2012年北京市朝阳区高三一模文科数学含答案纯word版

合集下载

北京市各区2012届高三第一学期文科数学期末试卷汇编

北京市各区2012届高三第一学期文科数学期末试卷汇编

北京市昌平区2012届高三上学期期末考试试题(数学文)北京市朝阳区2012届高三上学期期末考试试题(数学文)北京市东城区2012届高三上学期期末教学统一检测(数学文)北京市房山区2012届高三上学期期末统测数学(文)试题北京市丰台区2012届高三上学期期末考试试题(数学文)北京市海淀区2012届高三上学期期末考试试题(数学文)北京市石景山区2012届高三上学期期末考试数学(文)试卷北京市西城区2012届高三上学期期末考试试题(数学文)2012年2月昌平区2011-2012学年第一学期高三年级期末质量抽测数 学 试 卷(文科) 2012 .1考生注意事项:1.本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,考试时间 120分钟.2.答题前,考生务必将学校、班级、考试编号填写清楚.答题卡上第一部分(选择题)必须用2B 铅笔作答,第二部分(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔.3.修改时,选择题用塑料橡皮擦干净,不得使用涂改液.请保持卡面整洁,不要折叠、折皱、破损.不得在答题卡上作任何标记.4.请按照题号顺序在各题目的答题区域内作答,未在对应的答题区域作答或超出答题区域的作答均不得分. 第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.设全集}7,5,3,1{=U ,集合}7,3,1{},5,3{==B A ,则()U A B ð等于A .{5}B .{3,5}C .{1,5,7}D .Φ2.21i -等于A . 22i -B .1i -C .iD .1i +3.“x y >”是“22x y>”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是A .910B .45C .25D .125.若某空间几何体的三视图如图所示,则该 几何体的体积是 A .2 B .4 C .6. D .8 6. 某程序框图如图所示,则输出的S =A .120B . 57C .56D . 267.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.主视俯视同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是A.第7档次B.第8档次C.第9档次D.第10档次8. 一圆形纸片的圆心为点O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点.把纸片折叠使点A 与Q 重合,然后展平纸片,折痕与OA 交于P 点.当点A 运动时点P 的轨迹是 A .圆 B .椭圆 C . 双曲线 D .抛物线第Ⅱ卷(非选择题 共110分)填空题(本大题共6小题,每小题5分,共30分).9.已知函数x x y cos sin = ,则函数的最小正周期是 .10.已知向量(2,1)=a ,10⋅=a b , 7+=a b ,则=b .11.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106] .已知样本中产品净重小于100克的个数是48,则a =___________ ;样本中净重在[98,104)的产品的个数是__________ .12. 已知双曲线122=-y m x 的右焦点恰好是抛物线x y 82=的焦点,则m = .13. 已知D是由不等式组0,0,x y x -≥⎧⎪⎨+≥⎪⎩所确定的平面区域,则圆224x y +=在区域D 内的弧长为_____________;该弧上的点到直线320x y ++=的距离的最大值等于__________ .14.设函数)(x f 的定义域为R ,若存在与x 无关的正常数M ,使|||)(|x M x f ≤对一切实数x 均成立,a则称)(x f 为有界泛函.在函数①x x f 5)(-=,②x x f 2sin )(=,③xx f )21()(=,④x x x f cos )(=中,属于有界泛函的有__________(填上所有正确的序号) .三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分13分)在ABC ∆中,AA A cos cos 2cos 212-=.(I )求角A 的大小;(II )若3a =,sin 2sin B C =,求ABCS ∆.16.(本小题满分13分) 已知数列}{n a 是等差数列,22, 1063==a a ,数列}{n b 的前n 项和是nS ,且131=+n n b S .(I )求数列}{n a 的通项公式;(II )求证:数列}{n b 是等比数列;17.(本小题满分14分)如图在四棱锥P ABCD -中,底面ABCD 是正方形,ABCD PA 底面⊥,垂足为点A ,2==AB PA ,点M ,N 分别是PD ,PB 的中点.(I )求证:ACM PB 平面// ; (II )求证:⊥MN 平面PAC ;(III )求四面体A MBC -的体积.18.(本小题满分13分)已知函数ax x x x f ++=1ln )((a 为实数).(I )当0=a 时, 求)(x f 的最小值;(II )若)(x f 在),2[+∞上是单调函数,求a 的取值范围.19.(本小题满分14分)已知椭圆C 的中心在原点,左焦点为(,离心率为23.设直线l 与椭圆C 有且只有一个公共点P ,记点P 在第一象限时直线l 与x 轴、y 轴的交点分别为B A 、,且向量+=.求: (I )椭圆C 的方程;(II )||的最小值及此时直线l 的方程.20. (本小题满分13分)M 是具有以下性质的函数()f x 的全体:对于任意s ,0t >,都有()0f s >,()0f t >,且()()()f s f t f s t +<+.(I )试判断函数12()log (1)f x x =+,2()21x f x =-是否属于M ?(II )证明:对于任意的0x >,0(x m m +>∈R 且0)m ≠都有[()()]0m f x m f x +->;(III )证明:对于任意给定的正数1s >,存在正数t ,当0x t <≤时,()f x s <.昌平区2011-2012学年第一学期高三年级期末质量抽测 数学(文科)试卷参考答案及评分标准 2012.1一、选择题(本大题共8小题,每小题5分,共40分.)二、填空题(本大题共6小题,每小题5分,共30分.) 9.π 10. 26 11. 0.125;120 12. 313. 65π;5102+14. ① ② ④三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I )由已知得:AA A cos cos )1cos 2(2122-=-,……2分.21cos =∴A ……4分 π<<A 0 ,.3π=∴A …………6分(II )由C c B b sin sin = 可得:2sin sin ==c bC B ………7分∴ c b 2= …………8分214942cos 222222=-+=-+=c c c bc a c b A ………10分 解得:32b , 3==c ………11分2332333221sin 21=⨯⨯⨯==A bc S . ……13分16(本小题满分13分)解:(1)由已知⎩⎨⎧=+=+.225,10211d a d a 解得 .4,21==d a.244)1(2-=⨯-+=∴n n a n ………………6分(2)由于nn b S 311-=, ① 令n =1,得.31111b b -= 解得431=b ,当2≥n 时,11311---=n n b S ② -②得n n n b b b 31311-=- , 141-=∴n n b b 又0431≠=b ,.411=∴-n n b b ∴数列}{n b 是以43为首项,41为公比的等比数列.……………………13分17.(本小题满分14分)证明:(I )连接O BD AC MN MO MC AM BD AC = 且,,,,,,的中点分别是点BD PD M O ,, ACM PB PB MO 平面⊄∴,//∴ACM PB 平面//. …… 4分(II) ABCD PA 平面⊥ ,ABCD BD 平面⊂BD PA ⊥∴是正方形底面ABCDBD AC ⊥∴又A AC PA =⋂ PAC BD 平面⊥∴ ……7分在中PBD ∆,点M ,N 分别是PD ,PB 的中点.∴BD MN //PAC MN 平面⊥∴. …… 9分(III )由h S V V ABC ABC M MBC A ⋅⋅==∆--31 ……11分PAh 21= ……12分 32212131=⋅⋅⋅⋅⋅=∴-PA AD AB V MBC A . ……14分18.(本小题满分13分)解:(Ⅰ) 由题意可知:0>x ……1分当0=a 时21)(x x x f -=' …….2分当10<<x 时,0)(<'x f 当1>x 时,0)(>'x f ……..4分故1)1()(m in ==f x f . …….5分(Ⅱ) 由222111)(x x ax a x x x f -+=+-='① 由题意可知0=a 时,21)(x x x f -=',在),2[+∞时,0)(>'x f 符合要求 …….7分② 当0<a 时,令1)(2-+=x ax x g 故此时)(x f 在),2[+∞上只能是单调递减0)2(≤'f 即04124≤-+a 解得41-≤a …….9分 当0>a 时,)(x f 在),2[+∞上只能是单调递增 0)2(≥'f 即,04124≥-+a 得41-≥a 故0>a …….11分综上),0[]41,(+∞⋃--∞∈a …….13分19. (本小题满分14分) 解:(Ⅰ)由题意可知3=c ,23==a c e ,所以2=a ,于是12=b ,由于焦点在x 轴上,故C 椭圆的方程为2214x y += ………………………………5分(Ⅱ)设直线l 的方程为:m kx y +=)0(<k ,),0(),0,(m B k mA -⎪⎩⎪⎨⎧=++=,14,22y x m kx y 消去y 得:012)41(222=-+++m kmx x k …………………7分直线l 与曲线C 有且只有一个公共点,0)1)(41(42222=-+-=∆m k m k即1422+=k m ① …………………… 9分 ∵OB OA OM +=222||m k m OM +=∴② ……………………11分将①式代入②得:||3OM ==当且仅当22-=k 时,等号成立,故min ||3OM =,此时直线方程为:03222=-+y x . …………………14分20(本小题满分13分)(Ⅰ)由题意可知,0)(,0)(,0)(,0)(2211>>>>t f s f t f s f 若)1(log )1(log )1(log 222++<+++t s t s 成立 则1)1)(1(++<++t s t s 即0<st与已知任意s ,0t >即0>st 相矛盾,故M x f ∉)(1; ……2分 若12222-<-++ts ts成立 则01222<--++ts t s即0)21)(12(<--t s s ,0t > 021,12<->∴t s 即0)21)(12(<--ts 成立 …..4分故M x f ∈)(2.综上,M x f ∉)(1,M x f ∈)(2. ……5分(II) 当0>m 时,)()()()(x f m f x f m x f >+>+ 0)()(>-+∴x f m x f 当0<m 时,)()()()()(m x f m f m x f m m x f x f +>-++>-+=0)()(<-+∴x f m x f故0)]()([ >-+x f m x f m . ……9分(III) 据(II ))上为增函数在(∞+.0)(x f ,且必有)(2)2(x f x f >(*) ①若s f <)1(,令1=t ,则t x ≤<0时 s x f <)(;②若,)1(s f >则存在*N ∈k ,使t f k 12)1(=<由(*)式可得s f f f kk k <<<<<-1)1(21)21(21)21(1即当s x f t x <≤<)(0时, 综①、②命题得证。

北京市朝阳区2011-2012学年度高三年级第一学期期中统一考试 数学试卷(文史类)

北京市朝阳区2011-2012学年度高三年级第一学期期中统一考试 数学试卷(文史类)

