动态电容补偿柜
动态补偿和静态补偿的区别
主要区别是补偿的速度。
动态的很快,国标要求在2秒以内跟上负载的变化,国外标准则更高,要求20mS,就是要在一个周波内跟上负载变化,这样,负载需要无功的时候,马上就补偿。
不过动态的价格超贵!静态的比较慢,国标修改以后已经比原来的快了很多,但是还是在15秒以上,就是说,负载变化后,至少要等15秒以后,静态补偿才开始动作(给予补偿,很慢,对吧)。
但是静态的成熟可靠,价格低廉。
介于动态与静态之间的,是快速补偿,反应速度为2~10秒。
由于速度的要求,它们内部的元件的区别也较大。
至少,无功补偿控制器就得使用动态补偿,比如用我公司的“G Z K900动态智能无功补偿控制器”(通过了CQC认证的产品),等等。
静态补偿与动态补偿区别是什么?动态补偿,是近几年发展起来是一类先进的补偿装置,静态补偿是相对于动态补偿来说的。
以前我们常见的补偿柜或者补偿箱,大多用接触器做电容的开关。
因为接触器的反应慢,又要考虑电容器的放电时间,所以这类补偿装置的一个共同特点是投切间隔较长,最快也不过在5秒左右。
这样的速度,对于电焊机、行吊、锯木机,等等机器来说,就不能很好的补偿了。
为了解决这个问题,就采用了可控硅来做电容开关,可以将反应速度提高到毫秒,也就是可以跟踪负载的变化,级数先进的产品,几乎达到同步补偿的水平。
这样的快速补偿装置,我们叫它“动态补偿”。
目前,国家对动态补偿的要求还比较低:国家标准GB/T15576-2008《低压成套无功功率补偿装置》中“6•13”的规定:动态补偿的响应时间不大于1秒。
JB/T 10695-2007《低压无功功率动态补偿装置》中“6•12•8”的规定:动态补偿的响应时间不大于2秒。
因此,按目前的标准,动态补偿就是:对电网功率因数变化,能在2秒以内反应并投切的补偿装置。
早期动态的补偿装置,因工作时没有接触器动作,没有吸合或释放产生的巨大响声,所以又称静止补偿。
(注意:静止、静态,是不一样的)那么,响应时间长的传统补偿装置,比如5秒以上的,就是静态补偿了。
电容柜技术参数
询价函项目:浩海煤化工及资源综合利用项目询价容:电容补偿柜数量:4套,每套720Kvar。
9.5.1数量:4套,每套720Kvar。
9.5.2用途:见订货图纸9.5.30.66KV电容补偿柜技术要求:遵照低压配电柜技术要求1、技术要求1 基本功能1.1 装置按无功功率、电压优先原则进行补偿,具有快速匹配投切功能。
并具有循环投切功能。
1.2 当电网电压在上限值与下限值之间时,装置将自动匹配投入或切除电容器组。
即当无功负荷等于单组电容器容量时自动投入一组电容器,直至无电容器组投入为止;当向系统倒送无功负荷20%~30%单组电容器容量时,自动切除一组电容器,直至无电容器组切除为止。
1.3 当电网电压高于上限值时,本装置加速强行切除电容器,直至电网电压降至上限值为止。
1.4 当电网电压低于下限值但高于欠压值时,无功补偿装置强行投入电容器,直至电容器投完为止。
1.5 采用大功率智能晶闸管复合开关过零投切,响应速度快,电容器投入无涌流,切除无过压,对电网无扰动。
2、保护功能2.1 工频过电压保护控制器具有过电压保护功能。
当电网电压大于上限时,控制器能准确发出电容器切除分断指令,逐组切除电容器。
过电压切除门限值可调。
装置在1min逐组切除电容器。
2.2 过载及短路保护装置总开关选用塑壳式断路器,起总过载和短路保护。
各电容器支路装设微型断路器实现支路过载及短路保护。
2.3 瞬态过电压保护装置装有金属氧化物避雷器以实现瞬态过电压保护。
2.4 缺相保护当系统电压缺相时,控制器发出信号,电容器退出工作。
当电容器组缺相时,该组电容器退出工作。
2.5 限制涌流措施采用大功率智能过零投切复合开关,将电容器投入涌流限制在2Ic以下。
3 控制器控制器采用数字信号处理器(DSP),具有先进核结构、高速运算能力和实时信号处理等优良特性,具有完善、灵活的无功补偿控制策略,实时跟踪现场无功变化,快速动态实现无功补偿功能,所有出口均在20ms完成。
低压电容补偿柜原理
低压电容补偿柜原理低压电容补偿柜是一种在电力系统中用于补偿电容的设备,其原理是通过调节电容器的接入和切除,来实现对电力系统中的无功功率进行补偿。
在电力系统中,电容器的接入可以提高系统的功率因数,降低线路电压降,减少线路损耗,改善系统的电压稳定性等作用。
在这篇文章中,我们将详细介绍低压电容补偿柜的原理及其工作原理。
首先,低压电容补偿柜的原理是通过并联连接电容器来实现对电力系统的补偿。
电容器是一种可以存储电荷和释放电荷的元件,其特点是在电压施加或移除的情况下可以快速响应,并在电网运行中对电力系统的无功功率进行补偿。
在电力系统中,由于电阻、电感和电容三者并存,电力系统中产生了一定程度的无功功率。
无功功率的存在会使系统中的电压波动,功率因数下降,线路损耗增加等问题,影响电力系统的稳定性和经济性。
低压电容补偿柜的原理是通过电容器的并联连接,将其与电力系统中的电容率相抵消,从而实现对电力系统无功功率的补偿。
电容器具有负载无功功率的功能,可以在系统需要补偿无功功率时迅速启动,通过向系统注入无功功率来提高系统的功率因数,稳定电压,降低线路损耗等作用。
