二分法求解方程的近似值
用二分法求方程近似解的两个注意点
用二分法求方程近似解的两个注意点用二分法求方程近似解需要注意以下两个点:1.用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε; 第二步:求区间[a,b]的中点c ;第三步:计算f(c):(1)若f(c)=0,则c 就是函数的零点;(2)若f(a)·f(c)<0,则令b =c (此时零点x 0∈(a ,c));(3)若f(c)·f(b)<0,则令a =c (此时零点x 0∈(c ,b)).根据这个步骤,各次区间的取舍根据的就是函数零点的存在性定理,即舍去区间端点函数值同号的区间,取区间端点函数值异号的区间.2.精确度与计算次数的关系:精确度是方程近似解的一个重要指标,它由计算次数决定.若初始区间是(a,b ),那么经过n 次取中点后,区间的长度是n b a 2||-,只要这个区间的长度小于精确度ε,那么这个区间内的任意一个值都可以作为方程的近似解,因此计算次数和精确度满足关系n b a 2||-<ε,即n >]||[log 2εb a -,其中[ ]表示取整数,如[2.5]=2,][π=3等.【例1】用二分法求方程x x 1ln =在(1,2)上的近似解,取中点c=1.5,则下一个有根区间是 .【分析】由区间端点处函数值的符号,根据函数零点的存在性定理解决.【解析】令f(x)=x x 1ln-, 则f(1)=-1<0,f(2)=,01ln 2ln 212ln =>=-e )25.1(ln 31325.1ln )5.1(2-=-=f <0, 所以f(1.5)·f(2)<0,故下一个有根区间是(1.5,2)故填(1.5,2).【点评】用二分法求方程的近似解时,每一次取中点后,下一个有根区间的判断原则是:若中点函数值为零,则这个中点就是方程的解;若中点函数值不等于零.则下一个有根区间是区间端点函数值异号的区间.【例2】在用二分法求方程的近似解时,若初始区间是(1,5),精确度要求是0.001,则需要计算的次数是 .【解析】根据计算精确度与区间长度和计算次数的关系确定.设需计算n 次,则n 满足n 24<0.001,即2n >4000.由于211=2048,212=4096,故计算12次就可以满足精确度要求.故填12.【点评】在用二分法求方程的近似解时,精确度与计算次数、区间长度之间存在紧密的联系,可以根据其中两个量求得另一个.当然,在实际求解过程中也可能用不到12次,也许11次,甚至10次即可解决问题,但前提是到结束时,区间的两个端点精确到与所要求的精确度的近似值相同.。
用二分法求方程的近似解(带练习)
4.5.2用二分法求方程的近似解1.二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点__c__.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则__c__就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时零点x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).以上步骤可借助口诀记忆:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.1.已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的零点的个数分别为()A.4,4 B.3,4C.5,4 D.4,3D解析:图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以可以用二分法求解的零点个数为3,故选D.2.若函数f(x)在(1,2)内有1个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次C 解析:设对区间(1,2)至少二等分n 次,初始区间长为1. 第1次二等分后区间长为12;第2次二等分后区间长为122;第3次二等分后区间长为123;…第n 次二等分后区间长为12n .根据题意,得12n <0.01,∴n >log 2100. ∵6<log 2100<7, ∴n ≥7.故对区间(1,2)至少二等分7次.【例1】下面关于二分法的叙述中,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循,无法在计算机上完成D .只能用二分法求函数的零点B 解析:用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A 错误;二分法是一种程序化的运算,可以在计算机上完成,故选项C 错误;求函数的零点的方法还有方程法、函数图象法等,故选项D 错误.故选B.运用二分法求函数的零点应具备的条件(1)函数图象在零点附近连续不断.(2)在该零点左右函数值异号.只有满足上述两个条件,才可用二分法求函数的零点.1.下列关于函数f(x),x∈[a,b]的命题中,正确的是()A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解A解析:使用二分法必须满足二分法的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.2.已知下列四个函数图象,其中能用二分法求出函数零点的是()A解析:由二分法的定义与原理知A选项正确.【例2】利用二分法求方程x2-x-1=0的近似解(精确度为0.3).解:令f(x)=x2-x-1,由于f(0)=-1<0,f(1)=-1<0,f(2)=1>0,故可取区间(1,2)作为计算的初始区间.用二分法逐次计算,列表如下:零点所在区间中点的值中点函数值(1,2) 1.5 -0.25(1.5,2) 1.75 0.312 5(1.5,1.75) 1.625 0.015 625∵|1.75-1.5|=0.25<0.3,∴方程x2-x-1=0的近似解可取1.5或1.75.二分法的步骤证明函数f(x)=2x+3x-6在区间(1,2)内有唯一一个零点,并求出这个零点.(精确度为0.1)证明:∵函数f(x)=2x+3x-6,∴f(1)=-1<0,f(2)=4>0.∴f(x)在区间(1,2)内有零点.又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间(1,2)内有唯一的零点.设该零点为x0,则x0∈(1,2),取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5).取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25).取x3=1.125,f(1.125)≈-0.44<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25).取x4=1.187 5,f(1.187 5)≈-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴可取x0=1.25,则该函数的零点近似解为1.25.探究题1某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,要使所得的近似值的精确度达到0.1,则应将区间D等分的次数至少是________次.5解析:第一次等分,则根在区间(2,3)内或(3,4)内,此时精确度ε>0.1;不妨设根在(2,3)内,第二次等分,则根在区间(2,2.5)内或(2.5,3)内,此时精确度ε>0.1;不妨设根在(2,2.5)内,第三次等分,则根在区间(2,2.25)内或(2.25,2.5)内,此时精确度ε>0.1;不妨设根在(2,2.25)内,第四次等分,则根在区间(2,2.125)内或(2.125,2.25)内,此时精确度ε>0.1;不妨设根在(2,2.125)内,第五次等分,则根在区间(2,2.062 5)内或(2.062 5,2.125)内,此时精确度ε<0.1.