滤波器详细分类

合集下载

什么是滤波器及其分类

什么是滤波器及其分类

什么是滤波器及其分类滤波器是一种用于处理信号的电子设备或电路,它可以通过改变信号的频率特性来实现信号的滤波作用。

滤波器的分类主要根据其频率特性、传递函数或滤波方式等方面进行。

下面将详细介绍滤波器的分类。

一、基本滤波器分类1. 低通滤波器(Low-Pass Filter,LPF)低通滤波器主要用于通过滤除高于截止频率的信号成分,而保留低于截止频率的信号成分。

它常用于去除高频噪音,使信号更加平滑。

2. 高通滤波器(High-Pass Filter,HPF)高通滤波器主要用于通过滤除低于截止频率的信号成分,而保留高于截止频率的信号成分。

它常用于去除低频杂音,提取出信号的高频部分。

3. 带通滤波器(Band-Pass Filter,BPF)带通滤波器主要用于通过滤除低于截止频率和高于截止频率的信号成分,而保留在截止频率范围内的信号成分。

它常用于对特定频带的信号进行提取和处理。

4. 带阻滤波器(Band-Stop Filter,BSF)带阻滤波器主要用于通过滤除在截止频率范围内的信号成分,而保留低于和高于截止频率范围的信号成分。

它常用于去除特定频带的干扰信号。

二、进一步分类1. 无源滤波器和有源滤波器无源滤波器是指由被动元件(如电阻、电容、电感)构成的滤波器,它不能放大信号。

有源滤波器是指由有源元件(如晶体管、运算放大器)与被动元件相组合构成的滤波器,它可以放大信号。

2. 数字滤波器和模拟滤波器数字滤波器是指基于数字信号处理技术实现的滤波器,它对信号进行采样和离散化处理。

模拟滤波器是指直接对连续信号进行滤波处理的滤波器。

3. 激励响应滤波器和无限冲激响应滤波器激励响应滤波器是指根据滤波器被激励时的响应特性进行分类。

无限冲激响应滤波器是指滤波器的冲激响应为无限长序列的滤波器。

总结滤波器是一种用于调节信号频率特性的重要电子设备或电路。

根据滤波器的频率特性、传递函数或滤波方式的不同,可以将滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器基本知识介绍

滤波器基本知识介绍
滤波器基本知识介绍
contents
目录
• 滤波器概述 • 滤波器的工作原理 • 常见滤波器类型 • 滤波器的设计 • 滤波器的应用 • 滤波器的发展趋势与未来展望
01
滤波器概述
滤波器的定义
01
滤波器是一种电子设备,用于将 输入信号中的特定频率成分提取 或抑Biblioteka ,从而改变信号的频谱。02
滤波器通常由电感器和电容器组 成的网络构成,通过调整元件的 参数和连接方式,可以实现对不 同频率信号的选择性处理。
滤波器的传递函数可以通过系统的差分方程来计算,也可以 通过系统的状态方程来计算。传递函数的特性决定了滤波器 的性能和行为,因此在进行滤波器设计时,需要仔细考虑传 递函数的特性,以确保滤波器的性能符合要求。
03
常见滤波器类型
低通滤波器
总结词
允许低频信号通过,抑制高频信号的滤 波器
VS
详细描述
低通滤波器(Low Pass Filter, LPF)是一 种让低频信号通过而抑制高频信号的电路 或系统。其作用是降低信号中的高频噪声, 保留低频或直流分量。在频域上,低通滤 波器表现为一个下凹的频率响应曲线,其 截止频率(f0)是滤波器开始显著降低的 频率点。
带通滤波器
总结词
允许一定频率范围内的信号通过,抑制其他频率信号的滤波器
详细描述
带通滤波器(Band Pass Filter, BPF)是一种允许特定频率范围内的信号通过,抑制该范围外信号的电路或系统。 在频域上,带通滤波器表现为一个有一定带宽和中心频率的频率响应曲线。带通滤波器在通信、雷达、音频处理 等领域有广泛应用。
图像平滑
频域变换
通过滤波器降低图像中的噪声,改善 图像质量。
通过滤波器对图像进行频域变换,实 现图像压缩、加密等处理。

