高考数学一轮复习 37 数列求和学案 理

合集下载

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。

下面给出一些数列求和的方法指导,希望对高考复习有所帮助。

1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。

对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。

2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。

对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。

3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。

首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。

4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。

首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。

5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。

首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。

6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。

该公式是等差数列求和公式的一个变形。

首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。

高考数学一轮复习 专题31 数列求和教学案 理-人教版高三全册数学教学案

高考数学一轮复习 专题31 数列求和教学案 理-人教版高三全册数学教学案

专题31 数列求和1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法。

1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .高频考点一 分组转化法求和例1、(2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.【方法规律】(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【变式探究】 (1)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12nB.2n 2-n +1-12nC.n 2+1-12n -1D.n 2-n +1-12n(2)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 016等于( ) A.1 008B.2 016C.504D.0【答案】 (1)A (2)A高频考点二 错位相减法求和例2、(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .【解析】 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =3n ·2n +2.【方法规律】(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【变式探究】 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.高频考点三裂项相消法求和例3、S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.【方法规律】(1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【变式探究】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n .【解析】 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.【举一反三】在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{b n }的前n 项和T n .1.【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且 233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n b 的前n 项和. 【答案】(I) 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.(II) 由(I)得22121log 2n n n n a nb a --==,设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯++⨯, 1231111112322222n n S n =⨯+⨯+⨯++⨯ 两式相减得2311111111*********2222212n n n n n n n n n n S --=+++++-=-=---, 整理得1242n n n S -+=-所以数列{}n b 的前n 项和为124,*2n n n N -+-∈. 【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值. 【答案】(1)2n n a =;(2)10.(2)由(1)得112n n a =. 所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n>. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3, 当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4na ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 1.(2014·江西卷)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a nb n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .2.(2014·全国卷)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .3.(2014·山东卷)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .【解析】 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +14.(2013·江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n∈N *,都有T n <564.5.(2013·湖南卷)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.6.(2013·山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n∈N *),求数列{c n }的前n 项和R n .【解析】:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得a 1=1,d =2,因此a n =2n -1,n∈N *.(2)由题意知T n =λ-n 2n -1,所以n≥2时,b n =T n -T n -1=-n 2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)⎝ ⎛⎭⎪⎫14n -1,n∈N *.所以R n =0×⎝ ⎛⎭⎪⎫140+1×⎝ ⎛⎭⎪⎫141+2×⎝ ⎛⎭⎪⎫142+3×⎝ ⎛⎭⎪⎫143+…+(n -1)×⎝ ⎛⎭⎪⎫14n -1,则14R n =0×⎝ ⎛⎭⎪⎫141+1×⎝ ⎛⎭⎪⎫142+2×⎝ ⎛⎭⎪⎫143+…+(n -2)×⎝ ⎛⎭⎪⎫14n -1+(n -1)×⎝ ⎛⎭⎪⎫14n ,两式相减得34R n =⎝ ⎛⎭⎪⎫141+⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -1-(n -1)×⎝ ⎛⎭⎪⎫14n =14-⎝ ⎛⎭⎪⎫14n1-14-(n -1)×⎝ ⎛⎭⎪⎫14n=13-1+3n 3⎝ ⎛⎭⎪⎫14n , 整理得R n =194-3n +14n -1.所以数列{c n }的前n 项和R n =194-3n +14n -1.1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A.120B.70C.75D.100【答案】 C【解析】析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A.9B.8C.17D.16【答案】 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400【答案】 B【解析】析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5 B.6 C.7 D.16【答案】 C【解析】析根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.5.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N+),则S2 016=( )A.22 016-1B.3·21 008-3C.3·21 008-1D.3·21 007-2【答案】 B【解析】a1=1,a2=2a1=2,又a n+2·a n+1a n+1·a n=2n+12n=2.∴a n+2a n=2.∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,∴S2 016=a1+a2+a3+a4+a5+a6+…+a2 015+a2 016=(a1+a3+a5+…+a2 015)+(a2+a4+a6+…+a2 016)=1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.6.在等差数列{a n}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|a n|}的前18项和T18的值是________.【答案】60【解析】析由a1>0,a10·a11<0可知d<0,a10>0,a11<0,∴T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=60.7.整数数列{a n}满足a n+2=a n+1-a n (n∈N*),若此数列的前800项的和是2013,前813项的和是2000,则其前2015项的和为________.【答案】-138.已知正项数列{a n}的前n项和为S n,∀n∈N*,2S n=a2n+a n,令b n=1a n a n+1+a n+1a n,设{b n}的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________. 【答案】 99.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 【解析】 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n+1.(2)b n =na n =n ·2n+n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n)+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n, 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+ (2)-n ·2n +1=21-2n1-2-n ·2n +1,∴T =2(1-2n)+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n n +12, ∴T n =(n -1)·2n +1+n 2+n +42.10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564.11.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N +),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .【解析】 (1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2)..专业. 故数列{a n }是以23为首项,13为公比的等比数列. 故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N +).。

2023年高考数学一轮复习:数列求和

2023年高考数学一轮复习:数列求和

第四节 数 列 求 和
2023年高考数学总复习
内容索引
必备知识·自主学习
核心考点·精准研析核心素养测评
2.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{a
}的前n项中与首末两端等“距离”的两项的和相等或等于同一
n
个常数,那么求这个数列的前n项和即可用倒序相加法求解.
【易错点索引】
序号易错警示典题索引
1忽视通项的特征考点一、T1,3
2运算错误考点一、T4考点二、典例
3不能进行合理转化考点一、T5。

高三数学第一轮复习 —数列求和教案

高三数学第一轮复习 —数列求和教案
〔5〕 ;〔6〕 .
解:〔1〕

〔2〕∵ ,
∴ .
〔3〕∵


〔4〕 ,
当 时, … ,
当 时, … ,
… ,
两式相减得 … ,
∴ .
〔5〕∵ ,
∴原式 … … .
〔6〕设 ,
又∵ ,
∴ , .
例2.数列 的通项 ,求其前 项和 .
解:奇数项组成以 为首项,公差为12的等差数列,
偶数项组成以 为首项,公比为4的等比数列;
2.倒序相加、错位相减,分组求和、拆项求和Hale Waihona Puke 求和方法;〔二〕主要方法:
1.求数列的和注意方法的选取:关键是看数列的通项公式;
2.求和过程中注意分类讨论思想的运用;
3.转化思想的运用;
〔三〕例题分析:
例1.求以下数列的前 项和 :
〔1〕5,55,555,5555,…, ,…;〔2〕 ;
〔3〕 ;〔4〕 ;
芯衣州星海市涌泉学校一.课题:数列求和
二.教学目的:1.纯熟掌握等差数列与等比数列的求和公式;
2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进展求和运算;
3.熟记一些常用的数列的和的公式.
三.教学重点:特殊数列求和的方法.
四.教学过程:
〔一〕主要知识:
1.等差数列与等比数列的求和公式的应用;
当 为奇数时,奇数项有 项,偶数项有 项,
∴ ,
当 为偶数时,奇数项和偶数项分别有 项,
∴ ,
所以, .
例3.〔高考A方案智能训练14题〕数列 的前 项和 ,数列 满足 ,假设 是等比数列,
〔1〕求 的值及通项 ;〔2〕求和 … .
〔解答见教师用书127页〕

高考数学复习知识点讲解教案第37讲 数列求和

高考数学复习知识点讲解教案第37讲 数列求和
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[解析] 方法一:由题意,设数列的前项和为,则,当 时,,当 时,, 当时, 也满足上式,,,,, 数列是以4为首项,9为公比的等比数列.设数列的前项和为 ,则 .故选D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
方法二:由题知的前项和满足等比数列前项和公式的形式, 数列 为等比数列,且其公比,,解得,, 数列是以4为首项,9为公比的等比数列,设数列的前项和为 ,则 .故选D.
例1 [配例1、例2使用] 设是等差数列, 是等比数列,其公比大于0.已知,, .
(1) 求和 的通项公式;
解:设等差数列的公差为,等比数列的公比为 .依题意,得可得 故, ,所以的通项公式为,的通项公式为 .
(2) 设数列满足 求 .
解: .记 ,则 , 得, ,所以 .
例2 [配例2使用] [2023·山东德州一模] 已知等比数列 的各项均为正数,其前项和为,且,,成等差数列, .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
8.[2023·福建厦门一中一模] 已知数列满足 ,,则数列 的前100项的和为( )
C
A.50 B.98 C.100 D.102
[解析] 由,依次令,2,可得 ,,两式相加可得;依次令,4,可得 ,,两式相加得;依次令,6,可得 ,,两式相加得.归纳推理可得 ,,,所以对任意的, ,所以数列的前100项的和为 .故选C.

