析测量到的应变值,可以计算出基桩的应力水平。
根据应力水平与基桩长度和直径的关系,可以评估基桩的质量和稳定性。
三、建筑基桩低应变检测技术的应用建筑基桩低应变检测技术在建筑基桩的设计和施工过程中起到了重要的作用。
通过低应变检测,可以评估基桩的质量和稳定性,确定合适的基桩长度和直径,以及确保基桩能够承受预期的荷载。
低应变检测技术还可以用于监测基桩在使用过程中的性能变化。
通过定期进行低应变检测,可以及时发现基桩的损伤和变形,并进行修复和加固,确保基桩的安全和可靠。
基桩低应变法检测作业指导书
一、检测原理低应变法目前国普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。
二、编制依据及目的1、编制依据⑴国家及部委颁发的相关规、规程和标准;《公路工程基桩动测技术规程》(JTG/T F81-01-2004)《建筑基桩检测技术规》(JGJ 106-2014)《建筑桩基技术规》(JGJ94-2008)《建筑地基基础设计规》(GB50007-2011)《基桩动测仪》(JG/T 3055)⑵ISO-9001质量标准运行要求。
2、编制目的通过编制本作业指导书,使地基所全体人员能熟练掌握低应变反射波法进行基桩检测,起到规检测人员检测方法及程序的作用。
三、适用围低应变反射波法适用围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG桩。
四、检测流程基桩检测流程图见图1所示。
五、检测方法及工艺要求(一)检测前的准备工作1、受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
2、施工单位按附表1格式填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
3、施工单位按附表2向检测单位提供基桩工程相关参数和资料。
4、检测前,施工单位做好以下准备工作:⑴剔除桩头,使桩顶标高为设计的桩顶标高。
⑵要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
否图1 基桩检测工作流程⑶灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
⑷桩顶表面平整干净且无积水。
⑸实心桩的中心位置打磨出直径约10cm 的平面,平面保证水平,不要带斜坡;在距桩中心2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 的平面,打磨面应平顺光洁密实。
低应变桩基检测方法
反射波检测基桩完整性的技术要点 —(一)一.反射波法检测基桩完整性如何获取桩底反射众所周知,反射波法检测基桩桩身完整性,能否采集到桩底反射信号,是现场进行数据采集成败的关键。
要获取桩底反射波有几个必须的条件即:1. 桩头要处理好这些往往由于不同的原因不能实现,如此的后果往往造成检测失败。
桩头不做上述处理如图1所示,桩头面不仅凹凸不平,尚有突出的混凝土楞刺,在这下锤头下落,冲击能量首先在冲破凹凸不平消耗大理能量,使有效的击振能量大打折扣,还不能励出理想的入射脉冲波。
于是只好再次加大激振力度再次击破凹凸不平的楞刺,恶性循环的结果,不仅取得良好的激振脉冲波,还会激励出杂散振动。
恶性循环的结果,将使反射波信号复杂,多次击振的一致性差和得不到桩底反射波。
如先将激振和安装传感器部位打磨平整,反而会取得事半功倍的成效。
桩头没有打磨平整,会使直达波上叠加高频噪音信号,图2便是一个实测范例(还不是最严重的)。
与此同时还会带来多次激励的信号一致性极差,而无法确认检测的真实结果。
2. 传感器与桩头的耦合是采集到良好质量信号的重要条件。
传感器安装点,应事先检查混凝土是否完整,并打磨平整。
安装时,传感器的轴线应平行桩身的轴线,即垂直于桩头的水平面,这样传感器的最大灵敏度方向可对准桩底,有利于接收桩头下部的反射信号。
传感器应通过耦合剂牢牢黏结在桩头上,不可松动,以免在击振时传感器也随之振动,形成干扰。