北京市朝阳区2011-2012学年度高三年级第一学期期中统一考试数学试卷(文史类) 2011.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分注意事项:1.答第一部分前,考生务必将自己的姓名、考试科目涂写在答题卡上.考试结束时,将试题卷和答题卡一并交回.2.第一部分每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第二部分不能答在试题卷上,请答在答题卡上.第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.设集合{}260M x x x =+-<,{}13N x x =≤≤,则M N 等于( )A .[)1,2B .[]1,2C .(]2,3D .[]2,32. 已知向量a ,b 满足|a | = 8,|b | = 6, a ·b = 24,则a 与b 的夹角为( ) A .30︒ B .60︒ C .90︒ D .120︒3. 已知函数()2sin()f x x ωϕ=+(0,0π)ωϕ><<的图象如图所示,则ω等于( ) A .13 B .1 C .32D .24.已知等差数列{}n a 的前n 项和为n S ,且369315a a a ++=,则11S 等于( )A .78B .66C .55D .335.命题“,sin 1x x ∀∈≤R ”的否定是( )A .,sin 1x x ∃∈≥RB .,sin 1x x ∀∈>RC .,sin 1x x ∀∈≥RD .,sin 1x x ∃∈>R 6. 函数x x x f ln )(+=的零点所在的大致区间为( )A .()0,1B .()1,2C .()1,eD .()2,e 7. “1a >”是“对任意的正数x ,不等式21a x x+≥成立”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件8.设集合{}0123,,,S A A A A =,在S 上定义运算⊕:i j k A A A ⊕=,其中k 为i j +被4除的余数,,0,1,2,3i j =,则使关系式0()i i j A A A A ⊕⊕=成立的有序数对(,)i j 的组数为( )A .4B .3C .2D .1第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知π3(,π),sin ,25αα∈=则tan α= .10.已知等比数列{}n a 各项均为正数,前n 项和为n S ,若22a =,1516a a =,则3a = ;5S = .11. 在A B C ∆中,角,,A B C 所对的边分别为,,a b c .若5,2a b c ===,则cos B = .12. 在A B C ∆中,已知(2,1)A B = ,(3,)AC k =()k ∈R ,则BC =__;若90B ∠=︒,则k =__ _.13.已知函数2,20,()2cos ,0.x x f x x x ⎧-≤≤=⎨<≤π⎩若方程()f x a =有解,则实数a 的取值范围是 .14.设函数()1f x x α=+(α∈Q )的定义域为[][],,b a a b -- ,其中0a b <<,且()f x 在[],a b 上的最大值为6,最小值为3,则()f x 在[],b a --上的最大值与最小值的和为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)设集合{|(1)0,M x x x a =--<a ∈R },集合2{|230}N x x x =--≤.(Ⅰ)当1a =时,求M N ;(Ⅱ)若M N ⊆,求实数a 的取值范围.16. (本小题满分13分)已知向量a =(sin ,cos())x x π-,b =(2cos ,2cos )x x ,函数()1f x =⋅a b +. (Ⅰ)求π()4f -的值;(Ⅱ)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值,并求出相应的x 的值. 17. (本小题满分13分)在A B C ∆中,角,,A B C 的对边分别为,,a b c ,且3cos 4B =.(Ⅰ)求2sin sin 22B B +的值;(Ⅱ)若b =ac 取最大值时,求A B C ∆的面积.18.(本小题满分13分)在递增数列}{n a 中,n S 表示数列}{n a 的前n 项和,11a =,1n n a a c +=+(c 为常数,n *∈N ),且123,,a a S 成等比数列. (Ⅰ)求c 的值;(Ⅱ)若12()3nn n b a +=⋅-,*n ∈N ,求242n b b b +++ .19.(本小题满分14分) 设函数221()22xa f x ax -=-+,R a ∈.(Ⅰ)若2]x ∀∈,关于x 的不等式24()2a f x -≥恒成立,试求a 的取值范围;(Ⅱ)若函数()f x 在区间[0,4]上恰有一个零点,试求a 的取值范围.20. (本小题满分14分) 已知函数21()ln (1)2f x x ax a x =-+-(a ∈R 且0a ≠).(Ⅰ)求函数()f x 的单调区间;(Ⅱ) 记函数()y F x =的图象为曲线C .设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点,如果在曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在M 处的切线平行于直线A B ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在“中值相依切线”,请说明理由.北京市朝阳区2011-2012学年度高三年级第一学期期中统一考试数学试卷(文史类)答案 2011.11注:若有两空,则第一个空第二个空 三、解答题:(15)(本小题满分13分)解:(Ⅰ)当1a =时,不等式化为(2)0x x -<,则{|02}M x x =<<.又{}13N x x =-≤≤,因此{}13M N x x =-≤≤ . ………………6分 (Ⅱ)若1a <-,{|10},M x a x =+<<若M N ⊆,则有110a -≤+<,解得21a -≤<-. ………………8分 若1a =-,,{|13}M N x x φ==-≤≤,此时M N ⊆成立;………………10分若1a >-,{|01},{|13}M x x a N x x =<<+=-≤≤,若M N ⊆,则有013a <+≤, 解得12a -<≤. ………………12分 综上,a 的取值范围是[2,2]-.………………13分(16)(本小题满分13分)解:(Ⅰ)()1f x =⋅+a b =22sin cos 2cos 1x x x -+=sin 2cos 2x x -, …………4分则π()14f -=-. ………………6分(Ⅱ)()f x =sin 2cos 2x x -)4x π-. ………………7分因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以π3π2,444x π⎡⎤-∈-⎢⎥⎣⎦. ………………9分 则当242x ππ-=时,即8x 3π=时,()f x………………11分当244x ππ-=-时,即0x =时,()f x 的最小值是1-. ………………13分(17)(本小题满分13分) 解:(Ⅰ)因为3cos 4B =,所以sin 4B =………………1分则21sinsin 2(1cos )2sin cos 22B B B B B +=-+=18+3244⨯8.…5分(Ⅱ)由已知得2223cos 24a c bB ac+-==, …………7分又因为b =所以,22332a c ac +-=. …………8分又因为223322a c ac ac +=+≥,所以6a c ≤,当且仅当a c ==ac 取得最大值. …………11分此时11sin 62244ABC S ac B ∆==⨯⨯=所以当ac 取最大值时,A B C ∆4……………13分(18)(本小题满分13分)解:(Ⅰ)11,1,n n a a c a c +=+=为常数, 所以1(1).n a n c =+-则231,1(1)(12)33.a c S c c c =+=++++=+ ………………3分又123,,a a S 成等比数列,所以2(1)33c c +=+,解得1c =-或2c =.由于}{n a 是递增数列,舍去1c =-,故2c =. ………………6分(Ⅱ)由(Ⅰ)得21n a n =-,*n ∈N .所以12()(21)3nn b n =⋅---,2212()(41)3nn b n =⋅---. ……………8分从而 242nb b b +++ 21[1()](341)991219nn n -+-=--211(1)249nn n =---,*n ∈N . ………………13分(19)(本小题满分14分)解:(Ⅰ) 依题得:2]x ∀∈,不等式232x ax +≥恒成立,则322x a x ≤+.…2分设3()22x g x x=+,则min ()a g x ≤即可. ………………3分又3()22x g x x=+≥=,当且仅当x =,min ()g x g ==所以a的取值范围是(-∞. ………………6分 (Ⅱ)二次函数()f x 的图象开口向上,对称轴是直线x a =. ………………7分依题意得:当2a ≤时,只需满足(0)0,(4)0,f f <⎧⎨>⎩即2210,8150,a a a ⎧-<⎨-+>⎩解得11a -<<, ………………10分当1a =-时满足题意,1a =时不满足题意,则11a -≤< . ……………11分当2a >时,只需满足(0)0,(4)0,f f >⎧⎨<⎩即2210,8150,a a a ⎧->⎨-+<⎩解得35a <<. …………12分当5a =时满足题意,3a =时不满足题意,则35a <≤. …………13分 综上所述, a 的取值范围是[1,1)(3,5]- . …………14分 (20)(本小题满分14分)解:(Ⅰ)显然函数()f x 的定义域是(0,)+∞. …………1分由已知得,1(1)()1'()1a x x a f x ax a xx-+=-+-=-. …………2分⑴当0a >时, 令'()0f x >,解得01x <<; 令'()0f x <,解得1x >.所以函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减. …………3分 ⑵当0a <时, ①当11a-<时,即1a <-时, 令'()0f x >,解得10x a<<-或1x >;令'()0f x <,解得11x a-<<.所以,函数()f x 在1(0,)a-和(1,)+∞上单调递增,在1(,1)a-上单调递减;…………4分 ②当11a -=时,即1a =-时, 显然,函数()f x 在(0,)+∞上单调递增; ………5分 ③当11a->时,即10a -<<时, 令'()0f x >,解得01x <<或1x a>-;令'()0f x <,解得11x a<<-.所以,函数()f x 在(0,1)和1(,)a-+∞上单调递增,在1(1,)a-上单调递减.…………6分 综上所述,⑴当0a >时,函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减; ⑵当1a <-时,函数()f x 在1(0,)a-和(1,)+∞上单调递增,在1(,1)a-上单调递减;⑶当1a =-时,函数()f x 在(0,)+∞上单调递增; ⑷当10a -<<时,函数()f x 在(0,1)和1(,)a-+∞上单调递增,在1(1,)a-上单调递减.……………7分 (Ⅱ)假设函数()f x 存在“中值相依切线”.设11(,)A x y ,22(,)B x y 是曲线()y f x =上的不同两点,且120x x <<, 则211111ln (1)2y x ax a x =-+-,222221ln (1)2y x ax a x =-+-.2121AB y y k x x -=-22212121211(ln ln )()(1)()2x x a x x a x x x x ---+--=-211221ln ln 1()(1)2x x a x x a x x -=-++-- …………8分曲线在点00(,)M x y 处的切线斜率0()k f x '=12()2x x f +'=12122(1)2x x a a x x +=-⋅+-+, …………9分依题意得:211221ln ln 1()(1)2x x a x x a x x --++--12122(1)2x x a a x x +=-⋅+-+.化简可得:2121ln ln x x x x --122x x =+,即21lnx x =21212()x x x x -+21212(1)1x x x x -=+. …………11分 设21x t x = (1t >),上式化为:2(1)4ln 211t t t t -==-++,即4ln 21t t +=+. …………12分令4()ln 1g t t t =++,214'()(1)g t tt =-+=22(1)(1)t t t -+.因为1t >,显然'()0g t >,所以()g t 在(1,)+∞上递增, 显然有()2g t >恒成立. 所以在(1,)+∞内不存在t ,使得4ln 21t t +=+成立.综上所述,假设不成立.所以,函数()f x 不存在“中值相依切线”. ……………14分。

北京市朝阳区2011-2012学年度高三年级第一学期期末统一考试(数学文)

北京市朝阳区2011-2012学年度高三年级第一学期期末统一考试(数学文)

北京市朝阳区2011-2012学年度高三年级第一学期期末统一考试数学试卷(文史类) 2012.1第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合2{|3},{|log 1}M x x N x x =<=>,则M N 等于( )A .φB .}321|{<<x x C .}30|{<<x xD .{|23}x x <<2.已知平面向量(3,1)=a ,(,3)x =b ,且a ⊥b ,则实数x 的值为( )A .9-B .1-C .1D .93. 函数⎪⎩⎪⎨⎧≥-<=)0(12)0(2x x x y x 的图象大致是 ( )4. 设数列{}n a 是公差不为0的等差数列,11a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S 等于 ( )A . 2788n n +B .2744n n + C .2324n n+D .2n n +5.执行如图所示的程序框图,输出的S 值为( )A .1B .1-C . 2-D .06. 函数2()2xf x a x=--的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D . (0,2)7.已知函数()sin f x x x =,设()7a f π=,()6b f π=,()3c f π=,则,,a b c 的大小关系是 ( ) A. a b c << B.c a b << C.b a c << D.b c a << 8. 已知集合{(,)|,,}A x y x n y na b n ===+∈Z ,{(,)|,B x y x m ==2312,y m =+m ∈Z }.若存在实数,a b 使得AB ≠∅成立,称点(,)a b 为“£”点,则“£”点在平面区域22{(,)|108}C x y x y =+≤内的个数是 ( ) A. 0 B. 1 C. 2 D. 无数个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 若变量x ,y 满足约束条件1,,236,x y x x y ≥⎧⎪≥⎨⎪+≤⎩则2z x y =+的最大值为 .10. 已知有若干辆汽车通过某一段公路,从中抽取200辆汽车进行测速分析,其时速的频率分布直方图如图所示,则时速在区间[60,70)上的汽车大约有 辆.11. 某几何体的三视图如图所示,则这个几何体的体积是 .时速(km/h )01002 003 00440 50 60 70 8012. 设直线10x my --=与圆22(1)(2)4x y -+-=相交于A ,B 两点,且弦AB的长为m 的值是 .13. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (万元)与机器运转时间x (年数,x *∈N )的关系为21825y x x =-+-.则当每台机器运转 年时,年平均利润最大,最大值是 万元.14. 已知两个正数,a b ,可按规则c ab a b =++扩充为一个新数c ,在,,a b c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.(1)若1,3a b ==,按上述规则操作三次,扩充所得的数是__________;(2)若0p q >>,经过6次操作后扩充所得的数为(1)(1)1m n q p ++-(,m n 为正整数),则,m n 的值分别为______________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本题满分13分)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C所对的边,且满足2sin 0b A -=.(Ⅰ)求角B 的大小;(Ⅱ)若b =2c =,求AB AC 的值.16. (本题满分14分)如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点. (Ⅰ)求证:CD ⊥平面SAD ; (Ⅱ)求证://PQ 平面SCD ;(Ⅲ)若SA SD =,M 为BC 中点,在棱SC 上是否存在点N,使得平面DMN ⊥平面ABCD ,并证明你的结论.17. (本题满分13分) 如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转MSD BCP Q·转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后各转动一次游戏转盘,得分记为(,)a b (假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动). (Ⅰ)请列出一个家庭得分(,)a b 的所有情况;(Ⅱ)若游戏规定:一个家庭的总得分为参与游戏的两人所得分数之和,且总得分为偶数的家庭可以获得一份奖品.请问一个家庭获奖的概率为多少?18. (本题满分13分)设函数2()ln 2,R 2ax f x a x x a =+-∈. (Ⅰ)当1a =时,试求函数()f x 在区间[1,e]上的最大值; (Ⅱ)当0a ≥时,试求函数()f x 的单调区间. 19. (本题满分13分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点3(1,)2P ,F 为其右焦点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(4,0)A 的直线l 与椭圆相交于M 、N 两点(点M 在,A N 两点之间),若AMF △与MFN △的面积相等,试求直线l 的方程.20. (本题满分14分) 数列{}n a ,{}n b (1,2,3,n =)由下列条件确定:①110,0a b <>;②当2k ≥时,k a 与k b 满足:当011≥+--k k b a 时,1-=k k a a ,211--+=k k k b a b ;当011<+--k k b a 时,211--+=k k k b a a ,1-=k k b b . (Ⅰ)若11a =-,11b =,求2a ,3a ,4a ,并猜想数列}{n a 的通项公式(不需要证明); (Ⅱ)在数列}{n b 中,若s b b b >>> 21(3s ≥,且*s ∈N ),试用11,b a 表示k b ,},,2,1{s k ∈;(Ⅲ)在(Ⅰ)的条件下,设数列}{n c (*)n ∈N 满足211=c ,0n c ≠,2212m n n n mc c c ma -+=-+(其中m 为给定的不小于2的整数),求证:当m n ≤时,恒有1<n c .北京市朝阳区2011-2012学年度高三年级第一学期期末统一考试数学试卷(文史类)答案 2012.1二、填空题:注:若有两空,则第一个空第二个空三、解答题:(15)(本小题满分13分)解:2sin 0b A -=,根据正弦定理得:2sin sin 0A B A -=.………………………………………………………3分因为sin 0A ≠,所以23sin =B . ………………………………………………5分 又B 为锐角, 则3B π=. …………………………………………………6分(Ⅱ)由(Ⅰ)可知,3B π=.因为b =2c =,根据余弦定理,得 2744cos3a a π=+-, ……………………………………8分整理,得2230a a --=.由于0a >,得3a =. ……………………………10分于是222cos214b c a A bc +-===, ………………………………11分所以 cos cos 21AB AC AB AC A cb A ====. ……………13分(16)(本小题满分14分)证明:(Ⅰ)因为四边形ABCD 为正方形,则CD AD ⊥. …………………1分 又平面SAD ⊥平面ABCD , 且面SAD 面ABCD AD =,所以CD ⊥平面SAD . ………………………………………………………3分(Ⅱ)取SC 的中点R ,连QR, DR .由题意知:PD ∥BC 且PD =12BC .…………………4分在SBC ∆中,Q 为SB 的中点,R 为SC 的中点, 所以QR ∥BC 且QR =12BC .所以QR ∥PD 且QR=PD ,则四边形PDRQ 为平行四边形. …………………………………………………7分 所以PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD ,所以PQ ∥平面SCD . ……………………………………………………………10分 (Ⅲ)存在点N 为SC 中点,使得平面DMN ⊥平面ABCD . ………………11分连接PC DM 、交于点O ,连接PM 、SP , 因为//PD CM ,并且PD CM =,所以四边形PMCD 为平行四边形,所以PO CO =. 又因为N 为SC 中点,所以//NO SP .………………………………………………………………………12分 因为平面SAD ⊥平面ABCD ,平面SAD 平面ABCD =AD ,并且SP AD ⊥, 所以SP ⊥平面ABCD ,所以NO ⊥平面ABCD , ……………………………………………………13分 又因为NO ⊂平面DMN ,所以平面DMN ⊥平面ABCD .……………………………………………………14分 (17)(本小题满分13分) 解:(Ⅰ)由题意可知,一个家庭的得分情况共有9种,分别为(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,3),(5,2),(5,5). …………………………………………………………7分(Ⅱ)记事件A :一个家庭在游戏中获奖,则符合获奖条件的得分情况包括(2,2),(3,3),(3,5),(5,3),(5,5)共5种, ……………………………………………11分 所以5()9P A =. 所以一个家庭获奖的概率为59. …………………………………………………13分(18)(本小题满分13分)解: (Ⅰ)函数()f x 的定义域为(0,)+∞. ………………………………………………1分当1a =时,2()ln 22x f x x x =+-,因为21(1)()20x f x x x x -'=+-=≥, …3分 M SDBCAPQ·R (N ) O所以函数()f x 在区间[1,e]上单调递增,则当=e x 时,函数()f x 取得最大值2e (e )12e 2f =+-. …………………………………………………………………5分(Ⅱ)22()ax x af x x-+'=. ………………………………………………………6分当0a =时,因为()20f x '=-<,所以函数()f x 在区间(0,)+∞上单调递减;…7分 当0a >时,⑴当2440a ∆=-≤时,即1a ≥时,()0f x '≥,所以函数()f x 在区间(0,)+∞ 上单调递增; …………………………………………………………9分⑵当2440a ∆=->时,即01a <<时,由()0f x '>解得,0x <<,或x >. …………………………………………10分由()0f x '<x <<; ………………………………11分所以当01a <<时,函数()f x 在区间上单调递增;在11(a a +上单调递减,1()a+∞单调递增. ………13分(19)(本小题满分13分)解:(Ⅰ)因为12c a =,所以2a c =,b =. …………………………………1分 设椭圆方程为2222143x y c c+=,又点3(1,)2P 在椭圆上,所以2213144c c +=,解得21c =, …………………………………………………………………………3分所以椭圆方程为22143x y +=. …………………………………………………………4分 (Ⅱ)易知直线l 的斜率存在,设l 的方程为(4)y k x =-, ……………………………………………………………5分由22(4),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y 整理,得 2222(34)3264120k x k x k +-+-=, ………………………………………………6分由题意知2222(32)4(34)(6412)0k k k ∆=-+->, 解得1122k -<<. ……………………………………………………………………7分 设11(,)M x y ,22(,)N x y ,则21223234k x x k+=+,⋅⋅⋅⋅⋅⋅ ①, 2122641234k x x k -=+.… ②. 因为AMF △与MFN △的面积相等,所以AM MN =,所以1224x x =+.⋅⋅⋅⋅⋅⋅ ③ ……………………………………10分由①③消去2x 得21241634k x k +=+.⋅⋅⋅⋅⋅⋅ ④将2124x x =-代入②得21126412(24)34k x x k --=+.⋅⋅⋅⋅⋅⋅ ⑤ 将④代入⑤2222224164166412(24)343434k k k k k k ++-⨯-=+++,整理化简得2365k =,解得6k =±,经检验成立. …………………………12分 所以直线l的方程为4)y x =-. …………………………………………13分 (20)(本小题满分14分)(Ⅰ)解:因为011=+b a ,所以112-==a a ,02112=+=b a b . ……1分 因为0122<-=+b a ,则212223-=+=b a a ,320b b ==. ………………2分 333421222a b a a +===-. ……………………………………………………3分 猜想当2n ≥时,22221111222n n n n a a ---⎛⎫⎛⎫=⨯=-⋅=-⎪⎪⎝⎭⎝⎭.则21,1,1, 2.2n n n a n -⎧-=⎪=⎨-≥⎪⎩ …………………………………………………………4分(Ⅱ)解:当s k ≤≤2时,假设110k k a b --+<,根据已知条件则有1-=k k b b ,与s b b b >>> 21矛盾,因此110k k a b --+<不成立, ……………………5分所以有110k k a b --+≥,从而有1k k a a -=,所以1a a k =. ……………………6分当011≥+--k k b a 时,1-=k k a a ,211--+=k k k b a b , 所以111111()22k k k k k k k a b b a a b a -----+-=-=-; …………………………8分当s k ≤≤2时,总有111()2k k k k b a b a ---=-成立. 又110b a -≠,所以}{k k a b -(s k ,,2,1 =)是首项为11b a -,公比为12的等比数列, ……9分 11121)(-⎪⎭⎫⎝⎛-=-k k k a b a b ,1,2,,k s =,又因为1a a k =,所以111121)(a a b b k k +⎪⎭⎫⎝⎛-=-. …………………………10分(Ⅲ)证明:由题意得2212m n n n mc c c ma -+=-+n n c c m+=21. 因为211n n n c c c m +=+,所以2110n n n c c c m+-=>.所以数列{}n c 是单调递增数列. ………………………………………………11分 因此要证)(1m n c n ≤<,只须证1<m c . 由2≥m ,则n n n c c m c +=+211<n n n c c c m ++11,即1111n n c c m+->-. …12分因此1122111)11()11()11(1c c c c c c c c m m m m m +-++-+-=--- m m m m 121+=+-->. 所以11m mc m <<+. 故当m n ≤,恒有1<n c . ………………………………………………………14分。