滤波器分类及原理

滤波器分类及原理

滤波器原理(模拟滤波)滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。

在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。

广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。

因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。

因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。

按照滤波器处理信号的性质分为,模拟滤波器和数字滤波器。

本文所述内容属于模拟滤波范围。

主要介绍模拟滤波器(连续时不变系统)原理、种类、数学模型、主要参数、RC滤波器设计。

尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。

一、滤波器分类⒈根据滤波器的选频作用分类⑴低通滤波器从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

⑵高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。

它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

⑶带通滤波器它的通频带在f1~f2之间。

它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

⑷带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。

它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

低通滤波器与高通滤波器的串联低通滤波器与高通滤波器的并联⒉根据“最佳逼近特性”标准分类⑴巴特沃斯滤波器从幅频特性提出要求,而不考虑相频特性。

滤波器的分类

滤波器的分类

滤波器的分类
————————————————————————————————作者:————————————————————————————————日期:
滤波器的分类
按所处理的信号分为模拟滤波器和数字滤波器两种。

按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

1.低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声;
2.高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量;
3.带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声;
4.带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

按所采用的元器件分为无源和有源滤波器两种。

数字滤波器的分类方法

数字滤波器的分类方法

数字滤波器的分类方法
数字滤波器是一种能够对数字信号进行处理和改变其频率特征
的工具,它们可以在数字信号处理领域中起到重要作用。

数字滤波器可以按照不同的分类方法进行划分,下面将介绍一些常见的分类方法。

1. 按照时域特性分类
根据数字滤波器的时域特性,可以将其分为两类:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR滤波器的时域响应是有
限长度的,因此其具有线性相位特性;而IIR滤波器的时域响应是无限长度的,因此其通常具有非线性相位特性。

2. 按照传递函数分类
根据数字滤波器的传递函数,可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器允许低频信号通过,而阻止高频信号;高通滤波器则允许高频信号通过,而阻止低频信号;带通滤波器能够通过一定范围内的频率信号,而阻止其他频率信号;带阻滤波器则能够阻止一定范围内的频率信号,而通过其他频率信号。

3. 按照滤波器的性质分类
根据数字滤波器的性质,可以将其分为线性滤波器和非线性滤波器。

线性滤波器是指其输出与输入之间存在线性关系,包括FIR和IIR滤波器;非线性滤波器则是指其输出与输入之间存在非线性关系,如中值滤波器等。

4. 按照实现方式分类
根据数字滤波器的实现方式,可以将其分为时域滤波器和频域滤波器。

时域滤波器是指在时域上对数字信号进行直接处理,如FIR和IIR滤波器;而频域滤波器则是指将数字信号通过傅里叶变换转化为频域信号,进而进行处理,如FFT滤波器等。

总之,数字滤波器的分类方法有很多种,不同的分类方法可以针对不同的问题和应用场景进行选择。

第三章 滤波器

第三章 滤波器

3.1 滤波器的分类:
一. 按是否使用有源器件分:无源滤波器、有源滤波器
有源滤波器实际上是一种具有特定频率响应的放大器。 是指用晶体管或运放构成的包含放大和反馈的滤波 器。 特点: 需要工作电压。
无源滤波器指用电容、电感、电阻组成的滤波器。
特点: 需要工作电压。
(一). 无源滤波器
1. 一阶RC低通滤波器(无源)
n阶巴特沃思低通滤波器的传递函数可写为:
A0 A0 A(S ) n B(S ) S an1 S n1 a1 S a0
jw S 为归一化复频率 S wc
;B ( S ) 为巴特沃思多项式;
an1 , a1 , a0 为多项式系数
高通有源滤波器
1.一阶有源高通滤波器
Rf R1
u (
R 1 R j C
)ui (
1 1 1 j RC
)ui
u- u+
ui
C
∞ - A + +
uo
uo (1
Rf R1
)u AO u
R
AO uO Rf 1 ) 传递函数: A (1 )( ) ( L R1 1 j L ui 1 j
二.按通带和阻器(HPF) 带通滤波器(BPF) 带阻滤波器(BEF)
各种滤波器理想的幅频特性:
(1)低通 |A| A0 0 通带 阻带 ωC ω (2)高通 |A| A0 0 通带 阻带 ωC ω
(3)带通 |A| A0 阻 阻 通 ωC2 0 ωC1 ω
① 根据“虚短”:
i2
i1 + us _
R1 1
_ +

