第二章地图的数学基础-教学

合集下载

第二章 地图的数学基础

第二章 地图的数学基础
地图与测量
电 子 教 案
第 2 章 地图的数学基础
§1 地球的形状及大小 §2 坐标系与大地控制点
§3 地图投影
§4 地图比例尺 §5 地图分幅与编号
§2.1地球的形状及大小 2.1.1 地球体
浩瀚宇 宙中 : 地球是 一个表 面光滑、 蓝色美 丽的正 球体。
事实是:
地球不是一个正球体,而是一个极半径略短、 赤道半径略长,北极略突出、南极略扁平,近于 梨形的椭球体。
60
41
66
42
72
43
78
44
84
45
90
46
96
47
102
48
106
13 8
14 4
55
150
56
15 6
57
162
58
168
59
174
60
V U T S R Q P O N M L K
180
1
174
2
168
3
1 62
4
1 58
5
150
6
4 14
7
8
42
2 13
9
48
12 6
10
12 0
11
114
1:5千-1:50万地形图的行、列划分和编号
×××D006011 ×××C002003 ×××E018016
001 001 002 003 001 004 002 005 006 007 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 001 001 001

《地图数学基础》课件

《地图数学基础》课件

表达的内容和尺度来决定。
03
地图比例尺
比例尺定义与表示
比例尺定义
地图上的长度与实际地面相应长度之 间的比例关系。
比例尺表示
通常以分数形式表示,如1:10000, 表示地图上1单位长度代表实际地面 10000单位长度。
比例尺与地图精度
比例尺越大,地图精 度越高,表示的地物 地貌越详细。
地图精度还受到地图 投影、制图方法等因 素的影响。
城市规划与管理
地图数学基础在城市规划与管理 中发挥着重要作用,如城市空间 布局规划、城市交通规划、城市 环境监测等。
自然资源管理
地图数学基础在自然资源管理中 应用广泛,如土地资源调查、森 林资源监测、水资源管理等。
灾害监测与应急响

地图数学基础能够为灾害监测和 应急响应提供精确的地理信息支 持,如地震、洪涝、火灾等灾害 的监测和预警。
展和地理信息系统的普及,地图数学基础逐渐成为地理信息科学领域的
研究热点。
02
当前研究热点
目前,地图数学基础的研究热点包括地图自动综合、空间数据挖掘、时
空数据分析等方向,这些方向的研究成果将不断推动地图数学基础的进
步和发展。
03
未来展望
随着人工智能、大数据等技术的不断发展,地图数学基础将在智慧城市
、环境保护、公共安全等领域发挥更加重要的作用,其理论和方法也将
THANKS
感谢观看
不断创新和完善。
02
地图投影
投影分类
等面积投影
等方位投影
保持面积不变,但形状和方向可能会 改变。
保持方向不变,但面积和距离可能会 改变。
等距离投影
保持距离不变,但面积和方向可能会 改变。