满足题目要求,故至少要等分5次.探究题2在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为()A.0.68 B.0.72 C.0.7 D.0.6C解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=12×(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.区分好“精确度”与“精确到”.3.现实生活中,有很多问题可以用二分法来解决,例如线路断路、地下管道的堵塞、水管的泄漏等.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量轻一点),现在只有一台天平,应用适当的方法最多称几次就可以发现这枚假币?将26枚金币平均分成两份,放在天平上,假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚金币平均分成两份,则假币一定在轻的那3枚金币里面;将这3枚金币任意拿出2枚放在天平上,若平衡,则剩下的那一枚是假币,若不平衡,则轻的那一枚是假币.依据上述分析,最多称4次就可以发现这枚假币.用二分法求方程的近似解练习(30分钟60分)1.(5分)定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)<0,用二分法求x0时,当fa+b2=0时,函数f(x)的零点是() A.(a,b)外的点B.a+b2C.区间a,a+b2或a+b2,b内的任意一个实数D.x=a或bB解析:由fa+b2=0知a+b2是零点,且在(a,b)内.2.(5分)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示.x 1.25 1.312 5 1.375 1.437 5 1.51.562 5f(x) -0.871 6 -0.578 8 -0.281 30.021 01 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.3C解析:由题意可知f(x)为增函数.由f(1.375)•f(1.437 5)<0,可知方程2x+3x=7的近似解可取为1.4.故选C.3.(5分)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下.f(1)≈-2 f(1.5)≈0.625 f(1.25)≈-0.984f(1.375)≈-0.260 f(1.437 5)≈0.162 f(1.406 25)≈-0.054那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25 B.1.375 C.1.42 D.1.5C解析:由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.406 25,1.437 5)之间,且1.437 5-1.406 25<0.05.结合选项可知,方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是1.42.故选C.4.(5分)用二分法求方程ln x-2+x=0在区间[1,2]上零点的近似值时,先取区间中点c=32,则下一个含根的区间是32,2.5.(5分)某同学在借助计算器求“方程lg x=2-x的近似解(精确到0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在后面的过程中,他用二分法又取了4个x的值,计算了其函数值的正负,并得出判断,方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.1.5,1.75,1.875,1.812 5解析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).6.(5分)利用计算器,列出部分自变量和函数值的对应值如表:x -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0y=2x 0.329 9 0.378 9 0.435 3 0.5 0.574 30.659 8 0.757 9 0.870 6 1y=x2 2.56 1.96 1.44 1 0.64 0.36 0.16 0.04 0 若方程2x=x2有一个根位于区间(a,a+0.4)(a在表格中第一行里的数据中取值),则a 的值为________.-1或-0.8解析:令f(x)=2x-x2,由表中的数据可得f(-1)<0,f(-0.6)>0,f(-0.8)<0, f(-0.4)>0,∴方程的根在区间(-1,-0.6)与(-0.8,-0.4)内.∴a=-1或a=-0.8.7.(5分)用二分法求方程x2=2的正实根的近似解(精确度为0.001)时,如果选取初始区间是[1.4,1.5],则达到精确度要求至少需要计算________次.7解析:设至少需要计算n次,则n满足0.12n<0.001,即2n>100,因为n∈N*,且27=128,故要达到精确度要求至少需要计算7次.8.(12分)以下是用二分法求方程x3+3x-5=0的一个近似解(精确度为0.1)的不完整的过程,请补充完整,并写出结论.设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的一条曲线.先求值,f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在零点x0,填表:区间中点m f(m)的符号区间长度解:f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,f(x)在区间(1,2)内存在零点x0,填表为区间中点m f(m)的符号区间长度(1,2) 1.5 + 1(1,1.5) 1.25 +0.5(1,1.25) 1.125 -0.25(1,125,1.25) 1.187 5 +0.125(1.125,1.187 5) 0.062 5因为|1.187 5-1.125|=0.062 5<0.1,所以原方程的近似解可取为1.187 5.9.(13分)求方程x2-2x-1=0的一个大于零的近似解(精确度为0.1).解:设f(x)=x2-2x-1,先画出函数图象的草图,如图所示.因为f(2)=-1<0,f(3)=2>0,所以在区间(2,3)上,方程x2-2x-1=0有一解,记为x1,取2和3的中间数2.5,因为f(2.5)=0.25>0,所以x1∈(2,2.5),再取2与2.5的中间数2.25,因为f(2.25)=-0.437 5<0,所以x1∈(2.25,2.5),如此继续下去,得f(2.375)<0,f(2.437 5)>0,则x1∈(2.375,2.4375),因为|2.437 5-2.375|=0.062 5<0.1.所以此方程大于零的近似解为2.437 5.。
利用二分法求方程的近似解高中数学北师大版2019必修第一册
(2)由f(2)·f(4)<0,f(4)·f(3) >0知f(2)·f(3) <0.
故函数零点所在的区间是(2,3).
探究一
探究二
探究三
素养形成
当堂检测
用二分法求方程的近似解
例2求方程lg x-2-x+1=0的近似解(精确度为0.1).
分析先确定f(x)=lg x-2-x+1的零点所在的大致区间,再用二分法求解.
258111216232729355153697577
如果随机给出一个不大于100的自然数x,要让计算机查找x是否在
上面这列数中,设计怎样的查找方法,才能保证不管给出的是什么
数,都能在指定的步骤内查到结果呢?
如果让计算机将x逐一与图中的数去比较,那么在有些情况下,只要
比较1次就可以了(例如x=1),但在有些情况下,却要比较15次才能完
和大规模的互动体验结合起来,充分激发了观众的参与热情.每位
选手只要在规定时间内猜出的某商品价格在主持人展示的区间内,
就可以把它拿走.当选手说出一个价格不在规定区间内时,主持人
会提示“高了”或“低了”.