从“数列求和”的教学谈对高三第一轮复习的实践与认识

从“数列求和”的教学谈对高三第一轮复习的实践与认识

( ) 高 度 重 视 两 个 “ 基 ” 即研 究 学 生 基 3要 三 , 础 、 材基 础 和高 考基 础 ; 教 回归 基础 知识 、 本 技 基
能 和基 本思 想方 法 ;
() 4 要进 一 步加 强 一 题 多 空 和 以选 择 题 为 背
也 有缺 乏专 门训 练 的问题 . 四是思 维层 次 低. 用 数 学 思 想 方 法 的 意识 运 薄 弱 , 合运 用数 学 知识解 决 问题 的能 力不 强 , 综 其 中基本 作 图 、 单讨 论 还 能 应 付 , 到 构造 、 简 遇 转化

() 2 1+ ( + 2 + ( + 2+ 4 1 ) 1 )+ ( 1+ 2+ 4+
8 )+ … + ( 1+ 2+ 4+ … + 2 )一
题目
已知 等差 数列 { a )的通项公 式 为 a
5 存 在 问题
6 若 干 建 议
经 过 近一个 学期 的数 学 学 习 , 喜忧 参半 , 中 其
从 前 的 学 习 经 验 , 时 也 了 解 到 了 自 己 有 问 题 的 同


若{ 的前 项和为 s , { } n} 则 的前 项和
ln J


地方 , 通过 对知 识再 认识 的进 一步钻 研 , 从而 达到 高 效 复习 的效果 .
片 断 2 一 题 多 变 、 生 互 动 师
主要存 在 的问题 有 :

( ) 进一 步树 立学 习数学 的信 心 , 1要 克服畏 难 情 绪 , 力 提高数 学成 绩 ; 努 () 2 要立 足课 堂 , 分 剖析 思 维 过程 , 示 解 充 展
题 过程 , 重反思 过 程 ; 注

新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和

新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和

第四讲 数列求和A 组基础巩固一、单选题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n[解析] 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭⎬⎫1a n 的前100项和为( D )A .100101B .99100C .101100D .200101[解析] ∵a n +1=a 1+a n +n ,a 1=1,∴a n +1-a n =1+n . ∴a n -a n -1=n (n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n n +12.∴1a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴⎩⎨⎧⎭⎬⎫1a n 的前100项和为2⎝ ⎛⎭⎪⎫1-12+12-13+…+1100-1101=2⎝ ⎛⎭⎪⎫1-1101=200101.故选D.3.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( D )A .13B .10C .9D .6[解析] ∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -1+12n .而32164=5+164,∴n -1+12n =5+164.∴n =6.4.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( B )A .(3n-1)2B .12(9n-1) C .9n -1D .14(3n-1) [解析] 因为a 1+a 2+…+a n =3n-1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则当n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,a 21+…+a 2n =41-9n1-9=12(9n-1).故选B.5.(2021·黑龙江哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n(2n -1),则S 2 023=( C )A .2 021B .-2 021C .-2 023D .2 023[解析] 本题考查用并项相加求数列的前n 项和.由已知a n =(-1)n·(2n -1),a 2 023=(-1)2 023(2×2 023-1)=-4 045,且a n +a n +1=(-1)n (2n -1)+(-1)n +1(2n +1)=(-1)n +1(2n +1-2n +1)=2×(-1)n +1,因而S 2 023=(a 1+a 2)+(a 3+a 4)+…+(a 2 021+a 2 022)+a 2 023=2×1 011-4 045=-2 023.故选C.6.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:(1)构造数列1,12,13,14,…,1n;①(2)将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,a 4,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( C ) A .n 24B .n -124 C .n n -14D .n n +14[解析] 依题意可得新数列为n 2,n 4,n 6,…,1n ×n2,所以a 1a 2+a 2a 3+…+a n -1a n =n 24⎣⎢⎡11×2+12×3+…+⎦⎥⎤1n -1n=n 24⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 24×n -1n =n n -14.故选C. 二、多选题7.(2022·重庆月考)已知数列{a n }满足a 1=-2,a n a n -1=2n n -1(n ≥2,n ∈N *),{a n }的前n 项和为S n ,则( ABD )A .a 2=-8B .a n =-2n·n C .S 3=-30D .S n =(1-n )·2n +1-2[解析] 由题意可得,a 2a 1=2×21,a 3a 2=2×32,a 4a 3=2×43,…,a n a n -1=2×n n -1(n ≥2,n ∈N *),以上式子左、右分别相乘得a n a 1=2n -1·n (n ≥2,n ∈N *),把a 1=-2代入,得a n =-2n·n (n ≥2,n ∈N *),又a 1=-2符合上式,故数列{a n }的通项公式为a n =-2n·n (n ∈N *),a 2=-8,故A ,B 正确;S n =-(1×2+2×22+…+n ·2n ),则2S n =-[1×22+2×23+…+(n -1)·2n+n ·2n +1],两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2(n ∈N *),故S 3=-34,故C 错误,D 正确.8.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,以下说法正确的是( ACD ) A .a 24=38B .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列C .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4D .若存在正整数k ,使S k <10,S k +1≥10,则a k =57[解析] 对于选项A ,a 22=18,a 23=28,a 24=38,故A 正确.对于选项B 、C ,数列12,1,32,2,…等差数列,T n =n 2+n4,故B 错,C 正确.对于选项D ,S 21>10,S 20<10,a 20=57,正确.故选A 、C 、D.三、填空题 9.数列{a n }中,a n =1nn +1,若{a n }的前n 项和为2 0222 023,则项数n 为 2 022 . [解析] a n =1nn +1=1n -1n +1,S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1=2 0222 023,所以n =2 022. 10.122-1+132-1+142-1+…+1n +12-1= 34-12⎝ ⎛⎭⎪⎫1n +1+1n +2 .[解析] ∵1n +12-1=1n 2+2n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴122-1+132-1+142-1+…+1n +12-1=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.11.(2021·海南三亚模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }满足b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4= 24 ,T 30= 650 .[解析] 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.12.(2021·广东省五校协作体高三第一次联考)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+…+a 2 018= 4 709 .[解析] 由已知得a 1=1,a 2=4,a 3=2,a 4=1,a 5=4,a 6=2,周期为3的数列,a 1+a 2+…+a 2 018=(1+4+2)×672+1+4=4 709.四、解答题13.(2021·宁夏银川金凤模拟)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =a nn.(1)证明数列{b n }是等差数列,并求其通项公式; (2)若c n =2b n -n ,求数列{c n }的前n 项和. [解析] (1)∵na n +1-(n +1)a n =2n (n +1), ∴a n +1n +1-a nn=2, ∵b n =a nn ,∴b n +1-b n =2,b 1=a 11=2,∴数列{b n }是等差数列,首项与公差都为2. ∴b n =2+2(n -1)=2n . (2)c n =2b n -n =22n-n =4n-n , ∴数列{c n }的前n 项和为41-4n1-4-n n +12=4n +1-43-n n +12.14.(2021·太原二模)已知数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =a n +a n +1(n∈N *).(1)求数列{b n }的通项公式;(2)若c n =log 2a n (n ∈N *),求数列{b n ·c n }的前n 项和T n . [解析] (1)当n =1时,a 1=S 1=2, 当n ≥2时,a n =S n -S n -1=2n, 又a 1=2满足上式,∴a n =2n (n ∈N *),∴b n =a n +a n +1=3×2n. (2)由(1)得a n =2n ,b n =3×2n, ∴c n =log 2a n =n ,∴b n ·c n =3n ×2n,∴T n =3×(1×2+2×22+3×23+…+n ×2n),① ①×2,得2T n =3×(1×22+2×23+3×24+…+n ×2n +1),②①-②,得-T n =3×(2+22+…+2n -n ×2n +1)=3×[(1-n )×2n +1-2],∴T n =3(n -1)×2n +1+6.B 组能力提升1.(多选题)(2021·山东济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,则下列说法正确的是( AC )A .a 5=-16B .S 5=-63C .数列{a n }是等比数列D .数列{S n +1}是等比数列[解析] 因为S n 为数列{a n }的前n 项和,且S n =2a n +1,所以a 1=S 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,故C 正确;a 5=-1×24=-16,故A 正确;S n =2a n +1=-2n+1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{S n +1}不是等比数列,故D 错误.故选AC.2.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( C )A .1 026B .1 025C .1 024D .1 023[解析] ∵2n+12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,恒成立 ∴整数m 的最小值为1 024.3.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( D )A .1 009B .1 010C .2 019D .2 020[解析] 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,……,∴数列{a n cos n π}的前2 020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.4.记S n 为等差数列{a n }的前n 项和,已知,S 9=-a 5,若a 1>0,使得S n ≥a n 的n 的取值范围 [1,10]n ∈N .[解析] 由S 9=-a 5得a 5=0即d =-a 14故a n =-n -5a 14,S n =-n n -9a 18由S n ≥a n 可得-n n -9a 18≥-n -5a 14由于a 1>0,故S n ≥a n 等价于-n n -98≥-n -54即:n 2-11n +10≤0 解得1≤n ≤10所以n 的取值范围是[1,10]n ∈N .5.(2021·山东省济南市历城第二中学高三模拟考试)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =103+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2q =2.∴a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 当n 为奇数,c n =2S n =1n -1n +2,当为偶数,c n =2n -1.∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+21-4n1-4=2n 2n +1+23(4n-1).。

高考数学一轮总复习数列与级数的求和公式推导与应用

高考数学一轮总复习数列与级数的求和公式推导与应用

高考数学一轮总复习数列与级数的求和公式推导与应用高考数学一轮总复习:数列与级数的求和公式推导与应用数列与级数是高中数学中的重要内容,也是高考数学考试中常见的考点之一。

在高考中,理解、掌握数列与级数的求和公式的推导与应用是解题的关键。

本文将重点介绍数列与级数的求和公式的推导方法,并结合实际应用问题进行解析。

一、数列的求和公式推导1.1 等差数列的求和公式对于等差数列{an},其中a1为首项,d为公差,n为项数,其前n项和Sn可以用下式表示:Sn = (a1 + an) * n / 2推导过程如下:首先,将数列{an}逆序相加并累加两式,得到:2Sn = (a1 + an) + (a2 + a{n-1}) + (a3 + a{n-2}) + ... + (an + a1)由于等差数列的关系式为an = a1 + (n-1)d,则上式可以简化为:2Sn = (a1 + a1 + (n-1)d) + (a1 + d + a1 + (n-2)d) + (a1 + 2d + a1 + (n-3)d) + ... + (a1 + a1 + (n-1)d)化简后得:2Sn = n(a1 + an)最终得到等差数列的求和公式:Sn = (a1 + an) * n / 21.2 等比数列的求和公式对于等比数列{an},其中a1为首项,q为公比,n为项数,其前n 项和Sn可以用下式表示:Sn = a1 * (1 - q^n) / (1 - q)推导过程如下:首先,将Sn与qSn相减得:Sn - qSn = a1 * (1 - q^n) - a1 * q * (1 - q^(n-1))化简后得:Sn(1 - q) = a1(1 - q^n)由于等比数列的关系式为an = a1 * q^(n-1),则上式可以简化为:Sn(1 - q) = an最终得到等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)二、数列求和公式的应用2.1 应用一:计算等差数列的前n项和假设某等差数列的首项为a1,公差为d,共有n项。