地图学第2.2章

地图学第2.2章
设想光源的远近对经纬网的影响
光源臵于球心 纬线间距自极点至赤道由内向外不断拉伸 投影后赤道在无穷远处
光源臵于无穷远 纬线间距自极点至赤道由内向外不断压缩,赤道附近趋零 纬线被赤道圈围
光源臵于球心外有限距离,光线弯曲——(等距数学函数法)
纬线间距不变
投影后赤道半径为子午面上极点至赤道的距离
光源臵于球心外有限距离,光线弯曲——(等积数学函数法) 面积不变,纬线间距自极点至赤道由内向外逐步压缩
如“图上1cm的相当于实地100米”
3.图解式
(1)直线比例尺
在一直线上截取若干相等线段作为比例尺基本 单位,最左边基本单位分成10或5 等分,通常 1cm或精度达1/10,但可估读到1/100。
பைடு நூலகம்附尺
主尺
(2)斜分比例尺:(微分比例尺)
根据相似三角形原理制成的图解比例尺。
斜分比例尺特征(图)
• 通常在一组(10条)等间距平行直线上 截取5个长的比例尺基本单位。右边4个 构成主尺,最左边基本单位错位斜分成 10等分,构成附尺。
球面经纬网投影前后差异
球面经纬网的特征: • 纬线长度不等 • 同一条纬线,经差相同 的纬线弧长相等 • 经线长度相等 • 梯形网格(经度带、纬 度带) • 经线和纬线呈直角相交 投影变形的表现: • 长度变形:地图上的 长度随不同地点和方 向而改变 • 面积变形:地图上的 面积随不同地点而改 变 • 角度变形:地图上两 条线所夹的角度不等 于球面上相应的角度
中国高程起算面是 黄海平均海水面。 1956年在青岛观象山设立了水准原点, 其他各控制点的绝对高程均是据此推 算,称为1956年黄海高程系。 1987年国家测绘局公布: 启用《1985国家高程基准》 取代《黄海平均海水面》 其比《黄海平均海水面》 上升 29毫米。

地图学课件第二章地图的数学基础

地图学课件第二章地图的数学基础

等距离投影是指投影前后,地图上的线段 长度保持不变的投影方式。
等方位投影
任意投影
等方位投影是指投影前后,地图上的方向 保持不变的投影方式。
任意投影是指根据实际需要,选择不同的 投影方式进行投影的过程,可以满足各种 不同的需求和应用场景。
02
常用地图投影
方位投影
总结词
方位投影是一种将地球表面投影到平 面上的方法,其特点是投影后各方向 保持相对方位不变。
多面投影
总结词
多面投影是一种将地球表面分割成多个部分,然后将每个部分分别投影到平面上 的方法。这种投影的特点是能够较好地保留地理特征的形状和面积。
详细描述
多面投影常用于制作大比例尺地图,尤其适用于制作特定地区的地图,如国家或 地区地图。由于多面投影可以针对特定区域进行优化,因此它能够更好地保留地 理特征的形状和面积,但制作过程相对复杂。
数字地图的坐标系
地理坐标系
以经纬度为基准,用于表示地球表面任意点的位置。
投影坐标系
将地球表面投影到平面上,形成二维坐标系,用于地图制作和地理信息系统。
数字地图的精度与比例尺
精度
地图上地理要素的详细程度和准确度, 与地图的制作技术和测量技术有关。
VS
比例尺
地图上的长度与实际地物长度之间的比例 关系,用于表示地图的缩放程度。
详细描述
方位投影通常用于制作小比例尺地图 ,因为它能够保持地理特征的相对方 向和距离。然而,方位投影在投影过 程中可能会产生较大的面积变形。
圆柱投影
总结词
圆柱投影是将地球表面投影到圆柱体表面,然后将圆柱体展 开成平面。这种投影的特点是投影后经度线保持等距离,而 纬度线则逐渐缩短。
详细描述
圆柱投影广泛应用于世界地图的制作,因为它在保持经度线 等距的同时,相对较好地保留了纬度方向的形状和面积。然 而,在靠近极点的区域,纬度线会变得非常密集,导致地图 扭曲。