而在系统需要耗散无功功率时,电容器可以被切除,避免对系统产生负面影响。
其次,低压电容补偿柜的工作原理是通过电容器的接入和切除来实现对电力系统的无功功率补偿。
在电力系统运行中,需要根据系统的负载变化情况,动态地调整电容器的接入和切除。
当系统负载增加时,系统的无功功率需求也会增加,这时需要启动电容器,通过向系统注入无功功率来提高系统的功率因数。
而当系统负载减少时,系统的无功功率需求也会减少,这时需要切除电容器,避免过多的无功功率注入系统,导致系统的功率因数过高。
低压电容补偿柜通常配备有无功功率控制装置,可以根据系统的负载变化情况自动地控制电容器的接入和切除。
通过这种方式,可以确保系统在不同负载下始终处于合适的功率因数范围内,保证了系统的稳定性和经济性。
除了以上的工作原理之外,低压电容补偿柜还具有过压保护、过流保护、过温保护等功能,以确保电容器在运行过程中不会受到损坏。
电容补偿柜原理介绍以及特点(附加原理图)
电容补偿柜原理介绍以及特点(附加原理图)来源:电⼯维修学习1、电⼒电容器的补偿原理电容器在原理上相当于产⽣容性⽆功电流的发电机。
其⽆功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同⼀电容器上,能量在两种负荷间相互转换。
这样,电⽹中的变压器和输电线路的负荷降低,从⽽输出有功能⼒增加。
在输出⼀定有功功率的情况下,供电系统的损耗降低。
⽐较起来电容器是减轻变压器、供电系统和⼯业配电负荷的简便、经济的⽅法。
因此,电容器作为电⼒系统的⽆功补偿势在必⾏。
当前,采⽤并联电容器作为⽆功补偿装置已经⾮常普遍。
2、电⼒电容器补偿的特点2.1、优点电⼒电容器⽆功补偿装置具有安装⽅便,安装地点增减⽅便;有功损耗⼩(仅为额定容量的0.4 %左右);建设周期短;投资⼩;⽆旋转部件,运⾏维护简便;个别电容器组损坏,不影响整个电容器组运⾏等优点。
2.2、缺点电⼒电容器⽆功补偿装置的缺点有:只能进⾏有级调节,不能进⾏平滑调节;通风不良,⼀旦电容器运⾏温度⾼于70 ℃时,易发⽣膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;⽆功补偿精度低,易影响补偿效果;补偿电容器的运⾏管理困难及电容器安全运⾏的问题未受到重视等。
以上是对电容柜的特点和知识简介下⾯是详细解说关于电容补偿柜的⼀些知识低压电容补偿柜也叫低压⽆功补偿装置MSCGD,⼯作原理是根据电⽹向⽤电设备提供的负载电流由有功电流和⽆功电流两部分组成,⽆功电流在电源和负载之间往复交换,⼤⼤占⽤电⽹,使供电设备的供电能⼒⼤⼤降低,使功率因数降低。
就是⽤装置产⽣的容性⽆功电流快速、准确地跟踪抵消电⽹中的感性⽆功电流,从⽽提⾼功率因数,保证⽤电质量,提⾼供电设备的供电能⼒,并减⼩电路中的损耗。
⼀般来说,低压电容补偿柜由柜壳、母线、断路器、隔离开关,热继电器、接触器、避雷器、电容器、电抗器、⼀、⼆次导线、端⼦排、功率因数⾃动补偿控制装置、盘⾯仪表等组成。
电容器柜功能及其结构电容器补偿柜的作⽤电容补偿柜的作⽤是提⾼负载功率因数,降低⽆功功率,提⾼供电设备的效率;电容柜是否正常⼯作可通过功率因数表的读数判断,功率因数表读数如果在0.9左右可视为⼯作正常。
电容补偿柜补偿电容的作用和工作原理
电容补偿柜补偿电容的作用和工作原理电容补偿柜是用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。
一般来说,低压电容补偿柜由柜壳、母线、断路器、隔离开关,热继电器、接触器、避雷器、电容器、电抗器、一、二次导线、端子排、功率因数自动补偿控制装置、盘面仪表等组成。
今天山西锦泰恒为大家解释一下电容补偿柜的工作原理。
一.电容柜工作原理用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。
当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。
电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。
电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。
二.电容补偿技术:在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。
这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。
这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。
这个无功分量叫做电感无功电流。
与电感无功电流相应的功率叫做电感无功功率。
当功率因数很低时,也就是无功功率很大时会有以下危害:增长线路电流使线路损耗增大,浪费电能。
因线路电流增大,可使电压降低影响设备使用。
对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。
对发电机而言,以310KW 发电机为例。