耦合剂的选用以黏度较大的橡皮泥最佳,因为橡皮泥可以起到机械滤波的作用,滤除击振时产生的高频干扰(但是在北方冬季橡皮泥“凝固”失去了柔软性,到不如凝固的黄油会更好些)。
3. 击振脉冲波的力度和主频要适度锤击脉冲波的力度、主频与桩长相匹配。
原则是至少要有两次以上击振后的反射波信号基本一致,方可确定得到的信号是可靠的桩身状况的客观反映。
图3是几种典型的现场检测到的反射波记录。
多次采集的反射波信号不一致,且有高频干扰的实例如图3(a);击振一致性较好,还可见缺陷反射,但是没有桩底反射波如图3(b );图3(c)是桩径1200mm 、桩长15.3m 人工挖孔灌注桩,用速度型传感器接收,有桩底反射波、击振一致性好的实例;图3(d )是用加速度传感器接收的检测记录,虽然击振的直达波一致性不太好,但可见一致性较好的桩底反射。
基桩完整性检测--低应变反射波法
2.1 应力波基本概念
4.一维波动方程
2 2u u 2 c 0 2 2 t x
c
E
区别:质点运动速度V
应力波在杆中的纵向传播速度
V c
对于普通钢材,c=5120m/s, 屈服限对应的变形约为1‰即ε=1000με, 则质点运动速度V=5.12m/s
2.1 应力波基本概念
1.2 基桩检测内容 1.完整性检测 反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综 合定性指标。 (1)连续性包涵了桩长不够的情况。 (2)作为完整性定性指标之一的桩身截面尺寸,由于定义为 “相对变化”,所以先要确定一个相对衡量尺度。根据设计 桩径,并针对不同成桩工艺的桩型按施工验收规范考虑桩径 的允许负偏差 。 2.承载力检测 基桩的预期使用功能和安全性需通过有代表性的单桩承载力 试验来确定 。
2.4 低应变检测系统
3.传感器的性能规定 (1)传感器宜选用压电式加速度传感器或磁电式 速度传感器,频响曲线的有效范围应覆盖整个测试信 号的频带范围。 (2)加速度传感器的电压灵敏度应大于100mV/g, 量程不小于50g。速度传感器的灵敏度不小于 300mV/cm·s-1 30Hz,传感器灵敏度选择原则在满足 频响范围的前提下,尽可能地选择灵敏度较高的传感 器。 (3)加速度传感器的安装谐振频率应大于10kHz, 速度传感器的安装谐振频率应大于1.5kHz。
1.1 基桩基本知识
1.1 基桩基本知识 3.常见基桩质量问题---灌注桩
1.1 基桩基本知识 3.常见基桩质量问题---沉管灌注桩 (1)极易振断初凝邻桩,软件硬土层交界处尤重 (2)桩距小于三倍桩径,使初凝砼拉裂 (3)拔管过快,淤泥层易缩颈 (4)动水压力作用,冒水桩演变成断桩 (5)振动沉管用活瓣桩尖张开不灵活,砼下落不畅,断桩 或密实度差 (6)预制桩尖被卡住,吊脚桩
基桩低应变法检测须知
基桩钻芯法检测须知
一、现场检测前委托方应先确认受检桩已满足桩身混凝土龄期不小于28d或预留立方体试块强度不低于设计强度等级。
二、受检桩桩头应按以下要求进行处理:
1、委托方应先将受检桩锯至设计标高左右,破除桩头浮浆及松散部分露出桩身混凝
土(骨料)部分,桩顶平面平整,桩头外露钢筋向外扳开,使桩面平整。
2、标出桩的中心位置。
三、委托方应确保测试现场道路通畅,并为钻芯设备进场提供必要的起重吊运设备。
四、为测试提供380V的稳定电力以及水源供应。
五、应保证受检桩附近有足够的位置摆放安装钻机(钻机尺寸:2m×3m),若是临边位置应搭设操作平台;若桩头与地面架空超过1m时,应进行适当的开挖。
六、在检测人员到达现场前,委托方应按指定要求填写并提交《桩(基础)检测方案》、《基桩抽芯法桩位确定书》、《基桩钻芯法检测工程概况表》及续表AY08(01)(以上表格电子版下载网站:)以及相应的基桩设计图纸及平面图和地质勘探柱状图,勘探点布置图,以上图纸资料若为复印件须经委托方盖章确认。
七、检测过程中委托方应指定现场管理人员配合协助检测人员检测工作的开展,保证检测人员现场检测的安全并为现场检测人员免费提供临时休息住所。
八、在工地现场的仪器设备,委托方须协助做好值班保卫工作。
桩基础检测技术—低应变法
低应变动测仪器