第二章:地图的数

第二章:地图的数

地球上的经纬线的长度的特点: 第一,纬线长度不等 第二,在同一条纬线上,经差相同的 纬线弧长相等 第三,所有经线长度相等
地球上的经纬线网格面积的特点:
第一,在同一纬度带内,经差相同的 球面网格面积相等
第二,在同一经度带内,纬度愈高,
网格面积愈小
地球上的经纬线角度的特点:
在地球上经线和纬线处处都呈直角相交
§2.5 地图的分幅与编号 主要内容:
1. 2. 3. 4. 地图编号 我国基本地形图的分幅和编号 地图分幅的概念和方法 地形图编号的计算方法
一、地图的分幅
1.为什么要分幅? 区域表达,编图、印刷、保管和使用 的方便。 2.地图分幅的方法 矩形分幅
经纬线分幅
拼接 不拼接
矩形分幅
拼接分幅:
适用:挂图和大于1:2000的地形图
或1.5°经线范围内的经纬线投影到椭圆柱面上,
然后将椭圆柱面展开成平面即成。
中央子午线:与椭圆柱重合的子午线
两种常用的分带方式及中央子午线的计算 6°带:从0°子午线开始每6 °经差为一带,中间的子 午线为中央子午线 该投影带的中央子午线:L=6n-3 n为带号 3°带:从1°30′开始每3 °经差为一带,其中间的子午 线为中央子午线 该投影带的中央子午线:L=3n n为带号
2.4 地图比例尺
1. 地图比例尺的含义
地图比例尺:地图上一直线段长度与地面相应直线水平投影 长度之比。 可表达为(d为图上距离,D为实地距离)
d 1 D M
根据地图投影变形情况,地图比例尺分为:
主比例尺 : 在投影面上没有变形的点或线上的比例尺。 局部比例尺: 在投影面上有变形处的比例尺。
2. 地图比例尺的形式
二、 椭球定位与定向

第二讲 地图数学基础

第二讲 地图数学基础
现代地图学与地球科学的关系
• 地图是地理学和地质学等区域性学科的“第二 语言”。
• 地球科学既是地图学的应用对象又是地图学的 研究对象,地图作为科学研究的有效工具,促 进了地球科学的发展。
• 地理学和地质学等区域性学科又是地图学,特 别是专题地图学的科学内容基础和主要资料来 源。
• 地图学与地学等区域性学科相结合,形成地球 学20科20/8/1各2 部门或区域的专题地图学,如地质制图
2020/8/12
2020/8/12
国家大地原点(陕西泾阳)
主要的地球椭球体元素
名称 地心 地轴 地极 子午面 子午圈 首子午面 首子午线 法线 平行面 平行圈 赤道面 赤道圈 地理坐标系
现代地图学与测绘学的关系
• 没有精密的测量就没有精确的地图;测制地形图 的过程中,各种成图要素的表示方法,地图概括 及其编辑工作,都需要地图学方面的知识。
• 在我国,行政部门与学会组织,都把地图学与测 量学结合在一起统一管理,把地图学作为测绘学 的一个分支;同样地理学的相关单位也把地图学 作为地理学的组成学科之一。在国家科学分类系 统中,地图学作为理科,在地球科学大类中,同 自然地理学、地质学、海洋学等并列为二级学科
• 美国的地质调查局(USGS)甚至把地质学、地理学、测 绘学组合在一起,除编制生产地形图、地质图、还编制生 产其他专题地图。
2020/8/12
二.地球的形状与大小
2.1地球的自然表面(自然球体) 2.2地球的物理表面(大地体) 2.3地球的数学表面(旋转椭球体)
2020/8/12
2020/8/12
2020/8/12
2.3.2我国与测量制图相关的几个椭球体参数
• 参考椭球体定位:地球的长半径、短半径和扁 率测定后,还必须确定大地水准面与椭球体面 的相对关系,即确定与局部地区大地水准面符 合最好的一个地球椭球体-参考椭球体,这项 工作就是参考椭球体定位。

地图学第二章地图的数学基础

地图学第二章地图的数学基础
பைடு நூலகம்
2、按投影面与地球关系: 切投影—Gauss-Kruger 割投影—UTM 3、按投影变形性质分:(图3-7) a.等角投影(投影后经线长度比,纬线长度比同等变形) 适用于航海、洋流和风向图等 b.等积投影:P=1=ab, a=1/b或b=1/a 适用于面积精度要求较高的自然和经济图 c.任意投影:(即有长度,面积,角度变形) 等距离投影是任意投影的一个特例 八、地图投影判别与选择 1、地图用途 航海、天气、军事等,要求方位准确—等角投影 面积量算(经济类地图)--等积投影 地理挂图(相似于实地)--面积变形小,角度变形小


