七年级上册数学知识点:整式的加减

合集下载

人教版数学七年级上册 整式的加减

人教版数学七年级上册 整式的加减

小真没抄错题,但他们做出的结果却都一样,你知道这
是怎么回事吗?说明理由.
解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与 a 的取值无关,所以即使把
ቤተ መጻሕፍቲ ባይዱ
a 的值抄错,最后的结果都会一样.
当堂练习
1. 已知一个多项式与
的和等于

则这个多项式是( A )
A.
B.
C.
D.
2. 长方形的一边长等于 3a + 2b,相邻边比它大 a - b, 那么这个长方形的周长是( A ) A.14a + 6b B.7a + 3b C.10a + 10b D.12a + 8b
2
3 23
3x y2.
→合并同类项
将式子化简
当x
2,y
2 3
时,
原式
3
(2)
2 3
2
6 4 9
6 4. 9
能力提升 有这样一道题“当 a=2,b=-2 时,求多项
式 3a3b3- 1 a2b+b-(4a3b3- 1 a2b-b2)+(a3b3+1 a2b)
2
4
4
-2b2+3 的值”,小虎做题时把 a=2 错抄成 a=-2,
6. 若 mn = m + 3,则 2mn + 3m - 5mn + 10 =__1__.
7.
计算:(1)
- 5 ab3
3
+
2a3b-
9 2
a2b-ab3-
1 2
a2b-a3b;
(2) (7m2-4mn-n2)-(2m2-mn+2n2);
(3)-3(3x + 2y)-0.3(6y-5x);

七年级数学整式的加减知识点

七年级数学整式的加减知识点

整式的加减
1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

2.单项式中的数字因数叫做这个单项式的系数。

3.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5.多项式里次数最高项的次数,叫做这个多项式的次数。

6.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

七年级上册数学整式的加减整式加减知识点整理

七年级上册数学整式的加减整式加减知识点整理

整式加减一.知识框架二、知识要点1、单项式〔1〕、都是数或字母的积的式子叫做单项式。

〔单独的一个数或一个字母也是单项式。

〕如:2,2bc,3m,a,都是单项式。

〔2〕、单项式中的数字因数叫做这个单项式的系数。

如:2ab 中2是这个单项式的系数。

〔3〕、单项式系数应注意的问题:① 单项式表示数字及字母相乘时,通常把数字写在前面;② 当单项式的系数是带分数时,要把带分数化成假分数;③ 当单项式的系数是1或-1时,“1〞通常省略不写;④ 圆周率π是常数;⑤ 单项式的系数应包括它前面的“正〞、“负〞符号。

〔4〕、一个单项式中,所有字母的指数的与叫做这个单项式的次数。

如:xy2,这个单项式的次数是3 次,而不是2次。

〔单独的一个数的次数是0.〕2、多项式〔1〕、几个单项的与叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式的每一项都包含它前面的符号。

如:2a2+3b-5 是一个多项式,2a2,3b,-5是这个多项式项,-5是常数项。

〔2〕、多项式里次数最高项的次数,叫做这个多项式的次数。

如:2a2+3b-5的次数是2.〔3〕、单项式及多项式统称整式。

3、合并同类项〔1〕、所含字母一样,并且一样字母的指数也一样的项叫做同类项。

几个常数项也是同类项。

如:2a+3a-a+3a2中2a,3a,a是同类项,而2a,3a2那么不是同类项。

〔2〕、把多项式里的同类项合并成一项,叫做合并同类项。

〔3〕、合并同类项法那么:合并同类项后,所得项的系数是合并前各同类项的系数的与,且字母局部不变。

如:2a+3a-a 合并同类项得:4a,数字相加或相减,字母不变。

4、去括号〔1〕、去括号法那么:① 如果括号外的因数是正数,去括号后括号内每一项的符号都不变。

〔“+〞不变〕如:〔2a+5〕去括号后不变:2a+5② 如果括号外的因数是负数,去括号后括号内每一项的符号都变。

〔“-〞全变〕如:-〔2a+5〕去括号后变成:-2a-5〔2〕、去括号应注意:① 去括号应考虑括号内的每一项的符号,做的要变都变,要不变都不变;② 括号内原来有几项,去掉括号后仍有几项,同时括号前的符号也要去掉。