310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时功率= 380 x 530 x 1.732 x 0.6 = 210KW从上可看出,在负载为530A时,机组的柴油机部分很轻松,而电球已不堪重负,如负荷再增加则需再开一台发电机。
Elspec动态电容柜介绍
品质优秀的以色列ELSPEC动态电容补偿柜TSC低压动态无功补偿是采用晶闸管作为开关,投切电力电容器组、实现无功补偿的装置。
该装置能有效改善用电负荷的功率因数,具有显著的节能效果;同时在TSC系统中采用特定的电感器,可有效防止谐波放大、有效吸收大部分谐波电流,达到谐波治理的目的。
一、Elspec公司介绍Elspec是在国际上领先进行动态无功补偿和滤波的公司,在全球有4个工厂(以色列、葡萄牙、美国),总部位于以色列Caesarea Industrial Park,主要市场在欧洲、亚洲、美洲,具有遍及全球的业绩、全球性的销售网络,Elspec公司在全世界70多个国家有销售,北美的通用电气、施耐德用Elspec的产品OEM后去销售,西门子每年从Elspec采购1000万美金的设备,可以看出该产品在国际上的地位。
Elspec的动态电容柜在同类产品中最为先进,Elspec的Equalizer产品在业内唯一能真正做到5-20ms投切全部电容器组。
采用无触点电子开关及专利的过零检测、投切技术,具有真正的Real time 和 Transient-free的优秀品质,克服了浪涌冲击电流、装置使用寿命大大提高,电容器平均统计寿命长达10年之久,技术、性能领先于许多“准实时动态补偿柜”,受到了世界各国的青睐。
在科技水平发达的美、日、德、俄、英等国的许多行业都有十分出色的业绩。
Elspec于98年进入中国,在20多个省市、有非常出色的业绩,在制造业、冶金、化工、电力、石化、汽车、造船、建筑、通信、医院、机场等各个领域广泛应用,形成了良好的口碑,节能效果、运行性能等得到普遍认可。
几年来在四川攀枝花钢铁、河北华龙钢管、河南安阳钢铁厂、外高桥造船基地、长兴岛造船基地、沪东造船厂、辽宁锦州铁路、上海大众汽车、上海通用汽车、东风汽车公司、广州本田汽车、辽宁锦州石化、中海油中石化油田、云南红塔建材、唐山移动通信、宁波慈溪广电大厦、上海电视台、上海国际会议中心、苏州大学附属第一医院、江阴模塑集团、哈尔滨轻合金公司等各类工厂、大型建筑、企事业单位推广应用,节能效果、运行性能等得到普遍认可。
电容动态补偿、主柜及辅柜原理图
电容柜技术参数
电容柜技术参数集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-询价函项目:浩海煤化工及资源综合利用项目询价内容:电容补偿柜数量:4套,每套720Kvar。
9.5.1数量:4套,每套720Kvar。
9.5.2用途:见订货图纸9.5.30.66KV电容补偿柜技术要求:遵照低压配电柜技术要求1、技术要求1基本功能1.1装置按无功功率、电压优先原则进行补偿,具有快速匹配投切功能。
并具有循环投切功能。
1.2当电网电压在上限值与下限值之间时,装置将自动匹配投入或切除电容器组。
即当无功负荷等于单组电容器容量时自动投入一组电容器,直至无电容器组投入为止;当向系统倒送无功负荷20%~30%单组电容器容量时,自动切除一组电容器,直至无电容器组切除为止。
1.3当电网电压高于上限值时,本装置加速强行切除电容器,直至电网电压降至上限值为止。
1.4当电网电压低于下限值但高于欠压值时,无功补偿装置强行投入电容器,直至电容器投完为止。
1.5采用大功率智能晶闸管复合开关过零投切,响应速度快,电容器投入无涌流,切除无过压,对电网无扰动。
2、保护功能2.1工频过电压保护控制器具有过电压保护功能。
当电网电压大于上限时,控制器能准确发出电容器切除分断指令,逐组切除电容器。
过电压切除门限值可调。
装置在1min内逐组切除电容器。
2.2过载及短路保护装置总开关选用塑壳式断路器,起总过载和短路保护。
各电容器支路装设微型断路器实现支路过载及短路保护。
2.3瞬态过电压保护装置内装有金属氧化物避雷器以实现瞬态过电压保护。
2.4缺相保护当系统电压缺相时,控制器发出信号,电容器退出工作。
当电容器组缺相时,该组电容器退出工作。
2.5限制涌流措施采用大功率智能过零投切复合开关,将电容器投入涌流限制在2Ic以下。
3控制器控制器采用数字信号处理器(DSP),具有先进内核结构、高速运算能力和实时信号处理等优良特性,具有完善、灵活的无功补偿控制策略,实时跟踪现场无功变化,快速动态实现无功补偿功能,所有出口均在20ms内完成。
无功补偿容量的设计介绍
无功补偿容量的设计介绍1、魏工提供现场图片参数如下:
图1、第一面电容补偿柜运行中的相关参数图片
图2、第二面电容补偿柜运行中的相关参数图片
图3、电容柜内部结构图片1
图4、电容柜内部结构图片2
魏工提供的其他相关参数:
两面电容柜原来设计补偿容量分别为360kvar+210 kvar
电容柜外形尺寸为:宽1000mm ×深1000mm ×高2200mm
生产线连续24小时运行,负载比较平稳,运行视载电流1100A 左右
2、 无功补偿容量的分析推算