+

滤波器分类及原理

滤波器分类及原理

滤波器原理滤波器是一种选频装置,可以使信号中特定的频率成分通过, 而极大地衰减其它频率成 分。

在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。

广义地讲,任何一种信息传输的通道 (媒质)都可视为是一种滤波器。

因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。

因此,构成测试系统的任何一个环节,诸如机械系统、电气网 络、仪器仪表甚至连接导线等等, 都将在一定频率范围内, 按其频域特性, 对所通过的信号进行变换与处理。

本文所述内容属于模拟滤波范围。

主要介绍模拟滤波器原理、种类、 数学模型、主要参数、RC 滤波器设计。

尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。

带通滤波器二、滤波器分类1.根据滤波器的选频作用分类⑴低通滤波器低通滤波器和高通滤波器是滤波器的两种最基本的形式, 其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高 通滤波器的并联为带阻滤波器。

从0〜f2频率之间,幅频特性平直,它 可以使信号中低于f2的频率成分几乎不受衰 减地通过,而高于f2的频率成分受到极大地 衰减。

⑵高通滤波器 与低通滤波相反,从频率 fl 〜8,其幅 频特性平直。

它使信号中高于fl 的频率成分 几乎不受衰减地通过,而低于f 1的频率成分 将受到极大地衰减。

⑶带通滤波器 它的通频带在fi 〜f2之间。

它使信号中 高于fi 而低于f2的频率成分可以不受衰减地 通过,而其它成分受到衰减。

⑷带阻滤波器 与带通滤波相反,阻带在频率 右〜f 2之间。

衰减,其余频率成分的信号几乎不受衰减地通过。

带通滤豉器 ,JE=jp ........... 0 fl f 低通滤披器高通滤波器Q f ] 它使信号中高于 fi 而低于f2的频率成分受到带阻滤波器 0 flf2 f低通滤波器与高通滤波器的串联低通滤波器与高通滤波器的并联2.根据最佳逼近特性”标准分类⑴巴特沃斯滤波器从幅频特性提出要求,而不考虑相频特性。

数字滤波器的分类方法

数字滤波器的分类方法

数字滤波器的分类方法
数字滤波器是一种将数字信号进行滤波的工具,它可以按照不同的方式进行分类。

以下是数字滤波器的分类方法:
1. 根据滤波器的传递函数分类
数字滤波器可以根据其传递函数的类型进行分类,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器可以通过将高频成分滤除来保留低频信号,而高通滤波器则相反。