2025届高考数学一轮复习教案:数列-数列求和

2025届高考数学一轮复习教案:数列-数列求和

第五节数列求和课程标准1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考情分析考点考法:高考命题常以等差、等比数列为载体,考查裂项相消、错位相减求和等数列求和方法,涉及奇偶项的求和问题是高考的热点,常以解答题的形式出现.核心素养:数学建模、数学运算、逻辑推理.【核心考点·分类突破】考点一分组、并项、倒序相加求和[例1](1)数列112,214,318,…的前n项和为S n=()A.2-1B.(r1)2+2nC.(r1)2-12+1D.2-1【解析】选C.数列112,214,318,...的前n项和为S n=(1+2+3+...+n)+(12+14+18+ (12)=(r1)2+12(1-12)1-12=(r1)2-12+1.(2)设f(x)=21+2,则f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024)=________.【解析】因为f(x)=21+2,所以f(x)+f(1)=1.令S=f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024),①则S=f(2024)+f(2023)+…+f(1)+f(12)+…+f(12024),②所以2S=4047,所以S=40472.答案:40472(3)(2023·深圳模拟)已知公差为2的等差数列的前n项和为S n,且满足S2=a3.①若a1,a3,a m成等比数列,求m的值;②设b n=a n-2,求数列的前n项和T n.【解析】①由题意知数列是公差为2的等差数列,设公差为d,则d=2,又因为S2=a3,所以a1+a2=a3,即2a1+d=a1+2d,得a1=d=2,所以a n=a1+(n-1)d=2n(n∈N*).又因为a1,a3,a m成等比数列,即32=a1a m,所以36=2×2m,得m=9.②因为b n=a n-2=2n-4n,所以T n=(2×1-41)+(2×2-42)+…+(2×n-4n)=2×(1+2+…+n)-(41+42+…+4n)=2×(r1)2-4×(1-4)1-4=n(n+1)-43×(4n-1)=n2+n+43-4r13.【解题技法】分组转化与并项求和法(1)数列的项可以拆分成两类特殊数列,分别对这两类数列求和,再合并后即为原来的数列的前n项和;(2)数列的项具有一定的周期性,相邻两项或多项的和是一个有规律的常数,可以将数列分成若干组求和.【对点训练】1.已知数列的通项公式为a n=n cos(n-1)π,S n为数列的前n项和,则S2023=()A.1009B.1010C.1011D.1012【解题提示】将a n=n cos(n-1)π化为a n=n×-1-1,利用并项法求和.【解析】选D.因为当n为奇数时cos(n-1)π=1,当n为偶数时cos(n-1)π=-1,所以cos(n-1)π=-1-1,所以a n=n cos(n-1)π=n×-1-1.S2023=(1-2)+(3-4)+…+(2021-2022)+2023=-1011+2023=1012.2.设f(x)=44+2,若S=f(12024)+f(22024)+…+f(20232024),则S=________.【解析】因为f(x)=44+2,所以f(1-x)=41-41-+2=22+4,所以f(x)+f(1-x)=44+2+22+4=1.S=f(12024)+f(22024)+…+f(20232024),①S=f(20232024)+f(20222024)+…+f(12024),②①+②,得2S=[f(12024)+f(20232024)]+[f(22024)+f(20222024)]+…+[f(20232024)+f(12024)]=2023,所以S=20232.答案:202323.已知是公差d≠0的等差数列,其中a2,a6,a22成等比数列,13是a4和a6的等差中项;数列是公比q为正数的等比数列,且b3=a2,b5=a6.(1)求数列和的通项公式;(2)令c n=a n+b n,求数列的前n项和T n.【解析】(1)因为a2,a6,a22成等比数列,所以62=a2a22,即(1+5)2=(a1+d)(a1+21d)①.因为13是a4和a6的等差中项,所以a4+a6=26,即(a1+3d)+(a1+5d)=26②,由①②可得:a1=1,d=3,所以a n=1+(n-1)×3=3n-2,从而b3=a2=4,b5=a6=16.因为数列是公比q为正数的等比数列,所以b5=b3q2,即16=4q2,所以q=2,从而b n=b3q n-3=2n-1.(2)由于b n=2n-1,所以b1=1.因为c n=a n+b n,所以T n=c1+c2+…+c n=(a1+b1)+(a2+b2)+…+(a n+b n)=(a1+a2+…+a n)+(b1+b2+…+b n)=+(-1)2×3+1-21-2=2n+32n2-12n-1.考点二裂项相消法求和[例2](1)已知函数f(x)=x a的图象过点(4,2),令a n=1(r1)+(),n∈N*.记数列{a n}的前n项和为S n,则S2025=________.【解析】由f(4)=2可得4a=2,解得a=12,则f(x)=12,所以a n=1(r1)+()==+1-,S2025=a1+a2+a3+…+a2025=(2-1)+(3-2)+(4-3)+…+(2025-2024)+(2026-2025)=2026-1.答案:2026-1(2)已知数列的各项均为正数,S n是其前n项的和.若S n>1,且6S n=2+3a n+ 2(n∈N*).①求数列的通项公式;②设b n=1r1,求数列的前n项和T n.【解析】①因为6S n=2+3a n+2,(i)n=1时,6S1=6a1=12+3a1+2,即12-3a1+2=0,解得a1=2或a1=1,因为S n>1,所以a1=2;(ii)n≥2时,由6S n=2+3a n+2,有6S n-1=-12+3a n-1+2,两式相减得6(S n-S n-1)=2--12+3a n-3a n-1,所以6a n=2--12+3a n-3a n-1,所以2--12-3a n-3a n-1=0,所以(a n+a n-1)(a n-a n-1)-3(a n+a n-1)=0,所以(a n+a n-1)(a n-a n-1-3)=0.因为数列的各项均为正数,所以a n+a n-1≠0,所以a n-a n-1-3=0,即a n-a n-1=3,综上所述,是首项a1=2,公差d=3的等差数列,所以a n=a1+(n-1)d=2+(n-1)×3=3n-1,所以数列的通项公式为a n=3n-1.②由①知a n=3n-1,所以a n+1=3(n+1)-1=3n+2,所以b n=1r1=1(3-1)(3r2)=13×(3r2)-(3-1)(3-1)(3r2)=13×(13-1-13r2),所以T n=13×(12-15)+13×(15-18)+13×(18-111)+…+13×(13-1-13r2)=13×(12-15+15-18+18-111+…+13-1-13r2)=13×(12-13r2)=13×3r2-22(3r2)=6r4,所以数列的前n项和T n=6r4.【解题技法】破解裂项相消求和的关键点(1)定通项:根据已知条件求出数列的通项公式.(2)巧裂项:根据通项公式的特征进行准确裂项,把数列的每一项,表示为两项之差的形式.(3)消项求和:通过累加抵消掉中间的项,达到消项的目的,准确求和.(4)常见的裂项结论:①设等差数列的各项不为零,公差为d(d≠0),则1r1=1(1-1r1);②142-1=12(12-1-12r1);③1(r1)(r2)=12(r1)(1-1r2)=12[1(r1)-1(r1)(r2)];④242-1=14(42-1)+1442-1=14+18(12-1-12r1);⑤a n=2(2+)(2r1+)=12+-12r1+;⑥a n=r12(r2)2=14[12-1(r2)2].提醒:要注意正负相消时,可以通过写出前几项观察消去规律的方法,确定消去了哪些项,保留了哪些项,不可漏写未被消去的项.【对点训练】1.{a n }是等比数列,a 2=12,a 5=116,b n =r1(+1)(r1+1),则数列{b n }的前n 项和为()A .2-12(2+1)B .2-12+1C .12+1D .2-12+2【解析】选A .a 5=a 2·q 3,所以q 3=18,所以q =12,a 1=1,所以a n =(12)n -1.b n =(12)[(12)-1+1][(12)+1]=1(12)+1-1(12)-1+1,所以b 1+b 2+b 3+…+b n =[1(12)1+1-1(12)0+1]+[1(12)2+1-1(12)1+1]+[1(12)3+1-1(12)2+1]+…+[1(12)+1-1(12)-1+1]=1(12)+1-12=2-12(2+1).2.已知数列{a n }的前n 项和为S n ,且a 2=8,S n =r12-n -1.(1)求数列{a n }的通项公式;(2)n 项和T n .【解析】(1)因为a 2=8,S n =r12-n -1,所以a 1=S 1=22-2=2.当n ≥2时,a n =S n -S n -1=r12-n -1-(2-n ),即a n +1=3a n +2.又a 2=8=3a 1+2,所以a n +1=3a n +2,n ∈N *,所以a n +1+1=3(a n +1),所以数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,所以a n +1=3×3n -1=3n ,所以a n =3n -1.(2)因为2×3=2×3(3-1)(3r1-1)=13-1-13r1-1,r1n 项和T n =(13-1-132-1)+(132-1-133-1)+…+(13-1-13r1-1)=12-13r1-1.考点三错位相减法求和[例3]已知数列中,a 1=8,且满足a n +1=5a n -2·3n .(1)证明:数列-3为等比数列,并求数列的通项公式;(2)若b n =n (a n -3n ),求数列的前n 项和S n .【解析】(1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -5·3n =5(a n -3n ),所以数列-3是以a 1-31=5为首项,以5为公比的等比数列,所以a n -3n =5×5n -1=5n ,所以a n =3n +5n .(2)因为a n =3n +5n ,所以b n =n (a n -3n )=n ×5n ,所以S n =b 1+b 2+b 3+…+b n ,即S n =1×51+2×52+3×53+…+n ×5n ①,所以5S n =1×52+2×53+3×54+…+n ×5n +1②,由①-②得:-4S n =1×51+1×52+1×53+…+1×5n -n ×5n +1,-4S n =5(1-5)1-5-n ×5n +1,化简得:S n =5+(4-1)×5r116.【解题技法】错位相减法求和的解题策略(1)巧分拆,即将数列的通项公式分拆为等差数列与等比数列积的形式,并求出公差和公比.(2)构差式,即写出S n的表达式,再乘公比或除以公比,然后将两式相减.(3)后求和,根据差式的特征准确进行求和.提醒:错位相减法求和的注意点①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式S n=na1.【对点训练】已知数列的前n项和为S n=3n2+8n-6,是等差数列,且a n=b n+b n+1(n≥2).(1)求数列和的通项公式;(2)令c n=b n·2n+2n+1,求数列的前n项和T n.【解析】(1)S n=3n2+8n-6,所以n≥2时,S n-1=3(n-1)2+8(n-1)-6,所以a n=S n-S n-1=6n+5.n=1时,a1=S1=5,不满足a n=6n+5,所以a n=5(=1)6+5(≥2);设的公差为d,a n=b n+b n+1(n≥2),所以a n-1=b n-1+b n(n≥3),所以a n-a n-1=b n+1-b n-1,所以2d=6,所以d=3.因为a2=b2+b3,所以17=2b2+3,所以b2=7⇒b1=4,所以b n=3n+1;(2)c n=3(n+1)2n,所以T n=3×2+3×22+…+(+1)2①,所以2T n=32×22+3×23+…+(+1)2r1②,①-②得,-T n=3[2×2+22+23+…+2n-(n+1)2n+1]+1)2r1=-3n·2n+1,所以T n=3n·2n+1,所以数列的前n项和T n=3n·2n+1.。

