2019届全国一卷数学试题
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)
绝密★启用前六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。
粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。
如果无误,请将条形码粘贴在答题卡的对应位置。
万一粘贴不理想,也不要撕下来重贴。
只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。
2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。
如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。
写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。
3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。
若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。
不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。
4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。
如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。
5 不要把文具带出考场考试结束,停止答题,把试卷整理好。
然后将答题卡放在最上面,接着是试卷、草稿纸。
不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。
请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。
6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。
14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。
听力部分考试结束时,将会有“听力部分到此结束”的提示。
听力部分结束后,考生可以开始做其他部分试题。
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
第一部分专题二 数列-2021届高三数学二轮专题复习课件
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
所以 an=2n. (2)由于 21=2,22=4,23=8,24=16,25=32,26= 64,27=128, 所以 b1 对应的区间为:(0,1],则 b1=0; b2,b3 对应的区间分别为:(0,2],(0,3]则 b2=b3=1, 即有 2 个 1; b4,b5,b6,b7 对应的区间分别为:(0,4],(0,5],(0, 6],(0,7],则 b4=b5=b6=b7=2,即有 22 个 2;
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
b8,b9,…,b15 对应的区间分别为:(0,8],(0,9],…, (0,15],则 b8=b9=…=b15=3,即有 23 个 3;
b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式. (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+ bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1= an-bn+2.
专题二 数 列
真题研析 命题分析 知识方法
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…(n-1)(- 2)n-1+n(-2)n,②
【新课标】2019届高考数学大一轮复习试题:第四章_三角函数题组23_含解析
题组层级快练(二十三)1.函数f(x)=(1+cos2x)sin 2x 是( ) A .周期为π的奇函数B .周期为π的偶函数C .周期为π2的奇函数D .周期为π2的偶函数答案 D解析 f(x)=(1+cos2x)sin 2x =2cos 2xsin 2x =12sin 22x =1-cos4x 4,则T =2π4=π2且为偶函数.2.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)答案 A解析 对于选项A ,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选A. 3.函数y =2sin(π6-2x)(x ∈[0,π])的增区间是( )A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]答案 C解析 ∵y =2sin(π6-2x)=-2sin(2x -π6),由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为[π3+k π,5π6+k π],k ∈Z ,∴当k =0时,增区间为[π3,5π6].4.已知f(x)=sin 2x +sinxcosx ,则f(x)的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[-π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]答案 C解析 由f(x)=12sin2x +12(1-cos2x)=2sin (2x -π4)+12,得该函数的最小正周期是π.当2k π-π2≤2x-π4≤2k π+π2,k ∈Z ,即k π-π8≤x ≤k π+3π8,k ∈Z 时,函数f(x)是增函数,即函数f(x)的单调增区间是[k π-π8,k π+3π8],其中k ∈Z .由k =0得到函数f(x)的一个单调增区间是[-π8,3π8],结合各选项知,选C.5.(2016·北京朝阳区期末)已知函数f(x)=sinx +3cosx ,设a =f(π7),b =f(π6),c =f(π3),则a ,b ,c 的大小关系是( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a答案 B解析 f(x)=sinx +3cosx =2sin(x +π3),因为函数f(x)在[0,π6]上单调递增,所以f(π7)<f(π6),而c =f(π3)=2sin 2π3=2sin π3=f(0)<f(π7),所以c<a<b.6.(2016·南昌大学附中)设f(x)=sin (ωx +φ),其中ω>0,则f(x)是偶函数的充要条件是( ) A .f(0)=1 B .f(0)=0 C .f ′(0)=1 D .f ′(0)=0答案 D解析 f(x)=sin (ωx +φ)是偶函数,有φ=k π+π2,k ∈Z .∴f(x)=±cos ωx.而f ′(x)=±ωsin ωx ,∴f ′(0)=0,故选D.7.(2014·天津)已知函数f(x)=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f(x)=3sin ωx +cos ωx =2(sin ωx ×32+cos ωx ×12)=2sin (ωx +π6), 令f(x)=1,得sin (ωx +π6)=12.∴ωx 1+π6=π6+2k π或ωx 2+π6=5π6+2k π.∵|x 1-x 2|min =π3,∴ω(x 2-x 1)=2π3,∴ω=2,∴T =2πω=π.8.如果函数y =3cos(2x +φ)的图像关于点(4π3,0)成中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 A解析 依题意得3cos(8π3+φ)=0,8π3+φ=k π+π2,φ=k π-136π(k ∈Z ),因此|φ|的最小值是π6.9.已知函数y =sin ωx 在[-π3,π3]上是增函数,则实数ω的取值范围是( )A .[-32,0) B .[-3,0)C .(0,32] D .(0,3]答案 C解析 由于y =sinx 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32. 10.已知函数f(x)=cos(x +π4)·sinx ,则函数f(x)的图像( ) A .关于直线x =π8对称B .关于点(π8,-24)对称C .最小正周期为2πD .在区间(0,π8)上为减函数答案 A解析 化简f(x)=cos(x +π4)·sinx =(22cosx -22sinx)·sinx =24(sin2x +cos2x -1)=12sin(2x +π4)-24,则该函数图像的对称轴为直线x =π8+k π2,k ∈Z ,A 正确;其对称中心(-π8+k π2,-24),k ∈Z ,B 不正确;其最小正周期为π,C 不正确;令π2+2k π≤2x +π4≤3π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z ,D 不正确,故选A.11.若将函数f(x)=sin2x +cos2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.5π4 答案 C解析 f(x)=sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π4,将其图像向右平移φ个单位得到g(x)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8-φ=2sin ⎝⎛⎭⎫2x +π4-2φ的图像.∵g(x)=2sin ⎝⎛⎭⎫2x +π4-2φ的图像关于y 轴对称,即函数g(x)为偶函数,∴π4-2φ=k π+π2,k ∈Z ,即φ=-k π2-π8,k ∈Z . 因此当k =-1时,φ有最小正值3π8.12.(2015·东北四校模拟)已知函数f(x)=-2sin(2x +φ)(|φ|<π),若f(π8)=-2,则f(x)的一个单调递增区间可以是( )A .[-π8,3π8]B .[5π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 D解析 ∵f(π8)=-2,∴-2sin(2×π8+φ)=-2.即sin(π4+φ)=1.∵|φ|<π,∴φ=π4.∴f(x)=-2sin(2x +π4).由2k π+π2≤2x +π4≤2k π+3π2,得k π+π8≤x ≤k π+5π8(k ∈Z ).当k =0时,π8≤x ≤5π8.13.设f(x)=xsinx ,若x 1,x 2∈[-π2,π2],且f(x 1)>f(x 2),则下列结论中,必成立的是( )A .x 1>x 2B .x 1+x 2>0C .x 1<x 2D .x 12>x 22答案 D14.若y =cosx 在区间[-π,α]上为增函数,则实数α的取值范围是________. 答案 -π<α≤015.将函数y =sin (ωx +φ)(π2<φ<π)的图像,仅向右平移4π3,或仅向左平移2π3,所得到的函数图像均关于原点对称,则ω=________.答案 12解析 注意到函数的两相邻对称中心之间距离是函数周期的一半,即有T 2=23π-(-43π)=2π,T =4π,即2πω=4π,ω=12.16.已知函数f(x)=sinx +acosx 的图像的一条对称轴是x =5π3,则函数g(x)=asinx +cosx 的初相是________.答案 23π解析 f ′(x)=cosx -asinx ,∵x =5π3为函数f(x)=sinx +acosx 的一条对称轴,∴f ′(5π3)=cos 5π3-asin 5π3=0,解得a =-33.∴g(x)=-33sinx +cosx =233(-12sinx +32cosx)=233sin(x +2π3).17.已知函数f(x)=(sinx -cosx )sin2xsinx .(1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递减区间.答案 (1){x ∈R |x ≠k π,k ∈Z } T =π(2)[k π+3π8,k π+7π8](k ∈Z )解析 (1)由sinx ≠0,得x ≠k π(k ∈Z ). 故f(x)的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f(x)=(sinx -cosx)sin2xsinx=2cosx(sinx -cosx) =sin2x -cos2x -1=2sin(2x -π4)-1,所以f(x)的最小正周期为T =2π2=π. (2)函数y =sinx 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ).由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f(x)的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ).18.(2015·重庆理)已知函数f(x)=sin(π2-x)sinx -3cos 2x.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在[π6,2π3]上的单调性.答案 (1)T =π 2-32(2)增区间[π6,5π12],减区间[5π12,2π3]解析 (1)f(x)=sin(π2-x)sinx -3cos 2x =cosxsinx -32(1+cos2x)=12sin2x -32cos2x -32=sin(2x -π3)-32, 因此f(x)的最小正周期为π,最大值为2-32.(2)当x ∈[π6,2π3]时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f(x)单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f(x)单调递减. 综上可知,f(x)在[π6,5π12]上单调递增;在[5π12,2π3]上单调递减.1.将函数f(x)=sin2x(x ∈R )的图像向右平移π4个单位后,所得到的图像对应的函数的一个单调递增区间是( )A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 将函数f(x)=sin2x(x ∈R )的图像向右平移π4个单位后得到函数g(x)=sin2(x -π4)=-cos2x 的图像,则函数g(x)的单调递增区间为[k π,k π+π2],k ∈Z ,而满足条件的只有B.2.(2016·北京顺义一模)已知函数f(x)=cos(2x +π3)-cos2x ,其中x ∈R ,给出下列四个结论:①函数f(x)是最小正周期为π的奇函数;②函数f(x)图像的一条对称轴是直线x =2π3;③函数f(x)图像的一个对称中心为(5π12,0);④函数f(x)的单调递增区间为[k π+π6,k π+2π3],k ∈Z .其中正确的结论的个数是( )A .1B .2C .3D .4答案 C解析 由已知得,f(x)=cos(2x +π3)-cos2x =cos2xcos π3-sin2xsin π3-cos2x =-sin(2x +π6),不是奇函数,故①错.当x =2π3时,f(2π3)=-sin(4π3+π6)=1,故②正确;当x =5π12时,f(5π12)=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3.3.(2013·浙江理)已知函数f(x)=Aco s(ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 f(x)是奇函数时,φ=π2+k π(k ∈Z ); φ=π2时,f(x)=Acos (ωx +π2)=-Asin ωx 为奇函数.所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,选B.4.已知函数f(x)=sin(2x +φ),其中φ为实数,若f(x)≤|f(π6)|对x ∈R 恒成立,且f(π2)>f(π),则f(x)的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )答案 C解析 由题意知,f(x)在x =π6处取得最大值或最小值,∴x =π6是函数f(x)的对称轴.∴2×π6+φ=π2+k π,φ=π6+k π,k ∈Z .又由f(π2)>f(π),得sin φ<0.∴φ=-56π+2k π(k ∈Z ),不妨取φ=-56π.∴f(x)=sin(2x -5π6).