(2)我国曾经或正在采用的椭球体
第一节 地球的形状与大小
第一节 地球的形状与大小
Natural surfaces
Physical surfaces Mathematical surfaces 三级逼近: (椭球体定位操作) 将地球椭球体与一个局部大地水准 面最优拟合状态下的椭球体,叫做 参考椭球体. 椭球体及其定位 按一定的条件将具有确定元素的 地球椭球同大地体的相关位臵固定 下来,从而获得大地测量计算基础 面和大地起算数据。 椭球体定位的条件: 椭球短轴与地轴相平行 椭球面与大地水准面充分接近
第二节 地球坐标与大地定位

一、地理坐标
大地纬度、大地经度、东 经、西经、南纬、北纬 (具体看图)、本初子午 线(首子午线L, prime meridian) A
经纬度λ,β
L
二、我国的大地坐标系 本初子午线 1.大地坐标系发展 1)1954北京坐标系:简称54坐标系。该坐标系是1942年苏联普尔科沃 坐标系(Pulkovo 1942)的延伸,它的真正坐标原点不是北京而是苏联 普尔科沃,相应的参考椭球体为克拉索夫斯基椭球体。

第2章 地图的数学基础

第2章 地图的数学基础

面积比与面积变形
• 面积比P就是投影面上的微分面积与球面上相应的微分 面积之比,即投影面上的变形椭圆的面积与球面上微分 圆的面积之比。 • P=a·b P=a·b=m·n P=m·n·sinθ • 面积比也是一个变量,在地图上会因点的位置不同而不 同。 • 面积变形(Vp)指面积比与1的差值,Vp = P-1 • 面积比同长度比一样,也是一个只有大于1或小于1(个 别地方等于1)而没有负值的相对数量,而面积变形则 有正有负。 • 面积比大于1,面积变形为正,表示投影后面积增大; 面积比小于1,面积变形为负,表示投影后面积缩小; 面积比等于1,面积变形为零,表示投影后面积不变。
2.2我国的大地坐标系统
大 地 控 制 网 平面控制网(由三角测量或导线测量完成 )
大地原点 大地坐标系 三角点△、导线点□ 地理坐标 1980中国国家大地坐标系 平面位置
高程控制网(由水准测量或三角高程测量完成)
高 绝对高程 水准原点 水准点 程 相对高程 高程系 1985年国家高程基准 值
高程位置 地面点位
• 地理坐标,就是用经纬度表示地面 点位置的球面坐标。 1.天文经纬度
2.大地经纬度 3.地心经纬度
大地体
地球椭球体 地球椭球体
天文经纬度:
天文经度
天文测量法
天文纬度(铅垂线与赤道面 的夹角)
大地体
测有天文经纬度坐标的地面点, 称为天文点,它是一种地面控制 点。如大地坐标原点。符号为☆
大地水准面 铅 垂 线
§4 地图投影的应用
制图区 域范围
地图比例尺 教学内容 投影方法
1:100万
中 小
等角圆锥投影
4.1 地形图投影
大中比例尺
高斯—克吕格投影

地图的数学基础(najin)