如果选手想用尽可能少的次数猜对价格,应该采用什么样的猜价
方法呢?
激趣诱思
知识点拨
二分法
1.定义:对于一般的函数y=f(x),x∈[a,b].若函数y=f(x)的图象是一条
3
解:设 x= 2,则 x3-2=0.令 f(x)=x3-2,
3
则函数 f(x)零点的近似值就是 2的近似值.
以下用二分法求其零点的近似值.
由于f(1)=-1<0,f(2)=6>0,故可以取区间[1,2]为计算的初始区间.用
§3.1.2用二分法求方程的近似解
重庆市万州高级中学 曾国荣 wzzxzgr@
§3.1.2用二分法求方程的近似解
a
b
对于给定的区间(a,b), a+b (1)定义 为区间的中点, 2 (2)定义b-a为区间的长度。
ε :艾普西隆
2013-1-14 重庆市万州高级中学 曾国荣 wzzxzgr@ 2
2013-1-14
重庆市万州高级中学 曾国荣 wzzxzgr@
22
§3.1.2用二分法求方程的近似解
课堂练习 <<教材>> P.91 书面作业 <<教材>> P.92 习题3.1 A组2.3.4 B组1 练习1.2
2013-1-14
重庆市万州高级中学 曾国荣 wzzxzgr@
2013-1-14 重庆市万州高级中学 曾国荣 wzzxzgr@ 3
§3.1.2用二分法求方程的近似解
2.方程的根与函数的零点的关系: 方程 f(x)=0 有实数根 函数 y=f(x) 的图象与x轴有交点 函数 y=f(x) 有零点 3.怎样求函数y=f(x)的零点的个数? (1)求相应方程f(x)=0的根 代数法 数形结合
y 2 3x 7
x
0 -6
1 -2
2 3
3 10
4 21
5 40
6 75
7 142
x
2013-1-14
重庆市万州高级中学 曾国荣 wzzxzgr@
18
§3.1.2用二分法求方程的近似解
,
。 y 观察右图和表格,可知 f (1) f (2) 0 说明在区间(1,2)内有零点 x0
区间端点的 绝对值
中点值
中点函 数近似值
二分法求方程的近似解
二分法求方程的近似解
二分法是一种求解方程近似解的数值方法。
它的思路是将待求解
区间分成两个子区间,通过比较子区间端点函数值的符号确定新的待
求解区间,重复这个过程直到达到指定的精度要求。
二分法的优点是
收敛速度较快,但需要满足一定的前提条件,如函数在待求解区间内
单调、连续等。
具体实现时,可以先确定一个初始区间[a,b],计算出函数在两
个端点的值f(a)和f(b)。
如果f(a)和f(b)符号相同,则表示该区间
内没有实根,需要选择另一个区间;否则,可以将区间的中点
c=(a+b)/2计算出来,计算f(c)的符号,如果与f(a)的符号相同,则
舍弃前一半区间,否则舍弃后一半区间,将c作为新的端点继续迭代,直到满足精度要求为止。
二分法求解方程的近似解,在数学、物理等领域广泛应用,它不
仅在理论上有严格的证明,而且在计算机实现中也十分方便。
在实际
问题中,我们可以通过对待求解区间的缩减和符号比较来快速确定解
的位置,从而实现高效的计算。
《用二分法求方程的近似解》教学设计
《用二分法求方程的近似解》教学设计1. 引言1.1 背景介绍二分法是一种常用的数值计算方法,广泛应用于计算机科学、数学和工程领域。
它通常用于寻找数值解的逼近值,特别是在无法准确求解的情况下。
二分法的基本原理是将求解区间逐步缩小,直到满足精度要求为止。
在实际应用中,我们常常需要解决一些复杂的方程,例如非线性方程、传统解法求解困难的方程等。
这时候,二分法就成为了一种简单而有效的求解方法。
通过不断缩小求解区间,逐步逼近方程的解,我们可以快速得到一个近似解。
在本次教学设计中,我们将重点介绍二分法的原理、算法步骤和示例演示,帮助学生更好地理解和掌握这一数值计算方法。
通过本次教学,我们旨在引导学生掌握二分法的基本思想和应用技巧,提高他们的数值计算能力,为进一步学习和研究相关领域打下坚实的基础。
1.2 问题提出问题提出:在数学中,求解方程是一个常见的问题。
特别是对于非线性方程,往往无法用代数方法得到精确解析解。
我们需要借助数值计算方法来求得近似解。
二分法是一种简单且常用的数值计算方法,可以用来求解单调函数的根。
在实际应用中,我们经常遇到需要求解方程的情况,比如物理问题中的牛顿定律、化学问题中的化学反应速率等等。
掌握二分法求方程的近似解有着重要的意义。
本教学设计将重点介绍二分法的原理及应用,帮助学生掌握这一实用的数值计算方法。
1.3 目的本教学设计的目的是帮助学生了解和掌握二分法求解方程的基本原理和方法,通过实际的示例演示和练习,培养学生解决实际问题的能力和思维。
通过本教学设计,学生将能够掌握二分法的具体步骤,理解其优缺点,掌握其应用范围,并能将所学知识运用到实际生活和工作中。
通过本教学设计的学习,学生将不仅能够提高数学解题的能力,还能培养逻辑思维和分析问题的能力,为将来深入学习数学和相关领域打下扎实的基础。
本教学设计也旨在培养学生的团队合作和沟通能力,鼓励学生通过合作学习和讨论来促进自身的学习效果。
通过本教学设计,学生将不仅能够学会求解方程的方法,还能够培养自主学习和解决问题的能力,为未来的学习和工作打下坚实的基础。
4.5.2 用二分法求方程的近似解-【题型分类归纳】2022-2023学年高一数学上学期同步讲与练(
4.5.2 用二分法求方程的近似解一、二分法1、二分法的定义:对于区间[],a b 上图象连续不断且()()0⋅<f a f b 的函数()f x ,通过不断把它的零点所在区间一分为二,使所得区间的两个端点逐渐逼近零点,进而得到近似值的方法。
2、注意点:(1)二分法的求解原理是函数零点存在定理;(2)函数图象在零点附近连续不断;(3)用二分法只能求变号零点,即零点在左右两侧的函数值的符号相反,比如2=y x ,该函数有零点0,但不能用二分法求解。