由2k π-π2≤2x -56π≤2k π+π2,得f(x)的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).5.若函数f(x)=Msin (ωx +φ)(ω>0)在区间[a ,b]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos (ωx +φ)在[a ,b]上( ) A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M答案 C解析 方法一(特值法):取M =2,w =1,φ=0画图像即得答案.方法二:T =2πw ,g(x)=Mcos(wx +φ)=Msin(wx +φ+π2)=Msin[w(x +π2w)+φ],∴g(x)的图像是由f(x)的图像向左平移π2w (即T4)得到的.由b -a =T2,可知,g(x)的图像由f(x)的图像向左平移b -a 2得到的.∴得到g(x)图像如图所示.选C.6.(2015·全国Ⅰ)函数f(x)=cos (ωx +φ)的部分图像如图所示,则f(x)的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(2k π-14,2k π+34),k ∈ZC .(k -14,k +34),k ∈ZD .(2k -14,2k +34),k ∈Z答案 D解析 由题图知,函数f(x)的最小正周期T =(54-14)×2=2,所以ω=π,又(14,0)可以看作是余弦函数与平衡位置的第一个交点,所以cos(π4+φ)=0,π4+φ=π2,解得φ=π4,所以f(x)=cos(πx +π4),所以由2kπ<πx +π4<2k π+π,k ∈Z ,解得2k -14<x<2k +34,k ∈Z ,所以函数f(x)的单调递减区间为(2k -14,2k +34),k ∈Z ,选D.7.(2013·江西理)函数y =sin2x +23sin 2x 的最小正周期T 为________. 答案 π解析 y =sin2x +23sin 2x =sin2x -3cos2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.8.(2015·天津文)已知函数f(x)=sin ωx +cos ωx (ω>0),x ∈R .若函数f(x)在区间(-ω,ω)内单调递增,且函数y =f(x)的图像关于直线x =ω对称,则ω的值为________.答案 π2解析 f(x)=sin ωx +cos ωx =2sin (ωx +π4),因为函数f(x)的图像关于直线x =ω对称,所以f(ω)=2sin (ω2+π4)=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f(x)在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.9.(2013·安徽理)已知函数f(x)=4cos ωx ·sin (ωx +π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,π2]上的单调性.答案 (1)1 (2)单调递增区间为[0,π8],单调递减区间为[π8,π2]解析 (1)f(x)=4cos ωx ·sin (ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx)+2=2sin (2ωx +π4)+ 2.因为f(x)的最小正周期为π,且ω>0,从而有2π2ω=π,故ω=1.(2)由(1)知,f(x)=2sin(2x +π4)+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f(x)单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f(x)单调递减.综上可知,f(x)在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.10.(2015·安徽文)已知函数f(x)=(sinx +cosx)2+cos2x. (1)求f(x)的最小正周期; (2)求f(x)在区间[0,π2]上的最大值和最小值.解析 (1)因为f(x)=sin 2x +cos 2x +2sinxcosx +cos2x =1+sin2x +cos2x =2sin(2x +π4)+1, 所以函数f(x)的最小正周期T =2π2=π.(2)由(1)知,f(x)=2sin(2x +π4)+1.当x ∈[0,π2]时,2x +π4∈[π4,5π4],由正弦函数y =sinx 在[π4,5π4]上的图像知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在[0,π2]上的最大值为2+1,最小值为0.。
2019年高考专题:概率与统计试题及答案
2019年高考专题:概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35 C .25D .15【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为63105=,故选B .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为 A .18B .14 C .38D .12【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 7.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A .32 B .33 C .41 D .42 【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A . 8.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .100,10B .100,20C .200,10D .200,20【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=,抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .9.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( ) A .0.5B .0.75C .1D .1.25【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 10.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是( ) A .0.42B .0.28C .0.3D .0.7【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .11.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12 B .14 C .16 D .18【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A . 12.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .35,33,30B .36,32,30C .36,33,29D .35,32,31【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 13.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 14.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .15.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=, 因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=, 因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.16.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.17.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.18.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M .19.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户男性用户由图可得女性用户的波动小,男性用户的波动大.(2)由题可得22⨯列联表如下:则22500(14012018060)1255.208 2.70620030032018024K⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.20.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.21.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m⨯+++++=,解得0.0020m=.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<,前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>,所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =.所以该校担任班主任的教师月平均通话时长的中位数为390分钟.(3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,, 在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 22.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表: 质量指标值M80M < 80110M ≤< 110M ≥ 等级 三等品 二等品 一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=,又()()()()0.84P A P B C P B P C =+=+=,所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为190010650061600261200⨯+⨯+⨯=元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值90M<的频率为0.060.10.20.360.5++=<,质量指标值100M<的频率为0.060.1020.30.660.5+++=>,故质量指标值M的中位数估计值为0.50.369094.670.03-+≈.。
《高考真题》专题07 三角函数求值-2019年高考文数母题题源系列全国Ⅰ专版(原卷版)
专题07 三角函数求值【母题来源一】【2019年高考全国Ⅰ卷文数】tan255°= A .−2B .−C .2D .【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+ 故选D.【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查.【母题来源二】【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= A .15 BC.5D .1【答案】B【解析】根据条件,可知,,O A B 三点共线,从而得到2b a =,因为222cos22cos 1213⎛⎫=-=⋅-=αα,解得215a =,即5a =,所以25a b a a -=-=, 故选B.【名师点睛】本题主要考查任意角的三角函数和三角恒等变換,考查考生分析问题、解决问题的能力和运算求解能力,考查的数学核心素养是数学运算.【母题来源三】【2017年高考全国Ⅰ卷文数】已知π(0)2∈,α,tan α=2,则πcos ()4α-= .【答案】10【解析】由tan 2α=得sin 2cos αα=, 又22sin cos 1αα+=,所以21cos 5α=,因为π(0,)2α∈,所以cos αα==, 因为πππcos()cos cossin sin 444ααα-=+,所以πcos()4525210α-=+⨯=. 【名师点睛】三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【命题意图】通过考查三角恒等变换公式等相关知识,考查转化思想和运算求解能力. 【命题规律】一般在选择题或填空题中进行考查,分值5分,主要从公式的变用、逆用以及角度的关系等角度,考查方程思想和运算求解能力.【答题模板】已知三角函数值,求其他三角函数式的值的一般思路:(1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手).(3)将已知条件代入所求式子,化简求值.【方法总结】1.深层次领悟公式的功能、规律与内涵对三角公式,知其结构特征仅是第一层面要求,重要的是要知晓公式的功能及揭示的规律与内涵.如1±sin2α=(sinα±cosα)2有并项的功能,cos2α=cos2α-sin2α有升幂的功能,sin2α=2sinαcosα有将角由大化小的功能,两角和与差的正切公式,揭示的是同名不同角的正切函数的关系等.2.余弦的差角公式是本节公式之源,掌握其证明过程以及和差倍半公式的推演方法是很必要的.3.三角恒等证明分有条件的恒等证明和无条件的恒等证明.对于有条件的恒等证明,需要注意的问题有二:一是仔细观察等式两边结构上的联系与差异,探寻消除差异(函数的差异、角的差异)的方法;二是充分利用条件,特别是将条件变形整理后使用.4.熟知一些恒等变换的技巧(1)公式的正用、逆用及变形用.(2)熟悉角的拆拼技巧,理解倍角与半角是相对的,如2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,3α是23α的半角,2α是4α的倍角等.(3)在三角函数运算、求值、证明中,有时需要将常数转化为三角函数值,尤其要重视常数“1”的各种变形,例如:1=πtan4,1=sin2α+cos2α等.(4)在进行三角函数化简、求值、恒等式证明时,常常采用切化弦、异名化同名、异角化同角、高次降低次的方法,达到由不统一转化到统一,消除差异的目的.总之,三角恒等变换说到底就是“四变”,即变角、变名、变式、变幂.通过对角的分拆,达到使角相同;通过转换函数,达到同名(最好使式中只含一个函数名);通过对式子变形,达到化简(尽可能整式化、低次化、有理化);通过幂的升降,达到幂的统一.1.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试数学】A .2- B .2C .12-D .122.【山东省栖霞市2019届高三高考模拟卷数学】已知π3sin 245x ⎛⎫-= ⎪⎝⎭,则sin 4x 的值为 A .1825 B .1825± C .725D .725±3.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】已知ππsin 3cos 36αα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,则tan 2α=A .-B .2-C .D .24.【山东省潍坊市2019届高三高考模拟(4月二模)考试】若4tan 3α=,则cos 22απ⎛⎫+= ⎪⎝⎭A .2425- B .725- C .725D .24255.【安徽省1号卷A10联盟2019()πcos π2αα⎛⎫+=- ⎪⎝⎭,则tan 2α=A .7B .3CD6.【江西省抚州市临川第一中学2019届高三下学期考前模拟考试】已知平面直角坐标系下,角α的顶点与原点重合,始边与x 轴非负半轴重合,终边经过点(4,3)P ,则πcos 22α⎛⎫+= ⎪⎝⎭A .2425 B .2425- C .2425或2425-D .7257.【湖北省2019届高三4cos 2x x +=,则πcos 3x ⎛⎫-= ⎪⎝⎭A .12BC .3D .348.【安徽省皖南八校2019届高三第三次联考数学】若3sin cos 5αβ-=,4cos sin 5αβ+=,则s i n()αβ-=A .3B .2C .13D .129.【山东省济宁市2019届高三第一次模拟考试数学】tan 20sin 20︒=︒A .1B .2C .3D .410.【湖北省武汉市2019届高三4月调研测试数学】若角α满足sin 51cos αα=-,则1cos sin αα+=A .15B .52C .5或15D .511.【山西省2019届高三百日冲刺考试数学】已知sin10cos102cos140m +=,则m =__________. 12.【广东省汕头市2019届高三第二次模拟考试(B 卷)】已知 为锐角,且,则 __________.13.【江西省景德镇市2019届高三第二次质检】公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2sin18m =︒.若2m n +=4=___________.14.【河南省名校-鹤壁高中2019届高三压轴第二次考试数学】平面直角坐标系xOy 中,点()00,P x y 是单位圆在第一象限内的点, xOP α∠=,若π11cos 133α⎛⎫+=- ⎪⎝⎭,则00x y +=__________.。