带通滤波器可以通过选择一定范围的频率来保留中间频率的信号,而带阻滤波器则可以通过去除某个频率范围内的信号来达到滤波效果。

2. 根据滤波器的实现方式分类
数字滤波器可以根据其实现方式进行分类,包括IIR滤波器和FIR滤波器。

IIR滤波器是基于递归式的计算方式,能够实现高效的滤波功能,但可能存在不稳定性和相位失真等问题。

FIR滤波器则是基于非递归式的计算方式,能够实现线性相位和稳定的滤波效果。

3. 根据滤波器的响应特性分类
数字滤波器可以根据其响应特性进行分类,包括线性相位和非线性相
位滤波器。

线性相位滤波器能够保持信号的相位特性,而非线性相位滤波器则可能会引入相位失真的问题。

4. 根据滤波器的滤波器系数类型分类
数字滤波器可以根据其滤波器系数的类型进行分类,包括有限字长和无限字长滤波器。

有限字长滤波器在计算中需要考虑计算精度的问题,可能会引入误差,而无限字长滤波器则不存在这个问题。

总的来说,数字滤波器的分类方法有很多种,不同的分类方法可以帮助我们更好地理解数字滤波器的特性和应用。

(完整版)滤波器的分类及特点

(完整版)滤波器的分类及特点

滤波器的分类按元件分类,滤波器可分为:有源滤波器、无源滤波器、陶瓷滤波器、晶体滤波器、机械滤波器、锁相环滤波器、开关电容滤波器等。

按信号处理的方式分类,滤波器可分为:模拟滤波器、数字滤波器。

按通频带分类,滤波器可分为:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

除此之外,还有一些特殊滤波器,如满足一定频响特性、相移特性的特殊滤波器,例如,线性相移滤波器、时延滤波器、音响中的计杈网络滤波器、电视机中的中放声表面波滤波器等。

按通频带分类,有源滤波器可分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)等。

按通带滤波特性分类,有源滤波器可分为:最大平坦型(巴特沃思型)滤波器、等波纹型(切比雪夫型)滤波器、线性相移型(贝塞尔型)滤波器等。

按运放电路的构成分类,有源滤波器可分为:无限增益单反馈环型滤波器、无限增益多反馈环型滤波器、压控电源型滤波器、负阻变换器型滤波器、回转器型滤波器等。

有源滤波器的特点及分类1.有源滤波器的特点有源滤波器的频率范围是由直流到500KHZ,在低频范围内已取代了传统的LC滤波器。

特别是在很低频率下不可能实现LC滤波器,但有源滤波器却能给出满意的结果.1、有源滤波器它的输入阻抗高,输出阻抗极低,因而具有良好的隔离性能,所以各级之间均无阻抗匹配的要求。

2、易于制作截止频率或中心频率连续可调的滤波器且调整容易.3、如果使用电位器、可变电容器,有源滤波器的频率精度易于达到0。

5%。

4、不用电感器,体积小、重量轻,在低频情况下,这种优点就更极为突出。

5、设计有源滤波器比设计LC滤波器具灵活性,也可得到电压增益.但是应当注意,有源滤波器以集成运放作有源元件,所以一定要电源,输入小信号时受运放带宽有限的限制,输入大信号时受运放压摆率的限制,这就决定了有源滤波器不适用于高频范围。

目前实用范围大致在100KHZ以内,另一方面,在频率高于100KHZ时,无源滤波器的性能却比有源滤波器的好,当频率高于10MHZ时,无源滤波器则更显得优越。

数字滤波器

数字滤波器

数字滤波器
数字滤波器是一种用于数字信号处理的算法或电路,用于
在数字信号中去除或改变一些频率分量或噪声。

数字滤波
器可以根据其频率响应和实现方式进行分类。

以下是一些
常见的数字滤波器类型:
1. FIR滤波器:有限脉冲响应滤波器,是通过乘以系数的方式实现的。

它的频率响应是线性相位的,可以通过更改滤
波器的系数来实现不同的频率响应。

2. IIR滤波器:无限脉冲响应滤波器,是通过差分方程实现的。

IIR滤波器具有反馈回路,可以实现更复杂的频率响应,但可能会引起稳定性问题。

3.低通滤波器:将高频信号滤除,只保留频率低于某个截止频率的信号。

4.高通滤波器:将低频信号滤除,只保留频率高于某个截止频率的信号。

5.带通滤波器:只允许某个频率范围内的信号通过,滤除其他频率范围的信号。

6.带阻滤波器:滤除某个频率范围内的信号,允许其他频率范围的信号通过。

7.升采样和降采样滤波器:用于改变数字信号的采样率。

这只是一些常见的数字滤波器类型,实际上还有很多其他类型的滤波器。

选择适当的数字滤波器取决于信号处理的需求和系统要求。

滤波器分类

滤波器分类

用于频谱分析装置中的滤波器组,根据带通滤波器中心频率与带宽之间的数值关系,可分为两种:
1、恒带宽比滤波器
中心频率与带宽的比值(品质因数)是不变的,称为恒带宽比带通滤波器,优点是用较少的带通滤波器个数就可以覆盖较大的频率范围,缺点是中心频率越高,带宽也越宽,高频滤波性能下降。