二、用二分法求函数零点1、给定精确度ε,用二分法求函数()=y f x 零点0x 的近似值的步骤(1)确定零点0x 的初始区间[],a b ,验证()()0⋅<f a f b ;(2)求区间(),a b 的中点c ;(3)计算()f c ,进一步确定零点所在的区间:①若()0=f c (此时0=x c ),则c 就是函数的零点;②若()()0⋅<f a f c (此时()0,∈x a c ),则令=b c ;③若()()0⋅<f c f b (此时()0,∈x c b ),则令=a c .(4)判断是否达到精确度ε:若-<a b ε,则得到零点近似值a (或b );否则重复(2)~(4)【注意】初始区间的确定要包含函数的变号零点;2、关于精确度(1)“精确度”与“精确到”不是一回事,这里的“精确度”是指区间的长度达到某个确定的数值ε,即-<a b ε; “精确到”是指某讴歌数的数位达到某个规定的数位,如计算2-,精确到0.01,即0.3313(2)精确度ε表示当区间的长度小于ε时停止二分;此时除可用区间的端点代替近似值外,还可选用该区间内的任意一个数值作零点近似值。
题型一二分法的概念理解【例1】下列关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只有求函数零点时才用二分法【答案】B【解析】根据二分法的概念可知,只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,才可以用二分法求函数的零点的近似值,故A错;用二分法求方程的近似解时,可以精确到小数点后的任一位,故B正确;二分法有规律可循,可以通过计算机来进行,故C 错;求方程的近似解也可以用二分法,故D 错.故选:B.【变式1-1】用二分法求函数()lg 2f x x x =+-的零点,可以取的初始区间是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】B【解析】因为,lg y x y x ==是单调增函数,故()f x 是单调增函数,其零点至多有一个;又()()11,2lg20f f =-=>,故用二分法求其零点,可以取得初始区间是()1,2.故选:B.【变式1-2】观察下列函数的图象,判断能用二分法求其零点的是( ) A . B . C .D .【答案】A【解析】由图象可知,BD 选项中函数无零点,AC 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.故选:A【变式1-3】下列函数图象中,不能用二分法求零点的是( )A .B .C .D .【答案】B【解析】观察图象与x 轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B 不能用二分法求零点.故选:B.【变式1-4】下列函数中不能用二分法求零点的是( )A .()43f x x =-B .()ln 28f x x x =+-C .()sin 1f x x =+D .()231=-+f x x x【答案】C【解析】选项C sin 10y x =+≥恒成立,不存在区间(),a b 使()()0f a f b ⋅<,所以sin 1y x =+不能用二分法求零点.故选:C题型二 用二分法求方程的近似解【例2】方程322360x x x -+-=在区间[]2,4-上的根必定在( )A .[]2,1-上B .5,42⎡⎤⎢⎥⎣⎦上C .71,4⎡⎤⎢⎥⎣⎦上D .75,42⎡⎤⎢⎥⎣⎦上 【答案】D【解析】设32()236f x x x x =-+-, 则(2)8866280f -=----=-<,(4)6432126380f =-+-=>,因为2412且(1)123640f =-+-=-<,所以函数()f x 在[]1,4上必有零点. 又因为14522+=且5125251537()6028228f =-+-=>,所以函数()f x 在51,2⎡⎤⎢⎥⎣⎦上必有零点.又因为517224+=且32777797()()2()360444464f =-⨯+⨯-=-<,所以函数()f x 在75,42⎡⎤⎢⎥⎣⎦上必有零点. 即方程的根必在75,42⎡⎤⎢⎥⎣⎦上.故选:D【变式2-1】若函数()31f x xx =--在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算,列表如下: x 1 1.5 1.25 1.375 1.3125 f (x ) -1 0.875 -0.2969 0.2246 -0.05151310x x --=的一个近似根(精确度为0.1)可以为( )A .1.3B .1.32C .1.4375D .1.25【答案】B【解析】由()1.31250f <,()1.3750f >,且()f x 为连续函数,由零点存在性定理知:区间()1.3125,1.375内存在零点,故方程310x x --=的一个近似根可以为1.32,B 选项正确,其他选项均不可.故选:B【变式2-2】若函数32()22f x x x x =+--的一个正零点附近的函数值用二分法计算,其参考数据如下: (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =- (1.4375)0.162f = (1.40625)0.054f =-那么方程32220x x x +--=的一个近似根(精确度0.1)为( ).A .1.2B .1.4C .1.3D .1.5【答案】B【解析】因为(1)0,(1.5)0f f <>,所以(1)(1.5)0f f <,所以函数在(1,1.5)内有零点,因为1.510.50.1-=>,所以不满足精确度0.1;因为(1.25)0f <,所以(1.25)(1.5)0f f <,所以函数在(1.25,1.5)内有零点,因为1.5 1.250.250.1-=>,所以不满足精确度0.1;因为(1.375)0f <,所以(1.375)(1.5)0f f <,所以函数在(1.375,1.5)内有零点,因为1.5 1.3750.1250.1-=>,所以不满足精确度0.1;因为(1.4375)0f >,所以(1.4375)(1.375)0f f <,所以函数在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程32220x x x +--=的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .【变式2-3】求方程221x x =+的一个近似解(精确度0.1)【答案】2.4375【解析】设2()21f x x x =--.因为(2)10,(3)20f f =-<=>()f x 在区间()2,3内单调递增,所以在区间()2,3内,方程2210x x --=有唯一的实数根为0x 取2与3的平均数2.5因为(2.5)0.250f =>,所以02 2.5x <<,再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<,所以02.25 2.5x <<;如此继续下去,有(2.375)0,(2.5)0f f <>,所以()0 2.375,2.5x ∈;(2.375)0,(2.4375)0f f <>,所以()0 2.375,2.4375x ∈;因为|2.375 2.4375|0.06250.1-=<,所以方程221x x =+的一个精确度为0.1的近似解可取为2.4375题型三 用二分法求函数的零点【例3】用二分法研究函数()5381f x x x =+-的零点时,第一次经过计算得()00f <,()0.50f >,则其中一个零点所在区间和第二次应计算的函数值分别为( ) A .()0,0.5,()0.125f B .()0,0.5,()0.375fC .()0.5,1,()0.75fD .()0,0.5,()0.25f【答案】D【解析】因为(0)(0.5)0f f <,由零点存在性知:零点()00,0.5x ∈,根据二分法,第二次应计算00.52f +⎛⎫⎪⎝⎭,即()0.25f ,故选:D.【变式3-1】已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.5【答案】C【解析】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数,2y x 和2log 6y x =+在()0,∞+上都是增函数,当()1,2x ∈时,2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立;当()2,2.5x ∈时,22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立,又22(2.5) 2.5log 2.560f =--<,2(3)9log 360f =-->,根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3.故选:C.【变式3-2】已知函数()329f x x x =+-在()1,2内有一个零点,且求得()f x 的部分函数值数据如下表所示: x 1 2 1.5 1.75 1.7656 1.7578 1.7617()f x -6 3 -2.625 -0.14063 0.035181 -0.05304 -0.0088要使()零点的近似值精确度为,则对区间()的最少等分次数和近似解分别为( )A .6次1.75B .6次1.76C .7次1.75D .7次1.76【答案】D【解析】由表格数据,零点区间变化如下:(1,2)→(1.5,2)→(1.75,2)→(1.75,1.875)→(1.75,1.8125)→(1.75,1.78125)→(1.75,1.7656)→(1.7578,1.7656),此时区间长度小于0.01,在此区间内取近似值,等分了7次,近似解取1.76.故选:D .【变式3-3】用二分法求函数()ln(1)1f x x x =++-在区间[]0,1上的零点,要求精确度为0.01时,所需二分区间的次数最少为( )A .5B .6C .7D .8【答案】C【解析】开区间()0,1的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确度为0.01,10.012n∴≤,解得7n ≥,故选:C.【变式3-4】用二分法求函数()f x 的一个正实数零点时,经计算,()0.540f <,()0.720f >,()0.680f <,则函数的一个精确到0.1的正实数零点的近似值为( ) A .0.68 B .0.72 C .0.7 D .0.6【答案】C【解析】由题意根据函数零点的判定定理可得,函数零点所在的区间为()0.68,0.72,则函数的一个精确度为0.1的正实数零点的近似值可以为0.7,故选:C .。
312用二分法求方程的近似解48693
如果函数yf(x)在区间a,b上的图像是连续不断的一条曲线,
且f(a)f(b)0,那么函数y=f(x)在区间a,b内有零点,即存在 ca,b,使f(c)0,c就是方程f(x)0的根.
3.1.2用二分法求方程的近似解
回顾 求函数f(x)=lnx+2x- 6的零点的个数.
解:用计算器或计算机作出x、f(x)的对应值表和图像:
3.计算f(a2b),若f(a2b)0,则a2b就是函数的零点. 若f(a) f(a2b)0,则零点x0(a,a2b). 若f(a2b) f(b)0,则零点x0(a2b,b).
4 . 判 断 是 否 达 到 精 确 度
若 a b , 则 得 到 零 点 的 近 似 值 a 或 b , 否 则 重 复 2 至 4 步 .
作业
3.1.2用二分法求方程的近似解
巩固练习
1 . 下 列 函 数 的 图 像 中 , 其 中 不 能 用 二 分 法 求 解 其 零 点 的 是
( C )
y
y
y
y
O
x
O
xO
x
O
x
A
B
C
D
2 . 方 程 x 3 2 x 5 0 在 区 间 2 , 3 内 有 实 根 , 取 中 点 x 0 2 . 5 , 那 么 下 一 个
有 根 区 间 是 (2,2.5) .
3 . 某 方 程 在 区 间 1 , 3 内 有 一 无 理 根 , 若 用 二 分 法 求 此 根 的 近 似 解 , 则 将 区 间 1 , 3 等 分 5 次 后 , 所 得 近 似 值 的 精 确 度 为 0 . 1 .
3.1.2用二分法求方程的近似解
第三章 函数的应用 课件
3.1.2用二分法求方程的近似解(s必修一 数学 优秀课件)
f (2.75) 0.512 0
f (2.5) f (2.75) 0 所以零点在区间(2.5,2.75)内.