FDP204(B)掌上动测仪
目前倾向于低应变法仅 能检测桩身完整性
桩身完整性定义
桩身完整性类别是按缺陷对桩身结构承载力的影 响程度,统一划分为四类的:
一类---桩身完整。, 二类---桩身有轻微缺陷,不会影响桩身结构
低应变动测技术
反射波法 机械阻抗法 水电效应法 动力参数法 共振法 球击法
青藏线基桩检测
原理
基桩反射波法检测桩身结构完整性的基本原理是: 通过在桩顶施加激振信号产生应力波,该应力波沿 桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、 断裂、孔洞等缺陷)和桩底面时,将产生反射波, 检测分析反射波的传播时间、幅值和波形特征,就 能判断桩的完整性。
承载力的发挥。 三类---桩身有明显缺陷,对桩身结构承载力
有影响,一般应采用其他方法验证其可用性,或 根据具体情况进行设计复核或补强处理。 四类---桩身存在严重缺陷,一般应进行补强 处理。
桩基质量检测技术
桩基动力检测是指在桩顶施加一个动态力(可以是 瞬态冲击力或稳态激振力)。桩土系统在动态力的作 用下产生动态响应信号(位移、速度、加速度信号), 通过对信号的时域分析、频域分析或传递函数分析, 判断桩身结构的完整性,推断单桩承载力。
根据作用在桩顶上的动荷载能量能否使桩土之间发 生一定弹性位移或塑性位移,把动力测桩分为低应变、 高应变两种方法。低应变作用在桩顶上的动荷载远小 于桩的使用荷载,能量小,只能使桩土产生弹性变形。
低应变法检测基桩完整性
桩顶面应平整、密实,并与桩轴线垂直。
时域信号记录的时间段长度应在2L/C时刻后 延续不少于5ms;幅频信号分析的频率范围上 限不应小于2000Hz。 安装传感器部位的混凝土应平整,传感器安装 应与桩顶面垂直;用耦合剂粘结时,应具有足 够的粘结强度。 桩头处理 耦合剂可选择黄油、橡皮泥、口香糖等
根据桩径大小,桩心对称布置2个~4个安装传感 器的检测点:实心桩的激振点应选择在桩中心, 检测点宜在距桩中心2/3半径处;空心桩的激振 点和检测点宜为桩壁厚的1/2处,激振点和检测 点与桩中心连线形成的夹角宜为90°。
桩身完整
Ⅱ 射波,有桩底反射波
频差Δf c/,轻微缺陷产生的谐振峰与桩 桩身有轻微缺陷 底谐振峰之间的频差 Δf´>c/
Ⅲ
有明显缺陷反射波,其他特征介于Ⅱ类和Ⅳ类之间
桩身有明显缺陷
/c时刻前出现严重缺陷反 缺陷谐振峰排列基本等间距,相邻频
射波或周期性反射波,无 差 Δf´>c/无桩底谐振峰;
桩底反射波;
2015.6.25
目录
1 、概述 2、反射波法检测原理 3、现场检测 4、桩身完整性的判定
1、检测依据
《建筑基桩检测技术规范》JGJ 106-2014
2、适用范围
本方法适用于检测混凝土桩的桩身完整性,判定 桩身缺陷的程度及位置。桩的有效检测桩长范围 应通过现场试验确定。
对桩身截面多变且变化幅度较大的灌注桩,应采 用其他方法辅助验证低应变法检测的有效性。
或因桩身浅部严重缺陷只出现单一谐 桩身存在严重缺
Ⅳ
或因桩身浅部严重缺陷使 振峰,无桩底谐振峰
陷
波形呈现低频大振幅衰减
振动,无桩底反射波
注:对同一场地、地基条件相近、桩型和成桩工艺相同的基桩,因桩端部分桩身阻抗与持力 层阻抗相匹配导致实测信号无桩底反射波时,可按本场地同条件下有桩底发射波的其他桩实测 信号判定桩身完整性类别。
基桩低应变检测技术方案
基桩低应变检测技术方案一、检测前准备工作应符合下列规定:1、检测前应搜集有关技术资料。
2、根据现场实际情况选择合适的激振设备、传感器及检测仪,检查测试系统各部分之间是否连接良好,确认整个测试系统处于正常工作状态。
3、桩顶应凿至新鲜混凝土面,并用打磨机将测点和激振点磨平。
4、应测量并记录桩顶截面尺寸。
5、混凝土灌注桩的检测宜在成桩14d以后进行。
6、打入或静压式预制桩的检测应在相邻桩打完后进行。
二、传感器安装应符合下列规定:1、传感器的安装可采用石膏、黄油、橡皮泥等藕合剂,粘结应牢固,并与桩顶面垂直。
2、对混凝土灌注桩,传感器宜安装在距桩中心1/2一2/3半径处,且距离桩的主筋不宜小于50m 。