2012届北京市高三一模文科数学分类汇编3:三角函数

2012届北京市高三一模文科数学分类汇编3:三角函数

2012北京市高三一模数学文分类汇编:三角函数【2012年北京市西城区高三一模文】11. 函数22sin 3cos y x x =+的最小正周期为_____. 【答案】π【解析】函数x x y 2cos 2cos 212+=+=,所以周期为ππ=22。

【2012北京市门头沟区一模文】10. 在ABC ∆中,已知2=a ,3=b ,7=c ,则ABC ∆的面积是 . 【答案】233 【2012北京市门头沟区一模文】已知31)4tan(=-πα,则α2sin 等于(A)32(B)31 (C)54 (D)52 【答案】C【2012北京市海淀区一模文】(10)若tan 2α=,则sin 2α= . 【答案】45【2012北京市房山区一模文】12.已知函数()ϕω+=x x f sin )((ω>0, 20πϕ<<)的图象如图所示,则ω=____,ϕ=___.【答案】2,3π【2012北京市东城区一模文】(6)已知sin(45)10α-=-,且090<<α,则cos α的值为 (A )513 (B )1213 (C ) 35 (D )45【答案】D【2012北京市朝阳区一模文】9.若sin θ=,(,)2θπ∈π,则tan θ= .【答案】【2012北京市石景山区一模文】3.函数1sin()y x π=+-的图象( )【答案】A【解析】函数x x y sin 1)sin(1+=-+=π的图象关于2π=x 对称,选A.【2012北京市石景山区一模文】15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a c o s c o s )2(=-. (Ⅰ)求角B 的大小; (Ⅱ)若2,4==a A π,求ABC ∆的面积.【答案】解:(Ⅰ)∵ C b B c a cos cos )2(=-,由正弦定理,得∴ C B B C A cos sin cos )sin sin 2(=-. …………2分∴ A C B C B B C B A sin )sin(cos sin cos sin cos sin 2=+=+=,………4分 ∵ ()π,0∈A , ∴0sin ≠A ∴ 21cos =B . 又∵ π<<B 0 , ∴ 3π=B . …………6分 (Ⅱ)由正弦定理BbA a sin sin =,得622232=⨯=b …………8分,43A B ππ==426sin +=∴C …………11分 A .关于2x π=对称 B .关于y 轴对称 C .关于原点对称 D .关于x π=对称2334266221s i n 21+=+⨯⨯⨯==∴C ab s . …………13分【2012北京市朝阳区一模文】15. (本题满分13分)已知函数π()cos()4f x x =-. (Ⅰ)若3()5f α=,其中π3π,44α<<求πsin 4α⎛⎫- ⎪⎝⎭的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【答案】解:(Ⅰ)因为π3()cos()45f αα=-=,且ππ042α<-<, …………1分所以π4sin 45α⎛⎫-= ⎪⎝⎭. .…………5分. (II )()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=ππsin()cos()44x x +⋅+ =1πsin(2)22x +=1cos 22x . .…….…..10分 当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 则当0x =时,()g x 的最大值为12;当π3x =时,()g x 的最小值为14-. ………13分 【2012北京市门头沟区一模文】15.(本小题满分13分)已知向量)1,(sin -=x a ,)2,cos 3(x b =,函数2)()(b a x f +=. (I )求函数)(x f 的最小正周期; (II )若]2,4[ππ-∈x ,求函数)(x f 的值域.【答案】解:(I )由已知222)21()cos 3(sin )()(+-++=+=x x b a x f ……2分化简,得3)62sin(2)(++=πx x f……4分函数)(x f 的最小正周期ππ==22T……6分(II )]2,4[ππ-∈x ,则67623πππ≤+≤-x , ……8分 所以1)62sin(23≤+≤-πx……10分函数)(x f 的值域是]5,33[-……13分【2012年北京市西城区高三一模文】15.(本小题满分13分)在△ABC 中,已知2sin cos sin()B A A C =+. (Ⅰ)求角A ;(Ⅱ)若2BC =,△ABC AB .【答案】(Ⅰ)解:由πA B C ++=,得sin()sin(π)sin A C B B +=-=. ……3分所以原式化为B A B sin cos sin 2=. …………4分 因为(0,π)B ∈,所以 0sin >B , 所以 21cos =A . …………6分 因为(0,π)A ∈, 所以 π3A =. …………7分 (Ⅱ)解:由余弦定理,得 222222cos BC AB AC AB AC A AB AC AB AC =+-⋅⋅=+-⋅.………9分因为 2BC =,1πsin 23AB AC ⋅⋅= 所以 228AB AC +=. …………11分因为 4AB AC ⋅=, 所以 2AB =. ………13分 【2012北京市海淀区一模文】(15)(本小题满分13分)已知函数()sin sin()3f x x x π=+-. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c . 已知()f A =a =,试判断ABC ∆的形状.【答案】解:(Ⅰ)()sin sin()3f x x x π=+-1sin sin 2x x x =+- ………………………………………2分3sin 22x x =-1cos 22x x ÷ç÷=-ç÷ç÷)6x π=-. ………………………………………4分 由22,262k x k k πππππ-<-<+?Z , 得:222,33k x k k ππππ-<<+?Z . 所以 ()f x 的单调递增区间为2(2,2)33k k ππππ-+,k ÎZ . ………………………………………6分(Ⅱ)因为 ()2f A =,所以)6A π-=.所以1sin()62A π-=. ………………………………………7分因为 0A π<<,所以 5666A πππ-<-<. 所以 3A π=. ………………………………………9分因为 sin sin a bA B=,a =, 所以 1sin 2B =. ………………………………………11分因为 a b >,3A π=,所以 6B π=.所以 2C π= .所以 ABC ∆为直角三角形. ………………………………………13分【2012北京市东城区一模文】(15)(本小题共13分) 已知函数22()(sin2cos2)2sin 2f x x x x =+-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值.【答案】解:(Ⅰ)因为22()(sin 2cos2)2sin 2f x x x x =+-sin 4cos 4x x =+)4x π=+ , …………6分所以函数()f x 的最小正周期为2π. …………8分(Ⅱ)依题意,()y g x ==[4()8x π-4π+])4x π=-. …………10分因为04x π≤≤,所以34444x πππ-≤-≤. …………11分 当442x ππ-=,即316x π=时,()g x当444x ππ-=-,即0x =时, ()g x 取最小值1-. …………13分 【2012北京市房山区一模文】15.(本小题共13分)已知ABC △中,内角C B A ,,的对边分别为c b a ,,,且552c o s =A ,10103cos =B . (Ⅰ)求()B A +cos 的值;(Ⅱ)设10=a ,求ABC △的面积.【答案】解:(Ⅰ)∵C B A ,,为ABC ∆的内角,且,552cos =A ,10103cos =B ∴555521cos 1sin 22=⎪⎪⎭⎫ ⎝⎛--=-=A A1010101031cos 1sin 22=⎪⎪⎭⎫ ⎝⎛-=-=B B ………………………………………4分∴()B A +cos B A B A sin cos cos +=10105510103552⨯-⨯=22=………………………………………7分 (Ⅱ)由(I )知, 45=+B A∴ 135=C ………………………………………8分 ∵10=a ,由正弦定理BbA a sin sin =得 555101010sin sin =⨯=⨯=A Ba b ……………………………………11分 ∴ABC S ∆252251021sin 21=⨯⨯⨯==C ab ……………………………………13分 【2012北京市丰台区一模文】15.(本小题共13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos .a B b C c B -= (I )判断△ABC 的形状;(Ⅱ)若()sin cos f x x x =+,求f (A )的最大值.【答案】。

2012届北京市高三一模文科数学分类汇编5:立体几何

2012届北京市高三一模文科数学分类汇编5:立体几何

2012北京市高三一模数学文分类汇编:立体几何【2012年北京市西城区高三一模文】5.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm【答案】A【解析】正六棱柱的左视图是一个以AB 长为宽,高为2的矩形,32=AB所以左视图的面积为34232=⨯,选A 。

【2012北京市门头沟区一模文】己知某几何体的三视图如右图所示,则其体积为(A ) 4(B ) 8 (C)43(D)23【答案】A【2012北京市海淀区一模文】(12已知三条侧棱两两垂直的正三棱锥的俯视图如图所示,那么此三棱锥的体积是,左视图的面积是 . 22俯视图2【答案】23 22【2012北京市房山区一模文】3.一个几何体的三视图如右图所示,则这个几何体的体积为( )【答案】A【2012北京市东城区一模文】(9)已知一个四棱锥的三视图如图所示,则该四棱锥的体积是 .【答案】43【2012北京市朝阳区一模文】10.已知某几何体的三视图如图所示,则该几何体的体积为 .(A )32 (B)2 (C)4(D )5【答案】32【2012北京市朝阳区一模文】5。

关于两条不同的直线m ,n 与两个不同的平面α,β,下列命题正确的是 A .βα//,//n m 且βα//,则n m // B .βα⊥⊥n m ,且βα⊥,则m //n C .βα//,n m ⊥且βα//,则n m ⊥D .βα⊥n m ,//且βα⊥,则n m //【答案】C【2012北京市丰台区一模文】4.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .202π-B .2203π-C .2403π-D .4403π-【答案】B【2012北京市石景山区一模文】4。

设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是( )A .αα//,//,//n m n m 则若B .βαγβγα//,,则若⊥⊥C .n m n m //,//,//则若ααD .n m n m ⊥⊥则若,//,αα【答案】D【解析】根据线面垂直的性质可知选项D 正确.【2012北京市石景山区一模文】7.某几何体的三视图如图所示,则它的体积是( )A .4383+B .283+C .2383+D .323【答案】A【解析】由三视图可知,该组合体下面是边长为2的正方体,上面是底边边长为2,侧高为2的四棱锥。