结论:由于 (2,3) (2.5,3) (2.5, 2.75) 所以零点所在的范围确实越来越小
用二分法求方程的近似解:
口 诀
定区间,找中点, 中值计算两边看. 同号去,异号算, 零点落在异号间. 周而复始怎么办? 精确度上来判断.
x 2 bx c, x 0 5.设函数 f ( x) ,若f (– 4) = f (0), x0 2,
f (– 2) = – 2,则关于x的方程f (x) = x的解的个数为( (B ) 2 (C )3 (D )4
)
(A )1
6.若直线y = 2a与函数y = | a x– 1 |(a > 0且a ≠ 1)的
函数f(x)的一个零点在(-1,0)内,另一个零点在(2,3)内
y
如何进一步有效缩小根所在的区间? 第一步:得到初始区间(2,3) 第二步:取2与3的平均数2.5 第三步:再取2与2.5的平均数2.25 如此继续取下去: 若要求结精确度为0.1,则何时停 止操作?
y=x2-2x-1
-1 0 1 2 3 2.25 2
15
10
y
-
(2,3)
+
2.5 2.75 2.625
-0.084
0.512
-20
1
5
(2.5,3) +
0.5
-10 0.25
-(2.5,2.75)+
0.215
o
5
10
x
-(2.5,2.625)+ 2.5625
(2.5,2.5625)
用二分法求方程的近似解
解:设平均年收益率为 x,由题意, 得 令
x49 x x49 17 4401+2 · =68,即1+2 · x-55=0. 2 x49 17 f(x)=1+2 · x-55,
149 17 17 ∵f(0)=-55<0,f(1)=1+2 -55>0, x49 17 1 + ∴f(x)= x-55在区间[0,1] 上有唯一的零点, 利用 2 ·
束. (2)初始区间的选定一般在两个整数间,不同的初始区间结 果是相同的,但二分的次数却相差较大,零点所在区间的选取 要尽可能小.
(3) 在二分法的第四步,由|a-b|<ε,便可判断零点近似值
为a或b.
典例剖析
题型一 用二分法求函数的零点 【例1】 用二分法求函数f(x)=x3-x-1在区间[1,1.5]上的 一个零点(精确度0.01).
因为f(2.2)·f(2.3)<0,所以x0∈(2.2,2.3),
再取区间(2.2,2.3)的中点x2=2.25,f(2.25)=0.062 5>0,
因为f(2.2)·f(2.25)<0,所以x0∈(2.2,2.25),
同理可得x0∈(2.225,2.25),(2.225,2.237 5), 又f(2.225)≈-0.049 4,f(2.237 5)≈0.006 4, 且|0.006 4-(-0.049 4)|=0.055 8<0.1, 所以原方程的非负近似解可取为2.225.
(3)计算f(x1).
x1就是函数的零点 ①若f(x1)=0,则_________________ ; (a,x1) ; ②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈_______) (x1,b) . ③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈_______)
高一数学用二分法求方程的近似解
4、判断是否达到精确度ε ,即若|a-b|< 则得到零点近似值a(或b),否则重复2~4
ε
例2 借助计算器或计算机用二分法求方 程2x+3x=7的近似解(精确度0.1) 解:原方程即2x+3x=7,令f(x)= 2x+3x-7, 用计算器作出函数f(x)= 2x+3x-7的对应值表 和图象如下:
x f(x) 0 1 2 3 4 5 -6 -2 3 10 21 40 6 75 7 142 8 273
2.5625 f(2.5625)>0
2.53125 f(2.53125)<0
表续
(2.53125, 2.5625)
f(2.53125)<0, f( 2.5625)>0
2.546875
f(2.546875) >0
(2.53125, 2.546875)
f(2.53125)<0, 2.5390625 f(2.5390625 )>0 f(2.546875)>0
同理可得, x0∈(1.375,1.5),x0∈ (1.375,1.4375),由于 |1.375-1.4375|=0.0625〈 0.1 所以,原方程的近似解可取为1.4375
借助计算器或计算机,用二分法求方 程0.8x - 1=lnx在区间(0,1)内的近 似解(精确度0.1)
1.二分法的定义;
请看下面的表格:
区间 端点的符号 中点的值
中点函数值 的符号
( 2, 3)
(2.5,3) (2.5,2.75)
f(2)<0, f(3)>0 f(2.5)<0, f(2.75)>0
2.5
f(2.5)<0 f(2.75)>0 f(2.625)>0
高中数第3章指数函数、对数函数和幂函数3.4.1.2用二分法求方程的近似解课件苏教版必修1
x 0
0.5
0.531 25 0.562 5 0.625 0.75 1
f(x) -1.307 -0.084 -0.009
0.066 0.215 0.512 1.099
由二分法求得方程ln(x+1)+2x-m=0的近似解(精确度0.05)可能是
(
). (导学号51790116)
高中数第3章指数函数、对数函
数和幂函数3.4.1.2用二分法求方
程的近似解课件苏教版必修1
学习目标
重点难点
1.会用二分法求方程的近似
解.
重点:用二分法求方程的
近似解.
2.明确函数零点的近似值的
判断方法.
难点:零点近似值的判定
方法.
1.二分法的含义
(1)满足的条件:函数y=f(x)在区间(a,b)上连续不断且f(a)·f(b)<0.
1
则当 x∈(-∞,0)时,x >0, <0,
2
1
所以- >0,所以
2 1
2 1
f(x)=x - >0 恒成立.
所以 x - =0 在(-∞,0)内无实数解.
(导学号
典例导学
即时检测
一
二
1.准确理解“二分法”的含义:
二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐
步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确
零点,都能用二分法求函数零点,故选A.
典例导学
即时检测
一
二
1.下列图象表示的函数中,能用二分法求零点的是(
).
答案:C
解析:由题图知,只有C中有变号零点,能用二分法求零点.
4.5.2用二分法求方程的近似解课件(人教版)
)
答案:×,×,×.
辨析2:用二分法研究函数() = 3 + 3 − 1的零点时,第一次经计算(0) <
0,(0.5) > 0,可得其中一个零点0 ∈________,第二次计算________,以上横线
上应填的内容为( ).
A.(0,0.5),(0.25)
B.(0,1),(0.25)
2.5390625
0.010
(2.53125,2.5390625) 2.53515625
0.001
新知探索
零点所在区间
中点的值
中点函数近似
值
(2,3)
2.5
−0.084
(2.5,3)
2.75
0.512
(2.5,2.75)
2.625
0.215
(2.5,2.625)
2.5625
0.066
(2.5,2.5625)
0,所以0 ∈ (1,1.5).