地图的数学基础(najin)
桑逊投影是一种经线为正炫曲线的正轴等 积伪圆柱投影 ,该投影的纬线为间隔相等的平 行直线,经线为对称于中央经线的正弦曲线, 是等面积投影,赤道和中央经线是两条没有变 形的线,离开这两条线越远,长度、角度变形 越大。因此,该投影中心部分变形较小,除用 于编制世界地图外,更适合编制赤道附近南北 延伸地区的地图,如非洲、南美洲地图等。
墨卡托投影属于正轴等角圆柱投影。该投 影设想与地轴方向一致的圆柱与地球相切或 相割,将球面上的经纬线网按等角的条件投 影到圆柱面上,然后把圆柱面沿一条母线剪 开并展成平面。经线和纬线是两组相互垂直 的平行直线,经线间隔相等,纬线间隔由赤 道向两极逐渐扩大(如图)。图上无角度变 形,但面积变形较大。
(2)空间斜轴墨卡托投影 (Space Oblique Mercator Projection)
假想一个扁率极小的椭 圆,绕大地球体短轴旋转所 形成的规则椭球体称之为地 球椭球体
地球椭球体三要素: 长半径 a 短半径 b 扁率f
图2-2 地球自然 表面、大 地水准面 和地球椭 球体的关 系
由于推算的年代、使用的方法以及测定地区
的不同,地球椭球体的数据并不一致,近一个世 纪来,世界上推出了几十种地球椭球体数据。
(3)长度比和长度变形
长度比 µ 是投影面上一微小线段ds’和椭
球面上相应微小线段ds之比。用公式表达为:
µ=ds’/d s
长度比用于表示投影过程中,某一方向上 长度变化的情况。µ>1,说明投影后长度拉长, µ<1,说明投影后长度缩短了;µ=1,则说明 特定方向上投影后长度没有变形。
注意长度比与比例尺区别:
1:295.0
埃及,加拿大,美国,墨西哥,法国
1:293.47
越南,罗马尼亚,法国,南非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

South Pole
我国采用的两个参考椭球体及GPS 测量 使用的参考椭球元素
§2.2 坐标系与大地控制点
地球表面上的定位问题,是与人类的生产活动、科学 研究及军事国防等密切相关的重大问题。具体而言,就 是球面坐标系统的建立。
1 地理坐标系
—— 用经纬度表示地面点位的球面坐标。
2.中国的大地坐标系
1953—1980年采用克拉索夫斯基椭球体 (坐标原点是前苏联普尔科沃) ;
自1980年开始采用 GRS 1975(国际大 地测量与地球物理学联合会 IUGG 1975 推 荐)新参考椭球体系,并确定陕西泾阳县 永乐镇北洪流村为“1980西安坐标系”大 地坐标的起算点。
ICA-75 椭球参数 a = 6 378 140m b = 6 356 755m f = 1/298.257
X=f1(λ , φ )
Y=f2(λ , φ )
2.3.2 地图投影变形
地图投影的方法很多,但用不同的投影方 法得到的经纬线网形式不同。下图是几种不 同投影的经纬线网形状 :
2.3.3 地图投影分类
按 变 形 性 质 分 类
等角投影 等距投影 等积投影 任意投影
方位投影

几何投影 圆柱投影

圆锥投影


伪方位投影


条件投影
伪圆柱投影
伪圆锥投影
多圆锥投影
几何投影
圆柱投影
方位投影 圆锥投影
按投影面与地球的关系分类
1.正轴等角圆柱投影
2G.e3r由.ar4荷du兰墨s地,卡图15托学12家投—墨1影5卡94托)(于M1e5r6c9a年to所r 创设,故
又名墨该卡投托影投设影想。与地轴方向一致的圆柱与地球 相切或相割,将球面上的经纬线网按等角的 条件投影到圆柱面上,然后把圆柱面沿一条 母线剪开并展成平面。经线和纬线是两组相 互垂直的平行直线,经线间隔相等,纬线间 隔由赤道向两极逐渐扩大(如图)。图上无 角度变形,但面积变形较大。
1987年国家测绘局公布: 图4-15 1956年黄海高程系
图4-16国家水准原点所在地
启用《1985国家高程基准》
取代《 1956年黄海高程系》
其比《1956年黄海高程系》
平均海水面上升 29毫米。
平面控制网
国家测绘局
高程控制网
国家测绘局
2.3 地图投影 2.3.1 地图投影的概念
为什么要进行地图投影
2.2 坐标系及控制点
高程控制网 : 按统一规范,由精确测定高程的地面点 组成,以水准测量或三角高程测量完成。依精度 不同,分为四等。
中国高程起算面是 黄海平均海水面。
1956年在青岛观象山设立了水准原点, 其他各控制点的绝对高程均是据此推