2019年上海市高考数学真题试题含答案
2019年普通高等学校招生全国统一考试(上海卷)学一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7T2题每题5分)123456789(4 分)己知集合 A = {1, 2, 3, 4, 5), B = {3, 5, 6},则 A B =(4分)计算lim(4分)不等式|x + l|<5的解集为.(4分)函数f (x ) = x 2(x>0)的反函数为・(4分)设,为虚数单位,3z-i = 6 + 5i ,贝!J |z|的值为(4分)己知J2x + 2; = T,当方程有无穷多解时,。
的值为_.[4x + a y = a(5分)在3 + *)6的展开式中,常数项等于.(5 分)在 AABC 中,AC = 3, 3sinA = 2sin3,且 cosC = -,则 AB=4 ----(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有—种(结果用数值表示)_2_10.(5分)如图,已知正方形OABC ,其中OA = a (a>l ),函数j = 3x 2交BC 于点P,函数y = G交AB 于点!2,当\AQ\ + \CP\最小时,则。
的值为.11. (5分)在椭圆七+匕=1上任意一点F, Q 与P 关4 2于x 轴对称,若有F {P F 2P… 1,则gP 与乙。
的夹角范围为.12. (5 分)已知集合A = [t, z + 1] [r + 4, t + 9], 0",存在正数九,使得对任意aeA,都有-eA,贝!U 的值a是.二、 选择题(本大题共4题,每题5分,共20分)13. (5分)下列函数中,值域为[0, +8)的是( )2A. y = 2xB. y = x 2C. y = tan xD. y=cosx14. (5 分)己知 a 、beR,则" a 2>b 2 "是"\a\>\b\"的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15. (5分)已知平面a 、§、/两两垂直,直线a 、b 、c 满足:aga , b g 0 , cc.y ,则直线a 、b. c 不可能满足以下哪种关系( )A.两两垂直B.两两平行C.两两相交D.两两异面16. (5分)以(%, 0) , (a 2, 0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于, 0) , (y 2,0),且满足lny }+lny 2=O,则点(―,—)的轨迹是()A.直线B.圆C.椭圆D.双曲线三、 解答题(本大题共5题,共14+14+14+16+18 = 76分)— 3n +1/ — 4〃+117. (14 分)如图,在正三棱锥P-AB C 中,PA = PB = PC = 2,AB = BC = AC = @(1) 若正3的中点为M, BC 的中点为N ,求AC 与A/N 的夹角;(2) 求P-AB C 的体积.18. (14分)已知数列{%}, %=3,前〃项和为S 广(1) 若{弓}为等差数列,且%=15,求& ;(2) 若{%}为等比数列,且limS… <12,求公比g 的取值范围.n —>oo19. (14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生 总费用包括个人现在支出、社会支出、政府支出,如表为2012年-2015年我国卫生货用中 个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(数据来源于国家统计年鉴)(1) 指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化 趋势:(2) 设,=1表示1978年,第〃年卫生总费用与年份f 之间拟合函数的)=*2盟 研究 函数/■①的单调性,并预测我国卫生总费用首次超过12万亿的年份.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元)占卫生总费用比重(%)绝对数(亿元)占卫生 总 费用比重(%绝对数(亿元))占卫 生 总 费 用 比 重(%)201228119. 009656. 3234. 3410030.7035. 678431. 9829. 99201331668.9510729.3433.8811393.7935. 989545.8130. 14201435312. 4011295.4131.9913437. 7538. 0510579. 2329. 96201540974. 6411992.6529. 2716506. 7140. 2912475. 2830. 4520. (16分)已知抛物线方程尸=4了,F 为焦点,P 为抛物线准线上一点,。
2020届高考三角函数及解三角形汇编专题数学(理)Word版含解析
专题06 三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B5C3D55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B. CD .27.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+ ⎪⎝⎭的值.15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αA .3B .13C .13-D .3-19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos 5=-α,()π,0∈-α,则πtan 4⎛⎫-= ⎪⎝⎭αA .17 B .7 C .17-D .7-20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12 B .π6 C .π4D .π322.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1B .2C D 23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3 B .π3 C .π6D .5π624.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △的面积为4,求ABC △的周长.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -). (1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.专题06 三角函数及解三角形详细解析1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.2sin cos ++x xx x当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =. ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<ABC S <<△.因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[122-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB.13C.13-D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点(1)P,所以cos3==-α,因此21cos22cos13=-=αα.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P,求出cosα,再由二倍角公式,即可得出结果.19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos5=-α,()π,0∈-α,则πtan4⎛⎫-=⎪⎝⎭αA.17B.7C.17-D.7-【答案】C【解析】()4cos,π,05a=-∈-Qα,∴ππ,2⎛⎫∈--⎪⎝⎭α,33sin,tan54∴=-=αα,则πtan1tan41tan-⎛⎫-=⎪+⎝⎭ααα31143714-==-+.故选C.【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知cosα的值,结合同角三角函数关系式可求tanα,然后根据两角差的正切公式即可求解.20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x + B .πsin(2)3x + C .cos2xD .πcos(2)3x + 【答案】C 【解析】由函数π()sin()(0)6f x x =+>ωω的相邻对称轴之间的距离为π2,得π22T =,即πT =,所以2ππ=ω,解得2=ω, 将函数π()sin(2)6f x x =+的图象向左平移π6个单位, 得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象,故选C . 【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12B .π6 C .π4 D .π3 【答案】B 【解析】由图象易知,2A =,(0)1f =,即2sin 1=ϕ,且π2<ϕ,即6π=ϕ, 由图可知,11π()0,12f =所以11ππ11ππsin()0,π,126126k k ⋅+=∴⋅+=∈Z ωω,即122,11k k -=∈Z ω,又由图可知,周期11π2π11π24,121211T >⇒>∴<ωω,且0>ω, 所以由五点作图法可知2,2k ==ω, 所以函数π()2sin(2)6f x x =+,因为()()0f a x f a x +--=,所以函数()f x 关于x a =对称, 即有ππ2π,62a k k +=+∈Z ,所以可得ππ,26k a k =+∈Z , 所以a 的最小正值为π6. 故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出,,A ϕω,可得函数()f x 的解析式,再由()()0f a x f a x +--=易知()f x 的图象关于x a =对称,即可求得a 的值.22.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1 BC D 【答案】D【解析】由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵2222cos a b c ab C +-=,∴sin 2cos 2C ab C ab =+,cos 1C C -=,即π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, ∵0πC <<,∴ππ5π666C -<-<,∴ππ66C -=,即π3C =,则πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭12=, 故选D .【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出C 的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3B .π3 C .π6 D .5π6 【答案】D【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A =-,)cos A C B b A +==-,sin cos B b A =-,sin sin cos A B B A =-,∵sin 0B >cos A A =-,即tan A =, ∵(0,π)A ∈,∴5π6A =.故选D . 【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本cos )cos 0A C C b A ++=sin cos B b A =-,再由正弦定理得到tan A =,结合(0,π)A ∈,即可求得A 的值. 24.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △,求ABC △的周长.【答案】(1)π3A =;(2).【解析】(1cos sin (cos cos )A A a C c A =+,∴由正弦定理可得:cos sin (sin cos sin cos )B A A A C C A =+sin sin()sin sin A A C A B =+=,cos B A sin sin A B =,∵sin 0B ≠,∴tan A =∵(0,π)A ∈, ∴π3A =.(2)∵π3A =,a =ABC △,1sin 2bc A ∴==, ∴5bc =,∴由余弦定理可得:2222cos a b c bc A =+-,即222212()3()15b c bc b c bc b c =+-=+-=+-,解得:b c +=∴ABC △的周长为a b c ++==.【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,cos sin sin B A A B =,由sin 0B ≠,可求tan A =(0,π)A ∈,可求π3A =.(2)利用三角形的面积公式可求5bc =,进而根据余弦定理可得b c +=ABC △的周长的值.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -).(1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.【答案】(1)1;(2)1(1,)2--. 【解析】(1)21(cos cos +2f x x x x -1=2cos 222x x - π=sin(2)6x -, 所以π()13f =. (2)因为π02x ≤≤, 所以ππ5π2666x -≤-≤, 所以1sin 226x π-≤-≤()1. 由不等式()2c f x c <<+恒成立,得1221c c ⎧<-⎪⎨⎪+>⎩,解得112c -<<-. 所以实数c 的取值范围为1(1,)2--.【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;(2)首先求得函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域,然后结合恒成立的结论得到关于c 的不等式组,求解不等式组可得c 的取值范围.。
专题02 函数的概念与基本初等函数Ⅰ-2019年高考真题和模拟题分项汇编数学(文)(解析版)
=
4
+ 2π π2
1,
f
(π)
=
π −1+
π2
0 ,可知应为 D 选项中的图象.
2
7.【2019 年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗
星的星等与亮度满足
m2
–
m1
=
5 2
lg
E1 E2
,其中星等为 mk
的星的亮度为
Ek (k=1,2).已
知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
=
−
1 2
,1
x
2
,其中 k>0.若在区间(0,9]上,关于 x 的方程 f (x) = g(x) 有
8 个不同的实数根,则 k 的取值范围是 ▲ .
【答案】
1 3
,
2 4
【解析】作出函数 f (x) , g(x) 的图象,如图:
由图可知,函数 f (x) = 1− (x −1)2 的图象与 g(x) = − 1 (1 x 2,3 x 4,5 x 6, 7 x 8) 的图象仅有 2 个交点,即在区间
专题 02 函数的概念与基本初等函数 I
1.【2019 年高考全国Ⅰ卷文数】已知 a = log2 0.2,b = 20.2, c = 0.20.3 ,则( )
A. a b c
B. a c b
C. c a b
D. b c a
【答案】B
【解析】 a = log2 0.2 log2 1 = 0, b = 20.2 20 = 1, 0 c = 0.20.3 0.20 = 1, 即 0 c 1, 则 a c b .故选 B.