再取区间(1,1.5)的中点2 = 1.25,用信息技术算得(1.25) ≈ −0.87.因为
(1.25)(1.5) < 0,所以0 ∈ (1.25,1.5).
同理可得,0 ∈ (1.375,1.5),0 ∈ (1.375,1.4375).
由于|1.375 − 1.4375| = 0.0625 < 0.1,所以,原方程的近似解可取为1.375.
间中点的方法,逐步缩小零点所在的范围.
新知探索
取(2,3)的中点2.5,用计算工具算得(2.5) ≈ −0.084.因为(2.5)(3) < 0,所以零
点在区间(2.5,3)内.
再取区间(2.5,3)的中点2.75,用计算工具算得(2.75) ≈ 0.512.因为(2.5)(2.75) <
用二分法求方程的近似解
用二分法求方程的近似解一、二分法的定义对于区间[]b a ,上的连续不断且0b f a f )<()(∙的函数)(x f y =,通过不断地把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到近似解的方法叫做二分法二、用二分法求函数)(x f y =零点x 0的近似值的一般步骤1、确定零点x 0的初始区间[]b a ,,验证0b f a f )<()(∙.2.求区间),(b a 中点c .3.计算)(c f ,并进一步确定零点所在区间:(1)若0c f =)((此时,c x 0=),则c 就是函数零点;(2)若0c f a f )<()(∙(此时,),(c a x 0∈),则令c b =(3)若0b f c f )<()(∙(此时,),(b c x 0∈),则令c a =.4.判断是否达到精确度ε:若ε<b a -,则得到零点的近似值为a(或b );否则重复步骤2~4三、总结通过不断地把函数的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,得到零点近似值.对于在某一区间上函数图象连续不断,且区间端点的函数值的乘积符号为负的函数,都可以利用这种方法来求零点的近似值四、题型二分法的定义与应用例1若函数y=f(x)的一个正零点附近的函数值用二分法计算,其参考数据如下:f(1)=-2,f(1.25)=-0.984,f(1.375)=-0.260,f(1.40625)=-0.054,f(1.4375)=0.162,f(1.5)=0.625,那么方程f(x)=0的一个近似根(精确度0.1)为()A.1.2B.1.3C.1.4D.1.5解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5-1=0.5>0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5-1.25=0.25>0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5-1.375=0.125>0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375-1.375=0.0625<0.1;所以方程f(x)=0的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值).故选:C.例2已知函数x e x x f --=)(的部分函数值如表所示:例3若函数f(x)=x³+x²-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=—2f(1.5)=0.625f(1.25)=—0.984f(1.375)=—0.260f(1.4375)=0.162f(1.40625)=—0.054那么方程x³+x²-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25B.1.375C.1.42D.1.5解:由表格可得,函数f(x)=x³+x²-2x-2的零点在(1.40625,1.4375)之间;结合选项可知,方程x³+x²-2x-2=0的一个近似根(精确度为0.05)可以是1.42;故选:C.例4设函数f(x)=x ²-2,用二分法求f(x)=0的一个近似解时,第1步确定了一个区间为),(231,到第3步时,求得的近似解所在的区间应该是()A 、),(231B 、,(2345C 、),(23811D 、,(1623811解:令(x)=x ²-2,则f(1)=-1<0,则023f >(,016745f <-=)(;所以到第二步求得的近似解所在的区间应该是,(2345;0647811f <-=)(,由023f 811f <((知到第3步时,求得的近似解所在的区间应该是在),(23811故选:C.例5已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=1)上有唯一零点,如果用二分法求这个零点(精确度为0.1)的近似值,那么将区间(a,b)等分的次数至少是().解:设至少需要将区间(a,b)等分n 次,则1.02ab n ≤-,即10121n ≤所以n ≥4,即将区间(a,b)等分的次数至少是4次.故答案为:4.例6用二分法求函数f(x)=x³+5的零点可以取的初始区间是()A.[-2,1]B.[-1,0]C.[0,1]D.[1,2]解:二分法求变号零点时所取初始区间[a,b],应满足使f(a)·f(b)<0.由于本题中函数f(x)=x³+5,由于f(-2)=-3,f(1)=6,显然满足f(-2)f(1)<0,故函数f(x)=x³+5的零点可以取的初始区间是[-2,1],故选:A.。
§30 二分法求方程的近似解
一、基础知识
1.二分法简介: (1)二分法的作用不仅仅是求方程的近似解; 反之求方程的解也不一定要用二分法. (2)二分法求方程解的优点是: 操作步骤上极具规律性,便于编程, 便于用电脑求方程的近似解. 练习1:二分法简介 ①资料P:128 Ex9 2.精确度为0.1与精确到0.1的区分: 精确度为0.1:是指小数点后第一位. 精确到0.1:是指运算到小数点后第二位, 最后四舍五入.
2.如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线, 并且有f(a)· f(b)<0,且是单调函数,那么,这个函数在(a,b)内 必有惟一的一个零点。 注3:充分条件闭连异 顾名思义存在性 加入单调根唯一 未谈个数具体值
充分条件:有他必成,无他未必不成 必要条件:有他未必成,无他必不成
二、二分法求近似解
使用前提闭连异 定区间 找中点 周而复始何时了
②资料P:71 例1 ③资料P:71 左下 Ex1 试一试 ④资料P:73 左上 Ex3 ⑤资料P:128 Ex1
参课本P:90
操作程序四大步 零点落在异号间 精确度上来判断
练习2:何时能用二分法求解
例1:课本P:88 例1
例2:课本P:90 例2
练习3:二分法求方程的近似解
个人观点:二分法求方程的近似解,要么不考, 就算考也难度不会太大. 因为二分法主要是给电脑用.而高考时,严禁用电脑.