依据负荷的基本情况,根据如下公式可计算出需要补偿的无功功率。
)arccos tan arccos (tan 21φφ-=P Q C
其中:arccos tan arccos (tan 2
1φφ-=P Q C 为需要补偿的无功容量,P 为有功功率, 为补偿前功率因数,2cos φ为补偿后的功率因数。
从图1的第一面电容补偿柜照片可知,电容补偿无功电流300A 左右时,功率因素显示为0.9,从图2的第二面电容补偿柜照片可知,电容补偿无功电流200A
左右时,功率因素显示为0.98,
根据提供参数通过上述公式可以推算出,无功补偿电容柜未投入前自然功率因素为0.74,平均有功功率为547KW,改造为SVG动态补偿装置后就是需要将系统功率因素从0.74提高到0.95以上,如此可以计算出需要补偿的无功功率为360 kvar,考虑到原来电容补偿柜设计容量为570kvar以及可能的系统变化与波动需要留有一定的裕度,因此我司设计SVG动态补偿装置的补偿容量为400kvar,匹配100kvar的SVG动态无功补偿装置模块四台,分别改造安装于两面电容补偿柜的柜体内,改造安装原理示意图如下:。
有源动态无功补偿与无源无功补偿的区别
有源动态无功补偿与无源无功补偿的区别一、补偿速度要求动态补偿响应速度很快,国标要求在2秒以内跟上负载的变化,国外标准则更高,要求20mS,就是要在一个周波内跟上负载变化,这样,负载需要无功的时候,马上就补偿。
静态补偿相对来讲速度比较慢,国标修改以后已经比原来的快了很多,但是还是在15秒以上,就是说,负载变化后,至少要等15秒以后,静态补偿才开始动作。
介于动态与静态之间的,是快速补偿,反应速度为2~10秒。
由于速度的要求,它们内部的元件的区别也较大。
二、静态补偿与动态补偿的主要区别动态补偿,是近几年发展起来是一类先进的补偿装置,静态补偿是相对于动态补偿来说的。
以前我们常见的补偿柜或者补偿箱,大多用接触器做电容的开关。
因为接触器的反应慢,又要考虑电容器的放电时间,所以这类补偿装置的一个共同特点是投切间隔较长,最快也不过在5秒左右。
这样的速度,对于电焊机、行吊、锯木机,等等机器来说,就不能很好的补偿了。
为了解决这个问题,就采用了可控硅来做电容开关,可以将反应速度提高到毫秒,也就是可以跟踪负载的变化,级数先进的产品,几乎达到同步补偿的水平。
这样的快速补偿装置,我们叫它“动态补偿”。
目前,国家对动态补偿的要求还比较低。
国家标准GB/T15576-2008《低压成套无功功率补偿装置》中“6•13”的规定:动态补偿的响应时间不大于1秒。
JB/T 10695-2007《低压无功功率动态补偿装置》中“6•12•8”的规定:动态补偿的响应时间不大于2秒。
因此,按目前的标准,动态补偿就是:对电网功率因数变化,能在2秒以内反应并投切的补偿装置。
早期动态的补偿装置,因工作时没有接触器动作,没有吸合或释放产生的巨大响声,所以又称静止补偿。
(注意:静止、静态,是不一样的)那么,响应时间长的传统补偿装置,比如5秒以上的,就是静态补偿了。
三、静态补偿与动态补偿的各自优点动态补偿的优点:反应快,补偿效果好,特别适用于负载波动剧烈的场合。
电容柜技术参数
精心整理询价函项目:浩海煤化工及资源综合利用项目询价内容:电容补偿柜数量:4套,每套720Kvar。
9.5.1数量:4套,每套720Kvar。
9.5.29.5.31、11.11.21.31.41.522.1控制器具有过电压保护功能。
当电网电压大于上限时,控制器能准确发出电容器切除分断指令,逐组切除电容器。
过电压切除门限值可调。
装置在1min内逐组切除电容器。
2.2过载及短路保护装置总开关选用塑壳式断路器,起总过载和短路保护。
各电容器支路装设微型断路器实现支路过载及短路保护。
2.3瞬态过电压保护装置内装有金属氧化物避雷器以实现瞬态过电压保护。
2.4缺相保护当系统电压缺相时,控制器发出信号,电容器退出工作。
当电容器组缺相时,该组电容器退出工作。
2.5限制涌流措施采用大功率智能过零投切复合开关,将电容器投入涌流限制在2Ic以下。
3控制器示。
3.3测量功能精确计算线路三相的电压、电流、有功功率、无功功率、功率因数、频率、零序电压和电流、负序电压和电流、正向有功电度和无功电度、反向有功电度和无功电度、谐波电压、谐波电流、电压谐波总畸变率、电流谐波总畸变率等各种参数。
3.4设置功能)电压保护上限与下限)电压投入上限与下限)电压缺相门限)投入及切除延时设定值)电压谐波门限)电流谐波门限)P T、CT变比设定)零序电压、负序电压(电流)上限)功率因数上限与下限等12系统发生异常(系统过压、系统谐波超标等)时闭锁输出回路。
13控制器内部发生故障时,闭锁输出回路并报警。
4投切晶闸管开关(选用英飞凌、西门康、IXSY)采用大功率无触点快速过零投切晶闸管开关本产品主要由大功率反并连晶闸管模块、隔离电路、触发电路、保护电路及散热装置组成,用于450V以下容性或感性负载的通断控制,无涌流,无过压,工作时无噪音,允许频繁投切,安装、接线简单方便。