北京市朝阳区2012-2013学年度高三年级第一学期期中统一考试数学试卷(文科)含答案

北京市朝阳区2012-2013学年度高三年级第一学期期中统一考试数学试卷(文科)含答案

北京市朝阳区2012-2013学年度高三年级第一学期期中统一考试数学试卷(文史类)2012.11(考试时间120分钟 满分150分)本试卷分为选择题(共 40分)和非选择题(共 110分)两部分第一部分(选择题共40 分)、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出 符合题目要求的一项•x y 20 C .C . 3C . 3In f (a n )为等差数列,则称函数f (x )为“保比差数列函数”.现有定义在(0,)上的如1.已知全集U1,2,3,4,5,6 ,集合 A 1,3,51,2 ,则AI (e u B )等于C .2.曲线y 2xX 3在x1处的切线方程为 3.已知平面向量a ,b 满足 |a| 1, |b|2,且(a b)则a 与b 的夹角是4.已知数列a n是各项均为正数的等比数列,若a 2 2, 2a 3 a 4 16,则 a n 等于C . 2n 2n5.已知角 的终边经过点(3a,4a )(a0),则sin2等于7A .256.在ABC 中, urn uuU 则 PA (PB12B .25M 是BC 的中点,AMuuuPC)的值为C-Huuu 3,点P 在AM 上,且满足AP24 25uuuu2 PM ,A. B. 2C.2D. 47.函数f(x)3,x ,x0,的图象与函数g (x ) In (x 1)的图象的交点个数是8.已知数列a n 是各项均为正数且公比不等于1的等比数列.对于函数y f (x ),若数列第二部分(非选择题 共110分)二、填空题:本大题共 6小题,每小题5分,共30分.把答案填在答题卡上.19. 已知cos( )—,且 为第二象限的角,则 sin =_,tan = _.2 _ —10. 已知集合 A {x R |x 2} , B = x R I 12x 8 ,则 AI B =_. 2 —11. 设S n 为等差数列{a n }的前n 项和,若33 34 4代 37 16,则公差dS 9uur umr12. 在 ABC 中,若BA BC 4 , ABC 的面积为2,则角B _________________ .f(x) 1 f(x) 1,ntf(x)' 13.已知函数y f (x)满足:f(1)=a (0a 1),且 f (x 1)则2f(x),f(x) 1,f (2)=__ (用a 表示);右 1f (3)=— f(2)则a .14.已知函数f (x)是定义在 R 上的奇函数, 且在定义域上单调递增 .当x 1a,时,不等式f(x 2a) f (x) 0恒成立,则实数a 的取值范围是 _.三、解答题:本大题共 6小题,共80分.解答应写出文字说明,演算步骤或证明过程 .15. (本小题满分13分)1 设厶ABC 的内角A,B,C 所对的边分别为a,b,c ,已知a 2,b 3,cosC -. 3(I)求厶ABC 的面积; (n)求 sin(C A)的值. 16. (本小题满分13分)设数列a n 的前n 项和为S n ,已知41 , a n 1 3S n 1 , n N •(I)写出a 2,a 3的值,并求出数列 a n 的通项公式; (n)求数列 na n 的前n 项和T n .12① f (x)-,② f (x) x ,x则为“保比差数列函数”的所有序号为A .①②B .③④③ f (x) e x , ④ f (x)、、x ,C .①②④D .②③④yA217. (本小题满分13分)函数f(x) Asin( x )(A 0, 0,| | )部分2图象如图所示.(I)求f (x)的最小正周期及解析式;(n)设g(x) f(x) 2cos2x,求函数g(x)在区间[0, _]上的最大值和最小值.218. (本小题满分14分)2函数f(x) 2ax 4x 3 a, a R.(I)当a 1时,求函数f(x)在1,1上的最大值;(n)如果函数f(x)在区间1,1上存在零点,求a的取值范围.19. (本小题满分14分)设函数f (x) x ae x, a R .(I)求函数f (x)单调区间;(n)若x R , f (x) 0成立,求a的取值范围.20. (本小题满分13分)给定一个n项的实数列曰忌丄,a n(n N ),任意选取一个实数c,变换T(c)将数列a1,a2,L ,a n变换为数列|印c|,| a? c|,L ,|务c|,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c可以不相同,第k(k N )次变换记为T k(q),其中C k为第k次变换时选择的实数•如果通过k次变换后,数列中的各项均为0,则称「(G) , T2G),…,T k(c k)为“ k次归零变换”(I)对数列:124,8,分别写出经变换「(2) , T2(3) , T3⑷后得到的数列;(n)对数列:1,3,5,7,给出一个“ k次归零变换”,其中k 4 ;(川)证明:对任意n项数列,都存在“ n次归零变换”.北京市朝阳区2012-2013学年度第一学期高三年级期中练习15. (本小题满分13分)1解:(I )在厶ABC 中,因为cosC -3因为a b ,所以A 为锐角,所以 sin (C A) si nCgcosA cosCgsi nA2012.11、选择题(共40二、填空题(共30分)1)三、解答题(共80分) 所以sin C、.1 cos 2C1 (\2 2'2 ..33所以S VABC1 abgsin C1 2 3 $ 丘 2 & 2 3又由正弦定理得,sin C所以sin Aagsin C c 所以 cos A 1 sin 2 A1 (492)211分2、、2 7 1 4.210、2 八. ........................ 13 分3 9 3 9 2716. (本小题满分13分)解:(I)a2 4 , a3 16. .......................................................... 2 分由题意,a n 1 3S n 1,则当n 2 时,a n 3S n 1 1.两式相减,化简得a n 1 4a n(n 2) . ..................................... 4分a2,又因为a11,a24,- 4,印则数列a n是以1为首项,4为公比的等比数列,所以a n 4n 1( n N ) ................................. 6 分2 n 1(n) T n a1 2a2 3a3 L na n 1 2 4 3 4 L n 4 ,4T n 4 1 2 42 3 43L (n 1) 4n 1 n 4n , ........................ 8 分两式相减得,3T n 1 4 42L 4n 1 n 4n 1— n 4n• ...................... 12 分1 4n 1 1化简整理得,T n 4n(—_) _(n N ). ......................................... 13分17.(本小题满分13分)解: (I)由图可得A2, T2—,所以T .所以2. 2 3 62.................. o................. Z k............. 2 分当x —时,f(x)2,可得2si n(2-)2 ,66因为丨丨-,所以-所以f(x)的解析式为f(x) 2si n(2x ) . ....................................... 5分6(n)g(x) f(x) 2cos2x 2sin(2x 6) 2cos2x2sin 2xcos —62cos 2xs in— 2cos 2x6、、3s in2x cos2x2sin(2 x ) . .............................................. 10 分6因为x [0,—],所以一2x2 6 6 6当2x ,即x 时,g(x)有最大值,最大值为2 ;.......... 12分6 2 3当2x ,即x 0时,g(x)有最小值,最小值为 1 . ....................... 13分6 618. (本小题满分14分)解:(I)当a 1 时,则f (x) 2x2 4x 42( x22x) 4 2(x 1)2 6 .因为x 1,1 ,所以x 1 时,f(x)max f(1) 2 . .................................. 3分(n)当a 0时,f(x) 4x 3 ,显然在1,1上有零点,所以a 0时成立•……4分当a 0时,令16 8a(3 a) 8(a 1)(a 2) 0,解得a 1, a 2. ........................................... 5分(1)当a 1 时,f(x) 2x2 4x 2 2(x 1)2由f(x) 0,得x 1 [ 1,1];1当a 2 时,f(x) 4x24x 1 4(x -)2.1由f (x) 0 ,得x - [ 1,1],所以当a 0, 1, 2时,y f(x)均恰有一个零点在1,1上. ........... 7分(2)当f ( 1)gf (1) (a 7)(a 1) 0 ,即1 a 7时,y f x在1,1上必有零点. ............................ 9分(3)若y f x在1,1上有两个零点,则a 1 或 a 2..................................................... 14 分19. (本小题满分14分)解:(I) f (x) 1 ae x ............................ 1 分ia 0时,f(x)在区间( ,In a)上是增函数,在区间(In a,)上是减函数 ........... Q由(I)可知:当 a 0时, f (x)0不恒成立................ 9 分又因为当a 0时,f (x)在区间(,In a)上是增函数,在区间 (Ina,)上是减函数,所以f (x)在点x In a 处取最大值,且 f( Ina) Ina ae lna Ina . ........................... 11 分令 Ina,得 a -,e故f(x) 0对x R 恒成立时,a 的取值范围是[―,). ................................................... 14分e20. (本小题满分14分) 解:(I )T 1(2) : 1,0,2,6;T 2(3) : 2,3,1,3; T 3 ⑷:2,1,3,1. .......................................... 3 分a 0,a 0,8(a 1)(a2) 0,8(a 1)(a 2) 0,1 1 1,a或 1- 1,••… a ................. 13分f( 1) 0, f( 1) 0,f(1) 0f(1) 0-解得a 7或a2.综上所述,函数 f(x)在区间1,1上存在极值点,实数 a 的取值范围是当a 0时,令f (x) 0,得xIn a ..................... 4分 若x In a 则 f (x) 0 ,从而 f (x)在区间(,In a)上是增函数;若xIn a 则 f (x) 0,从而 f (x)在区间(In a,)上是减函数.综上可知:当a 0时, f (x)在区间(,)上是增函数;当a 0时,f (x) 0 , f (x)在R 上是增函数. 3分(H)方法1: T⑷:3,1,13 T2(2): 1,1,1,1; T3(1): 0,0,0,0方法2:T1(2): 1,1,3,5; T2(2): 1,1,1,3; T3(2): 1,1,1,1 ; T^): 0,0,0,0.(川)记经过T k(c k)变换后,数列为a(k)£,L ,a n k).1 1取c, -(31 82),则31(1) aj —|印321,即经T1(q)后,前两项相等;2 2取c抽1)af),则a12) a22) a32) 11 a^ af |,即经T2G)后,前3 项相等;2 2继续做类似的变换,取C k haf1〉a k k J),(k n 1),经T k(cQ后,得到数列的2前k 1项相等.特别地,当k n 1时,各项都相等,最后,取c n aj1〉,经T n(c n)后,数列各项均为0.所以必存在n次“归零变换”.(注:可能存在k次“归零变换”,其中k n). ...................... 13分。

2012北京朝阳一模数学试题及答案

2012北京朝阳一模数学试题及答案

2012北京朝阳一模数学试题一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.21的相反数是 A.21- B .21C .2D .-22.据报道,2011年北京市户籍人口中,60岁以上的老人有2460000人,预计未来五年北京人口“老龄化”还将提速.将2460000用科学记数法表示为 A .0.25×106 B .24.6×105 C .2.46×105 D .2.46×106 3.在ABC △中,280A B ∠=∠=,则C ∠等于 A. 40° B. 60°C. 80°D. 120°4.若分式392--x x 的值为零,则x 的取值为A. 3≠xB. 3-≠xC. 3=xD. 3-=x 5.下列图形中,既是中心对称图形又是轴对称图形的是A.角B.等边三角形C. 平行四边形D. 圆6.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出黄球的概率是 A.41 B. 31 C. 21 D. 43 7.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩 45 46 47 48 49 50 人数124251这此测试成绩的中位数和众数分别为A. 47, 49B. 47.5, 49C. 48, 49D. 48, 508.已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是A .a x <B .b x >C .b x a <<D .a x <或b x >二、填空题(本题共16分,每小题4分) 9.函数4-=x y 中,自变量x 的取值范围是___.10.分解因式:2255ma mb -=___.11.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠B =20°,则∠ADC 的度数为 .(第11题) (第12题)12.如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分) 13.计算:01)22()21(60sin 627--+--.14.解不等式312+-)(x <x 5,并把它的解集在数轴上表示出来.15.已知:如图,C 是AE 的中点,∠B=∠D ,BC ∥DE . 求证:AB=CD16.已知0132=-+x x ,求)1(3)1()2(422---++x x x x 的值.A O CDBBCDEA2-1-210FE D AB Cx17.如图,P 是反比例函数ky x=(x >0)的图象上的一点,P N 垂直x 轴于点N ,P M 垂直y 轴于点M ,矩形OMPN 的面积为2,且ON =1,一次函数y x b =+的图象经过点P . (1)求该反比例函数和一次函数的解析式;(2)设直线y x b =+与x 轴的交点为A ,点Q 在y 轴上,当△QOA 的面积等于矩形OMPN 的面积的41时,直接写出 点Q 的坐标.18.如图,在□A B C D 中,对角线A C 、B D 相交于点O ,点E 在B D 的延长线上,且△E A C 是等边三角形,若AC =8,AB =5,求ED 的长.四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分) 19.列方程解应用题:为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?20.如图,在△ABC 中,点D 在AC 上,D A=DB ,∠C =∠DBC ,以AB 为直径的O ⊙交AC 于点E ,F 是O ⊙上的点,且AF =BF . (1)求证:B C 是O ⊙的切线;(2)若sin C =53,AE =23,求sin F 的值和AF 的长.FEO DBCAO EDBAC21. 为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源情况的相关数据,绘制了如下统计图(不完整):(1)请根据以上信息解答下列问题:① 2010年北京市人均公共绿地面积是多少平方米(精确到0.1)?② 补全条形统计图;(2)小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人均公共绿地面积做贡献. 她对所在班级的40名同学2011年参与植树的情况做了调查,并根据调查情况绘制出如下统计表:种树棵数(棵)0 1 2 3 4 5 人数1056946如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2011年共植树多少棵.22. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y 1(千元)与进货量x (吨)之间的函数kx y =1的图象如图①所示,乙种蔬菜的销售利润y 2(千元)与进货量x (吨)之间的函数bx ax y +=22的图象如图②所示. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t 吨,写出这两种蔬菜所获得的销售利润之和W (千元)与t (吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?图① 图②2.03.46.67.95.0年增长率(%)891045673210年份20112010200920082007北京市2007-2011年人均公共绿地面积年增长率统计图x y (万元)(吨)53Oy (千元)y (万元)(吨)Oy (千元) 北京市2007-2011年 人均公共绿地面积统计图15.314.513.612.618人均公共绿地面积(m 2)1512963020072008200920102011年份xy 8834567217564321-10-9-1-2-4-3-5-6-7-8-8-7-6-5-3-4-2-1O五、解答题(本题共21分,第23题6分,第24题8分,第25题7分) 23. 阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题 得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.图① 图②24. 在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点N (2,-5),过点N 作x 轴的平行线交此抛物线左侧于点M ,MN=6. (1)求此抛物线的解析式;(2)点P (x ,y )为此抛物线上一动点,连接MP 交此抛物线的对称轴于点D ,当△DMN 为直角三角形时,求点P 的坐标;(3)设此抛物线与y 轴交于点C ,在此抛物线上是否存在点Q ,使∠QMN =∠CNM ?若存在,求出点Q 的坐标;若不存在,说明理由.D A B CD A B C25. 在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E 、F ,连接EF .(1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF 的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF 的中点所经过的路线长. 备用图PD C(F)AB(E)FPDCA BE北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准2012.5一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案ADBDDACC二、填空题 (本题共16分,每小题4分,)9. x ≥4 10. ))((5b a b a m -+ 11. 70° 12. 32,1+n n(每空2分) 三、解答题(本题共30分,每小题5分) 13. 解:原式1223633-+⨯-= ……………………………………………………4分 1=. …………………………………………………………………………5分 14. 解:x x 5322<+-. …………………………………………………………………2分13-<-x . ……………………………………………………………………3分∴31>x . ……………………………………………………………………4分这个不等式的解集在数轴上表示为:……………………5分15. 证明:∵C 是AE 的中点,∴A C =C E . …………………………………………………………………………1分∵BC ∥DE ,∴∠A C B =∠E . ……………………………………………………………………2分 在△ABC 和△CDE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE AC E ACB D B , ∴△A B C ≌△C D E . ………………………………………………………………4分 ∴ AB =CD . ………………………………………………………………………5分16. 解: )1(3)1()2(422---++x x x x331284222+-+-++=x x x x x4622++=x x ………………………………………………………………………3分 4)3(22++=x x .∵0132=-+x x ,∴132=+x x . …………………………………………………………………………4分 ∴原式=6. ……………………………………………………………………………5分17. 解:(1)∵PN 垂直x 轴于点N ,PM 垂直y 轴于点M ,矩形OMPN 的面积为2 ,且ON =1, ∴PN =2.∴点P 的坐标为(1,2). ………………………1分 ∵反比例函数ky x=(x >0)的图象、一次函数 y x b =+的图象都经过点P ,由12k=,b +=12得2=k ,1=b . ∴反比例函数为xy 2=,………………………………………………………2分一次函数为1+=x y . ………………………………………………………3分(2)Q 1(0,1),Q 2(0,-1). ……………………………………………………5分18. 解:∵四边形ABCD 是平行四边形,∴421===AC CO AO ,BO DO =. ∵△EAC 是等边三角形,∴8==AC EA ,EO ⊥AC . ………………………………………………………2分 在Rt △ABO 中,322=-=AO AB BO .∴DO =BO =3. ………………………………………………………………………3分 在Rt △EAO 中,3422=-=AO EA EO . …………………………………4分∴334-=-=DO EO ED . ……………………………………………………5分四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分)19. 解:设缩短发车间隔前平均每分钟运送乘客x 人. ……………………………………1分根据题意,得xx 128005014400=+, …………………………………………………………………3分 解得400=x . ………………………………………………………………………4分 经检验,400=x 是原方程的解. …………………………………………………5分答:缩短发车间隔前平均每分钟运送乘客400人.20. (1)证明:∵D A=DB ,∴∠DAB=∠DBA . 又∵∠C =∠DBC , ∴∠DBA ﹢∠DBC =︒=︒⨯9018021. ∴AB ⊥BC .又∵AB 是O ⊙的直径,∴BC 是O ⊙的切线. ………………………………………………………2分(2)解:如图,连接BE ,∵AB 是O ⊙的直径,∴∠AEB =90°. ∴∠EBC +∠C =90°. ∵∠ABC =90°, ∴∠ABE +∠EBC =90°. ∴∠C =∠ABE .又∵∠AFE =∠ABE , ∴∠AFE =∠C .∴sin ∠AFE =sin ∠ABE =sin C . ∴sin ∠AFE =53. …………………………………………………………………3分 连接BF , ∴︒=∠90AFB . 在Rt △ABE 中,25sin =∠=ABEAEAB . ……………………………………4分∵AF =BF ,∴5==BF AF . …………………………………………………………………5分21. 解:(1)① 0.15%)4.31(5.14≈+⨯, ………………………………………………2分即2010年北京市人均绿地面积约为15.0平方米.②……………………………………3分(2)675300406544936251100=⨯⨯+⨯+⨯+⨯+⨯+⨯. …………………5分估计她所在学校的300名同学在2011年共植树675棵.22. 解:(1)x y 6.01=. ………………………………………………………………………1分x x y 2.22.022+-=.……………………………………………………………3分(2))2.22.0()10(6.02t t t W +-+-=,15.315.014.513.612.618人均公共绿地面积(m 2)1512963020072008200920102011年份FEO DBCA66.12.02++-=t t W .…………………………………………………………4分即2.9)4(2.02+--=t W .所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元. …………………………………………………6分五、解答题(本题共21分,第23题6分,第24题8分,第25题7分)23. 解:(1)22=BD . ……………………………………………………………………2分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE ,∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………3分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………4分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………5分∴在Rt △ABG 中,22=AB . ……………………………………………6分24. 解:(1)∵32++=bx ax y 过点M 、N (2,-5),6=MN ,由题意,得M (4-,5-).∴⎩⎨⎧-=+--=++.53416,5324b a b aFGEDABC初三数学试卷 第 11 页(共 6页) 解得 ⎩⎨⎧-=-=.2,1b a∴此抛物线的解析式为322+--=x x y . …………………………………2分 (2)设抛物线的对称轴1-=x 交MN 于点G ,若△DMN 为直角三角形,则32121===MN GD GD . ∴D 1(1-,2-),2D (1-,8-). ………………………………………4分 直线MD 1为1-=x y ,直线2MD 为9--=x y . 将P (x ,322+--x x )分别代入直线MD 1,2MD 的解析式,得1322-=+--x x x ①,9322--=+--x x x ②. 解①得 11=x ,42-=x (舍),∴1P (1,0). …………………………………5分 解②得 33=x ,44-=x (舍),∴2P (3,-12). ……………………………6分 (3)设存在点Q (x ,322+--x x ),使得∠QMN =∠CNM .① 若点Q 在MN 上方,过点Q 作QH ⊥MN ,交MN 于点H ,则4tan =∠=CNM MHQH .即)(445322+=++--x x x .解得21-=x ,42-=x (舍).∴1Q (2-,3). ……………………………7分 ② 若点Q 在MN 下方,同理可得2Q (6,45-). …………………8分25. 解:(1)在矩形ABCD 中,90A D ∠=∠=︒,AP =1,CD =AB =2,∴PB=5,90ABP APB ∠+∠=︒.∵90BPC ∠=︒,∴90APB DPC ∠+∠=︒. ∴ABP DPC ∠=∠. ∴ △ABP ∽△DPC .PDC(F)AB(E)xy P 2D 2D 1G MNCO P 1x y HQMNC O初三数学试卷 第 12 页(共 6页)∴AP PBCD PC=,即152PC =. ∴PC=25.……………………………………………………………………2分 (2)① ∠PEF 的大小不变.理由:过点F 作FG ⊥AD 于点G .∴四边形ABFG 是矩形. ∴90A AGF ∠=∠=︒.∴GF=AB=2,90AEP APE ∠+∠=︒. ∵90EPF ∠=︒,∴90APE GPF ∠+∠=︒. ∴AEP GPF ∠=∠. ∴ △APE ∽△GFP . …………………………………………………………4分 ∴221PF GF PE AP ===. ∴在R t △E P F 中,t a n ∠P E F =2PFPE=.……………………………………5分 即tan ∠PEF 的值不变.∴∠PEF 的大小不变.…………………………………………………………6分 ②5. …………………………………………………………………………7分GFP DCA BE。