⑥资料P:128 Ex5 ⑦资料P:132 Ex10
作业: 课本P:92 Ex1
预习:1.根的分布 资料P:69 2.函数的实际应用
Ex3
§30 二分法求方程的近似解
一、基础知识 二、二分法求近似解
零点存在(堪根)定理
注1:区间(a,b)称对应方程的一个隔根区间.
用二分法求方程的近似值
复习上节课内容:
3.1.1 方程的根与函数的零点 1、函数的零点的概念 2、零点存在判定法则 3、零点个数的求法
复习内容1:
1、函数的零点的定义:
使f(x)=0的实数x叫做函数y=f(x)的零点 (zero point)
结论: 方程f (x) 0有实数根 函数y f (x)的图象与x轴有交点 函数y f (x)有零点
复习内容2:
2、零点存在判定法则
如果函数y=f (x)在区间[a,b]上的图象是 连续不断的一条曲线,并且有f(a) f(b)<0, 那么,函数y=f(x)在区间(a,b)内有零点, 即存在c (a,b),使得f(c)=0,这个c也就是 方程f(x)=0的根.
复习内容3:
例1 求函数f(x)=lnx+2x-6的零点个数
⑷判断是否达到精确度 :即若|a-b|< ,则得到零点近似值
为a(或b)二分法求方程 3x-7x=8 的近似解(精确到0.1).
小结
这节课你学到了什么吗? 有什么收获吗?
——二分法求方程的根
作业 课本108页 第4、5题
; https:///bollzhibiao/ 布林通道 ;
例2 借助计算器或计算机用二分法求方程 2x+3x=7 的近似解(精确到0.1).
方法三: 画出y=lnx及y=-2x+6的图象
那么我们一起来总结一下二分法的解题步骤
给定精确度 ,用二分法求函数f(x)零点近似解的步骤如下:
⑴确定区间[a,b],验证 f (a) f (b) 0 ,给定精确度 ;
死不死の目标又是陆陆,气得对方声称请律师请媒体.余岚相信她说得出做得到,唯一庆幸の是自己妹子早早就离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么方程x3+x2-2x=0的一个近似根为( C ) A .1.2 B. 1.3 C.1.4 D .1.5
3.用二分法求函数y=f(x)在x∈(1,2)内零点近 似值的过程中得到f(1)<0,f(1.5)>0,f(1.25)<0,则
(1.25,1.5) 函数的零点落在区间______________
中值计算两边看. 中值计算两边看 零点落在异号间. 零点落在异号间 精确度上来判断. 精确度上来判断.
问题: 为例, 问题:以方程 ln x + 2x − 6 = 0 为例,能不能 确定方程根的大概范围呢? 确定方程根的大概范围呢?
零点存在性定理: 如果函数y = f ( x)在区间[ a, b] 上的图像是连续不断的一条曲线, 且f (a) ⋅ f (b) < 0, 那么函数y=f ( x)在区间( a, b )内有零点,即存在 c ∈ ( a, b) , 使f (c) = 0,c就是方程f ( x) = 0的根.
个大小相同的小礼品, 有12个大小相同的小礼品,其中 个大小相同的小礼品 个质量相等, 有11个质量相等,另有一个稍重,设 个质量相等 另有一个稍重, 计一个方案, 计一个方案,用最快的速度找出这个 稍重的小礼品? 稍重的小礼品?
口 诀
反思小结
体会收获
定区间,找中点, 定区间,找中点, 同号去,异号算, 同号去,异号算, 周而复始怎么办? 周而复始怎么办?
0
x
求方程的近似解 区间的长度: − b < ε , 则认为已达到了所给的精确度,可以 a
停止计算.
精确度为ε,是指在计算过程中零点落在期间( a, b ) 上,若
2.若函数f(x)=x3+x2-2x的一个正数的零点附近的函数值 用二分法计算,其参考数据如下:
f(1)=-2 f(1.375)=-0.260 f(1.5)=0.625 f(1.4375)=0.162 f(1.25)=-0.984 f(1.40625)=-0.054
这部自行车的价格在200—400之间,同学们猜一猜 是多少,我只给大家提示猜的价格过高或是过低。
¥299/元
如图,设线路两端所在处分别为点A 如图,设线路两端所在处分别为点A、B
A
(供电站 供电站) 供电站
C
E
D
B
(工厂) 工厂)
取中点
这样每查一次, 这样每查一次,就可以把待查的线路长度缩减一半,算 一算,要把故障可能发生的范围缩小到50m 100m左右 50m~ 左右, 一算,要把故障可能发生的范围缩小到50m~100m左右, 即一两根电杆附近, 次就可以了. 即一两根电杆附近,查7次就可以了.
1.二分法的理论依据是什么? 二分法的理论依据是什么? 二分法的理论依据是什么 2.能否用二分法求任何函数零点的近似解? 能否用二分法求任何函数零点的近似解? 能否用二分法求任何函数零点的近似解
课堂练习:
1.下列函数的图像中,其中不能用二分法求解其零点的 是( C )
y x y x
0
y y x
0
0
问题3:你有进一步缩小函数零点的范围的方吗? 问题 :你有进一步缩小函数零点的范围的方吗?
f (x) = ln x + 2x − 6
2.5
2
2.625
2.75
3
二分法的定义: 二分法的定义: 对于在区间[a,b]上连续不断且f(a)f(b)<0的函数 对于在区间[a,b]上连续不断且f(a)f(b)<0的函数 [a,b]上连续不断且f(a)f(b)<0 y=f(x),通过不断地把函数f(x)的零点所在的区间一分为 y=f(x),通过不断地把函数f(x)的零点所在的区间一分为 通过不断地把函数f(x) 二,使区间的两个端点逐步逼近零点,进而得到零点近似 使区间的两个端点逐步逼近零点, 值的方法叫做二分法. 值的方法叫做二分法.