2019年高考数学全国卷和北京卷试题对比分析及2020届高三复习策略
备考建议
1. 重视基础知识、基本技能和基本思想方法的复习
概念的理解要准确而且深刻 基本解题技巧的掌握要精确而且熟练 基本思想方法的渗透要立足于课堂
2. 突出重点,抓住知识之间的相互联系
函数内容仍然占据主体地位 函数与方程、数列与不等式、向量与立体几何等内容的结合
①函数内容占比最高 ②线性规划、三视图等内容删去
学生得分情况分析-本科
理科 要求:80分
选择题:40分 填空题:10分
17题: 12分 18题: 8分 19题: 6分 解答题 20题: 2分 21题: 1分 选做题:3分 容错分:2分
文科 要求:90分
选择题:45分 填空题:10分
17题: 12分 18题: 12分 19题: 6分 解答题 20题: 2分 21题: 1分体几何:圆柱
圆锥曲线:双曲线
6
统计:系统抽样
函数与导数:切线方程 立体几何:点线面关系
7
三角函数
向量:向量的线性运算 不等式:线性规划
8
向量的数量积
三角函数图像的性质
函数:函数的图像
9
程序框图
立体几何:三视图
函数:函数的性质
10
圆锥曲线:双曲线
立体几何:线面夹角
程序框图
11
解三角形
三角函数的定义
题序 1-12 13-16
题型
选择题 填空题
分值
单题:5分 一共60分
单题:5分 一共20分
17-21
解答题(必做)
单题:12分 一共60分
22-23
解答题(选做)
单题:10分 一共10分
难度设置
基础题×6 中档题×5 高档题×1 基础题×1 中档题×2 高档题×1
2019届百师联盟全国高三模拟考(一)全国I卷文科数学试题(带答案解析)
2019届百师联盟全国高三模拟考(一)全国I 卷文科数学试题第I 卷(选择题)一、单选题1.已知复数z 满足()14i z i -=,则z =( )A .B .2C .4D .3 2.已知集合{}20,2131x A xB x x x +⎧⎫=≤=-≤⎨⎬-⎩⎭则()RC A B ⋂( ) A .[]1,2 B .()[),21,2-∞-U C .()[],21,2-∞-⋃D .(]1,2 3.已知命题:p []02,2x ∃∈-,2430x x -+≥,则p ⌝为( )A .[]02,2x ∃∉-,2430x x -+<B .[]02,2x ∀∉-,2430x x -+<C .[]2,2x ∀∈-,2430x x -+<D .[]2,2x ∀∈-,2430x x -+≥ 4.设α为锐角,若3cos 45πα⎛⎫+= ⎪⎝⎭,则5sin 12πα⎛⎫+ ⎪⎝⎭的值为( )A .310+BC .410D .410- 5.“角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )6.已知双曲线2222:1x yCa b-=(0a>,0b>)的渐近线与圆()22314x y+-=相切,则双曲线C的离心率为()A B.2 C D7.为研究某咖啡店每日的热咖啡销售量y和气温x之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x轴表示气温,y轴表示销售量),由散点图可知y与x的相关关系为()A.正相关,相关系数r的值为0.85B.负相关,相关系数r的值为0.85C.负相关,相关系数r的值为0.85-D.正相关,相关负数r的值为0.85-8.函数32sin()xx xg xe-=的图象大致为()A.B.C.D.9.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A .83B .163C .43D .810.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( )A .2B .2-C .1D .1-11.已知集合{}{}3,*,2,*n M x x n N N x x n n N ==∈==∈,将集合M N ⋃的所有元素从小到大一次排列构成一个新数列{}n c ,则12335...c c c c ++++=( ) A .1194 B .1695 C .311 D .1095 12.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.已知a =r a r 在b r ,则a r 与b r 的夹角为_________.14.抛物线2:2C x py =(0p >)的焦点到准线的距离为4,则抛物线的准线方程为___________.15.已知ABC ∆内角、、A B C 的对边分别为,4,a b c a b ABC ==∆、、外接圆的面积为4π,则ABC ∆的面积为_________.16.在三棱锥P ABC -中,三条侧棱PA PB PC 、、两两垂直,1,4PB PA PA PC =++=,则三棱锥P ABC -外接球的表面积的最小值为________.三、解答题17.已知{}n a 为各项均为整数的等差数列,n S 为{}n a 的前n 项和,若3a 为213a 和13a 的等比中项,749=S .(1)求数列{}n a 的通项公式;(2)若12n n n b a a +=,n T 为数列{}n b 的前n 项和,求n T . 18.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,2ABC π∠=,PE ⊥面ABCD ,3AD AE =,22AB BC AE ===,3PC =.(1)在线段PD 上是否存在点F ,使//CF 面PAB ,说明理由;(2)求三棱锥C PAE -的体积.19.某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:(1)(i )将22⨯列联表补充完整;(ii )据此列联表判断,能否有99%的把握认为“日平均走步数和性别是否有关”? (2)从样本中的运动达人中抽取7人参加“幸运抽奖”活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++ 20.已知椭圆()2222:10x y C a b a b+=>>,左、右焦点为12F F 、,点P 为C 上任意一点,若1PF 的最大值为3,最小值为1.(1)求椭圆C 的方程;(2)动直线l 过点2F 与C 交于P Q 、两点,在x 轴上是否存在定点A ,使22PAF QAF ∠=∠成立,说明理由.21.已知函数1()ln 1a f x x x+=-+,a R ∈. (1)当2a =-时,求函数()f x 在点()2,(2)f 处的切线方程;(2)若当0x >,()3f x ≥,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求曲线C 的直角坐标方程;(2)设点M 的极坐标为1,2π⎛⎫ ⎪⎝⎭,直线l 与曲线C 的交点为,A B ,求MA MB +的值. 23.已知函数()12f x x x =--+.(1)求不等式()2f x ≤的解集A ;(2)若不等式2()2f x x x m ≤+-对x A ∈恒成立,求实数m 的取值范围.参考答案1.A【解析】【分析】由复数除法求出z ,再由模的定义计算出模.【详解】44(1)22,1(1)(1)i i i z i z i i i +===-+=--+ 故选:A .【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.2.C【解析】【分析】解不等式确定集合,A B 中的元素,再由集合的运算法则计算.【详解】 由201x x +≤-得(2)(1)010x x x +-≤⎧⎨-≠⎩,∴21x -?,即[2,1)A =-,又{|2}(,2]B x x =≤=-∞,∴(,2)[1,)R A =-∞-+∞U ð,()(,2)[1,2]R A B =-∞-I U ð.故选:C .【点睛】本题考查集合的综合运算,掌握集合运算的定义是解题基础.3.C【解析】【分析】根据特称命题的否定是全称命题可得出答案.【详解】由于特称命题的否定是全称命题,故命题:p []02,2x ∃∈-,2430x x -+≥的否定是::p ⌝[]2,2x ∀∈-,2430x x -+<.故选:C.【点睛】本题考查特称命题的否定,意在考查学生的推断能力,属于基础题.4.A【解析】【分析】 先求出sin 4πα⎛⎫+⎪⎝⎭的值, 5sin sin 1246ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,再由两角和的正弦公式计算即可.【详解】 Q α为锐角,3cos 45πα⎛⎫+= ⎪⎝⎭,∴4sin 45απ⎛⎫+== ⎪⎝⎭,∴513sin sin sin cos 1246242410ααααπππππ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.【点睛】本题考查同角三角函数间的关系,考查两角和的正弦公式,考查逻辑思维能力和计算能力,属于常考题.5.B【解析】【分析】模拟程序运行,观察变量值可得结论.【详解】循环前1,10i n ==,循环时:5,2n i ==,不满足条件1n =;16,3n i ==,不满足条件1n =;8,4n i ==,不满足条件1n =;4,5n i ==,不满足条件1n =;2,6n i ==,不满足条件1n =;1,7n i ==,满足条件1n =,退出循环,输出7i =.故选:B .【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.6.C【解析】【分析】先根据双曲线的方程求得双曲线的渐近线,再利用圆心到渐近线的距离为圆的半径求得a 和b 的关系,代入e =中求得离心率即可. 【详解】渐近线方程为0bx ay -=,r ==2213b a ∴=,3e ∴==. 故选:C.【点睛】本题考查双曲线离心率的求法,考查逻辑思维能力和计算能力,属于常考题.7.C【解析】【分析】根据正负相关的概念判断.【详解】由散点图知y 随着x 的增大而减小,因此是负相关.相关系数为负.故选:C .【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.8.B【解析】【分析】确定函数的奇偶性排除,再求一些特殊的函数值,根据其正负排除一些选项.【详解】 由32sin ()()x x x f x f x e-+-==-,知()f x 为奇函数,排除D ;12sin1(1)0f e -=<,排除C ;322732sin 38202f e -⎛⎫=> ⎪⎝⎭,排除A . 故选:B【点睛】本题考查由函数解析式选择函数图象,解题时可通过确定函数的奇偶性、单调性等性质,特殊的函数值,函数值的正负,函数值的变化趋势等由排除法得出正确选项.9.A【解析】【分析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2, 直观图如图所示,1822233V =⨯⨯⨯=. 故选:A .【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.10.D【解析】【分析】()()4f x f x =+说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由()()4f x f x =+知函数()f x 的周期为4,又()f x 是奇函数,(2)(2)f f =-,又(2)(2)f f -=-,∴(2)0f =,∴()()()()()()201820192301011f f f f f f +=+=+-=-=-. 故选:D . 【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础. 11.D 【解析】 【分析】确定{}n c 中前35项里两个数列中的项数,数列{2}n 中第35项为70,这时可通过比较确定{3}n 中有多少项可以插入这35项里面即可得,然后可求和.【详解】35n =时,23570,370,3n n ⨯=<≤,所以数列{}n c 的前35项和中,{}3n有三项3,9,27,{}2n 有32项,所以123353231 (3927322210952)c c c c ⨯++++=+++⨯+⨯=. 故选:D . 【点睛】本题考查数列分组求和,掌握等差数列和等比数列前n 项和公式是解题基础.解题关键是确定数列{}n c 的前35项中有多少项是{2}n 中的,又有多少项是{3}n中的.12.B 【解析】 【分析】函数()y f x =的图象恒在x 轴的上方,0x e x a ->在()0,∞+上恒成立.即x ex a>,即函数xe y a=的图象在直线y x =上方,先求出两者相切时a 的值,然后根据a 变化时,函数xe y a=的变化趋势,从而得a 的范围.【详解】由题0x e x a ->在()0,∞+上恒成立.即xe x a>,xe y a=的图象永远在y x =的上方,设x e y a =与y x =的切点()00,x y ,则01x x e ae xa⎧=⎪⎪⎨⎪=⎪⎩,解得a e =,易知a 越小,xey a=图象越靠上,所以0a e <<.故选:B . 【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围. 13.6π【解析】 【分析】由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小. 【详解】a r 在b r方向上的投影为cos ,cos ,2a a b a b <>=∴<>==r r r r r ,即夹角为6π. 故答案为:6π. 【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键. 14.2y =-【分析】根据题意先求出p 的值,然后再写出准线方程即可. 【详解】焦点到准线的距离为4p =,准线方程为22py =-=-. 故答案为:2y =-. 【点睛】本题考查抛物线的定义,考查对基本知识的理解和掌握,属于基础题.15.【解析】 【分析】由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,A B ,从而有C ,于是可得三角形边长,可得面积. 【详解】设外接圆半径为r ,则24,2S r r =π=π=,由正弦定理24sin sin a b r A B ===,得sin 1A B ==,,,,326A B C πππ∴===∴2c =,a =12S ac ==.