七年级数学上册整式的加减

七年级数学上册整式的加减

2.代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字母x 的取值无关,求a,b的值.
解:(x2+ax-2y+7)-(bx2-2x+9y-1) =x2+ax-2y+7-bx2+2x-9y+1=(1-b)x2+(a+2)x-
11y+8 因为代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字
注意:整式加减运算的结果仍然是整式.
【例题】
例1 计算: (1)(2x-3y)+(5x+4y)
=2x-3y+5x+4y =7x+y
(2)(8a-7b)-(4a-5b) =8a-7b-4a+5b =4a-2b
【例题】 【例2】做大小两个长方形纸盒,尺寸如下(单位:cm)



小纸盒
a
b
c
大纸盒
2a
母x的取值无关, 所以1-b=0,a+2=0,解得a=-2 ,b=1.
答:a=-2 ,b=1.
1.整式加减的运算法则:一般地,几个整式相加减,如
果有括号就__去__括__号___ ,然后__再__合__并__同__类__项____.
2.整式加减的结果是__单__项__式__或__多__项__式__.
1.掌握整式加减运算的法则,会进行整式加减运算, 提高运算能力. 2.能根据题意列出式子,提高综合运用知识进行分析、 解决问题的能力,体会整式的应用价值.
整式加减的一般步骤: (1)如果有括号,那么先去括号. (2)观察有无同类项. (3)利用加法的交换律和结合律,分组同类项. (4)合并同类项. 简单地讲就是:先去括号,再合并同类项.

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

-系数:单项式中的数字因数叫做单项式的系数。

-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

-多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。

4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。

2. 识别同类项:找出所有同类项。

3. 合并同类项:利用合并同类项法则进行合并。

4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。

5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。

6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。

-注意系数的符号,特别是负号的作用。

-运算后要进行必要的化简,使结果更加简洁明了。

七年级数学整式的加减知识点归纳

七年级数学整式的加减知识点归纳

七年级数学整式的加减知识点归纳
七年级数学整式的加减知识点归纳
七年级上数学知识点之整式的加减
同学们对数学中整式的加减知识点还记得吧,下面我们一起来回顾学习哦。

整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的.次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
6.合并同类项法则:系数相加,字母与字母的指数不变.
7.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
8.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)
9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).
希望上面对数学中整式的加减知识的讲解学习,同学们都能很好的掌握,相信同学们会从中学习的更好的吧。

【七年级数学整式的加减知识点归纳】。

七上数学第二章整式的加减

七上数学第二章整式的加减

七上数学第二章整式的加减
一、教学目标
(一)知识与技能
通过具体实例,感受字母表示数的意义,会用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
(二)过程与方法
通过实例,归纳、类比、抽象、概括,从而认识整式的概念,掌握单项式、多项式的概念,并会用单项式、多项式的概念判断一个式子是否是单项式或多项式. 通过具体例子的讨论,理解合并同类项的方法,会进行单项式的加减.
通过实例,理解整式的概念、单项式、多项式的概念,会进行单项式的加减. (三)情感态度和价值观
初步建立符号意识,知道符号的作用,通过实例感受数学符号的简洁美和对称美.
二、教学重难点
教学重点:用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
教学难点:正确判断一个式子是否是单项式或多项式,能进行单项式的加减.
三、教学过程
(一)引入新课
1. 通过实例引入整式的概念、单项式、多项式的概念,体会用字母表示数的优越性.
2. 通过例题学习合并同类项的方法,让学生经历从具体到抽象的过程.
3. 通过练习加深学生对新知识的印象,巩固对新知识的掌握.
4. 通过小结和思考让学生自主发现本节课所学知识之间的联系和区别,加深对知识的理解和记忆.
5. 通过作业布置,进一步巩固所学知识并适当延伸到下节课的内容.。