高中数学数列求和教案模板

高中数学数列求和教案模板

高中数学数列求和教案模板
一、教学目标:
1. 知识与技能:掌握数列求和的基本方法,能够运用公式求解数列求和问题。

2. 过程与方法:培养学生分析问题、归纳规律和运用公式求解问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生坚持不懈、勇于探索的学习态度。

二、教学重点和难点:
1. 掌握等差数列求和公式和等比数列求和公式。

2. 解决实际问题中的数列求和问题。

三、教学过程:
1. 导入:通过一个生活中的实际问题引入数列求和的概念,引起学生兴趣。

2. 提出问题:给学生几道数列求和的练习题,让学生自己尝试解答。

3. 教学讲解:介绍等差数列求和公式和等比数列求和公式,讲解求解数列求和的基本方法。

4. 拓展练习:让学生做一些更复杂的数列求和题,巩固所学知识。

5. 实际应用:引导学生应用所学知识解决实际问题,提高学生的综合应用能力。

6. 总结:对本堂课所学内容进行总结,巩固学生的学习成果。

四、课堂作业:
1. 完成课堂练习题。

2. 设计一个与生活相关的数列求和问题,并用公式解决。

五、教学反思:
1. 教学过程中是否引入了生活实例,激发了学生的学习兴趣?
2. 是否根据学生的实际情况,调整了教学内容和难度?
3. 学生能否掌握数列求和的基本方法和公式,是否能够独立解决数列求和问题?
六、板书设计:
1. 等差数列求和公式:Sn = n(a1 + an)/2
2. 等比数列求和公式:Sn = a1(1-q^n)/(1-q)
七、教学反馈:
通过课堂练习和作业的批改,及时了解学生对数列求和知识的掌握情况,做好巩固和拓展工作。

2023年高考数学一轮复习讲义——数列求和

2023年高考数学一轮复习讲义——数列求和

§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。

高考数学一轮复习数列求和

高考数学一轮复习数列求和

解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.

高考数学一轮复习 数列的求和导学案

高考数学一轮复习 数列的求和导学案

数列的求和一、学习目标1.理解等差、等比数列求和的方法,并能熟练掌握等差、等比数列的求和公式;2.能熟练运用各种方法求数列的前n 项和. 二、重点难点能理解和熟练应用常见的求和基本方法. 三、知识导学1.公式法:等差、等比数列;2.分组求和法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可以分为几个等差或者等比数列或者常见的数列,即可以分别求和,然后再合并;3.错位相减法:这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}n n a b 的前n 项和,其中{}n a 和{}n b 分别是 和 ;4.倒序相加法:将一个数列倒过来排列,当它与原数列相加时,有公因式可以提取,并且剩余项的和易于求得,则这样的数列可以倒序相加法求和,是 求和公式的推广;5.列项相消法:将数列的通项拆成两项之差求和,正负项相消剩下首尾若干项;从而进行求和.常见的拆项公式有: 11________________;__________________(1)(21)(21)n n n n ==+-+等等.四、课前学习 1.数列2n n ⎧⎫⎨⎬⎩⎭的前n 项和为n S = . 2.数列{}n a的通项公式为n a =10n S =,则n 的值是 .3.数列(){}1nn -•的前2010项的和为 .4.数列:1111,,,,,12123123n+++++++前n 项和为 . 5.函数()()142x f x x R =∈+,若()()12121,x x f x f x +=+=则 ,又若n N *∈,则121n n f f f f n n n n -⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 五、合作学习例1.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (1)求n a 及n S ;(2)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .例2.数列{}n a 满足()()251,n 2n n n a n ⎧+⎪=⎨⎪⎩为奇数,为偶数,求数列{}n a 的前n 项和n S .例3.已知数列{}n a 的前n 项和为n S ,且2 4.n n S a =-(1)求数列{}n a 的通项n a ;(2)求数列{}n na 的前n 项和n T ;(3)设2log n n b a =,数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若1n n T b λ+<对一切n N *∈都成立,求λ的取值范围.例4.已知数列{}n a 的前n 项和为n S ,且2232,1,2,3,.n n S a n n n =+--=(1) 求证:数列{}2n a n -为等比数列;(2) 设cos n n b a n π=•,求数列{}n b 的前n 项和n P ;六、学习检测1.已知数列{}n a 中,()()12,21,n n n a n n -⎧⎪=⎨-⎪⎩为正奇数为正偶数,则9a = ,(用数字作答),设数列的前n 项和为n S ,则9S = ;_____________________n S =.2. 给出集合序列{}{}{}{}123456,,,,,,7,8,9,10,,设n S 是第n 个集合中元素之和,则21S = .3.在数列{}n a 中,1231111n na n n n n =++++++++,又12n n n b a a +=,则数列{}n b 的前n 项和_________________n P =.4.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做这个等和数列的公和.已知数列{}n a 是等和数列,且12a =,公和为5,则18_____a =,这个数列的前n 项和____________n S =.5.设数列{}n a 对所有正整数n 都满足2112322285n n a a a a n -++++=-,求数列{}n a 的前n 项和____________n S =.6.设数列{}n a 的前n 项和为n S ,且满足2,1,2,3,.n n S a n =-=(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足111,n n n b b b a +==+,求数列{}n b 的通项公式;(3)设(3)n n C n b =-,求数列{}n C 的通项公式.7.(1)数列{}n a 的通项公式为()210n n a n x x =+-≠,求此数列的前n 项和; (2)求和23123n nn S a a a a =++++;七、总结反思。