故答案为: 【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键. 16.14π 【解析】 【分析】设PA x =,可表示出,PB PC ,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.设PA x =则1,4PC x PC x =+=-,由,,PA PB PC 两两垂直知三棱锥P ABC -的三条棱,,PA PB PC 的棱长的平方和等于其外接球的直径的平方.记外接球半径为r ,∴2r ==当1x =时,2min min 2=414r r S ==π=π⎝⎭表. 故答案为:14π. 【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和. 17.(1)21n a n =-;(2)221nn + 【解析】 【分析】(1)利用已知条件列出方程组,求出1a 和d 的值,进而写出通项公式即可; (2)()()1221121212121n n n b a a n n n n +===--+-+,利用裂项相消法求和即可.【详解】(1)由题得()23213177137492a a a a a S ⎧=⋅⎪⎪⎨+⎪==⎪⎩,解得112a d =⎧⎨=⎩或1073a d =⎧⎪⎨=⎪⎩,因为数列{}n a 为各项均为整数,所以112a d =⎧⎨=⎩,即21n a n =-;(2)令()()1221121212121n n n b a a n n n n +===--+-+,所以111111112113355721212121n n T n n n n =-+-+-+-=-=-+++. 【点睛】本题考查等差等比数列的性质,考查等差数列的通项公式,考查裂项相消法求和,考查逻辑思维能力和运算能力,属于常考题. 18.(1)存在,理由见解析;(2)23. 【解析】 【分析】(1)取ED 中点Q ,分别连接CQ ,QF ,CF ,易得//AB CQ ,//QF AP ,然后可证 面//CQF 面PAB ,即//CF 面PAB ;(2)过E 作//EG AB 交BC 于G ,分别求出EC ,PE 的长度,在梯形ABCD 中,作EH BC ⊥于H ,再求出EH 的长度,利用等体积法C PAE P ACE V V --=计算得解.【详解】(1)当F 为PD 上靠近D 点的三等分点时,满足//CF 面PAB , 证明如下,取ED 中点Q ,分别连接CQ ,QF ,CF ,//AD BC Q ,3AD AE =,2BC =,2AE =,AQ BC ∴=,即易得//AB CQ ,AB Ì面PAB ,CQ ⊄面PAB , 所以//CQ 面PAB ,同理可得//QF AP ,AP ⊂面PAB ,QF Ë面PAB , 所以//QF 面PAB ,又CQ QF Q ⋂=,CQ ,QF ⊂面CQF ,所以面//CQF 面PAB ,又CF ⊂面CQF ,所以//CF 面PAB ;(2)过E 作//EH AB 交BC 于H ,PE ⊥Q 面ABCD ,2ABC π∠=,EH BC ∴⊥在Rt PEC ∆中,EC =2PE ==, 所以11121223323C PAE P ACE ACE V V S PE --∆==⋅=⨯⨯⨯⨯=. 【点睛】本题考查线面平行的证法,考查利用等体积法求三棱锥体积,考查空间想象能力和运算能力,属于常考题.19.(1)(i )列联表见解析;(ii )没有;(2)1021. 【解析】 【分析】(1)(i )根据题意补全22⨯列联表;(ii )代入数据计算2K ,对照临界值做出判断即可;(2)由分层抽样方法,利用列举法求出基本事件数,计算所求的概率值. 【详解】 (1)(i )(ii )由22⨯列联表得()2210035261425 5.229 6.63560404951K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为“日平均走步数和性别是否有关”; (2)由列联表知从运动达人中抽取的男用户人数为735549⨯=,女用户人数为714249⨯=, 男用户编号a ,b ,c ,d ,e ,女用户编号m ,n ,则抽取的两位幸运用户有:(),a b ,(),a c ,(),a d ,(),a e ,(),a m ,(),a n ,(),b c ,(),b d ,(),b e ,(),b m ,(),b n ,(),c d ,(),c e ,(),c m ,(),c n ,(),d e ,(),d m ,(),d n ,(),e m ,(),e n ,(),m n ,共21种,其中男女各一位的有10种,概率为1021, 所以这2位幸运用户恰好男用户和女用户各一位的概率为1021. 【点睛】本题考查独立性检验及其计算,考查分层抽样,考查古典概率,考查逻辑思维能力和计算能力,属于常考题.20.(1)22143x y +=(2)存在;详见解析【解析】 【分析】(1)由椭圆的性质得3,1a c a c +=-=,解得,a c 后可得b ,从而得椭圆方程; (2)设()()()1122,,,,,0P x y Q x y A n ,当直线l 斜率存在时,设为()1y k x =-,代入椭圆方程,整理后应用韦达定理得1212,x x x x +,代入AP AQ k k +=0由恒成立问题可求得n .验证l 斜率不存在时也适合即得. 【详解】解:(1)由题易知1max 1min31PF a c PF a c ⎧=+=⎪⎨=-=⎪⎩解得21a c =⎧⎨=⎩,所以椭圆C 方程为22143x y +=(2)设()()()1122,,,,,0P x y Q x y A n当直线l 斜率存在时,设为()1y k x =-与椭圆方程联立得()22224384120kx k x k +-+-=,显然>0∆所以221212228412,4343k k x x x x k k -+=⋅=++ 因为22,0AP AQ PAF QAF k k ∠=∠∴+=()()()()()()1221121212110k x x n k x x n y y x n x n x n x n --+--∴+==---- 化简()()()222121222281824682120,0434343n k k n nk x x n x x n k k k --+-+++=∴-+=+++ 解得6240n -=即4n =所以此时存在定点()4,0A 满足题意 当直线l 斜率不存在时,()4,0A 显然也满足综上所述,存在定点()4,0A ,使22PAF QAF ∠=∠成立 【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法. 21.(1)1ln 214y x =++;(2)(],1e -∞--. 【解析】 【分析】(1)先求导,然后根据导数的几何意义求出切线斜率,最后由点斜式写出切线方程即可; (2)0x >,()3f x ≥,即只需min ()3f x ≥,对a 进行分类讨论, 求()f x 的最小值,解不等式求出范围即可. 【详解】(1)当2a =-时,1()ln 1f x x x=++,21()x f x x -'=,1(2)4f '∴=,()32ln 22f =+,所以切线方程为1ln 214y x =++;(2)当0x >,()3f x ≥,即只需min()3f x ≥,()21'()1x a f x x ++=+,当1a ≥-时,即10a --≤,()0f x '>,()f x ∴在()0,∞+上增,无最小值,舍去, 当1a <-时,即10a -->,()0f x '>,得1x a >--,()0f x '<,得01x a <<--, 此时()f x 在()1,1a ---上减,在()1a --+∞,上增,即()()min ()12ln 13f x f a a =--=+--≥,解得1a e ≤--, 综上(],1a e ∈-∞--. 【点睛】本题考查利用导数研究曲线上某点的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力和计算能力,属于常考题. 22.(1)()2211x y -+=(21 【解析】 【分析】(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程;(2)把M 点极坐标化为直角坐标,直线l 的参数方程是过定点M 的标准形式,因此直接把参数方程代入曲线C 的方程,利用参数t 的几何意义求解. 【详解】解:(1)2:cos C ρθ=,则22cos ρρθ=,∴222x y x +=,所以曲线C 的直角坐标方程为2220x y x +-=,即()2211x y -+=(2)点1,2M π⎛⎫⎪⎝⎭的直角坐标为()0,1M ,易知M l ∈.设,A B 对应参数分别为12,t t将12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩与22:20C x y x +-=联立得)21212110,1,1t t t t t t ++=∴+=⋅=120,0t t ∴<<12121MA MB t t t t +=+=+=【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题. 23.(1)3,2⎡⎫-+∞⎪⎢⎣⎭(2)114m ≤-【解析】 【分析】(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为2321m x x x ≤++--,求出2()321g x x x x =++--在3[,)2-+∞上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值. 【详解】 解:(1)1122x x x ≥⎧⎨---≤⎩或21122x x x -<<⎧⎨---≤⎩或2122x x x x ≤-⎧⎨-+++≤⎩ 解得1x ≥或312x -≤<或无解 综上不等式的解集为3,2A ⎡⎫=-+∞⎪⎢⎣⎭. (2)3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时,2()2f x x x m ≤+-,即2132x x x m -≤++- 所以只需2321m x x x ≤++--在3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时恒成立即可 令22223,1()321341,12x x x g x x x x x x x ⎧++≥⎪=++--=⎨++-≤<⎪⎩, 由解析式得()g x 在3[,)2-+∞上是增函数, ∴当32x =-时,min 11()4g x =- 即114m ≤-【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
2019届重庆一诊文科数学试题含答案(定稿)
文科数学试题 第 1 页(共5页)高2019届学业质量调研抽测(第一次)文科数学试题卷文科数学试题卷共5页.考试时间120分钟,满分150分.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效. 3.考试结束后,将本试卷、答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}(1)(2)0,2,1,0,1A x x x B =+-≤=--,则A ∩B =A. {}1,2-B. {}101-,,C. {}1,1-D. {}012,, 2.已知复数z 满足(1)2(i z i i -=为虚数单位),则z =A.B.2C. 12D. 23. 已知下表所示数据的回归直线方程为ˆ 3.6yx a =+,则实数a 的值为A. 4-B. 4C. 3.4-D. 3.44.已知抛物线2y =-的准线l 过双曲线22221x y a b-=的一个焦点F ,且该双曲线的一条渐近线过点()1P ,-2,则该双曲线的方程为A. 2214x y -=B. 2214y x -= C.22142x y -= D. 22124x y -= [机密]2019年 1月25前 4月 21日前文科数学试题 第 2 页(共5页)7题图5.已知某几何体的三视图如图所示,则该几何体的体积为A .323 B . 643 C .1283 D .16036. 甲、乙、丙、丁四位同学参加奥赛,其中只有一位获 奖,有人走访了四位同学,甲说:“是乙或丙获奖.” 乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁 说:“是乙获奖.”已知四位同学的话只有一句是对的, 则获奖的同学是A. 甲B. 乙C. 丙D.丁 7.如图所示的程序框图,运行程序后,输出的a 的值为A .13 B .34 C .47D.711 8.命题p :关于x 的函数31xy k =--有两个零点;命题q :01k ≤≤.则命题p 成立是命题q 成立的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 9.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的 题目:把120个面包分给5个人,使每人所得成等差数列,且使较多的三份 之和的17是较少的两份之和,则最少的一份面包个数为 A .2 B . 11 C .13 D .46 10.将函数()2sin 22cos 26f x x x π⎛⎫=+- ⎪⎝⎭的图象向左平移6π个单位,得到()y g x =的图象,则下列说法正确的是A .函数()g x 的最小正周期为2πB .函数()g x 的最小值为1-C .函数()g x 的图象关于6x π=对称D .函数()g x 在2,3ππ⎡⎤⎢⎥⎣⎦上单调递减文科数学试题 第 3 页(共5页)11.三棱锥S ABC -中,,,SA SB SC 两两垂直,已知,,2SA a SB b SC ===,且522a b +=,则此 三棱锥的外接球的表面积的最小值为A .214πB .174πC .4πD .6π 12已知函数32()2log 2x f x x x +=+-,若不等式1()3f m>成立,则实数m 的取值范围是A .()1,+∞B .1(0,)2C .(),1-∞D .1(,1)2二、填空题:本大题共4个小题,每小题5分,共20分.把答案填写在答题卡相应位置上.13.已知向量a ,b 的夹角为120,且()1,26a b =-=,,则=a b ⋅ . 14.若,x y 满足约束条件2310x y y x x -≤⎧⎪≤+⎨⎪≤⎩,则目标函数2z x y =-+的最大值为 .15.已知数列{}n a 满足1n n a n =+,则3201821222232018a a a a +++⋅⋅⋅+= . 16.过抛物线24y x =的焦点F 分别作两条直线1l ,2l ,直线1l 与抛物线交于A ,B 两点,直线2l 与 抛物线交于C ,D 两点,若1l 与2l 的斜率的平方和为1,则|AB |+|CD |的最小值为 . 三、解答题:共70分. 解答时应写出必要的文字说明、演算步骤或推理过程. 并答在答题卡相应的位置上.第17题第21题为必考题,每个试题考生都必须做答. 第22题第23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (本小题满分12分)ABC ∆的内角,,A B C 所对边分别为,,a b c ,已知ABC ∆的面积为c o s c B ,且s i n 3s i n A C =.(I )求角B 的大小;(II )若2,c =AC 的中点为D ,求BD 的长.。