河南省七年级数学上册第二章整式的加减知识点总结归纳完整版

河南省七年级数学上册第二章整式的加减知识点总结归纳完整版

河南省七年级数学上册第二章整式的加减知识点总结归纳完整版单选题1、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.2、下列计算正确的是( )A.3ab+2ab=5ab B.5y2−2y2=3C.7a+a=7a2D.m2n−2mn2=−mn2答案:A分析:运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.解:A、3ab+2ab=5ab,故选项正确,符合题意;B、5y2−2y2=3y2,故选项错误,不符合题意;C、7a+a=8a,故选项错误,不符合题意;D、m2n和2mn2不是同类项,不能合并,故选项错误,不符合题意;故选:A.小提示:本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.3、若21=2,22=4,23=8,24=16,25=32……,则22022的末位数字是()A.2B.4C.8D.6答案:B分析:由题意可得2n的末位数字按2,4,8,6四次一循环的规律出现,再计算2022÷4结果的余数即可.解:∵21=2,22=4,23=8,24=16,25=32……,∴2n的末位数字按2,4,8,6四次一循环的规律出现,∵2022÷4=505…2,∴22022的末位数字是4,故选:B.小提示:此题考查了乘方的尾数规律问题的解决能力,关键是能归纳出问题中尾数循环出现的规律.4、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.5、下列等式中正确的是()A.2x−5=−(5−2x)B.7a+3=7(a+3)C.−(a−b)=−a−b D.2x−5=−(2x−5)答案:A分析:根据去括号和添括号法则逐项进行判断即可.A.2x−5=−(5−2x),故A正确,符合题意;B.7a+3=7(a+37),故B错误,不符合题意;C.−(a−b)=−a+b,故C错误,不符合题意;D.2x−5=−(−2x+5),故D错误,不符合题意.故选:A.小提示:本题主要考查了去括号和添括号法则,熟练掌握去括号法则:括号前面是加号时,去掉括号,括号内的算式不变。