北京市朝阳区届高三第一次统一练习 数学文科试题.pdf

北京市朝阳区届高三第一次统一练习 数学文科试题.pdf

北京市朝阳区高三年级第一次综合练习 数学试卷(文史类) 2012.3 (考试时间120分钟 满分150分) 本试卷分为选择题(共40分)和非选择题(共110分)两部分 第一部分(选择题 共40分) 注意事项:考生务必将答案答在答题卡上,在试卷上答无效. 一、选择题:本大题共8小题,每小题5分,共40分.复数A. B. C. D. 2. 若集合,,则“”是“”的 A.充分不必要条件 B必要不充分条件 已知向量满足,且,则向量与的夹角为A. B. C. D. 4. 已知数列的前项和为,,则A. B. C. D. 5. 关于两条不同的直线,与两个不同的平面,,下列命题正确的是 A.且,则 B.且,则 C.且,则 D.且,则 6. 已知中心在原点,焦点在轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为 A. B. C. D. 7. 某工厂生产的种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对种产品 征收销售额的的管理费(即销售100元要征收元),于是该产品定价每件比第一年 增加了元,预计年销售量减少万件,要使第二年商场在种产品经营中收取的 管理费不少于14万元,则的最大值是 A. B. C. D. 8. 函数是定义在上的偶函数,且对任意的,都有.当时,.若直线与函数的图象有两个不同的公共点,则实数的值为 A. B. C. 或 D. 或 第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上. 9.若,,则 . 10.已知某几何体的三视图如图所示,则该几何体的体积为 执行如图所示的程序框图,若输入的值是,则输出的值是 .满足约束条件则目标函数的最大值是 ; 使取得最大值时的点的坐标是 . 13. 已知函数则的值为 ;函数恰有两个零点,则实数的取值范围是 . 14. 已知集合,集合.若为坐标原点,,为集合所表示的平面区域与集合所表示的平面区域的边界的交点,则的面积与的关系式为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 把答案答在答题卡上. 15. (本题满分13分) 已知函数. (Ⅰ)若,其中 求的值; (II)设,求函数在区间上的最大值和最小值. 16. (本题满分13分) 某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示. (Ⅰ)下表是年龄的频数分布表,求正整数的值; 区间[25,30)[30,35)[35,40)[40,45)[45,50]5050150 (Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少? (Ⅲ)在()的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第组的概率.在如图所示的几何体中,四边形为平行四边形,, 平面,,,,,且是的中点. (Ⅰ)求证:平面; (Ⅱ)在上是否存在一点,使得最大? 若存在,请求出的正切值;若不存在, 请说明理由. 18. (本题满分14分) 已知函数,. (Ⅰ)若函数在时取得极值,求的值; (Ⅱ)当时,求函数的单调区间. 19.(本题满分14分) 已知椭圆的两个焦点分别为,,点与椭圆短轴的两个端点的连线相互垂直. (Ⅰ)求椭圆的方程; (Ⅱ)过点的直线与椭圆相交于,两点,设点,记直线,的斜率分别为,,求证:为定值. 20(本题满分13分) 已知各项均为非负整数的数列(),满足,.若存在最小的正整数,使得,则可定义变换,变换将数列变为.设,. (Ⅰ)若数列,试写出数列;若数列,试写出数列; (Ⅱ)证明存在数列,经过有限次变换,可将数列变为数列; (Ⅲ)若数列经过有限次变换,可变为数列.设,,求证,其中表示不超过的最大整数. 北京市朝阳区高三年级第一次综合练习 数学试卷答案(文史类) 2012.3 一、选择题: 题号(1)(2)(3)(4)(5)(6)(7)(8)答案BACBCADC 二、填空题: 题号(9)(10)(11)(12)(13)(14)答案3 ;0;注:若有两空,则第一个空3分,第二个空2分. 三、解答题: (15)(本小题满分13分) 解:(Ⅰ)因为,且, …………1分 所以. .…………5分. (II)====. .…….…..10分 当时,. 则当时,的最大值为;当时,的最小值为. ………13分 (16)(本小题满分13分) 解:(Ⅰ)由题设可知, . ……………2分 (Ⅱ) 因为第1,2,3组共有50+50+200=300人, 利用分层抽样在300名学生中抽取名学生,每组抽取的人数分别为: 第1组的人数为, 第2组的人数为, 第3组的人数为, 所以第1,2,3组分别抽取1人,1人,4人.………………6分 ,第2组的1位同学为,第3组的4位同学为,则从六位同学中抽两位同学有: 共种可能. ………… 10分年龄在第组的共1种可能, ……… ………12分至少有1人年龄在第组的.………………13分17)(本小题满分13分) (Ⅰ)证明:取的中点,连接. 在中,是的中点,是的中点, 所以. ……………2分 , 所以且. 所以四边形为平行四边形, 所以. ………………4分 平面,平面, 故平面. ……………………6分 上存在一点,使得最大. 因为平面,所以. 又因为,所以平面. ………………………8分 中,. 因为为定值,且为锐角,则要使最大,只要最小即可. 显然,当时,最小. 因为,所以当点在点处时,使得最大. …………11分=. 所以的正切值为. ……………………13分 18)(本小题满分14分) 解:(Ⅰ). ……………………2分,解得. 经检验符合题意. ………4分,设, (1)当时,,在上为单调减函数. ……5分时,方程=的判别式为, 令, 解得(舍去)或. 1°当时,, 即, 且在两侧同号,仅在时等于, 则在上为单调减函数. ……………………7分时,,则恒成立, 即恒成立,则在上为单调减函数. ……………9分时,,令, 方程有两个不相等的实数根 ,, 作差可知, 则当时,,,在上为单调减函数; 当时,,, 在上为单调增函数; 当时,,,在上为单调减函数. ……………………………………………………………………13分时,函数的单调减区间为;当时,函数的单调减区间为,,函数的单调增区间为. …………………………14分19)(本小题满分14分) 解:(Ⅰ)依题意,由已知得 ,,由已知易得, 解得. ………………………3分.………………………4分II) ①当直线的斜率不存在时,由解得. 设,,则为定值. ………5分②当直线的斜率存在时,设直线的方程为:. 将代入整理化简,得.…6分与椭圆必相交于两点,设,, 则,. ……………………7分,, 所以 ………………………8分 .…….………………13分为常数2. .…….………………14分13分) 解:(Ⅰ)若,则;; ; ; . 若,则 ; ; ; . .……….………………4分满足及,则定义变换,变换将数列变为数列:.易知和是互逆变换. 对于数列连续实施变换(一直不能再作变换为止)得 , 则必有(若,则还可作变换).反过来对作有限次变换,即可还原为数列,因此存在数列满足条件.…………………………8分,这是由于若对某个,,则由变换的定义可知, 通过变换,不能变为.由变换的定义可知数列每经过一次变换,的值或者不 变,或者减少,由于数列经有限次变换,变为数列时,有, , 所以为整数,于是,, 所以为除以后所得的余数,即.………13分 高考学习网( 您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。

【VIP专享】2012-2013年朝阳区高三年级第一学期期末数学(文)试题及答案

【VIP专享】2012-2013年朝阳区高三年级第一学期期末数学(文)试题及答案

10.在 ABC 中,角 A , B , C 所对的边分别为 a , b , c ,且 b2 c2 a2 bc ,则 A =
1. 设集合 A {x 0 x 2} ,集合 B {x log2 x 0} ,则 A B 等于
A.x | x 2 B.x | x 0
2.已知 i 是虚数单位,若复数 (1 ai)(2 i) 是纯虚数,则实数 a 等于
A. 2
B. 1 2
3.“ k 1 ”是“直线 x y k 0 与圆 x2 y2 1 相交”的
雅思博教育
北京市朝阳区 2012-2013 学年度高三年级第一学期期末统一考试
数学测试题(文史类)
(考试时间 120 分钟 满分 150 分) 本试卷分为选择题(共 40 分)和非选择题(共 110 分)两部分
第一部分(选择题 共 40 分)
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出 符合题目要求的一项.
3
1
正视图
正 视 图
俯视图
D. 2
保目标火热招生中
开始
输入 x k 0
x x5
2013.1
k k 1
x 23?
否 是
输出 k
结束
保目标火热招生中
雅思博教育
7.
已知函数
值范围是
A. , 1
f
(x)
ex a, x
2x
1,
x
0, ( a R 0
B. , 0
),若函数
8. 在棱长为1的正方体 ABCD A1B1C1D1 中, P1 , P2 分别为线段 AB , BD1 (不包括端
A.充分不必要条件 C.充分必要条件

2012届北京市高三一模文科数学分类汇编1:集合与简易逻辑

2012届北京市高三一模文科数学分类汇编1:集合与简易逻辑

2012北京市高三一模数学文分类汇编:集合与简易逻辑【2012年北京市西城区高三一模文】1.已知集合{|1}A x x =>,2{|4}B x x =<,那么A B =( )(A )(2,2)-(B )(1,2)-(C )(1,2)(D )(1,4) 【答案】C【解析】}22{}4{2<<-=<=x x x x B ,所以}21{<<=⋂x x B A ,选C.【2012北京市门头沟区一模文】已知集合}032|{2=--=x x x A ,那么满足A B ⊆的集合B 有(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】D【2012北京市海淀区一模文】(1)已知集合2{|1}A x x ==,{|(2)0}B x x x =-<,那么A B =(A )Æ (B ) {1}- (C ){1} (D ){1,1}- 【答案】C【解析】}20{}1,1{<<=-=x x B A ,,所以}1{=⋂B A ,答案选C.【2012北京市房山区一模文】1.设全集,R =U 集合{}21≤≤-=x x A ,{}10≤≤=x x B ,则=B C A U ( ) (A ){}10><x x x 或 (B ){}2101≤<<≤-x x x 或(C ){}2101≤≤≤≤-x x x 或 (D ){}21>-<x x x 或【答案】B【2012北京市丰台区一模文】1.已知集合2{|9},{|1}A x x B x x =≤=<,则A B ( )A .{|3}x x ≤B .{|31}x x -<<C .{|31}x x -≤<D .{|33}x x -≤≤【答案】C【2012北京市石景山区一模文】1.设集合}032|{2<--=x x x M ,{|220}N x x =->,则N M 等于( )A .(1,1)-B .(1,3)C .(0,1)D .(1,0)-【答案】B【解析】}31|{}032|{2<<-=<--=x x x x x M ,}1{>=x x N ,所以}31{<<=x x N M ,答案选B.【2012年北京市西城区高三一模文】7.设等比数列{}n a 的前n 项和为n S .则“10a >”是“23S S >”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件 【答案】C【解析】21323q a a S S ==-,若10a >,则021323>==-q a a S S ,所以23S S >。

2012-2013学年北京市朝阳区高三年级第一学期期中数学(文科)参考答案

2012-2013学年北京市朝阳区高三年级第一学期期中数学(文科)参考答案

北京市朝阳区2012~2013学年度高三年级第一学期期中统一考试数学试卷答案(文史类)2012. 11二、填空题:本大题共6小题,每小题5分,共30分.(注:两空的填空,第一空3分,第一空2分)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)解:(Ⅰ)在△ABC中,因为1cos3C=,所以sin3C===.………………………2分所以11sin23223ABCS ab C==⨯⨯⨯=………………………5分(Ⅱ)由余弦定理可得,2222cosc a b ab C=+-1492233=+-⨯⨯⨯9=所以3c=.…………………………………………7分又由正弦定理得,sin sinc aC A=,所以2sin3sin3a CAc⨯===.……………………9分因为a b<,所以A为锐角,所以7cos9A===.……………………11分所以sin()sin cos cos sin C A C A C A -=-7193=-= ……………………13分16.(本小题满分13分)解:(Ⅰ)24a =,316a =. ……………………………………………2分由题意,131n n a S +=+,则当2n ≥时,131n n a S -=+.两式相减,化简得14n n a a +=(2n ≥). ……………………………………4分 又因为11a =,24a =,214a a =, 则数列{}n a 是以1为首项,4为公比的等比数列,所以14n n a -=(n *∈N ) ……………………………………………6分(Ⅱ)2112323124344n n n T a a a na n -=++++=+⨯+⨯++⋅,2314412434(1)44n n n T n n -=⨯+⨯+⨯++-⋅+⋅, ……………………8分两式相减得,2114314444414nn nn n T n n ---=++++-⋅=-⋅-.………12分化简整理得,114()399nn n T =-+(n *∈N ). ………………………………13分 17.(本小题满分13分) 解:(Ⅰ)由图可得2A =,22362T πππ=-=,所以T =π. 所以2ω=. …………………………………2分 当6x π=时,()2f x =,可得 2sin(2)26ϕπ⋅+=, 因为||2ϕπ<,所以6ϕπ=. ……………………………………………4分 所以()f x 的解析式为()2sin(2)6f x x π=+. …………………………5分 (Ⅱ)()()2cos 22sin(2)2cos 26g x f x x x x π=-=+-2sin 2cos2cos 2sin 2cos 266x x x ππ=+-2cos 2x x =- ………………………………………8分2sin(2)6x π=-. ………………………………………10分因为[0,]2x π∈,所以2666x ππ5π-≤-≤. 当262x ππ-=,即3x π=时,()g x 有最大值,最大值为2; ………………12分 当266x ππ-=-,即0x =时,()g x 有最小值,最小值为1-.……………13分18.(本小题满分14分)解:(Ⅰ)当1a =时,则2()244f x x x =+-222(2)42(1)6x x x =+-=+-.因为[]1,1x ∈-,所以1x =时,()(1)2max f x f ==. ………………………3分 (Ⅱ)当0a =时,()43f x x =-,显然在[]1,1-上有零点,所以0a =时成立.……4分当0a ≠时,令168(3)8(1)(2)0a a a a ∆=++=++=,解得1,a =-2a =-. ………………………………………5分 (1)当1a =-时,22()2422(1)f x x x x =-+-=--.由()0f x =,得1[1,1]x =∈-;当2a =-时,221()4414()2f x x x x =-+-=--. 由()0f x =,得1[1,1]2x =∈-, 所以当0,1,2a =--时,()y f x =均恰有一个零点在[]1,1-上.………………7分 (2)当(1)(1)(7)(1)0f f a a -=-+≤,即17a -≤≤时,()y f x =在[]1,1-上必有零点. ………………………………………9分(3)若()y f x =在[]1,1-上有两个零点,则。