当桩径不大于1000n1m时不宜少于2个测点;当桩径大于1000mm时不宜少于4个测点。
3、对混凝土预制桩,当边长不大于600mm时不宜少于2个测点;当边长大于600mm时不宜少于3个测点。
4、对预应力混凝十管桩不应少于2个测点。
三、激振时应符合下列规定:1、混凝土灌注桩、混凝土预制桩的激振点宜在桩顶中心部位;预应力混凝土管桩的激振点和传感器安装点与桩中心连线的夹角不应小于4500;2、激振锤和激振参数宜通过现场对比试验选定。
短桩或浅部缺陷桩的检测宜采用轻锤短脉冲激振;长桩、大直径桩或深部缺陷桩的检测宜采用重锤宽脉冲激振,也可采用不同的锤垫来调整激振脉1冲宽度。
3、采用力棒激振时,应自由下落;采用力锤敲击时,应使其作用力方向与桩顶面垂直。
四、检测工作应遵守下列规定:1、采样频率和最小的采样长度应根据桩长和波形分析确定。
2、各测点的重复检测次数不应少于3次,且检测波形具有良好的一致性。
3、当干扰较大时,可采用信号增强技术进行重复激振,提高信噪比;当信号一致性差时,应分析原因,排除人为和检测仪器等干扰因素,重新检测。
4、对存在缺陷的桩应改变检测条件重复检测,相互验证。
五、检测数据分析与判定1)、桩身完整性分析宜以时域曲线为主,辅以频域分析,并结合施工情况、岩土工程勘察资料和波型特征等因素进行综合分析判定。
低应变检测.
低应变检测一、基桩动力检测是根据杆件一维波动理论,求解导出的一维波动方程,这个方程是一个二阶偏微分方程,其解方两个反向行波的迭加(详见讲义二第四章的介绍)。
二、基桩反射波法的基本原理基桩反射波法是对桩顶施加一定瞬时激振力,使桩身及桩周土体产生微小振动,记录力波的传佈状况,根据波动方程理论加以分析,从而判断桩身质量(详见讲义二P61)。
特点:快速、经济、不影响施工工期。
讲义二P65 表5-1 几种特征曲线要了解。
三、仪器、仪表的要求反射波法测试示意图详见讲义二P67图5-7。
1.力锤(力捧)材料:铁(钢)、铝、尼龙、橡皮。
因材料不同,激振后对桩身产生的振动频率及力在桩中传抪的波也不相同。
产生的频率,上述材料排列是由高频到低频;而力波的波长则由短到长,因此在实际工程检测中要合理选择。
2.传感器目前常用传感器有两种即加速度传感器种速度传感器。
传感器的频带越宽越好,加速度传感器的频带应大于等于2000Hz,灵敏度、为100mV/g;速度传感器的频带为10~1000Hz,灵敏度为300mv/(cm.s)。
3.放大器要求放大器增益高、噪声低、频带宽。
速度传感器用电压放大器;加速度传感器用电荷放大器。
放大器的增益应大于60dB;输入端的噪声应低于3dB,频带宽10~5000Hz,滤波频率应可调。
4.多通道信号采集分析仪要求体积小、重量轻、性能稳定。
具备数据采集、记录贮存、信号分析及计算功能。
模/数转换器(A/D)的位数不低于12bit;采样间隔时间为10~500微秒,分挡可调;采样长度每通道不小于1024个采样点,振幅偏差应小于3%,相位偏差应小于0.05ms;具有实时显示及分析功能。
反射波法测试示意图详见讲义二P67图5-7。
现场测试仪器布置示意图详见讲义二图5-7。
5.测试参数设定详见规范P35-36 8.3.2四.桩头部的要求1.桩应截至设计桩顶标高、水平平整,且砼级配正常;2.砼强度:最好达到设计强度,至少应达到70%的设计强度,且要大于或等于15Mpa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基桩低应变检测技术
(祝龙根,同济大学) 2008/11/18
一、引言
1. 建筑基桩检测的现行技术规范
(1)上海市工程建设规范《建筑基桩检测技术规程(DGJ08-218-2003)》,2003年
(2)上海市工程建设规范《地基基础设计规范(DGJ08-11-1999)》,1999年
(3)中华人民共和国行业标准《建筑基桩检测技术规范(JGJ06-2003)》,2003年
2. 建筑基桩(桩基中的单桩)的主要检测内容如下:
(1) 桩基的承载力,包括:竖向抗压承载、抗拔承载力和水平承载力。
(2) 基桩的完整性。
3. 何谓基桩的完整性?