浙教版七年级上册数学第二章《整式的加减》知识点

浙教版七年级上册数学第二章《整式的加减》知识点

第二章整式的加减
一.知识框架
二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。

在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

七年级数学上册第二章整式的加减易错知识点总结

七年级数学上册第二章整式的加减易错知识点总结

(名师选题)七年级数学上册第二章整式的加减易错知识点总结单选题1、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.2、已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n答案:D分析:先用含a、b、m、n的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.解:如图,由图和已知条件可知:AB=a,EF=b,AC=n﹣b,GE=n﹣a.阴影部分的周长为:2(AB+AC)+2(GE+EF)=2(a+n﹣b)+2(n﹣a+b)=2a+2n﹣2b+2n﹣2a+2b=4n.∴求图中阴影部分的周长之和,只需知道n一个量即可.故选:D.小提示:本题主要考查了整式的加减,能用含a、b、m、n的代数式表示出阴影矩形的长宽是解决本题的关键.3、下列计算正确的是()A.2a2b+3a2b=5a2b B.2a2+3a2=5a4C.2a+3b=5ab D.2a2−3a2=−a答案:A分析:根据合并同类项法则计算即可判断.解:A、2a2b+3a2b=5a2b,故正确;B、2a2+3a2=5a2,故错误;C、2a+3b不能合并,故错误;D、2a2−3a2=−a2,故错误;故选A.小提示:本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.4、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.5、将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112答案:A分析:观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,1)表示的数,然后得出(15,10)表示的数即可.解:因为(1,1)表示的数是:1,(2,1)表示的数是:1+1=2,(3,1)表示的数是:1+1+2=4,(4,1)表示的数是:1+1+2+3=7,(5,1)表示的数是:1+1+2+3+4=11,……所以(a,1)表示的数是:1+1+2+3+4+⋯…+(a−1)=1+[1+(a−1)](a−1)2=1+a(a−1)2=a2−a+22,所以(15,1)表示的数是:a 2−a+22=152−15+22=106,所以(15,10)表示的数是:106+10-1=115,故选A.小提示:本题考查了找图形和数字规律,从题目分析发现每一行的第一个数字都等于前面数字的个数再加1是本题的关键.6、下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|答案:C分析:根据去括号法则及绝对值化简依次计算判断即可.解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−|−5|=−5,不符合题意;故选:C.小提示:题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.7、如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400答案:B分析:首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.小提示:本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列去括号正确的是( )A.a2−(2a−b2)=a2−2a−b2B.−(2x−y)−(−x2+y2)=−2x−y+x2−y2C.2x2−3(x−5)=2x2−3x+5D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a答案:D分析:根据去括号法则进行判断即可.解:A.a2−(2a−b2)=a2−2a+b2,故A错误,不符合题意;B.−(2x−y)−(−x2+y2)=−2x+y+x2−y2,故B错误,不符合题意;C.2x2−3(x−5)=2x2−3x+15,故C错误,不符合题意;D.−a3−[−4a2+(1−3a)]=−a3+4a2−1+3a,故D正确,符合题意.故选:D.小提示:本题主要考查了去括号法则,解题的关键是熟练掌握去括号法则,注意括号前面为负号的的将负号和括号去掉后,括号里面的每一项符号要发生改变.10、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.填空题11、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.12、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然;最后根据图形中的后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1)2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1×(1+1);2n=2时,“○”的个数是3=2×(2+1),2n=3时,“○”的个数是6=3×(3+1),2n=4时,“○”的个数是10=4×(4+1),2……∴第n个“○”的个数是n(n+1),2由图形中的“○”的个数和“.”个数差为2022∴3n−n(n+1)2=2022①,n(n+1)2−3n=2022②解①得:无解解②得:n1=5+√162012,n2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13、将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是_______.答案:(10,18)分析:分析每一行的第一个数字的规律,得出第n行的第一个数字为1+(n−1)2,从而求得最终的答案.第1行的第一个数字:1=1+(1−1)2第2行的第一个数字:2=1+(2−1)2第3行的第一个数字:5=1+(3−1)2第4行的第一个数字:10=1+(4−1)2第5行的第一个数字:17=1+(5−1)2…..,设第n行的第一个数字为x,得x=1+(n−1)2设第n+1行的第一个数字为z,得z=1+n2设第n行,从左到右第m个数为y当y=99时1+(n−1)2≤99<1+n2∴(n−1)2≤98<n2∵n为整数∴n=10∴x=1+(n−1)2=82∴m=99−82+1=18所以答案是:(10,18).小提示:本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.14、若关于x、y的多项式27x2y−9mxy−38y3−3xy+2化简后不含二次项.则m=________.答案:−13分析:首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.解:27x2y−9mxy−38y3−3xy+2=2 7x2y−38y3−(9m+3)xy+2,∵化简后不含二次项,∴9m+3=0,解得m=−13,所以答案是:−13.小提示:此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.15、在代数式3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有___________个.答案:3分析:根据单项式的定义,进行逐一判断即可.解:在3xy2,m,6a2−a+3,12,4x2yzx−15xy2,23ab中,单项式有3xy2,m,12,一共3个,所以答案是:3.小提示:本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.解答题16、化简:(9x−3)−2(x+1)(1)13(2)(3a2b−ab2)−(ab2+3a2b)答案:(1)x−3;(2)−2ab2分析:(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.解:(1)原式=3x−1−2x−2=3x−2x−2−1=x−3(2)原式=3a2b−ab2−ab2−3a2b=3a2b−3a2b−ab2−ab2=−2ab2小提示:本题考查的整式的加减运算,掌握去括号,合并同类项是解题的关键.17、已知多项式A=2x2+my−12,B=nx2−3y+6.(1)若(m+2)2+|n−3|=0,化简A−B;(2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.答案:(1)−x2+y−18,(2)-5分析:(1)根据非负数的性质求出m、n,再计算A-B即可;(2)先计算A+B,再根据不含x2项以及y项,得出m、n的值,代入即可.解:(1)∵(m+2)2+|n−3|=0,∴m+2=0,n−3=0,解得,m=−2,n=3,∴A=2x2−2y−12,B=3x2−3y+6,A−B=2x2−2y−12−(3x2−3y+6),=2x 2−2y −12−3x 2+3y −6,=−x 2+y −18.(2)A +B =2x 2+my −12+(nx 2−3y +6),=(2+n)x 2+(m −3)y −6,∵结果中不含有x 2项以及y 项,∴2+n =0,m −3=0,解得,n =−2,m =3,把n =−2,m =3代入,m +n +mn =3−2+3×(−2)=−5.小提示:本题考查了非负数的性质和整式的加减以及代数式求值,解题关键是能够根据非负数的性质或多项式不含某一项确定字母系数的值,并能熟练应用整式加减的法则进行计算.18、如图,一个点从数轴上的原点开始,先向左移动3cm 到达A 点,再向右移动4cm 到达B 点,然后再向右移动72cm 到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ?(4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA −CB 的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA −CB 的值.答案:(1)见解析(2)152(3)经过32或72秒后点A 到点C 的距离为3cm(4)BA −CB 的值不会随着t 的变化而变化,BA −CB =12分析:(1)根据题意,在数轴上表示点A 、B 、C 的位置即可;(2)利用数轴上两点间的距离公式解题;(3)分两种情况讨论:点A 在点C 的左侧或点A 在点C 的右侧;(4)表示出BA 、CB ,再相减即可解题.(1)解:由题意得:A 点对应的数为−3,B 点对应的数为1,点C 对应的数为92, 点A ,B ,C 在数轴上表示如图:(2)解:设原点为O ,如图,∴OA =3,OC =92,∴AC =OA +OC =152. 所以答案是:152.(3)解:①当点A 在点C 的左侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:152−3x =3,解得:x =32.②当点A 在点C 的右侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:3x −152=3,解得:x =72. 综上,经过32或72秒后点A 到点C 的距离为3cm .(4)解:BA −CB 的值不会随着t 的变化而变化,BA −CB =12. 由题意:AB =4cm ,CB =72cm , ∵移动t 秒后,AB =4+t +4t =(4+5t )cm ,CB =9t −4t +72=(5t +72)cm ,∴BA −CB =(4+5t )−(5t +72)=12.∴BA −CB 的值不会随着t 的变化而变化,BA −CB =12.小提示:本题考查数轴、数轴上两点间的距离等知识,是重要考点,掌握相关知识是解题关键.。