高考数学复习考点知识与结论专题讲解37 等比数列的前n项和与

高考数学复习考点知识与结论专题讲解37 等比数列的前n项和与

高考数学复习考点知识与结论专题讲解第37讲 等比数列的前n 项和等比数列的前n 项和公式 ()()()111 11 111n n n na q s a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩推导过程:(1)利用等比数列性质由等比数列定义,有32121nn a a a q a a a -===.根据等比性质,有()23111211n n n n n n na a a s a q q s a a q a a a s a -+++-==⇒-=-+++-,所以当1q ≠时11n n a a q s q -=-,或()111n n a q s q -=-. (2)错位相减法 等比数列{}n a 的前n 项和123n n s a a a a =++++.①当1q =时,1n a a =,1231n n s a a a a na =++++=;②当1q ≠时,由11n n a a q -=得22111111n n n s a a q a q a q a q --=+++++,23111111n nn qs a q a q a q a q a q -=+++++,所以()()111111nnn n q s a a qa a q a q -=-=-=-,所以()111n n a q s q-=-或1 1n n a a qs q-=-,即()()()111 11 111n n n na q s a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.要点诠释:(1)错位相减法是一种非常常见和重要的舒蕾求和方法,适用于一个等差舒蕾和等比数列对应项的积组成的数列求和问题,要求理解并掌握此法.(2)在求等比数列前n 项和时,要注意区分1q =和1q ≠.(3)当1q ≠时,等比数列的两个求和公式涉及1a ,n ,q ,n a ,n s 五个量,已知其中任意三个变量,通过解方程组,便可求出其余两个量.结论一、等比数列前n 项和(当1q ≠时)变形公式1.1111n n n a as q k kq q q=-=---(系数互为相反数); 2.111n n n a qs a A Ba q q=-=+--(一次线性关系). 【例1】已知等比数列{}n a 的前n 项和为n s ,且满足122n n s λ+=+,则λ的值为().A.4B.2C.-2D.-4 【答案】C【解析】解法一:根据题意,当1n =时,1224n s a λ==+;当2n ≥时,112n n n n a s s --=-=.因为数列{}n a 是等比数列,则11a =,故412λ+=,解得2λ=-.故选C. 解法二:由122n n s λ+=+得22n n s λ=+结合等比数列前n 项结构特征n n s k kq =-(系数互为相反数),得12λ=-,解得2λ=-.故选C.【变式】设首项为1,公比为23的等比数列{}n a 的前n 项和为n s ,则(). A. 21n n s a =- B.32n n s a =- C.43n n s a =- D.32n n s a =- 【答案】D【解析】解法一:12123322313nn n s -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-,123n n a -⎛⎫= ⎪⎝⎭,代入选项验证.故选D.解法二:根据等比数列前n 项和结构特征111n n n a q s a A Ba q q =-=+--,1132113a A q ===--,232213B =-=--.故选D.结论二、项数相同的和构造等比数列等比数列的前n 项和为n s ,则232n n n n n n n n n s s s s s --第n 个项和第一个项和第二个项和第三个项和,,,,也成等比数列,且公比n q q '=.评注:(1)第一个n 项和,第二个n 项和,……,即每n 项和为一段. (3)当1q ≠-且n 为偶数时,232,,,n n n n n s s s s s --不是等比数列. 【例】2已知等比数列的前n 项和为n s ,若1020s =,2060s =,则30s =. 【答案】140【解析】解法一:由1020s =,2060s =,易得公比1q ≠±,根据等比数列的性质,可得2020101011s q s q -=-,即2010106011201q q q -==+-,解得102q =,又3030101011s q s q -=-,所以3301272012s -==-,30140s =. 解法二:根据等比数列前n 项和的性质,可得10201010s s q s =+,即10602020q =+,解得102q =,所以1030102020220140s s q s =+=+⨯=.解法三:根据等比数列前n 项和的性质,可知1020103020,,s s s s s --成等比数列,则()()22010103020s s s s s -=-,即()()23060202060s -=-,解得30140s =.【变式】设等比数列{}n a 前n 项和为n s ,若23s =,415s =,则6s =().A.31 B .32 C .63 D .64 【答案】C【解析】212s a a =+,()2423412s s a a a a q -=+=+,()4645612s s a a a a q -=+=+,所以24264,,s s s s s --成等比数列,即63,12,15s -成等比数列可得()2612315s =-,解得663s =.故选C.结论三、等比数列前n 项和关系特征等比数列{}n a 前n 项和为n s ,则n m m n n m m n s s q s s q s +=+=+. 【例3】设等比数列{}n a 前n 项和为n s ,则3692s s s +=.,则公比q =.【答案】 【解析】根据等比数列求和公式n m n n m s s q s +=+得3936s s q s =+,代入3692s s s +=得()336210s q s +-=,所以()()()336111211011a q q a q qq---+=--,化简整理得()3211q -=-解得q =. 【变式】等比数列{}n a 前n 项和为n s ,已知123,23,s s s 成等比数列,则等比数列{}n a 的公比为. 【答案】13【解析】设等比数列公比为q ()0q ≠,易知1q ≠.由题意可得21343s s s =+,所以31234s s s =-+①;又根据等比数列分段求和公式m m n m n s s q s +=+得2321s s q s =+②;由4⨯②-①得()23141s q s =++.又()()331131111a q s q s qq--==--,所以()321411q qq-=+-,解得13q =. 结论四、等比数列奇数项和与偶数项和性质在等比数列{}n a 中,当项数为偶数2n 时,=s q s 偶奇;当项数为奇数21n -时,1s a qs =+奇偶或()212n s q s a -=-奇偶,1211n a a qs s q-+-=+奇偶.【例4】一个等比数列首项为1,项数为偶数,其奇数项和为85,偶数项和为170,求此数列的公比和项数.【解析】由题意知,170=285s q s ==偶奇.因为()11=17085=1n n a q s s s q -=++-奇偶,所以8n =.【变式】等比数列{}n a 共有奇数项,所有奇数项和=255s 奇,所有偶数项和=126s 偶,末项是192,则首项1a 的值为(). 【答案】C【解析】设等比数列{}n a 共有21k +项,则21192k a +=,则132121211126==192255k k ks aa aa s a q q -++++++=++=奇偶,2q =,代入121=1k a a q s s q++-+奇偶,解得13a =.故选C.结论五、等比数列前n 项积的运算技巧设等比数列前n 项积12n n a a a T =,则232,,n nn n nT T T T T ,……,成等比数列. 当n 为奇数时,()nn T =中项;当n 为偶数时,()2n n T =首末两项积.【例5】已知等比数列{}n a 满足0n a >,且()252523nn a a n -=≥,则当3n ≥时,3211222l o g l o g l o g n a aa -+++=(). A. ()21n n - B.()21n +C.2nD.()21n -【答案】C【解析】由已知可得2nn a =,原式()13212222loglog nn n a a a n -===.故选C.【变式】设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项积,且56K K <,678K K K =>,则下列结论错误的是(). A. 01q << B.71a = C.95K K > D.6K 与7K 均为n K 的最大值【答案】C【解析】设等比数列11n n a a q-=,n K 是其前n 项积,所以()112n n nn K a q-=,由56K K <511a q ⇒<,66711K K a q =⇒=,77811K K a q >⇒>,所以6711a a q ==,所以B 选项正确;因为57111,01a q a q <<<所以721511a q q a q =<,所以01q <<,所以A 正确;611a q =,()112n n nn K a q -=可知()()111322n n n n nn K a qq--==,又01q <<,所以x q 单调递减,()132n n -在6n =或7n =时取最小值,所以n K 在6n =或7n =时取最大值,所以D 选项正确.故选C.第38讲 数列通项公式题型全归纳通关一、“叠加法”求通项在求等差数列通项公式时,由11221n n n n a a da a da a d----=⎧⎪-=⎪⎨⎪⎪-=⎩这1n -个式子叠加得()()112n a a n d n =+-≥,当1n =时也成立.由此可得形如()()12n n a a f n n -=+≥的递推式均可采用“叠加法”求得()()()()1232n a a f f f n n =++++≥.上式中“()()()()232f f f n n +++≥”通常是可以化简的,即数列(){}f n “可求和”.通关二、“叠乘法”求通项在求等比数列通项公式时,由11221nn n n a q a a q a a q a ---⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=⎪⎩这1n -个式子叠乘得()112n n a a q n -=≥,当1n =时也成立.由此可得形如()()12n n a a g n n -=≥的递推式均可采用“叠乘法”求得()()()()1232n a a g g g n n =≥.上式中“()()()()232g g g n n ≥”通常是可以化简的,即数列(){}g n “可求积”.题型一:1(n 2,pq(p 1)0)n n a pa q -=+≥-≠可以转化为1(n 2)11n n qq a p a p p -⎛⎫+=+≥ ⎪--⎝⎭.从而数列1n q a p ⎧⎫+⎨⎬-⎩⎭为等比数列,故可由等比数列通项公式求解.题型二:()1(2,(1)10)n n n a pa r q n pqr p q -=+⨯≥--≠,两边同除以“n q ”可以转化为()112n n n n a a p r n q q q--=⨯+≥. (1)当p q =时,数列n n a q ⎧⎫⎨⎬⎩⎭为等差数列,故可由等差数列通项公式求解. (2)当p q ≠时,数列n n a q ⎧⎫⎨⎬⎩⎭符合题型一,故可由题型一中的方法求解. 通关三、“倒数法”求通项(1)形如11q (n 2,pq 0)n n n n a a pa a --=+≥≠,两边同除以1n n a a -转化为()11112n n p n a q a q-⎛⎫=-⨯+≥ ⎪⎝⎭ ①当0p q +=时,“倒数数列”1n a ⎧⎫⎨⎬⎩⎭为等差数列,由等差数列通项公式求解.②当0p q +≠时,“倒数数列”1n a ⎧⎫⎨⎬⎩⎭符合方法二中的题型一,故可转化为等比数列求解.(2)形如11(2,0)n n n ra a n pqr pa q --=≥≠+,取倒数得111(2)n n q pn a r a r-=⨯+≥.①当q r =时,“倒数数列”1n a ⎧⎫⎨⎬⎩⎭为等差数列,由等差数列通项公式求解.②当q r ≠时,“倒数数列”1n a ⎧⎫⎨⎬⎩⎭符合方法二中得题型一,故可转化为等比数列求解.通关四、“待定系数法”求通项1(2,(1)0)n n a pa qn r n pq p -=++≥-≠,令n n a b An B =++,则1[(1)]n n b An B p b A n B qn r -++=+-+++(2)n ≥,整理得1()()(2)n n b pb pA A q n pB B pA r n -=+-++--+≥.令00pA A q pB B pA r -+=⎧⎨--+=⎩,则21(1)1q A p pq r B p p ⎧=-⎪-⎪⎨⎪=--⎪--⎩.此时,1n n b pb -=,即数列{}n b 为等比数列,故可由等比数列通项公式求解,从而21(1)n n qn r pqa b p p +=----也可求解. 【结论第讲】结论一、1()n n a a f n +=+把原递推公式转化为1()n n a a f n +-=,再利用叠加法(逐差相加法)求解. 【例1】已知数列{}n a 中,11a =,12n n a a n -=+,则n a =_____. 【答案】21n n +-【解析】已知12n n a a n -=+,所以12n n a a n --=. 2122a a -=⨯ 3223a a -=⨯ 4324a a -=⨯ 5425a a -=⨯……122(1)n n a a n ---=- 12n n a a n --=累加后,得21(1)2(2345)2(123)22222n n n a a n n n n +-=⨯+++++=⨯++++-=⨯-=+-. 故21n a n n =+-.【变式】数列{}n a 满足:11a =,且121n n n a a +-=+,求n a . 【答案】22n n +-【解析】121n n n a a +-=+,1121n n n a a ---=+,…,12121a a -=+,叠加可得211222(1)n n a a n --=++++-=12(21)12321n n n n --+-=+--,所以22n n a n =+-. 结论二、1()n n a f n a +=把原递推公式转化为1()n na f n a +=,再利用叠乘法(逐商相乘法)求解. 【例2】数列{}n a 中,123a =,11n n na a n +=+,则n a =_____. 【答案】23n【解析】因为在数列{}n a 中,11n n n a a n +=+,所以11n n a n a n +=+,所以2112a a =,3223a a =,4334a a =,…,11n n a n a n--=,所以3241123121231212323433n n n a a a a n a a a a a a n n n--==⨯⨯⨯⨯⨯=⨯=. 