恒带宽比带通滤波器为使各个带通滤波器组合起来后能覆盖整个要分析的信号频率范围,其带通滤波器组的中心频率是倍频程关系,同时带宽是邻接式的,通常的做法是使前一个滤波器的上截止频率与后一个滤波器的下截止频率相一致,如下图所示。

这样的一组滤波器将覆盖整个频率范围,称之为“邻接式”的。

2、恒带宽滤波器
带宽B不随中心频率而变化,称为恒带宽带通滤波器,其优点
是不论带通滤波器的中心频率处在任何频段上,带宽都相同,即分辨率不随频率变化,缺点是在覆盖频率范围相同的情况下,要比恒带宽比滤波器使用较多的带通滤波器。

有源电力滤波器apf分类

有源电力滤波器apf分类

有源电力滤波器apf分类有源电力滤波器(Active Power Filter,APF)是一种能够有效抑制电力系统谐波干扰的设备。

它通过对电网电流进行实时监测、计算并控制其输出电流,从而消除谐波电流,改善电力质量。

APF根据其控制策略和电源连接方式可以分为多种分类。

本文将详细介绍三种常见的APF分类,包括电压型、电流型和混合型。

1. 电压型APF:电压型APF是以电压为基准进行控制的滤波器。

它通过监测电网电压,计算出理想电流,并控制逆变器输出电流与电网电压保持同相,以使其输出电流具有滤除谐波电流的能力。

电压型APF主要用于电网电压波动较大的场合,例如低压电网、发电机等,它能够在电网电压波动时及时调整输出电流以适应电网变化。

2. 电流型APF:电流型APF是以电流为基准进行控制的滤波器。

它通过监测电网电流,计算出理想电流,并控制逆变器输出电流与电网电流保持同相和同幅,以实现对谐波电流的补偿。

电流型APF主要用于电网电流谐波干扰较大的场合,例如有大量非线性负载的电网,它能够根据电网实际情况灵活调整输出电流,有效抑制谐波电流对电网的影响。

3. 混合型APF:混合型APF是电压型APF和电流型APF的结合。

它综合考虑电压和电流两个因素,通过根据电网的实际情况调整输出电流的相位和幅值,以最大程度地减小谐波电流的影响。

混合型APF灵活性和适应性较强,能够在不同的电网环境下发挥较好的滤波效果。

总结起来,电压型APF适用于电网电压波动较大的场合,电流型APF适用于电网电流谐波干扰较大的场合,而混合型APF则能够在不同的电网环境下灵活应用。

这些不同类型的APF都能够有效地抑制电力系统中的谐波干扰,提高电力质量,保证电网稳定运行。

随着电力质量要求的不断提高,APF在电力系统中的应用将越来越广泛。

滤波器基本知识介绍研究

滤波器基本知识介绍研究

滤波器基本知识介绍研究滤波器(Filter)是一种用于信号处理的设备或算法,用于去除或改变信号中的一些频率成分。

在信号处理领域,滤波器是非常重要的工具,用于调整频率响应,降低噪声,去除干扰,改善信号质量等。

本文将介绍滤波器的基本概念、分类和应用。

滤波器可以分为模拟滤波器和数字滤波器两种类型。

模拟滤波器是基于模拟信号进行处理,常见的有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

模拟滤波器一般采用电容、电感和电阻等元件进行搭建,输出信号为连续时间信号。

近年来,随着数字信号处理技术的发展,数字滤波器在信号处理中应用更为广泛。

数字滤波器是用数字计算方法实现的滤波器,输入和输出信号都是离散时间信号。

数字滤波器可以进一步分为时域滤波器和频域滤波器两大类。

时域滤波器是一种基于时间域进行信号处理的滤波器,常见的有移动平均滤波器、中值滤波器和高斯滤波器等。

时域滤波器通过对信号的采样值进行处理,利用不同的窗口函数进行信号平滑、去噪或者增强等。

频域滤波器是一种基于频域进行信号处理的滤波器,常见的有傅立叶滤波器、巴特沃斯滤波器和数字陷波器等。

频域滤波器通常使用傅立叶变换将信号转换到频域,对频谱进行处理后再进行反变换得到滤波后的信号。