2012学年高考文科数学年北京卷答案

2012学年高考文科数学年北京卷答案

数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前江苏省苏州市2012年中考数学试卷数 学本试卷满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的) 1.2的相反数是( )A .2-B .2C .12-D .122.,则x 的取值范围是 ( )A .2<xB .2≤xC .2>xD .2≥x3.一组数据2,4,5,5,6的众数是( )A .2B .4C .5D .74.如图,一个正六边形转盘被分成6个全等正三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A .12B .13C .14D .165.如图,已知BD 是O 直径,点A ,C 在O 上,=AB BC ,60∠=AOB ,则∠BDC 的度数是( )A .20B .25C .30D .406.如图,矩形ABCD 的对角线AC ,BD ,相交于点O ,CE BD ∥,DE AC ∥若4=AC ,则四边形C O D E 的周长是 ( ) A .4 B .7 C .8D .107.若点(,)m n 在函数21=+y x 的图像上,则2-m n 的值是( )A .2B .-2C .1D .-1 8.若2139273⨯⨯=m m ,则m 的值是( )A .3B .4C .5D .79.如图,将AOB △绕点O 按逆时针方向旋转45后得到△''A OB ,若15∠=AOB ,则∠'AOB 的度数是 ( )A .25B .30C .35D .4010.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C ,1E ,2E ,2C ,3E ,4E ,3C 在x 轴上.若正方形1111A B C D 的边长为1,1160∠=B C O ,112233∥∥B C B C B C ,则点3A 到x 轴的距离是( )A.318B.118C.36D.16二、填空题(本大题共8小题,每小题3分,共24分.) 11.计算:32= .12.若2=a ,3+=a b ,则2+=a ab .13.已知太阳的半径约为696000000m ,696000000这个数用科学记数法可表示为 .14.已知扇形的圆心角为45,弧长等于π2,则该扇形的半径为 . 15.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)16.已知点11(),A x y ,22(),B x y 在二次函数21()1y x =+-的图像上,若121>>x x ,则1y 2y (填“>”“<”“=”).17.如图,已知第一象限内的图像象是反比例函数1=y x 图像的一个分支,第二象限内的图像是反比例函数2=-y x图像的一个分支,在x 轴上方有一条平行于x 轴的直线l 与它们分别交于点A ,B ,过点A ,B 作x 轴的垂线,垂足分别为C ,D .若四边形ACBD 的周长为8且<AB AC ,则点A 的坐标是 .18.如图①,在梯形ABCD 中,∥AD BC ,60∠=A ,动点P 从点A 点出发,以1cm/s 的速度沿着→→→A B C D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:2cm )与点P 移动的时间t (单位:s )的函数如图②所示,则点P 从开始移动到停止移动一共用了 s (结果保留根号).三、解答题(本大题共11小题,共76分.解答应写出必要的计算过程、推演步骤或文字说明) 19.(本题满5分)计算:01)|2|-+-.20.(本题满分5分)解不等式组:322,813(1).<≥-+⎧⎨--⎩-x x x x.21.(本题满分5分)先化简,再求值:222441112a a aa a a -+++---,其中1a .22.(本题满分6分)解分式方程:231422+=++x x x x.23.(本题满分6分)如图,在梯形ABCD 中,已知AD BC ∥,AB CD =,延长线段CB 到E ,使=BE AD ,连接AE ,AC . (1)求证:ABE CDA ≌△△; (2)若40∠=DAC,求∠EAC 的度数.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)24.(本题满分6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为313800m ,问中、美两国人均淡水资源占有量各为多少(单位:3m )?25.(本题满分8分)在33⨯的方格纸中,点A ,B ,C ,D ,E ,F 分别位于如图所示的小正方形的顶点上.(1)从A ,D ,E ,F 四个点中任意取一点,以所取的这一点及B ,C 为顶点画三角形,则所画三角形是等腰三角形的概率是 ;(2)从A ,D ,E ,F 四个点中先后任意取两个不同的点,以所取的这两点及B ,C 为顶点画四边形,求所画四边形是平行四边形的概率(用画树状图或列表法求解).26.(本题满分8分)如图,已知斜坡AB 长60m ,坡角(即∠BAC )为30,⊥BC AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE (请将下面2小题的结果都精确到0.1米,参考数据:1.732≈).(1)若修建的斜坡BE 的坡角(即∠BEF )不大于45,则平台DE 的长最多为 m ;(2)一座建筑物GH 距离坡角A 点27m (即27m =AG )远,小明在D 点测得建筑物顶部H 的仰角(即∠HDM )为30.点B ,C ,A ,G ,H 在同一个平面内,点C ,A ,G 在同一条直线上,且⊥HG CG ,问建筑物GH 高为多少米?27.(本题满分8分)如图,已知半径为2的O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与O 交于点D ,连接PA PB ,,设PC 的长为4(2)<<x x . (1)当52=x 时,求弦PA ,PB 的长度; (2)当x 为何值时,PD CD 的值最大?最大值是多少?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)28.(本题满分9分)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以1cm/s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为1cm ,矩形EFGH 的边FG ,GH 的长分别为4cm ,3cm .设正方形移动时间为(s)x ,线段GP 的长为(cm)y ,其中0 2.5≤≤x .(1)试求出y 关于x 的函数关系式,并求出3=y 时相应x 的值;(2)记DGP △的面积为1S ,△CDG 的面积为2S ,试说明12()-S S 是常数; (3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.29.(本小题满分10分)如图,已知抛物线2(11144)4=-++by x b x (b 是实数且2>b )与x 轴的正半轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴的正半轴交于点C . (1)点B 的坐标为是 ,点C 的坐标为是 (用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得QCO △,QOA △和QAB △中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.。

2012年北京市朝阳区高三一模数学(文)试题及答案2012年北京市朝阳区高三一模数学(文)试题及答案

2012年北京市朝阳区高三一模数学(文)试题及答案2012年北京市朝阳区高三一模数学(文)试题及答案

北京市朝阳区高三年级第一次综合练习数学试卷(文史类) 2012.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 复数10i12i=- A.42i - B. 42i -+ C. 24i + D. 24i -2. 若集合{}21,A m =,{}3,4B =,则“2m =”是“{}4=B A ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知平面向量,a b 满足()=3a a +b ⋅,且2,1ab ,则向量a 与b 的夹角为A.6π B. 3π C. 32π D. 65π 4. 已知数列{}n a 的前n 项和为n S ,且21()n n S a n *=-∈N ,则5a =A. 16-B. 16C. 31D. 325. 关于两条不同的直线m ,n 与两个不同的平面α,β,下列命题正确的是 A .βα//,//n m 且βα//,则n m // B .βα⊥⊥n m ,且βα⊥,则m //n C .βα//,n m ⊥且βα//,则n m ⊥D .βα⊥n m ,//且βα⊥,则n m //6. 已知中心在原点,焦点在x 轴上的双曲线的离心率e =,其焦点到渐近线的距离为1,则此双曲线的方程为A .2212x y -= B .22123x y -= C.2214x y -= D. 221x y -= 7. 某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的最大值是A. 2B. 6.5C. 8.8D. 108. 函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.若直线y x a =+与函数()y f x =的图象有两个不同的公共点,则实数a 的值为A.n ()n ∈Z B.2n ()n ∈Z C. 2n 或124n - ()n ∈Z D. n 或14n -()n ∈Z第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上.9.若sin 3θ=,(,)2θπ∈π,则tan θ= . 10.已知某几何体的三视图如图所示,则该几何体的体积为 .(第10题图)11. 执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是 . (第11题图)12. 设,x y 满足约束条件0, ,230,y y x x y ≥⎧⎪≤⎨⎪+-≤⎩则目标函数2z x y =-的最大值是 ; 使z 取得最大值时的点(,)x y 的坐标是 .13. 已知函数213(),2,()24log ,02x x f x x x ⎧+≥⎪=⎨⎪<<⎩,则((2))f f 的值为 ;函数()()g x f x k =-恰有两个零点,则实数k 的取值范围是 . 14. 已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则MON ∆的面积S 与m 的关系式为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 把答案答在答题卡上.15. (本题满分13分)已知函数π()cos()4f x x =-. (Ⅰ)若3()5f α=,其中π3π,44α<<求πsin 4α⎛⎫- ⎪⎝⎭的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 16. (本题满分13分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所正视图 侧视图示.(Ⅰ)下表是年龄的频数分布表,求正整数,a b 的值;(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.17. (本题满分13分)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD,EF//AB ,2AB=,=1EF ,=BC (Ⅰ)求证://EM 平面ADF ;(Ⅱ)在EB 上是否存在一点P ,使得∠ 若存在,请求出CPD ∠请说明理由.18. (本题满分14分) 已知函数()2()1e x f x ax =-⋅,a ∈R .(Ⅰ)若函数()f x 在1x =时取得极值,求a 的值; (Ⅱ)当0a ≤时,求函数()f x 的单调区间. 19.(本题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(F ,2F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线AN ,BN的斜率分别为1k ,2k ,求证:12k k +为定值.20(本题满分13分)已知各项均为非负整数的数列001:,,,n A a a a (n *∈N ),满足00a =,1n a a n ++=.若存在最小的正整数k ,使得(1)k a k k =≥,则可定义变换T ,变换T 将数列0A 变为00111():1,1,,1,0,,,k k n T A a a a a a -++++.设1()i i A T A +=,0,1,2i =.(Ⅰ)若数列0:0,1,1,3,0,0A ,试写出数列5A ;若数列4:4,0,0,0,0A ,试写出数列0A ; (Ⅱ)证明存在数列0A ,经过有限次T 变换,可将数列0A 变为数列,0,0,,0n n 个; (Ⅲ)若数列0A 经过有限次T 变换,可变为数列,0,0,,0n n 个.设1m m m n S a a a +=+++,1,2,,m n =,求证[](1)1mm m S a S m m =-++,其中[]1mS m +表示不超过1m S m +的最大整数.北京市朝阳区高三年级第一次综合练习数学试卷答案(文史类) 2012.3一、选择题:注:若有两空,则第一个空第二个空三、解答题:(15)(本小题满分13分) 解:(Ⅰ)因为π3()cos()45f αα=-=,且ππ042α<-<, …………1分 所以π4sin 45α⎛⎫-= ⎪⎝⎭. .…………5分.(II )()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=ππsin()cos()44x x +⋅+ =1πsin(2)22x +=1cos 22x . .…….…..10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 则当0x =时,()g x 的最大值为12;当π3x =时,()g x 的最小值为14-. ………13分 (16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=, 0.02550050b =⨯⨯=.……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=, 第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,所以第1,2,3组分别抽取1人,1人,4人. ………………6分(Ⅲ)设第1组的1位同学为A ,第2组的1位同学为B ,第3组的4位同学为1234,,,C C C C ,则从六位同学中抽两位同学有:1234(,),(,),(,),(,),(,),A B A C A C A C A C 1234(,),(,),(,),(,),B C B C B C B C 12(,),C C13(,),C C 142324(,),(,),(,),C C C C C C 34(,),C C 共15种可能. ………… 10分其中2人年龄都不在第3组的有:(,),A B 共1种可能, ……… ………12分所以至少有1人年龄在第3组的概率为11411515-=. ………………13分(17)(本小题满分13分)(Ⅰ)证明:取AD 的中点N ,连接,MN NF .在DAB ∆中,M 是BD 的中点,N 是AD 的中点,所以MN//AB,MN 12=AB . ……………2分欲与客共食化学教案岂当不得待试卷试题”竟安坐饱食化学教案然后应召试卷试题高祖甚感之化学教案常谓又因为EF//AB,EF 12=AB , 所以MN//EF 且MN =EF . 所以四边形MNFE 为平行四边形, 所以EM//FN . ………………4分又因为FN ⊂平面ADF ,EM ⊄平面ADF ,故EM//平面ADF . ……………………6分(Ⅱ)解:假设在EB 上存在一点P ,使得CPD ∠最大.因为EB ⊥平面ABD ,所以EB CD ⊥.又因为CD BD ⊥,所以CD ⊥平面EBD . ………………………8分 在Rt CPD ∆中,tan =CDCPD DP∠. 因为CD 为定值,且CPD ∠为锐角,则要使CPD ∠最大,只要DP 最小即可. 显然,当DP EB ⊥时,DP 最小.因为DB EB ⊥,所以当点P 在点B 处时,使得CPD ∠最大. …………11分 易得tan CD CPD =DB ∠=23. 所以CPD ∠的正切值为23. ……………………13分(18)(本小题满分14分)解:(Ⅰ)()2()21e x f x ax ax '=+-⋅.x ∈R ……………………2分 依题意得(1)(31)e =0f a '=-⋅,解得13a =. 经检验符合题意. ………4分 (Ⅱ)()2()21e xf x ax ax '=+-⋅,设2()21g x ax ax =+-,(1)当0a =时,()e xf x =-,()f x 在(),-∞+∞上为单调减函数. ……5分(2)当0a <时,方程2()21g x ax ax =+-=0的判别式为244a a ∆=+,令0∆=, 解得0a =(舍去)或1a =-.NCAF E BM D1°当1a =-时,22()21(1)0g x x x x =---=-+≤, 即()2()21e 0x f x ax ax '=+-⋅≤,且()f x '在1x =-两侧同号,仅在1x =-时等于0,则()f x 在(),-∞+∞上为单调减函数. ……………………7分2°当10a -<<时,0∆<,则2()210g x ax ax =+-<恒成立,即()0f x '<恒成立,则()f x 在(),-∞+∞上为单调减函数. ……………9分 3°1a <-时,2440a a ∆=+>,令()0g x =, 方程2210ax ax +-=有两个不相等的实数根11x a =-+,21x a =--,作差可知11-->-+则当1x <-+时,()0g x <,()0f x '<,()f x 在(,1-∞-上为单调减函数;当11x a a -+<<--时,()0g x >,()0f x '>,()f x 在(11-+-上为单调增函数;当1x >-时,()0g x <,()0f x '<,()f x 在(1)--+∞上为单调减函数. ……………………………………………………………………13分综上所述,当10a -≤≤时,函数()f x 的单调减区间为(),-∞+∞;当1a <-时,函数()f x 的单调减区间为(,1-∞-,(1)--+∞,函数()f x 的单调增区间为(11-+-. …………………………14分(19)(本小题满分14分) 解:(Ⅰ)依题意,由已知得c =,222a b -=,由已知易得1b OM ==,解得a =………………………3分 则椭圆的方程为2213x y +=. ………………………4分(II) ①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,3x y ==±设A,(1,B,则122233222k k -++=+=为定值. ………5分 ②当直线l 的斜率存在时,设直线l 的方程为:(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简,得2222(31)6330k x k x k +-+-=.…6分 依题意,直线l 与椭圆C 必相交于两点,设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+. ……………………7分又11(1)y k x =-,22(1)y k x =-, 所以1212122233y y k k x x --+=+-- ………………………8分122112(2)(3)(2)(3)(3)(3)y x y x x x --+--=--12211212[2(1)](3)[2(1)](3)93()k x x k x x x x x x ---+---=-++1212121212122()[24()6]93()x x k x x x x x x x x -++-++=-++2212222222336122()[246]3131633933131k k x x k k k k k k k --++⨯-⨯+++=--⨯+++ 2212(21) 2.6(21)k k +==+ .…….………………13分 综上得12k k +为常数2. .…….………………14分(20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . .……….………………4分 (Ⅱ)若数列001:,,,n A a a a 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+---.易知1T -和T 是互逆变换.对于数列,0,0,,0n 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n 1T -−−→1,1,0,,0n -1T-−−→2,0,2,0,,0n -1T-−−→3,1,2,0,,0n -1T -−−→1T -−−→01,,,n a a a ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a 作有限次变换T ,即可还原为数列,0,0,,0n ,因此存在数列0A 满足条件.…………………………8分1111 (Ⅲ)显然i a i ≤(1,2,,)i n =,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a 通过变换,不能变为0.由变换T 的定义可知数列0A 每经过一次变换,k S 的值或者不变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n 时,有0m S =, 1,2,,m n =,所以m m S mt =(m t 为整数),于是1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤, 所以m a 为m S 除以1m +后所得的余数,即[](1)1m m m S a S m m =-++.………13分。