专题07 平面向量-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)
专题07 平面向量【母题来源一】【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3 C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3, 故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.【母题来源二】【2018年高考全国I 卷理数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-.故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【母题来源三】【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】3【解析】方法一:222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为3【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【命题意图】高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用. 【命题规律】1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换. 【方法总结】(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.(二)用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. (3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. (四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式2||==⋅a a a a ,或坐标公式22||x y =+a 的应用,另外也可以运用向量数量积的运算公式列方程求解. (2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围. (3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用. (五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.1.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知1=a ,2=b ,且()⊥-a a b ,则向量a 在b 方向上的投影的数量为 A .1B 2C .12D .2【答案】D【解析】由()⊥-a a b 得()0⋅-=a a b ,所以1⋅=⋅=a b a a , 所以向量a 在b 方向上的投影的数量为2cos ,22⋅===a b a a b b , 故选D.【名师点睛】本题主要考查向量的投影,熟记向量数量积的几何意义即可,属于常考题型.求解时,先由()⊥-a a b 求出⋅a b ,再由cos ,a a b 即可求出结果.2.【河北省保定市2019年高三第二次模拟考试数学试题】把点()3,2A 按向量()1,4=a 移到点B ,若2OB BC =-(O 为坐标原点),则C 点坐标为A .()1,1-B .1,12⎛⎫⎪⎝⎭ C .()2,3D .11,2⎛⎫- ⎪⎝⎭【答案】C【解析】因为点()3,2A 按向量()1,4=a 移动后得到点()4,6, 所以()4,6B ,设(),C x y ,则()4,6OB =,()4,6BC x y =--,又2OB BC =-,所以()()424626x y ⎧=--⎪⎨=--⎪⎩,解得:23x y =⎧⎨=⎩,所以()2,3C . 故选C.【名师点睛】本题主要考查了平移知识,还考查了向量数乘的坐标运算,考查计算能力及方程思想,属于较易题.求解时,点()3,2A 按向量()1,4=a 移动后得到点()4,6,设(),C x y ,求得OB ,BC ,再利用2OB BC =-列方程组可得:()()424626x y ⎧=--⎪⎨=--⎪⎩,解方程组即可.3.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)数学试题】已知非零向量,m n 满足4=n m ,且()2⊥+m m n ,则,m n 的夹角为A .π6B .π3 C .π2D .2π3【答案】D【解析】∵4=n m ,且()2⊥+m m n ,∴()22222||cos ,0⋅+=+⋅=+=m m n m m n m m n m n ,且0,0≠≠m n , ∴2||cos ,0+=m n m n ,∴21cos ,2=-=-mm n n , 又0,π≤…m n ,∴2π,3=m n .故选D .【名师点睛】本题考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围,属于基础题.求解时,根据()2⊥+m m n ,得()20⋅+=m m n ,再根据4=n m 进行数量积的运算即可求出cos ,m n 的值,根据向量夹角的范围即可求出夹角.4.【湖南师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD +D .3142AB AD +【答案】D【解析】连接AC ,根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =, 所以1131()2242AF AB AD AB AB AD =++=+.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.解答本题时,根据题意得:1()2AF AC AE =+,结合向量加法的四边形法则及平面向量的基本定理可求.5.【山西名师联盟2019届高三5月内部特供卷数学试题】已知向量,a b 满足2(1,2),(1,)m m +==a b b ,且a 在b 25,则实数m = A .2± B .2 C .5±D 5【答案】A【解析】因为向量,a b 满足2(1,2),(1,)m m +==a b b ,22(0,)m =+-=a a b b ,所以20,,22m m ⎛⎫=⋅= ⎪⎝⎭a ab ,设向量,a b 的夹角为θ,则2225||(||cos )12mm =+=⋅=θb a a b , 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选A.【名师点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos ⋅=θa b a b ,二是1212x x y y ⋅=+a b ,主要应用以下几个方面: (1)求向量的夹角,cos ⋅=⋅θa ba b(此时⋅a b 往往用坐标形式求解); (2)求投影,a 在b 上的投影是⋅a bb; (3)若向量,a b 垂直,则0⋅=a b ;(4)求向量m n +a b 的模(平方后需求⋅a b ).6.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试数学试题】若已知向量()1,2=-a ,()1,m =-b ,若//a b ,则⋅a b 的值为A .5B .4C .4-D .5-【答案】D【解析】∵向量()1,2=-a ,()1,m =-b ,且//a b , ∴20m -=,即()1,2=-b , ∴145⋅=--=-a b , 故选D.【名师点睛】本题考查平面向量的坐标运算,涉及向量平行的充要条件,数量积坐标运算,考查计算能力,属于基础题.求解时,利用向量平行的充要条件得到m ,进而利用数量积的坐标运算得到结果. 7.【广东省2019届高三适应性考试数学试题】已知ABC △中,点M 是边BC 的中点,若点O 满足23OA OB OC ++=0,则A .0OM BC ⋅=B .0OM AB ⋅=C .OM BC ∥D .OM AB ∥【答案】D【解析】由点M 是边BC 的中点,可得2OM OB OC =+, 由23OA OB OC ++=0,可得OA OC ++2(OB OC +)23OA OBOA +=-+4OM =0, 即2(OA OB -)+12OM =0, 可得AB =6OM ,即OM ∥AB , 故选D .【名师点睛】本题考查向量的中点表示,以及向量的加减运算和向量共线定理的运用,考查化简运算能力,属于基础题.解答时,由向量的中点表示和加减运算、以及向量的共线定理,即可得到结论. 8.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,(4,5)=c ,若()+⊥λa b c ,则实数=λA .12-B .12C .2-D .2【答案】C【解析】因为(1,2)=a ,(2,3)=-b ,所以()12,23-+λλλa +b =,又()+⊥λa b c ,所以()0+⋅=λa b c ,即()()412+523=0-+λλ,解得= 2-λ. 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.求解时,由,a b 的坐标,表示出λa +b ,再由()+⊥λa b c ,得到()()412+523=0-+λλ,进而可求出结果. 9.【安徽省合肥市2019届高三第三次教学质量检测数学试题】若向量,a b 的夹角为120︒,1=a ,27-=a b ,则=bA .12B 7C .1D .2【答案】C【解析】因为222244cos ,-=+-a b a b a b a b , 又,120=︒a b ,1=a ,27-a b , 所以27=142++b b ,解得32=-b (舍去)或1=b . 故选C.【名师点睛】本题考查求平面向量的模,常用方法是用数量积或22=a a 求解.求解时,先对27-=a b 两边同时平方,代入已知条件,即可解得b .10.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】已知向量a ,b 满足2=a ,且()40+=>λλa b a ,则当λ变化时,⋅a b 的取值范围是A .(,0)-∞B .(,1)-∞-C .(0,)+∞D .(1,)-+∞【答案】D【解析】由已知,(1)4-=λa b ,得2(1)4-=⋅λa a b ,因为||2,0=>λa ,所以11⋅=->-λa b , 故选D.【名师点睛】本题考查向量数量积,向量的线性运算,是基础题.求解时,由向量数量积得1⋅=-λa b 即可求解.11.【福建省泉州市2019届高三第二次(5月)质检数学试题】已知向量,a b 满足1=a ,(),2t t =-b ,-a b与a 垂直,则-a b 的最小值为A .22B .1C 2D .2【答案】B【解析】由题意知-a b 与a 垂直,则()0-⋅=a b a ,可得21⋅==a b a . 又由222+-=-⋅a b a a b b ()22=12+[2]t t -+-()2=211t -+ 所以当1t =时,-a b 取得最小值1. 故选B .【名师点睛】本题主要考查了向量的数量积的运算及其应用,以及向量的垂直条件和向量的模的计算,其中解答中熟记向量的模、数量积和向量的坐标运算,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.求解时,根据向量的模与数量积的运算,求得()2211t -=-+a b 根据二次函数的性质,即可求解.12.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)数学试题】如图,已知等腰梯形ABCD 中,24,5,AB DC AD BC E ====是DC 的中点,P 是线段BC 上的动点,则EP BP ⋅的最小值是A .95- B .0 C .45-D .1【答案】A【解析】由等腰梯形的知识可知cos B =, 设BP x =,则5CP x =, ∴2565()1()(5)(1)EP BP EC CP BP EC BP CP BP x x x x ⋅=+⋅=⋅+⋅=⋅⋅+⋅⋅-=-, 05x 剟,∴当355x =时,EP BP ⋅取得最小值95-. 故选A .【名师点睛】本题考查了平面向量的数量积运算,属于中档题.求解时,计算cos B ,设BP x =,把EP EC CP =+代入得出关于x 的函数,根据x 的范围得出最小值.13.【江西省临川一中2019届高三年级考前模拟考试数学试题】已知向量()3,4=a ,()1,k =-b ,且⊥a b ,则4+a b 与a 的夹角为________.【答案】4π 【解析】因为⊥a b ,故0⋅=a b ,所以340k -+=,故34k =,故()41,7+=-a b , 设4+a b 与a 的夹角为θ, 则2cos 5025525θ===⨯⨯, 因为[]0,π∈θ,故π4=θ, 故填4π. 【名师点睛】解答时,先计算出k ,再求出4+a b 与a 的坐标,计算出它们的夹角的余弦后可求夹角的大小.向量的数量积有两个应用:(1)计算长度或模长,通过用=⋅a a a ;(2)计算角,cos ,⋅=a b a b a b.特别地,两个非零向量,a b 垂直的等价条件是0⋅=a b . 14.【河南省八市重点高中联盟“领军考试”2019届高三压轴数学试题】已知向量()cos ,sin =θθa ,向量(1,=-b ,则3-a b 的最大值是______.【答案】6【解析】由题意,向量()cos ,sin =θθa ,则()33cos ,3sin =θθa ,所以向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,3-a b 最大,最大值为6.【名师点睛】本题主要考查了向量的坐标运算,以及向量的坐标表示的应用,其中解答中熟练应用向量的几何意义和向量的坐标表示是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.求解时,由向量()cos ,sin =θθa ,得到向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,即可求解,得到答案.15.【湖南省郴州市2019届高三第三次质量检测数学试题】在ABC △中,D 为BC 的中点,且33BC AD ==,则AB AC ⋅=_______. 【答案】54- 【解析】()()22AD DB A AB A D DC C AD BD =++=-⋅⋅95144=-=-. 【名师点睛】本题主要考查向量的基向量表示及向量运算,选择已知信息较多的向量作为基底,是求解这类问题的重要策略.求解时,用AD 表示出所求向量,利用数量积相乘可得结果.。