ቤተ መጻሕፍቲ ባይዱ准 原 点
岛 观 象 山

算,称为1956年黄海高程系。
2. 地图比例尺的形式
§2.5 地图的分幅与编号
主要内容:
1. 地图编号 2. 我国基本地形图的分幅和编号 3. 地图分幅的概念和方法 4. 地形图编号的计算方法
一、地图的分幅
地图分幅的方法 矩形分幅 梯形分幅
二、地图的编号
(一)地图编号的 方法
1.自然序数编号法
2.行列式编号法
将区域分为行和列,分别用字母或 数字表示行号和列号,一个行号和一个 列号标定一个唯一的图幅。
LOGO
§2.1地球的形状及大小
2.1.1 地球体
浩瀚宇 宙中 : 地球是 一个表 面光滑、 蓝色美 丽的正 球体。
事实是: 地球不是一个正球体,而是一个极半径略短、
赤道半径略长,北极略突出、南极略扁平,近于 梨形的椭球体。
机舱窗口俯视大地 : 地表是一个有些微起伏、极其复杂的表面。
珠穆朗 玛峰与 太平洋 的马里 亚纳海 沟之间 高差近 20km。
陕西省泾阳县永乐镇北 洪流村为 “1980西安坐 标系” 大地坐标的起算 点——大地原点。
1)大地控制
大地控制的主要任务是确定地面点 在地球椭球体上的位置
位置
平面位置(经度和纬度) 高度(高程)
2)中国的大地控制网
由平面控制网和高程控制网组成,控制点遍布全 国各地。
平面控制网 : 按统一规范,由精 确测定地理坐标的地面点组成, 由三角测量或导线测量完成,依 精度不同,分为四等。
A B C D E
SF53
F G H I J
K
49 50 51 52 53 54 55 56
三、我国基本地形图的分幅和编号
(一)20世纪70-80年代我国基本比例尺地形图 的分幅和编号
1:100万地图是我国基本比例尺地形图的分幅和编 号的基础。
18
78
17
90 16 84
2.1.2 椭球体 三要素:
长轴 a(赤道半径)、短轴 b(极半径)和椭球的扁率 f
North Pole
f = —aa-—b = —63—781—63377—8-16—3375—67—52.—3
Polar Axis
b
—1f = 298.257
Equator
a
Equatorial Axis
对 a,b,f 的具体测定就是近代 大地测量的一项重要工作。
2.特点: 不仅保持了方向和相对位置的正 确,而且使等角航线在图上表现为直线。这 一特性对航海具有重要的实用价值。
3.墨卡托投影应用范围
等角航线:是地球表面上与经线相交 成相同角度的曲线。在地球表面上除 经线和纬线以外的等角航线,都是以 极点为渐近点的螺旋曲线。
等角航线在图上表现为直线。这 一特性对航海具有很重要的意义。
大圆航线:地球面上两点间最短距离 是通过两点间的大圆弧,也称为大圆 航线。
2.4 地图比例尺
1. 地图比例尺的含义
地图比例尺:地图上一直线段长度与地面相应直线水平投影 长度之比。
可表达为(d为图上距离,D为实地距离)
d 1 DM
根据地图投影变形情况,地图比例尺分为: 主比例尺 : 在投影面上没有变形的点或线上的比例尺。 局部比例尺: 在投影面上有变形处的比例尺。
地球椭球体表面是个曲面,而地图 通常是二维平面,因此在地图制图时首 先要考虑把曲面转化成平面。然而,从 几何意义上来说,球面是不可展平的曲 面。要把它展成平面,势必会产生破裂 与褶皱。这种不连续的、破裂的平面是 不适合制作地图的,所以必须采用特殊 的方法来实现球面到平面的转化。
地图投影的定义
地图投影就是研究将地球椭球体面上 的经纬线网按照一定的数学法则转移到平 面上的方法及其变形问题。其数学公式表 达为:
相关文档
最新文档