2012年北京市朝阳区高三文科数学第一学期期末试题和答案

2012年北京市朝阳区高三文科数学第一学期期末试题和答案

北京市朝阳区2011-2012学年度高三年级第一学期期末统一考试数学试卷(文史类) 2012.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合2{|3},{|log 1}M x x N x x =<=>,则M N 等于( )A .φB .}321|{<<x x C .}30|{<<x xD .{|23}x x <<2.已知平面向量(3,1)=a ,(,3)x =b ,且a ⊥b ,则实数x 的值为( )A .9-B .1-C .1D .93. 函数⎪⎩⎪⎨⎧≥-<=)0(12)0(2x x x y x的图象大致是 ( )4. 设数列{}n a 是公差不为0的等差数列,11a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S 等于 ( )A . 2788n n +B .2744n n+ C .2324n n +D .2n n +5.执行如图所示的程序框图,输出的S 值为( )A .1B .1-C . 2-D .06. 函数2()2xf x a x=--的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D . (0,2)7.已知函数()sin f x x x =+,设()7a f π=,()6b f π=,()3c f π=,则,,a b c 的大小关系是 ( ) A. a b c << B.c a b << C.b a c << D.b c a << 8. 已知集合{(,)|,,}A x y x n y na b n ===+∈Z ,{(,)|,B x y x m ==2312,y m =+m ∈Z }.若存在实数,a b 使得A B ≠∅成立,称点(,)a b 为“£”点,则“£”点在平面区域22{(,)|108}C x y x y =+≤内的个数是 ( ) A. 0 B. 1 C. 2 D. 无数个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 若变量x ,y 满足约束条件1,,236,x y x x y ≥⎧⎪≥⎨⎪+≤⎩则2z x y =+的最大值为 .10. 已知有若干辆汽车通过某一段公路,从中抽取200辆汽车进行测速分析,其时速的频率分布直方图如图所示,则时速在区间[60,70)上的汽车大约有 辆.11. 某几何体的三视图如图所示,则这个几何体时速(km/h )01002 003 00440 50 60 70 80的体积是 .12. 设直线10x my --=与圆22(1)(2)4x y -+-=相交于A ,B 两点,且弦AB的长为m 的值是 .13. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (万元)与机器运转时间x (年数,x *∈N )的关系为21825y x x =-+-.则当每台机器运转年时,年平均利润最大,最大值是 万元.14. 已知两个正数,a b ,可按规则c ab a b =++扩充为一个新数c ,在,,a b c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.(1)若1,3a b ==,按上述规则操作三次,扩充所得的数是__________;(2)若0p q >>,经过6次操作后扩充所得的数为(1)(1)1mnq p ++-(,m n 为正整数),则,m n 的值分别为______________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本题满分13分)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C所对的边,且满足2sin 0b A -=.(Ⅰ)求角B 的大小;(Ⅱ)若b =2c =,求AB AC 的值.16. (本题满分14分)如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且P 为AD 的中点,Q 为SB 的中点. (Ⅰ)求证:CD ⊥平面SAD ; (Ⅱ)求证://PQ 平面SCD ;(Ⅲ)若SA SD =,M 为BC 中点,在棱SC 上是否存在点N,使得平面DMN ⊥平面ABCD ,并证明你的结论.17. (本题满分13分) 如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域MSD CAP Q·的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后各转动一次游戏转盘,得分记为(,)a b (假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动). (Ⅰ)请列出一个家庭得分(,)a b 的所有情况;(Ⅱ)若游戏规定:一个家庭的总得分为参与游戏的两人所得分数之和,且总得分为偶数的家庭可以获得一份奖品.请问一个家庭获奖的概率为多少?18. (本题满分13分)设函数2()ln 2,R 2ax f x a x x a =+-∈. (Ⅰ)当1a =时,试求函数()f x 在区间[1,e]上的最大值; (Ⅱ)当0a ≥时,试求函数()f x 的单调区间. 19. (本题满分13分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点3(1,)2P ,F 为其右焦点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(4,0)A 的直线l 与椭圆相交于M 、N 两点(点M 在,A N 两点之间),若AMF △与MFN △的面积相等,试求直线l 的方程.20. (本题满分14分) 数列{}n a ,{}n b (1,2,3,n =)由下列条件确定:①110,0a b <>;②当2k ≥时,k a 与k b 满足:当011≥+--k k b a 时,1-=k k a a ,211--+=k k k b a b ;当011<+--k k b a 时,211--+=k k k b a a ,1-=k k b b . (Ⅰ)若11a =-,11b =,求2a ,3a ,4a ,并猜想数列}{n a 的通项公式(不需要证明); (Ⅱ)在数列}{n b 中,若s b b b >>> 21(3s ≥,且*s ∈N ),试用11,b a 表示k b ,},,2,1{s k ∈;(Ⅲ)在(Ⅰ)的条件下,设数列}{n c (*)n ∈N 满足211=c ,0n c ≠,2212m n n n mc c c ma -+=-+(其中m 为给定的不小于2的整数),求证:当m n ≤时,恒有1<n c .北京市朝阳区2011-2012学年度高三年级第一学期期末统一考试数学试卷(文史类)答案 2012.1二、填空题:注:若有两空,则第一个空第二个空三、解答题:(15)(本小题满分13分)解:2sin 0b A -=,根据正弦定理得:2sin sin 0A B A -=.………………………………………………………3分因为sin 0A ≠,所以23sin =B . ………………………………………………5分 又B 为锐角, 则3B π=. …………………………………………………6分(Ⅱ)由(Ⅰ)可知,3B π=.因为b =2c =,根据余弦定理,得 2744cos3a a π=+-, ……………………………………8分整理,得2230a a --=.由于0a >,得3a =. ……………………………10分于是222cos214b c a A bc +-===, ………………………………11分所以 cos cos 2114AB AC AB AC A cb A ====. ……………13分(16)(本小题满分14分)证明:(Ⅰ)因为四边形ABCD 为正方形,则CD AD ⊥. …………………1分 又平面SAD ⊥平面ABCD , 且面SAD 面ABCD AD =,所以CD ⊥平面SAD . ………………………………………………………3分(Ⅱ)取SC 的中点R ,连QR, DR .由题意知:PD ∥BC 且PD =12BC .…………………4分 在SBC ∆中,Q 为SB 的中点,R 为SC 的中点,所以QR ∥BC 且QR =12BC .所以QR ∥PD 且QR=PD ,则四边形PDRQ 为平行四边形. …………………………………………………7分 所以PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD ,所以PQ ∥平面SCD . ……………………………………………………………10分 (Ⅲ)存在点N 为SC 中点,使得平面DMN ⊥平面ABCD . ………………11分连接PC DM 、交于点O ,连接PM 、SP , 因为//PD CM ,并且PD CM =,所以四边形PMCD 为平行四边形,所以PO CO =. 又因为N 为SC 中点,所以//NO SP .………………………………………………………………………12分 因为平面SAD ⊥平面ABCD ,平面SAD 平面ABCD =AD ,并且SP AD ⊥, 所以SP ⊥平面ABCD ,所以NO ⊥平面ABCD , ……………………………………………………13分 又因为NO ⊂平面DMN ,所以平面DMN ⊥平面ABCD .……………………………………………………14分 (17)(本小题满分13分) 解:(Ⅰ)由题意可知,一个家庭的得分情况共有9种,分别为(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,3),(5,2),(5,5). …………………………………………………………7分(Ⅱ)记事件A :一个家庭在游戏中获奖,则符合获奖条件的得分情况包括 (2,2),(3,3),(3,5),(5,3),(5,5)共5种, ……………………………………………11分 所以5()9P A =. 所以一个家庭获奖的概率为59. …………………………………………………13分(18)(本小题满分13分)解: (Ⅰ)函数()f x 的定义域为(0,)+∞. ………………………………………………1分当1a =时,2()ln 22x f x x x =+-,因为21(1)()20x f x x x x -'=+-=≥, …3分 M SDBCAPQ·R (N )O所以函数()f x 在区间[1,e]上单调递增,则当=e x 时,函数()f x 取得最大值2e (e )12e 2f =+-. …………………………………………………………………5分(Ⅱ)22()ax x af x x-+'=. ………………………………………………………6分当0a =时,因为()20f x '=-<,所以函数()f x 在区间(0,)+∞上单调递减;…7分 当0a >时,⑴当2440a ∆=-≤时,即1a ≥时,()0f x '≥,所以函数()f x 在区间(0,)+∞ 上单调递增; …………………………………………………………9分⑵当2440a ∆=->时,即01a <<时,由()0f x '>解得,10x a <<1x a +>. …………………………………………10分由()0f x '<解得11x a a +<<; ………………………………11分所以当01a <<时,函数()f x 在区间1(0,a上单调递增;在上单调递减,)+∞单调递增. ………13分(19)(本小题满分13分)解:(Ⅰ)因为12c a =,所以2a c =,b =. …………………………………1分 设椭圆方程为2222143x y c c +=,又点3(1,)2P 在椭圆上,所以2213144c c+=,解得21c =, …………………………………………………………………………3分所以椭圆方程为22143x y +=. …………………………………………………………4分 (Ⅱ)易知直线l 的斜率存在,设l 的方程为(4)y k x =-, ……………………………………………………………5分由22(4),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y 整理,得 2222(34)3264120k x k x k +-+-=, ………………………………………………6分由题意知2222(32)4(34)(6412)0k k k ∆=-+->,解得1122k -<<. ……………………………………………………………………7分 设11(,)M x y ,22(,)N x y ,则21223234k x x k +=+,⋅⋅⋅⋅⋅⋅ ①, 2122641234k x x k-=+.… ②. 因为AMF △与MFN △的面积相等,所以AM MN =,所以1224x x =+.⋅⋅⋅⋅⋅⋅ ③ ……………………………………10分由①③消去2x 得21241634k x k +=+.⋅⋅⋅⋅⋅⋅ ④将2124x x =-代入②得21126412(24)34k x x k --=+.⋅⋅⋅⋅⋅⋅ ⑤ 将④代入⑤2222224164166412(24)343434k k k k k k ++-⨯-=+++,整理化简得2365k =,解得k =,经检验成立. …………………………12分 所以直线l的方程为4)6y x =±-. …………………………………………13分 (20)(本小题满分14分)(Ⅰ)解:因为011=+b a ,所以112-==a a ,02112=+=b a b . ……1分 因为0122<-=+b a ,则212223-=+=b a a ,320b b ==. ………………2分 333421222a b a a +===-. ……………………………………………………3分 猜想当2n ≥时,22221111222n n n n a a ---⎛⎫⎛⎫=⨯=-⋅=-⎪⎪⎝⎭⎝⎭.则21,1,1, 2.2n n n a n -⎧-=⎪=⎨-≥⎪⎩ …………………………………………………………4分 (Ⅱ)解:当s k ≤≤2时,假设110k k a b --+<,根据已知条件则有1-=k k b b ,与s b b b >>> 21矛盾,因此110k k a b --+<不成立, ……………………5分所以有110k k a b --+≥,从而有1k k a a -=,所以1a a k =. ……………………6分当011≥+--k k b a 时,1-=k k a a ,211--+=k k k b a b , 所以111111()22k k k k k k k a b b a a b a -----+-=-=-; …………………………8分当s k ≤≤2时,总有111()2k k k k b a b a ---=-成立. 又110b a -≠,所以}{k k a b -(s k ,,2,1 =)是首项为11b a -,公比为12的等比数列, ……9分 11121)(-⎪⎭⎫⎝⎛-=-k k k a b a b ,1,2,,k s =,又因为1a a k =,所以111121)(a a b b k k +⎪⎭⎫⎝⎛-=-. …………………………10分(Ⅲ)证明:由题意得2212m n n n mc c c ma -+=-+n n c c m+=21. 因为211n n n c c c m +=+,所以2110n n n c c c m+-=>.所以数列{}n c 是单调递增数列. ………………………………………………11分 因此要证)(1m n c n ≤<,只须证1<m c . 由2≥m ,则n n n c c m c +=+211<n n n c c c m++11,即1111n n c c m +->-. …12分因此1122111)11()11()11(1c c c c c c c c m m m m m +-++-+-=--- m m m m 121+=+-->. 所以11m mc m <<+.故当m n ≤,恒有1<n c . ………………………………………………………14分。

2012年北京市朝阳区高三年级第一次综合练习文科综合能力测试及答案

2012年北京市朝阳区高三年级第一次综合练习文科综合能力测试及答案

北京市朝阳区2012年高三年级第一次综合练习文科综合能力测试(考试时间150分钟满分300分)考生须知:1.本试卷,分为两卷。

第1卷选择题,共35个小题(140分);第Ⅱ卷非选择题,共5个小题(160分)。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第1卷必须用2B铅笔作答;第Ⅱ卷必须用黑色字迹的签字笔作答。

3.考试结束后,考生将考试试卷及答题卡按要求放在桌面上,待监考员收回。

第I卷(选择题,共140分)本卷共35小题,每小题4分,共计140分。

在每小题列的四个选项中,只有一项是最符合题目要求的。

图l为云南省罗平县著名旅游景观“金鸡峰丛与油菜花海”照片。

读图,回答第1、2题。

1.该景观A.为自然旅游资源B.应把握观赏时机C.历史文化价值高D.是世界文化遗产2.“金鸡峰丛”由石灰岩组成,其形成的地质过程依次是A.固结成岩—地壳抬升—流水侵蚀B.岩浆侵入—地壳抬升—风力侵蚀C.固结成岩—侵蚀搬运—流水堆积D.岩浆喷出—侵蚀搬运—风力堆积某企业是大型的电子产品专业制造集团,为世界众多品牌组装电脑等电子产品。