人教版数学七年级上册 整式的加减

人教版数学七年级上册   整式的加减

整式的加减(一)——合并同类项(基础)【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=14.已知35414527m n ab pa b a b ++-=-,求m+n -p 的值.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4 二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++-(3)2222630.835m n mn mn n m mn n m --+--(4)33331()2()()0.5()3a b a b b a a b +-+-+-+17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.。

2024年初一数学上册整式的加减知识点

2024年初一数学上册整式的加减知识点

2024年初一数学上册整式的加减知识点由数、表示数的字母和运算符号组成的数学表达式。

(运算符号指加、减、乘、除、乘方、开方)注:单独的一个数或者字母也是代数式,且代数式不包含(约、不)等于、大于(等于)、小于(等于)这些符号。

书写规则:1、与字母相乘用·或省略,例如:a·b/ab、4·a/4a。

2、数字在字母前面且数字1可省略,例如:b、9a。

3、带分数要化成假分数。

4、两式相除要写成分数形式。

5、后面有单位,包含加减的代数式应加上括号,例如:(3a+5b)米。

例1请找出所有的代数式:(1)1,(2)a,(3)a+b,(4)x/2,(5)x²y+y²x,(6)3>2,(7)3+2=5,(8)a+b=2,(9)m 米,(10)x+1/x,(11)根号x,(12)(m+n)/(m-n)。

答案:(1)(2)(3)(4)(5)(10)(11)(12)例2请在下列各式中找出不符合代数式书写要求的式子:(1)2又2/3x,(2)2×x,(3)x20%,(4)4a÷3b,(5)-7m²n/3,(6)4÷(y-5)。

答案:(1)(2)(3)(4)(6)整式知识点拨:概念单项式整式包含和。

单项式数字与字母相乘或字母与字母相乘的式子。

单项式的系数是其数字因数(包含符号);单项式的次数是其所有字母的指数之和。

注:单独的一个数字或者字母是单项式,但字母间加减、字母在分母位置、字母在根号下方的都不是单项式。

多项式由几个单项式相加组成的代数式。

多项式的项是其中的每一个单项式,不含字母的叫做常数项;多项式的次数是里面次数最高项的次数。

例11、请找出下列式子中的单项式:(1)-(3/2)a²bc,(2)-Πr²,(3)1/x,(4)(x+1)/2,(5)2,(6)c,(7)根号y,(8)-y²/3y,(9)(1-根号2)米。

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点数学七年级上册整式的加减知识点主要包括以下内容:1. 整式的加法和减法:整式是由常数和字母按照乘法运算符号连接起来的表达式。

整式的加法和减法是指将同类项相加或相减,并保留结果中的同类项。

例如,对于整式3x^2 + 2xy + 5和2x^2 - 3xy + 6,进行加法运算时,将同类项相加得到:(3x^2 + 2xy + 5) + (2x^2 - 3xy + 6) = 5x^2 - xy + 11。

2. 合并同类项:在整式中,有时会出现相同的字母的幂次相同的项,这些项叫做同类项。

进行整式的加减运算时,需要将同类项合并,即将同类项的系数相加或相减,并保留相同的字母和幂次。

例如,对于整式2x^2 + 3x^2 + 4x^2,将同类项合并得到:2x^2 + 3x^2 + 4x^2 = 9x^2。

3. 去括号:在整式的加减运算中,如果遇到括号,需要先去括号。

可以使用分配律进行括号的去除。

例如,对于整式2(x + y) - 3x(x - y),可以先去括号得到:2(x + y) = 2x + 2y,-3x(x - y) = -3x^2 + 3xy,然后再进行合并同类项或简化运算。