【变式】已知数列{}n a 满足11a =,且*1()()n n n a n a a n N +=-∈,则2a =_____;n a =_____. 【答案】2n【解析】由1()n n n a n a a +=-得11n n n a a n ++=,又11a =,所以2122a a ==.由11n n n a a n++=得11n n a n a n ++=,所以212a a =,3232a a =,4343a a =,…,11n n a n a n -=-,所以324112313412231n n n a a a a na a n a a a a n -==⨯⨯⨯⨯⨯=-.结论三、1n n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)先用待定系数法把原递推公式转化为1()n n a t p a t +-=-,其中1qt p=-,再利用换元法转化为等比数列求解.【例3】已知数列{}n a 满足121n n a a +=+,且11a =,则n a =_____. 【答案】21n -【解析】已知121n n a a +=+,且11a =,构造12()n n a a λλ++=+,即122n n a a λλ++=+.因为12n n a a λ+=+,所以1λ=.由112(1)n n a a ++=+得112n n a a λ++=+,令1n n b a =+,1112b a =+=,12n nbq b +==,{}n b 是以2为首项,以2为公比的等比数列,所以111222n n n n b b q --===.又因为12n n n b a =+=,所以21n n a =-.【变式】已知数列{}n a 中,11a =,1213n n a a +=+,则n a =_____.【答案】2333n⎛⎫-⨯ ⎪⎝⎭【解析】解法一:设12()()3n n a t a t +-=-,解得3t =,即原式化为12(3)(3)3n n a a +-=-.设3n n b a =-,则数列{}n b 为等比数列,且1132b a =-=-,所以1223(2)3333n nn n n b a a -⎛⎫⎛⎫=-=-⨯⇒=-⨯ ⎪⎪⎝⎭⎝⎭.解法二:因为1213n n a a +-=①,121(2)3n n a a n --=≥②,由①-②得:112()3n n n n a a a a +--=-.设1n n n b a a +=-,则数列{}n b 为等比数列,所以11222333n n n n n b a a -+⎛⎫⎛⎫=-=⨯= ⎪⎪⎝⎭⎝⎭,所以22133nn n a a ⎛⎫+-= ⎪⎝⎭,所以2333nn a ⎛⎫=-⨯ ⎪⎝⎭.解法三:21213a a =+,23222211333a a ⎛⎫=+=++ ⎪⎝⎭,32432222113333a a ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭,…,1213n n a a +=+==122133n -⎛⎫+++ ⎪⎝⎭,所以2333nn a ⎛⎫=-⨯ ⎪⎝⎭. 结论四、1nn n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)1.一般地,要先将递推公式两边同除以1n q +,得111n n n n a a p q q q q ++=+,引入辅助数列{}n b (其中nnna b q =),得11n n p b b q q+=+,再用待定系数法解决; 2.也可以将原递推公式两边同除以1n p +,得111nn n n n a a q p p p p ++⎛⎫=+ ⎪⎝⎭,引入辅助数列{}n b (其中n n n a b p =),得11nn n q b b p p +⎛⎫-= ⎪⎝⎭,再利用叠加法(逐差相加法)求解.【例4】已知数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =_____.【答案】3223n n- 【解析】解法一:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别乘以12n +,得1122(2)13n n n n a a ++=+.令2n n n b a =,则1213n n b b +=+,根据待定系数法,得123(3)3n n b b +-=-.所以数列{}3n b -是首项为15432363b -=⨯-=-,公比为23的等比数列.所以142333n n b -⎛⎫-=-⎪⎝⎭,即2323nn b ⎛⎫=- ⎪⎝⎭.于是32223n n n nn b a ==-. 解法二:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别乘以13n +,得1113332n n nn n a a +++⎛⎫=+ ⎪⎝⎭.令3n n n b a =,则1132n n n b b ++⎛⎫=+ ⎪⎝⎭,所以132nn n b b -⎛⎫-= ⎪⎝⎭,11232n n n b b ---⎛⎫-= ⎪⎝⎭,…,22132b b ⎛⎫-= ⎪⎝⎭.将以上各式叠加,得2113322n n b b -⎛⎫⎛⎫-=+++ ⎪ ⎪⎝⎭⎝⎭32n⎛⎫ ⎪⎝⎭.又11553331622b a ==⨯==+,所以21333312222n nn b -⎛⎫⎛⎫⎛⎫=+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1131[1]32223212n n ++⎛⎫- ⎪⎛⎫⎝⎭=- ⎪⎝⎭-,即13222n n b +⎛⎫=- ⎪⎝⎭.故32323n n n n nb a ==-.【变式】已知数列{}n a 满足112a =,1112(2)2n n n a a n --⎛⎫=+≥ ⎪⎝⎭,则n a =_____.【答案】2nn【解析】由题意知11122nn n a a -⎛⎫=+ ⎪⎝⎭,两边同乘以2n 得11221n n n n a a --=+,即数列{}2n n a 为等差数列,所以122(1)n n a a n n =+-=.所以(2)2n n n a n =≥,当1n =时也成立.所以*()2n n na n N =∈. 结论五、1n n a pa anb +=++(1,0,0p p a ≠≠≠)这种类型的题目一般是利用待定系数法构造等比数列,即令1(1)()n n a A n B p a An B ++++=++,然后与已知递推公式比较,解出,A B ,从而得到{}n a An B ++是公比为p 的等比数列. 【例】设数列{}n a 满足14a =,1321(2)n n a a n n -=+-≥,则n a =_____. 【答案】231n n --【解析】设递推公式可以转化为13[(1)]n n a An B a A n B -++=+-+,化简后与原递推式比较,得22231A B A =⎧⎨-=-⎩,解得11A B =⎧⎨=⎩.令1n n b a n =++(*),则13n n b b -=,又16b =,故16323n n n b -==,代入(*)得231n n a n =--.【变式】已知数列{}n a 满足12a =,*1431()n n a a n n N +=-+∈,则n a =_____. 【答案】14n n -+ 【解析】由题意知1434(2)n n a a n n -=-+≥.令n n a b An B=++,则14[(1)]34n n b An B b A n B n -++=+-+-+(2n ≥,整理得14(33)(344)(2)n n b b A n B A n -=+-+-+≥.令3303440A B A -=⎧⎨-+=⎩,则10A B =⎧⎨=⎩.此时n n a b n =+,14n n b b -=,即数列{}n b 为等比数列,所以111114(1)44n n n n b b a ---=⨯=-=.所以14(2)n n n a b n n n -=+=+≥,1n =时也成立.所以1*4()n n a n n N -=+∈.结论六、1rn n a pa +=(0,n p a >>0)这种类型的题目一般是将等式两边取对数后转化为1n n a pa q +=+型,再利用待定系数法求解. 【例6】已知数列{}n a 中,11a =,211(0)n n a a a a+=>,则n a =_____. 【答案】121n a a -⎛⎫⎪⎝⎭【解析】将211n n a a a +=两边取对数,得11lg 2lg lg n n a a a +=+.令lg n n b a =,则112lg n n b b a+=+.由此得111lg2(lg )n n b b a a ++=+,记1lg n n c b a =+,则12n n c c +=.所以数列{}n c 是首项1111lg lg c b a a=+=,公比为2的等比数列.所以112l g n n c a-=.所以1211111l g 2l g l g l g []n n n n b c a a aa a --⎛⎫=-=-= ⎪⎝⎭,即121l g l g []n n a a a -⎛⎫= ⎪⎝⎭,所以121n n a a a -⎛⎫= ⎪⎝⎭.【变式】已知在数列{}n a 中,13a =,且2*1()n n a a n N +=∈,则数列的通项n a =_____. 【答案】123n -【解析】由题意知0n a >,因为13a =,所以21n n a a +=将两边取以3为底的对数,得313log 2log n n a a +=,故{}3log n a 是以1为首项,以2为公比的等比数列,所以13log 2n n a -=,所以123n n a -=.结论七、1nn n pa a qa r+=+(,,0p q r ≠且0,0n n a qa r ≠+≠)这种类型的题目一般是将等式两边取倒数后,再进一步处理. 若p r =,则有111n n n n r qa q a pa a p ++==+,此时1n a ⎧⎫⎨⎬⎩⎭为等差数列.若p r ≠,则有111n n r q a p a p+=+,此时可转化为结论三来处理. 【例7】在数列{}n a 中,已知12a =,112(2)2n n n a a n a --=≥+,则n a =_____. 【答案】2n【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11112n n a a --=,1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列,1112a =.根据等差数列的通项公式的求法得到111(1)222n nn a =+-⨯=,故2n a n=.【变式】已知数列{}n a 满足11a =,*1()21nn n a a n N a +=∈+,则20a =_____. 【答案】139【解析】因为121n n n a a a +=+,所以121112n n n n a a a a ++==+,即1112n n a a +-=,又111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,所以112(1)21nn n a =+-=-,所以121n a n =-,故2011220139a ==⨯-.结论八、1()n n a a f n ++=将原递推公式改写成21(1)n n a a f n +++=+,两式相减即得2(1)()n n a a f n f n +-=+-,然后将n 分奇数、偶数分类讨论即可.【例8】已知数列{}n a 中,11a =,12n n a a n ++=.则n a =_____. 【答案】*,(1,)1,n n n n N n n ⎧≥∈⎨-⎩为奇数为偶数【解析】因为12n n a a n ++=,所以2122n n a a n +++=+,故22n n a a +-=,即数列{}n a 的奇数项与偶数项都是公差为2的等差数列.当n 为偶数时,21a =,故22(1)12n na a n =+-=-;当n 为奇数时,因为12n n a a n ++=,1n a n +=(1n +为偶数),故n a n =.综上,*,(1,)1,n n n a n n N n n ⎧=≥∈⎨-⎩为奇数为偶数. 【变式】在数列{}n a 中,11a =,16n n a n a +=-,则n a =_____. 【答案】32()31()n n n n -⎧⎨-⎩为奇数为偶数【解析】因为16n n a n a +=-,所以16n n a a n ++=,所以2166n n a a n +++=+,所以26n n a a +-=,即数列{}n a 的奇数项与偶数项都是公差为6的等差数列.当n 为偶数时,25a =,所以26(1)312n na a n =+-=-.当n 为奇数时,因为16n n a a n ++=,所以132n a n +=+(1n +是偶数),所以32n a n =-.综上,32()31()n n n a n n -⎧=⎨-⎩为奇数为偶数. 结论九、1()n n a a f n +=将原递推公式改写成21(1)n n a a f n ++=+,两式作商可得2(1)()n n a f n a f n ++=,然后将n 分奇数、偶数分类讨论即可.【例9】已知数列{}n a 中,13a =,12n n n a a +=,则n a =_____.【答案】12*232,(1,)12,3n nn n n N n -⎧⎪≥∈⎨⎪⎩为奇数为偶数 【解析】因为12n n n a a +=,所以1212n n n a a +++=,故22n na a +=,即数列{}n a 的奇数项与偶数项都是公比为2的等比数列.当n 为偶数时,223a =,故112222223n n n a a --==,即2123n n a =;当n 为奇数时,1n +是偶数,故121123n n a ++=,代入12n n n a a +=得1232n n a -=.综上,12*232,(1,)12,3n nn n a n n N n -⎧⎪=≥∈⎨⎪⎩为奇数为偶数. 【变式】已知数列{}n a 满足11a =,*12()n n n a a n N +=∈,n S 是数列{}n a 的前n 项和,则().20182018.2A a =10092018.323B S =-{}21.n C a -数列是等差数列{}.n D a 数列是等比数列【答案】B【解析】数列{}n a 满足11a =,*12()n n n a a n N +=∈.当2n ≥时,112n n n a a --=,两式作商可得112n n a a +-=,所以数列{}n a 的奇数项135,,,,a a a 成等比,偶数项246,,,,a a a 成等比,对于选项A 来说,201812018222aa -=⨯=10081009222⨯=,错误;对于选项B 来说,100920181320172420181(12)()()12S a a a a a a ⨯-=+++++++=+-100910092(12)32312⨯-=⨯--,正确;对于选项C 来说,数列{}21n a -是等比数列,错误;对于选项D 来说,数列{}n a 不是等比数列,错误.故选B .。