在实际应用中,滤波器有广泛的应用,以下是几个典型的应用领域:1.通信系统:滤波器用于基带信号处理、信道等效滤波和射频滤波等,以提高通信质量。

2.音频处理:滤波器用于音频信号去噪、音频增强和音频分析等,以提高听觉体验。

3.传感器信号处理:滤波器用于传感器信号去噪、滤除干扰和提取特征等,以改善信号质量和准确性。

4.图像处理:滤波器用于图像平滑、边缘检测和图像增强等,以达到图像去噪和增强的效果。

总之,滤波器是信号处理领域中一种非常重要的工具,通过去除或改变信号中的一些频率成分,可以实现信号的去噪、平滑、增强等处理效果。

滤波器的种类繁多,根据实际需求选择合适的滤波器类型和参数对信号进行处理,可以提高信号质量和改善应用效果。

滤波器分类及原理

滤波器分类及原理

滤波器原理(模拟滤波)滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。

在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。

广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。

因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。

因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。

按照滤波器处理信号的性质分为,模拟滤波器和数字滤波器。

本文所述内容属于模拟滤波范围。

主要介绍模拟滤波器(连续时不变系统)原理、种类、数学模型、主要参数、RC滤波器设计。

尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。

一、滤波器分类⒈根据滤波器的选频作用分类⑴低通滤波器从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

⑵高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。

它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

⑶带通滤波器它的通频带在f1~f2之间。

它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

⑷带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。

它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

低通滤波器与高通滤波器的串联低通滤波器与高通滤波器的并联⒉根据“最佳逼近特性”标准分类⑴巴特沃斯滤波器从幅频特性提出要求,而不考虑相频特性。

滤波器基本知识介绍

滤波器基本知识介绍

按所采用的元器件
按所采用的元器件分为无源和有源滤波器两种. 无源滤波器 无源滤波器仅由无源元件(R、L 和C)组成的滤波器它是 利用电容和电感元件的电抗随频率的变化而变化的原理构成 的.这类滤波器的优点是:电路比较简单,不需要直流电源供 电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应 比较明显,使用电感元件时容易引起电磁感应,当电感L较大 时滤波器的体积和重量都比较大,在低频域不适用.
滤波器设计
滤波器特性可以用其频率响应来描述,按其特性的不同, 可以分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器 等. 用来说明滤波器性能的技术指标主要有: 中心频率f0,即工作频带的中心頻率 带宽BW 通带衰减,即通带内的最大衰减 阻带衰减 最小插入衰减. 现代滤波器设计,多是采用滤波器变换的方法加以实现. 主要是通过对低通原型滤波器进行频率变换与阻抗变换,来 得到新的目标滤波器.