反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合指标。
4. 检测基桩完整性的常用方法
(1) 低应变法;
(2) 高应变法;
(3) 超声波透射法;
(4) 钻孔取芯法等。
5. 何谓低应变法?
在桩顶施加低能量的荷载,实测桩顶速度(或同时实测力)的响应,通过时域或频域分析,判定桩身完整性的检测方法。
6. 低应变法检测桩身完整性的主要方法
(1) 弹性波反射法;
(2) 机械阻抗法;
(3) 超声波透射法。
7. 何谓弹性波反射法?
根据反射波与入射波的波形特征、幅值、相位、频率的比较,对混凝土桩的完整性作出判别的一种方法。
8. 弹性波反射法检测桩身完整性的检测仪器布置框图
P35 图8.3.2
9. 低应变法检测桩身完整性的适用范围
(1)本方法适用于在上海地区应用的各种混凝土预制桩、灌注桩的完整性检测,判定桩身是否存在缺陷、缺陷程度及其位置;
(2)本方法检测缺陷的有效深度,40m以上的长桩宜按长径比不大于50控制,对任何类型超长桩,宜慎重使用;
(3)不能检测桩基承载力、桩身混凝土强度、桩长。
10. 低应变法检测桩身完整性最终提示的检测成果
P7, 3.0.7条
二、弹性波反射法
1. 桩身完整性时域检测方法
(1) 弹性波在桩内的传播规律 1) 阻抗、界面的基本概况 a) 阻抗
阻抗ρ⋅⋅=C A Z )/(m S kN ⋅
式中:
A ——桩身横截面积)(2m ;
ρ——桩身质量密度(342/,/m kg m S kN ⋅);
g
r =
ρ; r ——桩身的重度)/(3m kN ; g ——重力加速度()/2S m ;
C ——纵波在桩身内传播速度)/(S m 。
b) 界面
阻抗发生变化的部位称之为界面。
产生界面的原因?桩身出现缺陷。
灌注桩——缩颈、扩颈、夹泥、离析等。
砼预制桩——裂缝、断裂、空洞、蜂窝、接桩质量差等。
图(1) 基桩示意图
(2) 弹性波在界面处的反射、透射 I ——入射波; R ——反射波; T ——透射波。
“波”——振动能量的传播方式。
T R I V V V 、、速度;
T R P P P I 、、射波、透射波在界面处引起的作用力。
由于,界面两侧力、速度相等,则:
T R I P P P =+ --------------(1) T R I V V V =+ --------------(2)
由波阵面动量守恒条件可得:
2
221111
11C A P C A P C A P T
R I ρρρ=-
-------------- (3)
联立求解(1)、(3)式,则得:
I R P Z Z Z Z P 2
11
2+-=
-------------- (4)
I R V Z Z Z Z V 2
11
2+--
= --------------(5)
I T P Z Z Z P 2
12
2+=
--------------(6)
I T V Z Z Z V 2
11
2+=
--------------(7)
1111C A Z ⋅⋅=ρ
2222C A Z ⋅⋅=ρ
图(2) 弹性波在界面处反射、透射
若令: 阻抗比2
1
Z Z i =
反射系数i i
Z Z Z Z F +-=+-=
112112
透射系数i
Z Z Z T +=+=
12
2212
则式(4)~(7)变成为:
I R FP P = --------------(8) I R FV V -= --------------(9) I T TP P = --------------(10) I T iTV V = --------------(11) (3) 应用反射波检测桩身缺陷
1) 桩身缺陷和反射波与入射波之间相位关系
a) 若桩身截面积不变,但出现缺陷(如:夹泥、离淅、裂缝等),此时,2
Z <1Z ,F <0,则:
R V 与I V 同号,亦即桩顶处反射波引起的质点振动速度与入射波引起的质点振动速度同相,俗称“同相起点”。
b) 若桩身出现缩颈,亦即12A A <,此时12Z Z <、0<F ,则:
R V 与I V 同号,亦即桩顶处反射波引起的质点振动速度与入射波引起的质点振动速度同相,俗称“同相起跳”。
c) 若桩身出现扩颈,亦即,此时,12A A >,12Z Z >、0>F ,则:
R V 与I V 符号相反,亦即桩顶处反射波引起的质点振动速度与入射波引起的质点振动速度反相,俗称“反相起跳”。
d) 桩端也是一个界面,一般情况下持力层的阻抗2Z 小于桩身的阻抗1Z ,此。