高考数学一轮复习 第六章 数列 第4讲 数列求和教学案 理 北师大版-北师大版高三全册数学教学案

高考数学一轮复习 第六章 数列 第4讲 数列求和教学案 理 北师大版-北师大版高三全册数学教学案

第4讲 数列求和一、知识梳理 1.数列求和方法(1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列求和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+(2n -1)=n 2; (3)2+4+6+8+…+2n =n 2+n . 3.数列求和的常用方法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.(5)并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.常用结论记住常用的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、教材衍化1.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)解析:选 A.第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+…+2-9)=100+200×2-1(1-2-9)1-2-1=100+200(1-2-9). 2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 014B .2 015C .2 016D .2 017解析:选D.a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0172 018,所以n =2 017.故选D. 3. 1+2x +3x 2+…+nxn -1=________(x ≠0且x ≠1).解析:设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+3x 3+…+nx n,② ①-②得:(1-x )S n =1+x +x 2+…+xn -1-nx n=1-x n1-x -nx n,所以S n =1-x n(1-x )2-nx n1-x. 答案:1-x n(1-x )2-nxn 1-x一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )答案:(1)√ (2)√ (3)× 二、易错纠偏常见误区|K(1)不会分组致误; (2)错位相减法运用不熟练出错.1.已知数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,则其前n 项和关于n 的表达式为________.解析:设所求的数列前n 项和为S n ,则S n =(1+2+3+…+n )+12+14+…+12n =n (n +1)2+1-12n .答案:n (n +1)2+1-12n2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 解析:S n =1×2+2×22+3×23+…+n ×2n,① 所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n)1-2-n ×2n +1,所以S n =(n -1)2n +1+2.答案:(n -1)2n +1+2分组转化求和(师生共研)(2020·某某模拟)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解】 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d , 又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n. 因为b n =a 2n +2a n -1, 所以b n =2n -1+2n,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+ (2)) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.分组转化法求和的常见类型(1)若a n =b n ±,且{b n },{}为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,,n 为偶数的数列,其中数列{b n },{}是等比数列或等差数列,可采用分组转化法求和.1.若数列{a n }是2,2+22,2+22+23,…,2+22+23+ (2),…,则数列{a n }的前n 项和S n =________.解析:a n =2+22+23+ (2)=2-2n +11-2=2n +1-2,所以S n =(22+23+24+…+2n +1)-(2+2+2+ (2)=22-2n +21-2-2n =2n +2-4-2n .答案:2n +2-4-2n2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n , 故b n =2n+(-1)nn . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52. 所以T n=⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.错位相减法求和(师生共研)(2020·某某市部分区联考)已知数列{a n }是等差数列,数列{b n }是等比数列,且a 1=1,a 3+a 4=12,b 1=a 2,b 2=a 5.(1)求{a n }和{b n }的通项公式;(2)设=(-1)na nb n (n ∈N +),求数列{}的前n 项和S n .【解】 (1)设等差数列{a n }的公差为d ,因为a 1=1,a 3+a 4=12, 所以2a +5d =12,所以d =2,所以a n =2n -1.设等比数列{b n }的公比为q ,因为b 1=a 2,b 2=a 5, 所以b 1=a 2=3,b 2=a 5=9, 所以q =3,所以b n =3n.(2)由(1)知,a n =2n -1,b n =3n,所以=(-1)n ·a n ·b n =(-1)n ·(2n -1)·3n =(2n -1)·(-3)n, 所以S n =1·(-3)+3·(-3)2+5·(-3)3+…+(2n -1)·(-3)n,① 所以-3S n =1·(-3)2+3·(-3)3+…+(2n -3)·(-3)n +(2n -1)·(-3)n +1,②①-②得,4S n =-3+2·(-3)2+2·(-3)3+…+2·(-3)n-(2n -1)·(-3)n +1=-3+2·(-3)2[1-(-3)n -1]1+3-(2n -1)·(-3)n +1=32-4n -12·(-3)n +1. 所以S n =38-4n -18·(-3)n +1.运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减,如本题先把①式两边同乘以-3得到②式,再把两式错位相减;三是注意符号,相减时要注意最后一项的符号.(2020·某某模拟)设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)设b n =n a n,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a na n -1=3(n ≥2), 又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3,所以{a n }是首项为1,公比为3的等比数列, 所以a =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n .裂项相消法求和(师生共研)(2020·某某八所重点高中4月联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N +).(1)求证:数列{1a n -2}是等差数列; (2)设b n =a 2na 2n -1,求数列{b n }的前n 项和T n . 【解】 (1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n2a n -4-1a n -2=2-a n 2a n -4=-12,为常数. 因为a 1=1,所以1a 1-2=-1,所以数列{1a n -2}是以-1为首项,-12为公差的等差数列. (2)由(1)知1a n -2=-1+(n -1)(-12)=-n +12, 所以a n =2-2n +1=2nn +1, 所以b n =a 2n a 2n -1=4n2n +12(2n -1)2n =4n 2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12(12n -1-12n +1), 所以T n =b 1+b 2+b 3+…+b n=n +12(1-13+13-15+15-17+…+12n -1-12n +1)=n +12(1-12n +1)=n +n2n +1, 所以数列{b n }的前n 项和T n =n +n2n +1.利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ·⎝ ⎛⎭⎪⎫1a n -1a n +2,1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1(a n ≠0).1.数列{a n }满足a 1=1, a 2n +2=a n +1(n ∈N +).(1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1, 又由已知易得a n >0, 所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.并项求和(师生共研)(2020·某某八市重点高中联盟测评)已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.(1)求数列{a n }的通项公式;(2)记b n =(-1)na 2n +1a n a n +1,数列{b n }的前n 项和为S n ,求S 2n .【解】 (1)设等差数列{a n }的公差为d , 因为a 2+2,a 4,a 6-2成等比数列, 所以a 24=(a 2+2)(a 6-2),所以(a 3+d )2=(a 3-d +2)(a 3+3d -2),又a 3=3,所以(3+d )2=(5-d )(1+3d ),化简得d 2-2d +1=0,解得d =1, 所以a n =a 3+(n -3)d =3+(n -3)×1=n . (2)由(1)得,b n =(-1)na 2n +1a n a n +1=(-1)n 2n +1n (n +1)=(-1)n (1n +1n +1),所以S 2n =b 1+b 2+b 3+…+b 2n =-(1+12)+(12+13)-(13+14)+…+(12n +12n +1)=-1+12n +1=-2n2n +1.用并项求和法求数列的前n 项和一般是指把数列的一些项合并组成我们熟悉的等差数列或等比数列来求和.可用并项求和法的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”;三是数列{a n }是周期数列.[提醒] 运用并项求和法求数列的前n 项和的突破口是会观察数列的各项的特征,如本题,数列{b n }的通项公式为b n =(-1)n2n +1n (n +1),易知数列{b n }是摆动数列,所以求和时可以将各项进行适当合并.(2020·某某某某二检)已知数列{a n }的前n 项和S n =n 2-2kn (k ∈N +),S n 的最小值为-9.(1)确定k 的值,并求数列{a n }的通项公式;(2)设b n =(-1)n·a n ,求数列{b n }的前2n +1项和T 2n +1.解:(1)由已知得S n =n 2-2kn =(n -k )2-k 2,因为k ∈N +,则当n =k 时,(S n )min =-k 2=-9,故k =3.所以S n =n 2-6n .因为S n -1=(n -1)2-6(n -1)(n ≥2),所以a n =S n -S n -1=(n 2-6n )-[(n -1)2-6(n -1)]=2n -7(n ≥2). 当n =1时,S 1=a 1=-5,满足a n =2n -7, 综上,a n =2n -7.(2)依题意,得b n =(-1)n ·a n =(-1)n(2n -7), 则T 2n +1=5-3+1+1-3+5-…+(-1)2n(4n -7)+(-1)2n +1[2(2n +1)-7]=5-=5-2n .数列与其他知识的交汇问题一、数列与不等式的交汇问题(2020·某某某某二模)设S n 是数列{a n }的前n 项和,且a 1=3,当n ≥2时,有S n+S n -1-2S n S n -1=2na n ,则使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为________.【解析】 因为S n +S n -1-2S n S n -1=2na n (n ≥2), 所以S n +S n -1-2S n S n -1=2n (S n -S n -1)(n ≥2), 所以(2n +1)S n -1-(2n -1)S n =2S n S n -1(n ≥2). 易知S n ≠0,所以2n +1S n -2n -1S n -1=2(n ≥2).