数字滤波器特性(1)
数字滤波器具有比模拟滤波器更无法达到的性能。 数字滤波器相比模拟滤波器有更高的信噪比.这主要是因为 数字滤波器是以数字器件执行运算,从而避免了模拟电路中 噪声(如电阻热噪声)的影响。 数字滤波器还具有模拟滤波器不能比拟的可靠性。组成模 拟滤波器的电子元件的电路特性会随着时间、温度、电压的 变化而漂移,而数字电路就没有这种问题。
图2 不同的滤波器适应的频率范围
常用滤波器的特点介绍
SAW的工作频率最高.陶瓷滤波器最低;
晶体滤波器的相对带宽最窄,而SAW可窄可宽; 均有一定的插入损耗,特别是多级级联实现良好的矩形系
数要求是,插入损耗会更大. 使用这些滤波器时需要注意的是: 所有的这些滤波器特性,均是在输入输出匹配的条件下测得 的,因此使用时必须注意滤波器的前后的阻抗匹配. 滤波器有一定的插入损耗,它与放大器相连时若放在放大器 前面,先滤波后放大,有利于清除干扰,但不利于整机的噪声 性能.若放在放大器后面,有利于提高噪声性能,但干扰也被 放大,特别是强干扰会引起一系列的失真.一般需要具体问题 具体考虑.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 其它各点电压的幅度值则介于波腹与波节之间,这种合成 波称为驻波。
带通滤波器技术指标
➢ 电压驻波比则是波腹电压与波节电压的比值,即
VSWR= Emax |Ei|+|Er| Emin |Ei||Er|
➢ Ei 为入射波电压, Er为反射波电压,当ZL和Z0都为实数时
VSWR= Emax |Ei|+|Er| ZL Emin |Ei||Er| Z0
其中
滤波器频率变换
(1)低通到高通的变换
如图2.4所示,分别给出了低通原型滤波器和高 通滤波器的频率一衰减曲线,令它们的频率分 量分别为w‘和w。
通过相应的频率变换准则,可将低通原型滤波 器转换成高通滤波器,即将低通原型的通带和 阻带分别变换成高通滤波器的阻带和通带。 直观地说就是将图2.4中的频率一衰减曲线中 的w‘=0和w'=无穷大的点分别变换成w=无穷 大。和w=o的点,其频率变换的数学表达式为:
微波滤波器基础知识
微波及其特点
➢ 所谓微波是一种具有极高频率(通常为300MHz-30 0GHz ),波长很短,通常为1m-1mm的电磁波。
波长 =
光速 频率f 0
➢ 微波具有似光性和似声性、穿透性、信息容量大 等特点。
电磁波
电磁波谱
3000GHz 3GHz 300GHz 300MHz 30GHz
➢ 实际情况是,只能过滤掉一部分能量,带外抑制度反应了 对过滤信号的衰减幅度,对不需要的频率点,信号的抑制 能力,一般希望尽可能的大,并在通带范围外陡峭的下降, 通常取带外与带宽为一定比值的某一频率的衰减值作为此 项指标。
➢ 带外抑制这个概念实际上还是属于损耗的范畴,只是我们 现在所说指的是在通带外,信号的衰减已经被抑制得比较 充分,这个具体的损耗值就是带外抑制的值。
• 低通滤波原型
低通滤波器电路原型
• 低通原型滤波器的理想化衰减一频率特性 如图1所示。纵坐标代表衰减量,横坐标代 表频率。当田w小于w1,时,信号的衰减量近 似等于零,称之为通带;当w>w1,时,信号的 衰减量近似为无穷大,称之为阻带,其中w1 称为“截止频率”。 实际上,滤波器根据 其所逼近的函数不同分为:最平坦低通滤 波器(巴特沃兹滤波器)、切比雪夫低通 滤波器、椭圆函数低通滤波器。
3
滤波器的基本原理
• 滤波器定义
➢ 顾名思义就是对电磁波信号进行过滤,让需要的信号通
过,抑制不需要的信号,主要目的为了解决不同频段、不 同形式的无线通讯系统之间的干扰问题,其特性可以用通 带工作频段、插入损耗、带内波动、带外抑制、端口驻波 比、隔离度、矩形系数、功率容量、群时延指标来描述。
滤波器的基本形式
普通无线电波
微波
红外线