可控硅开关功能特点结构设计合理,接线简单,安装方便;采用美国等电位过零技术,实现动态高速补偿;采用优质可控硅投切,反向耐压≥1600V;采用了限制电流上升率技术,提高了调节器的抗谐波能力;充分采用集成电路,尽量减少分立元件;抗干扰电路设计,提高了调节器的抗干扰能力,应无强电场或强磁场,无剧烈的机械振动,不受阳光直接照射,无雨雪及严重霉菌侵袭。
浅谈动态无功补偿柜在汽车装焊车间的运用
3安装 后 的效果
约0 . 1 至O . 1 5 K W 有功功率 。生产线所安装 的动态无功补偿装置 3 . 1供电系统运行稳定性得到提高 为 1 2 0 0 K v a r , 一 年可 节约 电度 为( 按一年 工作 3 0 0天 , 每天 J - 作 设 备安 装后 ,低压 进线 总 柜 的电流 已经 由安 装前 的最 高 1 8 小时计算 ) : 5 5 7 4 A, 下降到 2 2 9 8 A 。 保证 了供 电系统 即使在生产负荷最大时其 1 2 0 0 K v a r x O l K W/ K v a r  ̄ 1 8 h x 3 0 0 = 6 4 8 0 0 0 度, 折合 电费4 1 4 7 万 电流也 比进线柜所设定的过负荷跳闸电流低 , 保证 了供 电的稳定 性 。在安装后的 8 个月之 内再无出现过负荷跳 闸现象。 3 . 2功率 因素得到明显提 高并且波动较为平稳
的优 点如下 : 1 . 通过控制 品闸管 实现各 次滤波器组无触点 自动投切 , 避免
。
嚣;
£ ∞
肇 鹏
矗 嚣
萎 ∞。
a
了传统接触器投切及 晶闸管过零投切时产生 的涌流 、暂态冲击 , 图 5安装 后 的 电 流 电压 无需放 电即可再投 。延长 了动态补偿 系统 的使用寿命。 2 . 不 仅 可 以 自动 跟 踪 系 统 无 功 负 荷 变 化 ,进行 快 速 无 功 补 3 . 4谐 波 得 到 了抑 制 谐波抑制是最为明显的部分,从图 6 可以看出 3 次及以 ¨皆 波大 偿, 还可 以滤 除电力 系统 中的谐 波电流 , 保证用户功 率因数在规 总谐波含量都不到 1 0 %, 也看不出丝毫有谐波放大的 定 的范周内 , 并 且由于 电容器 与电抗器 串联 , 避免 了谐波 的放 大 部分已经被抑制,
电容柜的自动补偿功能实操,故障-电容超前滞后
电容柜的自动补偿功能实操,故障-电容超前滞后下面我们实际操作,电容柜智能控制补偿器的参数设定与故障判断上图位控制器只是通了电压,没有接负荷的状态,所以控制器显示000,这3个000表示控制器没有采样当控制电流,就是采样电流,低压柜是从进线柜采样电流。
上图的A表示控制器现在为自动控制状态,这时按下设置键,没通电流信号显示H000,代表手动控制,这时点设置可是切换手动自动,切换到H切换到手动我投第一路电容器,一下按上箭头表示投入电容器,投每路电容要间隔30秒到50秒,现在投入了10路电容器,根据当前需要补偿的无功功率,投入当需要的每一路的交流接触器控制的电容器,退出当补偿任务完成后,控制器退出它是从最早投入的电容器开始退出,这样可以保护电容器的有效使用,在正常状态下,就不需要手动投切了,投切电容器间隔时间在30秒左右。
因为投入间隔时间较短的话,第一很容易把交流接触器烧毁,第二很容易使电容器损坏。
现在没有投入负荷的状态下,只能设置手动,自动。
下面把负荷送下现在送负荷显示0.46,表示当前的功率因数是0.46,如果显示负数,就表示你采样电流采反了,你把电流采样线交换一下就可以下面我们先断开负荷,先设置其它的功能,因为正常通负荷,打到自动补偿,它就会自动开始投切。
因为控制器显示设置功能A到H分别有什么功能我们按住设置键不放它到了b,b代表投入门限目标功率因数,比如说我们公司正常情况的,供电局是功率因数低于0.9就罚款,那我们设置功率因数就可以设到0.9以上,设置到0.95,就是只要它检测到功率因数低于0.95它就会投入,高于0.95它就会退出,一般情况设置当0.95,或设置当0.99以下,不要超过1,如果超过1了,就属于过补偿了。
建议大家设置当0.95左右。
再按住设置键到了下个功能键,到了C功能键,C代表投切延时,就是控制器有自动投入和自动退出,投入和退出是有时间间隔的,现在默认间隔时间为30秒,也就是说当你目标功率因数b投入目标是0.95,当你实际上检测当时0.46,现在功率因数为0.46,没到控制器设置目标功率因数0.95,那它就会每30秒就会往里面投入一次,如果超过了设置目标0.95,控制器就会每30秒往回退出一次现在功率因数是0.46,当需要时,它会从第一路开始投入,它会一直投入,一直当设置目标功率因数0.95这时当你断开负荷,控制器检测当了,控制器会以为故障,它就会开始退出电容器,从开始投入的第一路开始退出按住设置键到d功能键时,d代表过压门限,过压门限就是现在电压到了多少伏,它会自动提出一部分电容器,比如说我现在全部投进去了,现在电压突然到了500伏,那么我的设备要烧坏,所以说控制器就设置了过压门限,电压超过设定值就会自动退出电容器,默认的是440伏,建议大家设置低一点设置420伏,我们正常电压是380伏,380乘上1.1倍就是420伏,这样电容器就不会因为过压造成损坏,当然如果你买的电容器额定电压是450伏,你设置440伏也是可以的。
电容柜在什么清况下需要补偿