4. 提取公因式:在整式的加减运算中,如果遇到相同的公因式,可以将公因式提取出来。

公因式是指能够整除所有同类项的因式。

例如,对于整式4x^2 + 6xy,可以提取公因式2得到:4x^2 + 6xy = 2(2x^2 + 3xy)。

5. 消去同类项:在整式的加减运算中,如果遇到相反数的同类项,可以互相消去。

相反数是指具有相同绝对值但符号相反的数。

例如,对于整式5x + 2y - 3x - 2y,可以将同类项5x和-3x互相消去,将2y和-2y互相消去,最终得到:5x + 2y - 3x - 2y = 2x。

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

1.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 3.下列计算正确的是( ) A .﹣1﹣1=0 B .2(a ﹣3b )=2a ﹣3b C .a 3﹣a=a 2D .﹣32=﹣9D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2 C .3 D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2 C .3 D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值. 10.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B . 14.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.15.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B .本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65. 故答案为65.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.5.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a 【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a . 考点:列代数式.7.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可. 【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6. 【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.1.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.2.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.3.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

初中数学七年级上册《整式及其加减》知识点总结

初中数学七年级上册《整式及其加减》知识点总结

初中数学七年级上册《整式及其加减》知识点总结一、基本概念1、单项式(1)由数与字母的乘积组成的代数式称为单项式, 单独一个数或一个字母也是单项式。

(2) 单项式中的数字因数叫做这个单项式的系数,单项式中所有字母的指数和叫做这个单项式的次数。

①单项式只含有乘法,包括乘方和以数字做除数的除法,即单项式的字母不能含有字母。

②圆周率π是常数,即π的系数是π,次数是0。

③当一个单项式的系数是1或-1时,“1”通常省略不写。

④单项式次数只与字母指数有关。

2、多项式(1)几个单项式的和叫做多项式。

(2)每个单项式叫做多项式的项。

其中,不含字母的项,叫做常数项。

(3)一个多项式含有几项,就叫几项式。

多项式里,次数最高项的次数,就是这个多项式的次数。

①多项式的次数不是所有项的次数之和,而是所含项的次数最高者决定的。

②多项式的每一项都包括它前面的符号。

③多项式不能出现以字母为除数的项。

3、整式(单项式与多项式统称整式)4、(补充)降幂排列与升幂排列(1)把一个多项式的各项按照某个字母的指数从大到小的顺序排列,叫做降幂排列。

(2)把一个多项式的各项按照某个字母的指数从小到大的顺序排列,叫做降幂排列。

①重新排列多项式时,每一项一定要连同它的符号一起移动;②含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。