见 光
频率
紫外线
长波 中波 短波 超短波 分米 厘米 毫米 亚毫米
波长
1m 10cm 1cm 1mm 0.1mm
微 波段代号

波 UHF
段 的 划
L S C X
分 Ku
频率范围/GHZ 波段代号
0.3~1
K
1~2
Ka
2~4
U
4~8
V
8~12
W
12~18
频率范围/GHZ 18~27 27~40 40~60 60~80 80 ~100
带通滤波器技术指标
• 插入损耗
➢ 又称衰减,在理想情况下,插入到射频电路中的理想滤波 器,不应在其通带内引入任何功率损耗.然而现实中我们 无法消除滤波器固有的,某种程度的功率损耗。插入损 耗定量的描述了功率响应幅度与0dB基准的插值,其数学 表达式为:
➢ 其中PL 是滤波器向负载输出的功率,Pin 是滤波器从信 号源得到的输入功率,一般希望插入损耗越小越好。
低通原型和高通滤波器中的电感、电容变换 公式为:
(2)低通到带通
同理,其频率变换数学表达式为:
低通原型滤波器和带通滤波器的电感、电容 变换公式分别为:
(3)低通到带阻的频率变换
低通到带阻的频率变换表达式:
低通原型与带阻滤波器电感、电容之间的变 换关系:
带通滤波器技术指标
• 通带工作频段
➢ 指滤波器允许通过电磁波的频率范围。通带的理 解在生产过程提供的技术指标规定严格了的,不 需要怎样的去按照上面的定义去具体计算。也可 以这样说,如果我们的差损要求是0.8db,通带需 要10M的带宽,那么我们的通带就可以说成是 0.8db带宽为10M.
低通原型滤波器的衰减一频率特性;(a)巴特 沃斯响应;(b) 切比雪夫响应 (c)椭圆函数低通 原型
(a)
(b)
(c)
(1) 巴特沃斯低通滤波器:
如图(a)所示,通带内衰减曲线内十分平坦,被称为“最 平坦响应”又被称做“巴特沃斯(Butterworth)响 应”。其逼近函数为:
(2)切比雪夫低通滤波器
带通滤波器技术指标
带通滤波器技术指标
• 驻波比的另一个含义相同的名称是回波损耗,单 位为分贝(dB),二者可如下换算:
带通滤波器技术指标
• 隔离度
➢ 为了区分在有两个或者两个以上通带情况下(例 如双工器,合路器)相互通带之间的带外抑制, 这时我们统一称带外抑制为隔离。
如图(b)所示,通带内的衰减曲线幅度相等,而且具有 规律性的起伏、变化,于是被叫做“等波纹响应”,又 被称为“切比雪夫(Tchebyscheff)响应”。其逼近函 数:
其中
(3)椭圆函数低通滤波器 其原型滤波器又被叫做考尔(Cauer)滤波器,它 的通带和阻带都具有切比雪夫的波纹特性。 其低通原型的逼近函数为:
带通滤波器技术指标
• 端口驻波比
➢ 端口驻波是衡量滤波器性能的一个关键指标,反应滤波器 件与系统中其它部件的匹配程度。
➢ 当系统不匹配时, 馈线上同时存在入射波Ei和反射波Er。 在入射波和反射波相位相同的地方,入射波电压与反射波 电压的幅度相加形成一个最大电压振幅Emax,称为波腹; 而在入射波和反射波相位相反的地方电压幅度相减形成一 个最小电压振幅Emin,称为波节。
带通滤波器技术指标
•带内波动
➢ 在规定的带宽内,插入损耗最大点减去最小点的即为带内 波动。又叫带内波纹或者通带波纹。指通带内信号幅度的 起伏程度,也受限于谐振器的固有Q值,一般希望尽可能 的小。
带通滤波器技术指标
• 带外抑制
➢ 又称阻带抑制,理想的滤波器是矩形的,通带内的信号全 部通过,通道外的信号全部过滤掉。
相关文档
最新文档