电容柜在什么情况下需要补偿?无功补偿主要是为了提高供配电系统功率因数,提高功率因数不仅可以增加电网中有功功率的常数,减少无功损耗,有效提高功率因素,降低线损,改善供电质量电安全性,而且也是提高电器设备的利用率和使用容量,改善公司生产工艺的有效措施。
提高功率因数主要作用有:①稳定系统输出电压;②提高输电效率;③改善供电质量;④提高输电安全性。
下面我们用实际案例来具体分析:1、案例详情:经调查,湖南某新材料公司的老厂区有十个老式变电所已超过10年!是典型的无功补偿柜设备老旧、自动化程度低,采用整组电容器投切的方式,系统控制简单问题。
而且除近几年改造的少数几个变电所外,其余变电所无功补偿柜几乎失去作用。
根据变电所当时负荷情况,不能将电容器组分组太多,原补偿柜只能采集三相电源中的一相数据来控制其补偿电容器组投切。
由于三相不平衡,不能准确投入补偿,供电线路电过高引起保护装误解动,造成不投则欠补,投则过补现象,使系统的功率因数偏低,达不到补偿目的。
随着该公司的不断发展,负荷增加及大型的精密加工设备、数控加工中心及新产品、新工艺、新设备其中有很多精密仪器,和测试仪器的用电指标对供电电网的用电指标也提出了很高的要求因此,现有无功补偿已远远不能满足其无功补偿需求,需要进行无功功补偿柜改造。
2、前期调查:通过工程师对变电所现场检测及该公司历史数据得出:每月上旬、中旬和下旬测得功率因素值如下,远远满足不了规定的:“低压配电室补偿后的功率因素要求不得低于0.9”的要求!3、目标值确定:本着节约成本的原则决定:保留原有框架部分,更新控制电气元件,安装完成后使功率因素达到0.95以上。
功率因数数值改造前后对比图表功率因数1功率因数210.90.80.70.60.50.40.30.20.1改造前改造后4、方案制定:根据该公司的变压器容量为1000KVA及负荷状况:1)选择安装10只HDA-LC-30/480D干式环保电力电容器,每组容量60kVar,总容量为300kVar。
电力电容补尝柜中电容的计算
电力电容补尝柜中电容的计算Qc=Pp(tanφ1-tanφ2)式中 Qc-----所需的补偿容量(kvar);tanφ1,tanφ2-----补偿前,后平均功率因数角的正切;Pp-----一年中最大负荷月份的平均有功负荷(kW)。
tanφ1-tanφ2=qc,称为补偿率,或者称为比补偿功率。
一般在电工手册里可以查到。
举例:补偿前cosφ1=0.56,要求补偿后cosφ2=0.90,此时qc=1。
补偿前cosφ1=0.64,要求补偿后cosφ2=0.96,此时qc=0.91。
补偿前cosφ1=0.70,要求补偿后cosφ2=0.90,此时qc=0.54。
知道了所需的补偿容量QC (qc)后,用QC乘以变压器容量KVA得到电容器的容量,电工电子专业英语查询(1)元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor(2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines on the same tower 变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinity bus system机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization 阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance。
高压电容补偿柜的工作原理
高压电容补偿柜:功率因数优化的必备设备
在电力系统运行过程中,电源供电装置的功率因数会受到诸如负
载变化、变压器接线方式等因素的影响,从而导致电网的功率因数偏低。
而高压电容补偿柜则是一种常见的用于提高电网功率因数的设备。
高压电容补偿柜的工作原理是利用其内部的电容器来补偿电网负
载产生的电感效应,并使电网的功率因数趋近于1。
具体地,补偿柜内部的电容器将带有感性负载的电路中的无功电能转化为有功电能,并
通过电网输送出去。
这样不仅可以提高电网的功率因数,降低系统的
电能损耗,还能减小电网的电流波动和谐波干扰,提高电能的使用效率。
高压电容补偿柜通常由补偿控制器、电容器组、断路器、电抗器、集中控制系统等组成。
其中,补偿控制器是补偿柜的主要控制部分,
它能够对补偿柜的补偿能力进行动态监测和控制,实现自动化的补偿
控制。
电容器组则是补偿柜的核心部分,其电容量及其数量直接决定
了补偿柜的功率因数补偿能力,常见的电容器组为并联结构。
断路器
和电抗器等辅助设备则用于保护和限制补偿柜的故障扩散,从而保证
补偿装置的安全性和稳定性。
需要注意的是,高压电容补偿柜内部的电容器会因为工作温度的
变化而发生渗漏,还会引起电容器可能出现短路、击穿等故障。
因此,
在补偿柜的选择和使用过程中,需要综合考虑补偿装置的技术性能、可靠性、安全性等多个因素,保证电网的运行安全和稳定。
总之,高压电容补偿柜作为实现电网功率因数优化的必备设备,凭借其高效、精准的功率因数补偿能力,正在逐步受到电力系统管理者的重视,成为未来电网发展的重要组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何选择低压无功功率补偿装置无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