5、同类项所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。

所有的常数项都是同类项。

①判断同类项有两条标准:一是字母完全相同,二是相同字母的指数相同。

②同类项与所含字母的顺序无关。

③在决定两个单项式是否是同类项时,系数不起作用。

6、合并同类项(1)把多项式中的同类项合并成一项,叫做合并同类项。

(2)合并同类项的法则:①只有同类项才能进行合并。

②一般来说,计算过程中同类项必须合并,计算结果中不能有同类项存在。

7、去括号法则法则(1)(2)①括号前有系数时,应先用分配律把系数与括号内的每一项相乘,再去括号。

人教版数学七年级上册-整式的加减

人教版数学七年级上册-整式的加减

整式的加减(二)—去括号与添括号(基础)【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d -2(3a -2b+3c );(2)-(-xy -1)+(-x+y ).举一反三【变式1】去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m );(3). 2(a -2b )-3(2m -n ).【变式2】(2015•济宁)化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.类型三、整式的加减3.(2014秋•上杭县校级月考)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x 2+y 2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 . 【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项. 类型四、化简求值4. 先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?举一反三【变式1】先化简再求值:(-x 2+5x+4)+(5x -4+2x 2),其中x =-2.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.5. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值.6. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【巩固练习】一、选择题1.(2015•江西模拟)计算:a ﹣2(1﹣3a )的结果为( )A . 7a ﹣2B . ﹣2﹣5aC . 4a ﹣2D . 2a ﹣22.下列各式中,去括号正确的是( )A .x +2(y -1)=x +2y -1B .x -2(y -1)=x +2y +2C .x -2(y -1)=x -2y -2D .x -2(y -1)=x -2y +23.计算-(a -b )+(2a+b )的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对4. (2010·山西)已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) .A .-5x -1B .5x+1C .-13x -1D .13x+15.代数式2332333103(2)(672)x y x x y x y x y x --++--+的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关6.如图所示,阴影部分的面积是( ).A .112xy B .132xy C .6xy D .3xy 二、填空题7.添括号:(1).331(___________)3(_______)p q q -+-=+=-.(2).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.8.(2015•镇江一模)化简:5(x ﹣2y )﹣4(x ﹣2y )=________.9.若221m m -=则2242008m m -+的值是________.10.m =-1时,-2m 2-[-4m+(-m )2]=________.11.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a -(b -c )]的值是________.12.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中由________个基础图形组成.三、解答题13. 化简 (1). 2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1)(2). 22222323xy xy y x y x -++-(3). m n mn m n mn mn n m 222238.0563--+--(4). )45(2)2(32222ab b a ab b a ---(5).(6).14.化简求值:(1). 已知:2010=a ,求)443()842()33(232332-+++-++-+--a a a a a a a a a 的值.(2). 2222131343223a b a b abc a c a c abc ⎡⎤⎛⎫------ ⎪⎢⎥⎝⎭⎣⎦,其中a = -1, b = -3, c = 1.(3). 已知3532++y x 的值是6,求代数式 71494322-++--y x y x 的值.。

七年级数学上册第二章整式的加减知识点整理

七年级数学上册第二章整式的加减知识点整理

第二章整式的加减一、整式单项式的概念:表示数或字母的积的代数式,叫做单项式,特别地,单独一个数或一个字母也叫做单项式。

1.任意个字母和数字的积(除法中有:除以一个数等于乘这个数的倒数)。

2.一个字母或数字也叫单项式。

3.分母中不含未知数的积的式子叫做单项式注意:单独一个数或一个字母也是单项式,2πr中2π是单项式的系数,单项式的次数。

单项式的系数:是指单项式中的数字因数;(如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1)单项数的次数:是指单项式中所有字母的指数的和(如果一个单项式,只含有数字因数,那么它的次数为0)多项式:由若干个单项式的和组成的代数式。

多项式中每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。

它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

单项式和多项式统称为整式。

二、整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。

与字母前面的系数(≠0)无关。

同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

整式加减的一般步骤:1、如果遇到括号按去括号法则先去括号.2、结合同类项.3、合并同类项三、整式的乘法法则 :单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学知识点:整式的加减
一、目标与要求
1理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。

在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

二、重点
单项式及其相关的概念;
多项式及其相关的概念;
去括号法则,准确应用法则将整式化简。

三、难点
区别单项式的系数和次数;
区别多项式的次数和单项式的次数;
括号前面是“-”号去括号时,括号内各项变号容易产生错误。

四、知识框架
五、知识点、概念总结
1单项式:在代数式中,若只含有乘法运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式。

2系数:单项式中的数字因数叫做这个单项式的系数。

所有字母的指数之和叫做这个单项式的次数。

任何一个非零数的零次方等于1
3多项式:几个单项式的和叫多项式。

4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

常数项:不含字母的项叫做常数项。

6多项式的排列
把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7多项式的排列时注意:
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

有两个或两个以上字母的多项式,排列时,要注意:
a先确认按照哪个字母的指数来排列。

b确定按这个字母向里排列,还是向外排列。

整式:
单项式和多项式统称为整式。

8多项式的加法:
多项式的加法,是指多项式的同类项的系数相加。

9同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

1掌握同类项的概念时注意:
判断几个单项式或项,是否是同类项,就要掌握两个条:
①所含字母相同。

②相同字母的次数也相同。

同类项与系数无关,与字母排列的顺序也无关。

所有常数项都是同类项。

12合并同类项步骤:
准确的找出同类项;
逆用分配律,把同类项的系数加在一起,字母和字母的指数不变;
写出合并后的结果。

13在掌握合并同类项时注意:
如果两个同类项的系数互为相反数,合并同类项后,结果为0;
不要漏掉不能合并的项;
只要不再有同类项,就是结果。

14整式的拓展
整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。

乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握因此,乘法公式的灵活运用是难点,添括号时,括号中符号的处理是另一个难点。

添括号是对多项式的变形,要根据添括号的法则进行。

在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。

整式四则运算的主要题型有:
单项式的四则运算
此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。

单项式与多项式的运算
此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。

相关文档
最新文档