2010年8月,该企业开始在郑州等地建设生产基地,在深圳酌工厂逐步停止招工。

回答第3、4题。

3.该企业由深圳向郑州转移的主要原因是A.追求更大的消费市场B.降低劳动力的成本C.深圳原材料日趋枯竭D.郑州科技实力增强4.该类企业的转移将A.增大迁入地的就业压力B.推动迁出地的城市化进程C.利于迁入迁出地的产业结构调整D.促进迁入迁出地的生态环境改善高山林线指山地森林分布的最高界线,图2为我国高山林线理论海拔等值线分布图(单位:米)。

读图,回答第5、6题。

5.高山林线分布高度A.最高的地区是横断山区B.太行山区西侧高于东侧C.自南向北逐渐降低的主导因素是热量D.西部普遍高于东部的主导因素是水分6.甲地高山林线海拔较高的一坡是A.南坡——冬季风迎风坡B.北坡——冬季风迎风坡C.阴坡——夏季风迎风坡D.阳坡——夏季风迎风坡图3为某观测站某年8月1日至3日雨量及河流水文过程线图。

2012北京市高三一模文科数学分类汇编9:复数、程序、推理与证明.pdf

2012北京市高三一模文科数学分类汇编9:复数、程序、推理与证明.pdf

2012北京市高三一模数学文分类汇编:复数、程序、推理与证明 【2012年北京市西城区高三一模文】2.执行如图所示的程序框图,若输入,则输出的值为( ) (A)(B)(C)(D) 【答案】D 【解析】输入,。

,,,,,满足条件,输出,选D. 【2012北京市门头沟区一模文】12.如右图所示的程序框图输出的结果是 .,则判断框中应填入的条件为 ( ) (A)4(B)5(C)6(D)7 【答案】A 【2012北京市朝阳区一模文】11. 执行如图所示的程序框图,若输入的值是,则输出的值是 . 【2012北京市东城区一模文】(5)右图给出的是计算的值的一个程序框图, 其中判断框内应填入的条件是 (A) (B) (C) (D) 【答案】B 【2012北京市丰台区一模文】13.执行如右图所示的程序框图,若输出的n的值为10,则=。

【答案】3 【2012北京市石景山区一模文】5.执行右面的框图,若输入的是,则输出的值是( ) A. B. C. D. 【答案】B 【解析】第一次循环:,第二次循环:,第三次循环:,第四次循环:,第五次循环:,第六次循环:此时条件不成立,输出,选B. 【2012年北京市西城区高三一模文】8.已知集合,其中,且.则中所有元素之和是( ) (A)(B)(C)(D) 【答案】C 【解析】本题可转化为二进制,集合中的二进制数为,因为,所以最大的二进制数为1111,最小的二进制数1000,对应的十进制数最大为15,最小值为8,则,8到15之间的所有整数都有集合中的数,所以所有元素之和为,选C. 【2012年北京市西城区高三一模文】14. 如图,已知抛物线及两点和,其中.过,分别作轴的垂线,交抛物线于,两点,直线与轴交于点,此时就称, 确定了.依此类推,可由,确定,.记,. 给出下列三个结论: ① 数列是递减数列; ② 对,; ③ 若,,则. 其中,所有正确结论的序号是_____. 【答案】① ② ③. 【2012年北京市西城区高三一模文】4.如图,在复平面内,复数,对应的向量分别是,,则复数对应的点位于() (A)第一象限(B)第二象限(C)第三象限(D)第四象限 【答案】B 【解析】由复数的几何意义知,所以,对应的点在第二象限,选B. 【2012北京市门头沟区一模文】9. 复数在复平面内对应的点的坐标是 . 【2012北京市海淀区一模文】(14)已知函数 则; 下面三个命题中,所有真命题的序号是 . 函数是偶函数; 任取一个不为零的有理数,对恒成立; 存在三个点使得为等边三角形. 【答案】1 ①②③ 【2012北京市海淀区一模文】(9)复数 【2012北京市海淀区一模文】(8)在棱长为1的正方体中,若点是棱上一点,则满足的点的个数为 (A)4 (B)6 (C)8 (D)12 【答案】B 【2012北京市房山区一模文】9. 是虚数单位,则___. 【答案】 【2012北京市东城区一模文】(8)设集合,函数,且则的取值范围是 (A)(] (B) (](C)() (D) [0,] 【2012北京市东城区一模文】(1)若,,是虚数单位,则的值为 (A) (B) (C) (D) 【答案】D 【2012北京市丰台区一模文】9.在复平面内,复数对应的点的坐标为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习数学试卷(文史类) 2012.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 复数10i 12i=-A.42i -B. 42i -+C. 24i +D. 24i - 2. 若集合{}21,A m =,{}3,4B =,则“2m =”是“{}4=B A ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3. 已知平面向量,a b 满足()=3a a +b ⋅,且2,1==a b ,则向量a 与b 的夹角为A.6π B.3π C.32π D.65π4. 已知数列{}n a 的前n 项和为n S ,且21()n n S a n *=-∈N ,则5a =A. 16-B. 16C. 31D. 325. 关于两条不同的直线m ,n 与两个不同的平面α,β,下列命题正确的是 A .βα//,//n m 且βα//,则n m // B .βα⊥⊥n m ,且βα⊥,则m //n C .βα//,n m ⊥且βα//,则n m ⊥D .βα⊥n m ,//且βα⊥,则n m //6. 已知中心在原点,焦点在x 轴上的双曲线的离心率62e =,其焦点到渐近线的距离为1,则此双曲线的方程为 A .2212xy -= B .22123xy-= C.2214xy -= D. 221x y -=7. 某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年 增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的最大值是A. 2B. 6.5C. 8.8D. 108. 函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.若直线y x a =+与函数()y f x =的图象有两个不同的公共点,则实数a 的值为 A.()n ∈Z B.n ()n ∈Z C. 2n 或124n -()n ∈Z D. n 或14n -()n ∈Z第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上. 9.若5sin 3θ=,(,)2θπ∈π,则tan θ= .10.已知某几何体的三视图如图所示,则该几何体的体积为 .(第10题图)11. 执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是 .(第11题图)12. 设,x y 满足约束条件0,, 230,y y x x y ≥⎧⎪≤⎨⎪+-≤⎩则目标函数2z x y =-的最大值是 ;使z 取得最大值时的点(,)x y 的坐标是 .开始输入k S =0,i =11+(1)S S i i =-i =i +1?i k <输出S 结束是否 2 1133正视图 侧视图俯视图2113. 已知函数213(),2,()24log ,02x x f x x x ⎧+≥⎪=⎨⎪<<⎩,则((2))f f 的值为 ;函数()()g x f x k=-恰有两个零点,则实数k 的取值范围是 . 14. 已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则M O N ∆的面积S 与m 的关系式为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 把答案答在答题卡上. 15. (本题满分13分)已知函数π()cos()4f x x =-.(Ⅰ)若3()5f α=,其中π3π,44α<<求πsin 4α⎛⎫- ⎪⎝⎭的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 16. (本题满分13分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(Ⅰ)下表是年龄的频数分布表,求正整数,a b 的值;(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.17. (本题满分13分)在如图所示的几何体中,四边形ABC D 为平行四边形,=90ABD ∠︒,EB ⊥平面A B C D ,EF//AB ,2AB =,=1EF ,=13BC ,且M 是BD 的中点.(Ⅰ)求证://EM 平面ADF ;(Ⅱ)在EB 上是否存在一点P ,使得C PD ∠最大?若存在,请求出C PD ∠的正切值;若不存在,区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数5050a150 b25 30 35 40 45 50 0.02 频率组距年龄0.08 0.06 0.04O CF EMD请说明理由. 18. (本题满分14分)已知函数()2()1e x f x ax =-⋅,a ∈R .(Ⅰ)若函数()f x 在1x =时取得极值,求a 的值; (Ⅱ)当0a ≤时,求函数()f x 的单调区间. 19.(本题满分14分)已知椭圆2222:1(0)x y C a b ab+=>>的两个焦点分别为1(2,0)F -,2(2,0)F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线A N ,B N的斜率分别为1k ,2k ,求证:12k k +为定值.20(本题满分13分)已知各项均为非负整数的数列001:,,,n A a a a (n *∈N ),满足00a =,1n a a n ++= .若存在最小的正整数k ,使得(1)k a k k =≥,则可定义变换T ,变换T 将数列0A 变为00111():1,1,,1,0,,,k k n T A a a a a a -++++ .设1()i i A T A +=,0,1,2i = . (Ⅰ)若数列0:0,1,1,3,0,0A ,试写出数列5A ;若数列4:4,0,0,0,0A ,试写出数列0A ; (Ⅱ)证明存在数列0A ,经过有限次T 变换,可将数列0A 变为数列,0,0,,0n n个;(Ⅲ)若数列0A 经过有限次T 变换,可变为数列,0,0,,0n n个.设1m m m n S a a a +=+++ ,1,2,,m n = ,求证[](1)1m m m S a S m m =-++,其中[]1m S m +表示不超过1m S m +的最大整数.北京市朝阳区高三年级第一次综合练习数学试卷答案(文史类) 2012.3一、选择题:题号(1) (2) (3) (4) (5) (6) (7) (8) 答案BACBCADC二、填空题:题号 (9)(10)(11)(12) (13) (14)答案52-32343 ;3,02⎛⎫⎪⎝⎭0;3,14⎛⎫⎪⎝⎭241m m+注:若有两空,则第一个空3分,第二个空2分.三、解答题:(15)(本小题满分13分) 解:(Ⅰ)因为π3()cos()45f αα=-=,且ππ042α<-<, …………1分所以π4sin 45α⎛⎫-= ⎪⎝⎭. .…………5分. (II )()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=ππsin()cos()44x x +⋅+ =1πsin(2)22x +=1cos 22x . .…….…..10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 则当0x =时,()g x 的最大值为12;当π3x =时,()g x 的最小值为14-. ………13分(16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=,0.02550050b =⨯⨯=.……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=, 第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,所以第1,2,3组分别抽取1人,1人,4人. ………………6分 (Ⅲ)设第1组的1位同学为A ,第2组的1位同学为B ,第3组的4位同学为1234,,,C C C C ,则从六位同学中抽两位同学有:1234(,),(,),(,),(,),(,),A B A C A C A C A C 1234(,),(,),(,),(,),B C B C B C B C 12(,),C C13(,),C C 142324(,),(,),(,),C C C C C C 34(,),C C 共15种可能. ………… 10分其中2人年龄都不在第3组的有:(,),A B 共1种可能, ……… ………12分 所以至少有1人年龄在第3组的概率为11411515-=. ………………13分(17)(本小题满分13分)(Ⅰ)证明:取A D 的中点N ,连接,MN NF .在D AB ∆中,M 是BD 的中点,N 是AD 的中点, 所以M N //A B ,M N 12=A B . ……………2分 又因为E F //A B ,E F 12=A B ,所以M N //E F 且M N =EF .所以四边形M N FE 为平行四边形,所以E M //F N . ………………4分 又因为FN ⊂平面ADF ,EM ⊄平面ADF ,故EM //平面ADF . ……………………6分 (Ⅱ)解:假设在EB 上存在一点P ,使得C PD ∠最大.因为EB ⊥平面ABD ,所以EB C D ⊥.又因为C D BD ⊥,所以C D ⊥平面EBD . ………………………8分 在R t C P D ∆中,tan =C D C PD D P∠.因为C D 为定值,且C PD ∠为锐角,则要使C PD ∠最大,只要D P 最小即可. 显然,当DP EB ⊥时,D P 最小.因为DB EB ⊥,所以当点P 在点B 处时,使得C PD ∠最大. …………11分 易得tan C D C PD =D B∠=23.所以C PD ∠的正切值为23. ……………………13分(18)(本小题满分14分)解:(Ⅰ)()2()21e x f x ax ax '=+-⋅.x ∈R ……………………2分 依题意得(1)(31)e =0f a '=-⋅,解得13a =. 经检验符合题意. ………4分(Ⅱ)()2()21e x f x ax ax '=+-⋅,设2()21g x ax ax =+-,(1)当0a =时,()e xf x =-,()f x 在(),-∞+∞上为单调减函数. ……5分NCA F EB MD(2)当0a <时,方程2()21g x ax ax =+-=0的判别式为244a a ∆=+, 令0∆=, 解得0a =(舍去)或1a =-.1°当1a =-时,22()21(1)0g x x x x =---=-+≤, 即()2()21e 0x f x ax ax '=+-⋅≤,且()f x '在1x =-两侧同号,仅在1x =-时等于0,则()f x 在(),-∞+∞上为单调减函数. ……………………7分 2°当10a -<<时,0∆<,则2()210g x ax ax =+-<恒成立,即()0f x '<恒成立,则()f x 在(),-∞+∞上为单调减函数. ……………9分 3°1a <-时,2440a a ∆=+>,令()0g x =,方程2210ax ax +-=有两个不相等的实数根211a a x a+=-+,221a a x a +=--,作差可知2211a a a a a a++-->-+,则当21a a x a+<-+时,()0g x <,()0f x '<,()f x 在2(,1)a a a+-∞-+上为单调减函数; 当2211a a a a x aa++-+<<--时,()0g x >,()0f x '>,()f x 在22(1,1)a a a a aa++-+--上为单调增函数;当21a a x a+>--时,()0g x <,()0f x '<,()f x 在2(1,)a a a+--+∞上为单调减函数. ……………………………………………………………………13分 综上所述,当10a -≤≤时,函数()f x 的单调减区间为(),-∞+∞;当1a <-时,函数()f x 的单调减区间为2(,1)a a a+-∞-+,2(1,)a a a+--+∞,函数()f x 的单调增区间为22(1,1)a a a a aa++-+--. …………………………14分(19)(本小题满分14分)解:(Ⅰ)依题意,由已知得2c =,222a b -=,由已知易得1b OM ==,解得3a =. ………………………3分则椭圆的方程为2213xy +=. ………………………4分(II) ①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得61,3x y ==±.设6(1,)3A ,6(1,)3B -,则12662233222k k -++=+=为定值. ………5分②当直线l 的斜率存在时,设直线l 的方程为:(1)y k x =-.将(1)y k x =-代入2213xy +=整理化简,得2222(31)6330k x k x k +-+-=.…6分依题意,直线l 与椭圆C 必相交于两点,设11(,)A x y ,22(,)B x y ,则2122631kx x k +=+,21223331k x x k -=+. ……………………7分又11(1)y k x =-,22(1)y k x =-, 所以1212122233y y k k x x --+=+-- ………………………8分122112(2)(3)(2)(3)(3)(3)y x y x x x --+--=--12211212[2(1)](3)[2(1)](3)93()k x x k x x x x x x ---+---=-++1212121212122()[24()6]93()x x k x x x x x x x x -++-++=-++2212222222336122()[246]3131633933131k kx x k k k k k k k --++⨯-⨯+++=--⨯+++2212(21) 2.6(21)k k +==+ .…….………………13分综上得12k k +为常数2. .…….………………14分 (20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . .……….………………4分(Ⅱ)若数列001:,,,n A a a a 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+--- .易知1T-和T 是互逆变换.对于数列,0,0,,0n 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n 1T-−−→1,1,0,,0n - 1T-−−→2,0,2,0,,0n - 1T-−−→3,1,2,0,,0n - 1T-−−→ 1T-−−→01,,,n a a a ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a 作有限次变换T ,即可还原为数列,0,0,,0n ,因此存在数列0A 满足条件.…………………………8分(Ⅲ)显然i a i ≤(1,2,,)i n = ,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a通过变换,不能变为0.由变换T 的定义可知数列0A 每经过一次变换,k S 的值或者不 变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n 时,有0m S =,1,2,,m n = ,所以m m S m t =(m t 为整数),于是1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤,所以m a 为m S 除以1m +后所得的余数,即[](1)1m m m S a S m m =-++.………13分。

相关文档
最新文档