一、按投切方式分类:1. 延时投切方式延时投切方式即人们熟称的"静态"补偿方式。
这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。
当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这时电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。
通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
下面就功率因数型举例说明。
当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。
当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。
当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。
要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。
如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。
在这段时间内无功损失补只能是逐步到位。
如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。
当控制器监测到cosΦ〈0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。
是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。
2. 瞬时投切方式瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。
通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。
动态补偿方式作为新一代的补偿装置有着广泛的应用前景。
现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生产出很不错的装置。
当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。
动态补偿的线路方式(1)LC串接法原理如图1所示这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。
从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。
从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。
既然有这么多的优点,应该是非常理想的补偿装置了。
但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被广泛采用或使用者很少。
(2)采用电力半导体器件作为电容器组的投切开关,较常采用的接线方式如图2。
图中BK为半导体器件,C1为电容器组。
这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。
作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。
其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。
当解决了保护问题,作为电容器组投切开关应该是较理想的器件。
动态补偿的补偿效果还要看控制器是否有较高的性能及参数。
很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。
当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并入线路运行。
需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。
当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。
关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。
元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。
3.混合投切方式实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。
这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。
补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。
还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。
4. 在无功功率补偿装置的应用方面,选择哪一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。
对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。
对于一些特殊的工作环境就要慎重选择补偿方式,尤其线路中含有瞬变高电压、大电流冲击的场合是不能采用动态补偿的。
一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装置能完成这个过程。
如果线路中没有出现这么一段相对的稳态过程并能量又有较大的变化,我们把它称为瞬变或闪变,采用动态补偿就要出问题并可能引发事故。
二、无功功率补偿控制器无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。
选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。
控制器是无功补偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。
十几年来经历了由分立元件--集成线路--单片机--DSP芯片一个快速发展的过程,其功能也愈加完善。
就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。
在选用时需要注意的另一个问题就是国内生产的控制器其名称均为"XXX无功功率补偿控制器",名称里出现的"无功功率"的含义不是这台控制器的采样物理量。
采样物理量取决于产品的型号,而不是产品的名称。
1.功率因数型控制器功率因数用cosΦ表示,它表示有功功率在线路中所占的比例。
当cosΦ=1时,线路中没有无功损耗。
提高功率因数以减少无功损耗是这类控制器的最终目标。
这种控制方式也是很传统的方式,采样、控制也都较容易实现。
* "延时"整定,投切的延时时间,应在10s-120s范围内调节 "灵敏度"整定,电流灵敏度,不大于0-2A 。
* 投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。
* 过压保护设量* 显示设置、循环投切等功能这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。
即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。
举例说明:设定投入门限;cosΦ=0.95(滞后)此时线路重载荷,即使此时的无功损耗已很大,再投电容器组也不会出现过补偿,但cosΦ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。
2. 无功功率(无功电流)型控制器无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。
一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下功能:* 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cosΦ、U、I、S、P、Q及频率。
由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装置的效果发挥得淋漓尽致。
如线路在重负荷时,那怕cosΦ已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。
采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。
当然,不是所有的无功型控制器都有这么完备的功能。
国内的产品相对于国外的产品还存在一定的差距。
3. 用于动态补偿的控制器对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。
由于这类控制器也都基于无功型,所以它具备静态无功的特点。
目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。
另外,相应的国家标准也尚未见到,这方面落后于发展。
三、滤波补偿系统由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。
使电网的谐波电压升高,畸变率增大,电网供电质量变坏。
如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。
电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下补偿装置是不可使用的。
最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。
滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。