精品2019届高三数学上学期第一次教学质量检查考试试题 理(含解析)
蚌埠市2019届高三年级第一次教学质量检查考试数学(理工类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若,则()A. B. C. D.【答案】A【解析】依题意可知是集合的元素,即,解得,由,解得.2. 设是复数的共轭复数,且,则()A. 3B. 5C.D.【答案】D【解析】,故.3. 若满足约束条件则的最小值为()A. -3B. 0C. -4D. 1【答案】A【解析】画出可行域如下图所示,由图可知目标函数在点处取得最小值为.4. “直线不相交”是“直线为异面直线”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B5. 已知等差数列的前项和为,且满足,,则()A. 4B. 5C. 6D. 7【答案】B【解析】设等差数列的公差为,,联立解得,则,故选B.6. 已知,且,则()A. B. C. D.【答案】A【解析】,由于角为第三象限角,故,.7. 已知,则()A. 18B. 24C. 36D. 56【答案】B【解析】,故,.8. 已知,下列程序框图设计的是求的值,在“”中应填的执行语句是()A. B. C. D.【答案】A【解析】不妨设,要计算,首先,下一个应该加,再接着是加,故应填.9. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积可能为()A. B. C. D.【答案】A【解析】由三视图可知,该几何体由半个圆锥和一个三棱锥组合而成.故体积为.10. 已知为双曲线的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为()A. B. C. D.【答案】C【解析】∵点,关于直线对称,,又∵直线经过点,∴直线的方程为,的中点坐标为,∴,化简整理得,即,,解得,(舍去),故选C.11. 已知,顺次连接函数与的任意三个相邻的交点都构成一个等边三角形,则()A. B. C. D.【答案】B【解析】当正弦值等于余弦值时,函数值为,故等边三角形的高为,由此得到边长为,边长即为函数的周期,故.【点睛】本题主要考查三角函数的图像与性质.首先大致画出正弦函数图像和余弦函数图像,通过观察可知可知,三角形左右两个顶点之间为一个周期,故只需求出等边三角形的边长即可.再根据可知等边三角形的高,由此求得边长即函数的周期,再由周期公式求得的值.12. 定义在上的奇函数满足:当时,(其中为的导函数).则在上零点的个数为()A. 4B. 3C. 2D. 1【答案】D【解析】构造函数,,由于当时,,故当时,为增函数.又,所以当时,成立,由于,所以,由于为奇函数,故当时,,即只有一个根就是.【点睛】本题考查了零点的判断,考查了函数的奇偶性,和利用导数来研究函数的单调性.本题的难点在于构造新函数,然后利用导数来判断新函数的最值,进而判断出的取值.如何构造函数,主要靠平时积累,解题时要多尝试.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,是两个不同的平面向量,满足:,则__________.【答案】【解析】,,解得,当时,两个是相同的向量,故舍去,所以.14. 已知函数图象关于原点对称.则实数的值为__________.【答案】【解析】依题意有,,,故.15. 已知是抛物线的焦点,是上一点,是坐标原点,的延长线交轴于点,若,则点的纵坐标为__________.【答案】【解析】由于三角形为直角三角形,而,即为中点,设,而,故,代入抛物线方程得,即点的纵坐标为.【点睛】本题主要考查直线和抛物线的位置关系,考查直角三角形斜边的中线等于斜边一半这一几何性质.首先根据题目所给的条件画出图像,突破口就在题目所给条件,这就联想到直角三角形斜边中线等于斜边一半这一几何性质,可得是的中点,设出坐标,代入抛物线方程即可得到所求的结果.16. 已知满足,,,则__________.(用表示)【答案】【解析】依题意,与已知条件相加可得.....................三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角的对边分别为,且,(1)求的面积;(2)若,求的周长.【答案】(1) (2)的周长为【解析】【试题分析】(1)根据余弦定理,由得到,,在利用三角形面积公式可求得面积.(2)利用三角形内角和定理,有,展开后结合已知条件可求得.利用正弦定理求得,利用配方法可求得由此求得周长为.【试题解析】(1)∵,∴,即,∴;(2)∵,∴由题意,∴,∵,∴,∴∵,∴.∴的周长为.18. 如图,在四棱锥中,是等边三角形,,.(1)求证:平面平面;(2)若直线与所成角的大小为60°,求二面角的大小.【答案】(1)见解析(2)90°【解析】【试题分析】(1)由于是等边三角形,结合勾股定理,可计算证明三条直线两两垂直,由此证得平面,进而得到平面平面.(2)根据(1)证明三条直线两两垂直,以为空间坐标原点建立空间直角坐标系,利用和所成角为计算出点的坐标,然后通过平面和平面的法向量计算二面角的余弦值并求得大小.【试题解析】(1)∵,且是等边三角形∴,,均为直角三角形,即,,∴平面∵平面∴平面平面(2)以为单位正交基底,建立如图所示的空间直角坐标系.令,,∴,,,.设,则,.∵直线与所成角大小为60°,所以,即,解得或(舍),∴,设平面的一个法向量为.∵,,则即令,则,所以.∵平面的一个法向量为,∵,,则即令,则,,∴.∴,故二面角的大小为90°.19. 为监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取10件零件,度量其内径尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的内径尺寸服从正态分布. (1)假设生产状态正常,记表示某一天内抽取的10个零件中其尺寸在之外的零件数,求及的数学期望;(2)某天正常工作的一条生产线数据记录的茎叶图如下图所示:①计算这一天平均值与标准差;②一家公司引进了一条这种生产线,为了检查这条生产线是否正常,用这条生产线试生产了5个零件,度量其内径分别为(单位:):85,95,103,109,119,试问此条生产线是否需要进一步调试,为什么?参考数据:,,,,,,,.【答案】(1) (2)①②生产线异常,需要进一步调试【解析】【试题分析】(1)依题意可知满足二项分布,根据二项分布的公式计算出,然后用减去这个值记得到的值.利用二项分布的期望公式,直接计算出的值.(2)分别计算出均值和标准差,计算的范围,发现不在这个范围内,根据原理可知需要进一步调试.【试题解析】(1)由题意知:或,,∵,∴;(2)①所以②结论:需要进一步调试.理由如下:如果生产线正常工作,则服从正态分布,零件内径在之外的概率只有0.0026,而根据原则,知生产线异常,需要进一步调试.20. 已知椭圆经过点,离心率.(1)求的方程;(2)设直线经过点且与相交于两点(异于点),记直线的斜率为,直线的斜率为,证明:为定值.【答案】(1) (2)见解析【解析】【试题分析】(1)依题意可知,解方程组可求得椭圆的标准方程.(2)当直线斜率斜率不存在时,不符合题意.当斜率存在时,设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,计算的值,化简后结果为,由此证明结论成立.【试题解析】(1)因为椭圆,经过点,所以.又,所以,解得.故而可得椭圆的标准方程为:.(2)若直线的斜率不存在,则直线的方程为,此时直线与椭圆相切,不符合题意.设直线的方程为,即,联立,得.设,,则所以为定值,且定值为-1.【点睛】本题主要考查椭圆标准方程的求法,考查直线与圆锥曲线位置关系,考查一元二次方程根与系数关系.椭圆标准方程的参数有两个,要确定这两个参数,需要有两个条件,结合恒等式,列方程组来求的椭圆的标准方程.考查直线和圆锥曲线位置关系,要注意直线斜率不存在的情况.21. 已知函数,(其中为自然对数的底数,).(1)若函数的图象与函数的图象相切于处,求的值;(2)当时,若不等式恒成立,求的最小值.【答案】(1) ,(2)【解析】【试题分析】(1)依题意求得切点为,斜率为,由此列方程组可求得的值.(2)将原不等式等价变形为,构造函数,利用导数求得的最大值为,由此求得的最小值. 【试题解析】(1),.(过程略)(2)令,则,当时,单调递增,而,∴时,不合题意当时,令,则,∵为减函数,∴时,,单调递增,时,,单调递减,∴,即.(△)但,等号成立当且仅当且.故(△)式成立只能即.【点睛】本题主要考查导数与切线有关的知识.考查利用导数解不等式恒成立问题.解决导数与切线有关的问题,关键点在于切点和斜率,联络点在于切点的横坐标,以此建立方程组,求得未知参数的值.不等式恒成立问题往往可以考虑构造函数法,利用函数的最值来求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知曲线的极坐标方程为,的参数方程为(为参数).(1)将曲线与的方程化为直角坐标系下的普通方程;(2)若与相交于两点,求.【答案】(1) (2)【解析】【试题分析】(1)对方程两边乘以,由此求得曲线的普通方程.对的参数方程利用加减消元法可求得的普通方程.(2)将的参数方程代入,利用韦达定理和直线参数的几何意义,来求的弦长的值. 【试题解析】(1)曲线的普通方程为,曲线的普通方程为(2)将的参数方程代入的方程,得,得:解得,∴.23. 选修4-5:不等式选讲已知.(1)当时,求不等式的解集;(2)若函数与的图象恒有公共点,求实数的取值范围.【答案】(1) (2)【解析】【试题分析】(1)利用零点分段法,去绝对值,分别求解每一段的解集.由此计算不等式的解集.(2)先求得函数的最小值,求得函数的最大值,比较这两个数值的大小,即可求得有公共点时,实数的取值范围. 【试题解析】(1)当时,,由得,;(2),该二次函数在处取得最小值,因为函数,在处取得最大值故要使函数与的图象恒有公共点,只需要,即.。
专题20统计概率(理科)解答题20题-备战高考数学冲刺横向强化精练精讲(原卷版)
统计概率(理科)解答题20题1.(2021年全国高考乙卷数学(文)试题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥认为有显著提高).2.(2021年全国高考甲卷数学(理)试题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8283.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版))下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑,721()0.55ii y y =-=∑7≈2.646.参考公式:相关系数12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i ni i tt y y b t t ==--=-∑∑,=.a y b t -4.(2021年全国新高考Ⅰ卷数学试题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值为记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.,经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.7.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.8.(2021·辽宁大连·高三学业考试)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持 支持 不支持 方案一 200人 400人 300人 100人 方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与 1p 的大小.(结论不要求证明)9.(2019年天津卷)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.10.(2018年全国普通高等学校招生统一考试理数(全国卷II ))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.11.(18年天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.12.(2017年全国1卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)u u σσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)u u σσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.9510.12 9.969.9610.01 9.929.9810.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,()16162221111160.2121616i i i i s x x x x ==⎛⎫=-=-≈ ⎪⎝⎭∑∑,其中x i 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.0080.09≈.13.(16年全国1)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数12 3 4 5≥保费0.85a a1.25a 1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5≥ 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.14.(16年全国2卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (1)求X 的分布列;(2)若要求()0.5P X n ≤≥,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?15.(2021·云南·模拟预测(理))某工厂为了提高某产品的生产质量引进了一条年产量为100万件的生产线.已知该产品的质量以某项指标值k 为衡量标准,为估算其经济效益,该厂先进行了试生产,并从中随机抽取了100件该产品,统计了每个产品的质量指标值k ,并分成以下5组,其统计结果如下表所示: 质量指标值 [)5,6[)6,7[)7,8[)8,9[]9,10频数163040104试利用该样本的频率分布估计总体的概率分布,并解决下列问题:(注:每组数据取区间的中点值)(1)由频率分布表可认为,该产品的质量指标值k 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本的标准差s ,并已求得0.82s ≈,记X 表示某天从生产线上随机抽取的10件产品中质量指标值k 在区间(]5.42,7.88之外的个数,求()1P X =及X 的数学期望(精确到0.001);(2)已知每个产品的质量指标值k 与利润y (单位:万元)的关系如下表所示()6,7t ∈ 质量指标值k [)5,6[)6,7[)7,8[)8,9[]9,10利润y5t3t2tt25t -假定该厂所生产的该产品都能销售出去,且这一年的总投资为500万元,问:该厂能否在一年之内通过销售该产品收回投资?试说明理由.参考数据:若随机变量()2~,Z N μσ,则()()0.6827,220.9545P Z P Z μσμσμσμσ-<≤+=-<≤+=,()9330.9973,0.81860.1651P Z μσμσ-<≤+=≈.16.(2021·河南·模拟预测(理))如图,某市有南、北两条城市主干道,在出行高峰期,北干道有1N ,2N ,3N ,4N ,四个交通易堵塞路段,它们被堵塞的概率都是13,南干道有1S ,2S ,两个交通易堵塞路段,它们被堵塞的概率分别为12,23.某人在高峰期驾车从城西开往城东,假设以上各路段是否被堵塞互不影响.(1)求北干道的1N ,2N ,3N ,4N 个易堵塞路段至少有一个被堵塞的概率; (2)若南干道被堵塞路段的个数为X ,求X 的分布列及数学期望()E X ;(3)若按照“平均被堵塞路段少的路线是较好的高峰期出行路线”的标准,则从城西开往城东较好的高峰期出行路线是哪一条?请说明理由.17.(2021·黑龙江·哈尔滨市第一中学校高三期末(理))在核酸检测中, “k 合1”混采核酸检测是指:先将k 个人的样本混合在一起进行1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束;如果这k 个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.(1)现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确将这100人随机平均分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.如果感染新冠病毒的2人在同一组,求检测的总次数;(2)将这100人随机平均分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.试求两名感染者在同一组的概率.18.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?19.(2021·广东·模拟预测)2020年9月,中国在第75届联合国大会上承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标”),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车、电动汽车是重要的战略新兴产业,对于实现“双碳目标”具有重要的作用为了解某一地区纯电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电汽车销量y (单位:万台)关于x (年份)的线性回归方程为ˆ 4.79459.2yx =-,且销量y 的方差为22545y s =,年份x 的方差为22x s =.(1)求y 与x 的相关系数r ,并据此判断电动汽车销量y 与年份x 的相关性强弱; (2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:购买非电动车 购买电动车 总计男性 39 6 45 女性 30 15 45 总计 692190请判断有多大的把握认为购买电动汽车与性别有关;(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中,男性的人数为X ,求X 的分布列和数学期望. 512763525⨯≈②参考公式:(i )线性回归方程:ˆˆˆybx a =+,其中()()()121ˆˆˆ,niii ni i x x y y b ay bx x x ==--==--∑∑ (ii )相关系数:()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑ 0.9r >,则可判断y 与x 线性相关较强.(iii )22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.附表: ()20P K k ≥ 0.10 0.05 0.025 0.010 0.0010k2.7063.841 5.024 6.635 10.82820.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或11都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前|教育部试题命制中心
泽锴实验中学2018—2019学年第一学期第一次阶段检测
高三数学试题 2018年9月 命题人:王武丽 谷向荣 审核人:黄海龙
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考
试时间120分钟. 注意事项:
1.答卷前,考生要务必填写答题卷上的有关项目.
2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各
题目指定区域内;如需改动,
先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.
4.请考生保持答题卷的整洁,考试结束后,将答题卷交回.
第Ⅰ卷 选择题(共60分)
一、选择题(本大题共12小题,每小题5分,满分60分.每小题给出的四个选
项中,只有一项是符合题目要求.)
(1)已知全集{},,,,,43210=U 集合{},,,321=A {},,42=B 则
U C A B ()为 (A ){}421,, (B ){}432,, (C ){}420,, (D ){}4320,,,
(2)复数i
-+
25
1(i 是虚数单位)的模等于
(A )10 (B )10 (C (D )
5
(3)下列命题中的假命题是
(A )0lg ,=∈∃x R x (B )0tan ,=∈∃x R x (C )02,>∈∀x R x (D )0,2>∈∀x R x
(4)将函数2sin(2)6
y x π
=+的图象向右平移14
个周期后,所得图象的函数解析式
为
(A )2sin(2)12
y x =-
π (B )2sin(2)
3y x π
=+ (C )2sin(2)4
y x π=- (D )2sin(2)3
y x π
=-
(5)已知向量(,2),(1,1)m a n a =-=-,且//m n ,则实数a =
(A )-1 (B )2或-1 (C )2 (D )-2
(6)ABC ∆中,角,,A B C 所对的边分别为,,a b c
,若3,2,a b c A ===∠则=
(A )O 30
(B )O 45 (C )O 60 (D )O 90
(7)命题“任意[]21,2,0x x a ∈-≤”为真命题的一个充分不必要条件是
(A )4a ≤ (B )4a ≥ (C )5a ≤ (D )5a ≥ (8)已知某几何体的三视图如右图所示,正视图和侧视图是边长为1的正方形,
俯视图是腰长为1的等腰直角三角形,则该几何体的体积是
(A )2 (B )1 (C )2
1 (D )
1
3
(9)执行如图所示的程序框图,则输出S 的值为
主视图侧视图
俯视图
第(8)题
(A)2(B)3-(C)1
2
-
(D)1
3
(10)函数
2
()(1)cos
1x
f x x
e
=-
+
图象的大致是
(A)(B)(C)(D)
(11)将甲,乙等5位同学分别保送到北京大学,清华大学,上海交通大学这3所大学就读,则每所大学至少保送1人的不同保送方法数为()种。
(A)150 (B)180 (C)240 (D)540
(12)已知抛物线2
8
1
x
y=与双曲线)0
(1
2
2
2
>
=
-a
x
a
y
有共同的焦点F,O为坐标原点,P在x 轴上方且在双曲线上,则OP FP
⋅的最小值为
(A)3
2
3-(B)3
3
2-(C)
4
7
-(D)
4
3
第Ⅱ卷非选择题(共90分)
本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个
考生都必须做答。
第(22)题、第(23)题为选考题,考生根据要求做答。
二、填空题(本大题共4小题,每小题5分,满分20分.)
(13)已知实数,x y满足约束条件
10
10
x y
x y
x
+-≤
⎧
⎪
--≤
⎨
⎪≥
⎩
,则2
z x y
=+的最大值
为 .
(14)4
)31(x
x -
的展开式中常数项为 .(用数字表示) (15)22
1cos x dx π
π-+⎰()
= . (16)已知函数()1x f x ax e =+-(a R ∈,e 为自然对数的底数),若函数()f x 在点
(1,(1))f 处
的切线平行于x 轴,则a = .
三、解答题(本大题共满分70分.解答须写出文字说明、证明过程和演算步骤.) (17)(本小题满分12分)
已知{}n a 是公差为2的等差数列,且31a +是11a +与71a +的等比中项. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)令2n
n b a =,求数列{}n b 的前n 项和n S .
(18)(本小题满分12分)
一个盒子中装有大量..形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图(如右图),
(Ⅰ)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值; (Ⅱ)从盒子中随机抽取3个小球,其中重量在[]5,15内的小球个数为X ,求X 的分布列和数学期望. (以直方图中的频率作为概率).
(19)(本小题满分12分)
C
C 1
B 1
A
A 1
B
D
如右图,三棱柱111ABC A B C -中,112AB AC AA BC ====,1160AAC ∠=︒,平面1ABC ⊥平面
11AAC C ,1AC 与1A
C 相交于点
D . (Ⅰ)求证:BD ⊥平面11AAC C ; (Ⅱ)求二面角1C AB
C --的余弦值. (20)(本小题满分12分)
已知椭圆C 的中心在原点,焦点在y 轴上,且长轴的长为4,离心率等于2
. (Ⅰ)求椭圆C 的方程;
(Ⅱ)若椭圆C 在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条
不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值.
(21)(本小题满分12分)
已知函数(1)
()ln ,b x f x a x x
+=+
曲线()y f x =在点(1,(1))f 处的切线方程为2y =.
(Ⅰ)求a 、b 的值;
(Ⅱ)当0x >且1x ≠时,求证:(1)ln ()1
x x
f x x +>
-. ★选做题:请考生在第(22)、(23)题中任选一题做答,如果多做,则按所做的第一题计分,作答时,请写清题号....
. (22)(本小题满分10分) 选修4-4:极坐标系与参数方程
已知直线l 的参数方程为31
(43
x t t y t =+⎧⎨
=+⎩为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 极坐标的方程为2cos (0)a a ρθ=≠. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;
(Ⅱ)若直线l与曲线C恒有公共点,求实数a的取值范围.
(23)(本小题满分10分)选修4—5:不等式选讲已知()|||2|,0
=-+-<.
f x x a x a a
(Ⅰ)求函数()
f x的最小值;
(Ⅱ)若不等式1
f x<的解集非空,求a的取值范围.
()
2。