令b n =2n +1S n,则b n -b n -1=2(n ≥2),又b 1=3S 1=3a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列,所以b n =2n -1,所以2n +1S n =2n -1,所以S n =2n +12n -1.所以S 1S 2…S m =3×53×…×2m +12m -1=2m +1≥2 019,所以m ≥1 009.即使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为1 009. 【答案】 1 009解决本题的关键:一是细观察、会构造,即通过观察所给的关于S n ,a n 的关系式,思考是将S n 往a n 转化,还是将a n 往S n 转化;二是会解不等式,把求出的相关量代入已知不等式,转化为参数所满足的不等式,解不等式即可求出参数的最小值.二、数列与三角函数的综合(2020·某某某某4月联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且3sin B -sin C b -a =sin A +sin B c .(1)求角A 的大小;(2)若等差数列{a n }的公差不为零,a 1sin A =1,且a 2,a 4,a 8成等比数列,b n =1a n a n +1,求数列{b n }的前n 项和S n .【解】 (1)由3sin B -sin C b -a =sin A +sin Bc ,根据正弦定理可得3b -c b -a =b +a c,即b 2+c 2-a 2=3bc , 所以cos A =b 2+c 2-a 22bc =32,由0<A <π,得A =π6.(2)由(1)知,A =π6,设数列{a n }的公差为d (d ≠0),因为a 1sin A =1,所以a 1sin π6=12a 1=1,解得a 1=2.因为a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 所以d 2=2d .又d ≠0,所以d =2,则a n =2n ,b n =1a n a n +1=12n (2n +2)=14(1n -1n +1),则S n =14[(1-12)+(12-13)+…+(1n -1n +1)]=14(1-1n +1)=n 4n +4.破解数列与三角函数相交汇问题的策略:一是活用两定理,即会利用正弦定理和余弦定理破解三角形的边角关系;二是会用公式,即会利用等差数列与等比数列的通项公式求解未知量;三是求和方法,针对数列通项公式的特征,灵活应用裂项相消法、分组求和法、错位相减法等求和.三、数列与函数的综合(2020·某某某某5月联考)已知等差数列{a n }的前n 项和为S n ,公差d >0,a 6和a 8是函数f (x )=154ln x +12x 2-8x 的极值点,则S 8=( )A .-38B .38C .-17D .17【解析】 因为f (x )=154ln x +12x 2-8x ,所以f ′(x )=154x +x -8=x 2-8x +154x=(x -12)(x -152)x,令f ′(x )=0,解得x =12或x =152.又a 6和a 8是函数f (x )的极值点,且公差d >0, 所以a 6=12,a 8=152,所以⎩⎪⎨⎪⎧a 1+5d =12,a 1+7d =152,解得⎩⎪⎨⎪⎧a 1=-17,d =72.所以S 8=8a 1+8×(8-1)2×d =-38,故选A.【答案】 A破解数列与函数相交汇问题的关键:一是会利用导数法求函数的极值点;二是会利用等差数列的单调性,若公差大于0,则该数列单调递增,若公差小于0,则该数列单调递减,若公差等于0,则该数列是常数列,不具有单调性;三是会利用公式法求和,记清等差数列与等比数列的前n 项和公式,不要搞混.四、数列中的新定义问题(2020·某某模拟)数列{a n }的前n 项和为S n ,定义{a n }的“优值”为H n =a 1+2a 2+…+2n -1a n n,现已知{a n }的“优值”H n =2n,则S n =________.【解析】 由H n =a 1+2a 2+…+2n -1a n n=2n,得a 1+2a 2+…+2n -1a n =n ·2n ,①当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n -1,②由①-②得2n -1a n =n ·2n -(n -1)2n -1=(n +1)2n -1,即a n =n +1(n ≥2),当n =1时,a 1=2也满足式子a n =n +1, 所以数列{a n }的通项公式为a n =n +1, 所以S n =n (2+n +1)2=n (n +3)2.【答案】n (n +3)2破解此类数列中的新定义问题的关键:一是盯题眼,即需认真审题,读懂新定义的含义,如本题,题眼{a n }的“优值”H n =2n的含义为a 1+2a 2+…+2n -1a n n=2n;二是想“减法”,如本题,欲由等式a 1+2a 2+…+2n -1a n =n ·2n 求通项,只需写出a 1+2a 2+…+2n -2a n -1=(n -1)·2n -1,通过相减,即可得通项公式.五、数列中的新情境问题(2020·某某六校第二次联考)已知{a n }是各项均为正数的等比数列,且a 1+ a 2=3,a 3-a 2= 2,等差数列{b n }的前n 项和为S n ,且b 3=5,S 4=16.(1)求数列{a n },{b n }的通项公式;(2)如图,在平面直角坐标系中,有点P 1(a 1,0),P 2(a 2,0),…,P n (a n ,0),P n +1(a n +1,0),Q 1(a 1,b 1),Q 2(a 2,b 2),…,Q n (a n ,b n ),若记△P n Q n P n +1的面积为,求数列{}的前n 项和T n .【解】 (1)设数列{a n }的公比为q ,因为a 1+a 2=3,a 3-a 2=2,所以⎩⎪⎨⎪⎧a 1+a 1q =3,a 1q 2-a 1q =2,得3q 2-5q -2=0,又q >0, 所以q =2,a 1=1,则a n =2n -1.设数列{b n }的公差为d ,因为b 3=5,S 4=16,所以⎩⎪⎨⎪⎧b 1+2d =5,4b 1+6d =16,解得⎩⎪⎨⎪⎧b 1=1,d =2,则b n =2n -1.(2)由(1)得P n P n +1=a n +1-a n =2n -2n -1=2n -1,P n Q n =b n =2n -1,故=S △P n Q n P n +1=2n -1(2n -1)2=(2n -1)2n -2,则T n =c 1+c 2+c 3+…+=12×1+1×3+2×5+…+(2n -1)2n -2,① 2T n =1×1+2×3+4×5+…+(2n -1)2n -1,②由①-②得,-T n =12+2(1+2+…+2n -2)-(2n -1)·2n -1=12+2(1-2n -1)1-2-(2n -1)2n -1=(3-2n )2n -1-32,故T n =(2n -3)2n -1+32(n ∈N +).数列中新情境问题的求解关键:一是观察新情境的特征,如本题中的各个直角三角形的两直角边长的特征;二是会转化,如本题,把数列{}的通项公式的探求转化为直角三角形的两直角边长的探求;三是活用数列求和的方法,如本题,活用错位相减法,即可得数列{}的前n 项和.[基础题组练]1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析:选A.S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n,n ∈N +,则S 60的值为( ) A .990 B .1 000 C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.已知函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5).当n ∈N +时,a n =f (n )-1f (n )·f (n +1),记数列{a n }的前n 项和为S n ,当S n =1033时,n 的值为( )A .7B .6C .5D .4解析:选D.因为函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5),所以⎩⎪⎨⎪⎧a +b =3,a 2+b =5,所以⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =4(舍去),所以f (x )=2x+1,所以a n =2n+1-1(2n +1)(2n +1+1)=12n +1-12n +1+1, 所以S n =⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-19+…+ ⎝ ⎛⎭⎪⎫12n +1-12n +1+1=13-12n +1+1, 令S n =1033,得n =4.故选D.4.(2020·某某某某期末)在数列{a n }中,若a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),则该数列的前100项之和是( )A .18B .8C .5D .2解析:选C.因为a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),所以a 3=3-1=2,a 4=2-3=-1,a 5=-1-2=-3,a 6=-3+1=-2,a 7=-2+3=1,a 8=1+2=3,a 9=3-1=2,…,所以{a n }是周期为6的周期数列,因为100=16×6+4,所以S 100=16×(1+3+2-1-3-2)+(1+3+2-1)=5.故选C.5.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,所以a n +2a n=2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.故选B.6.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.解析:因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.因此S 2 017=S 2 016+a 2 017=(a 1+a 2+a 3+a 4)+…+(a 2 009+a 2 010+a 2 011+a 2 012)+(a 2 013+a 2 014+a 2 015+a 2 016)+a 2 017=2 0164×2+a 1=1 008.答案:1 0087.(2020·某某三湘名校(五十校)第一次联考)已知数列{a n }的前n 项和为S n ,a 1=1.当n ≥2时,a n +2S n -1=n ,则S 2 019=________.解析:由a n +2S n -1=n (n ≥2),得a n +1+2S n =n +1,两式作差可得a n +1-a n +2a n =1(n ≥2),即a n +1+a n =1(n ≥2),所以S 2 019=1+2 0182×1=1 010.答案:1 0108.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N +),记T n=1S 1+1S 2+…+1S n(n ∈N +),则T 2 018=________.解析:由a n +2-2a n +1+a n =0(n ∈N +),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n=2n (n +1)=2(1n -1n +1),T n =1S 1+1S 2+…+1S n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019. 答案:4 0362 0199.已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4①,所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N +) ②,①-②得4n -1a n =14(n ≥2,n ∈N +),所以a n =14n (n ≥2,n ∈N +).由于a 1=14,故a n =14n (n ∈N +).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=1(2n +1)(2n +3)=12(12n +1-12n +3),故T n =12(13-15+15-17+…+12n +1-12n +3)=12(13-12n +3)=n 6n +9. 10.已知数列{a n }的前n 项和为S n ,S n =3a n -12.(1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32.所以T n =(2n -3)×3n+34.[综合题组练]1.(2020·某某五个一名校联盟第一次诊断)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 018项的和为( )A .1 008B .1 009C .2 017D .2 018解析:选D.设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,所以数列{a n cos n π}的前 2 018项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 017+b 2 018)=2×2 0182=2 018.故选D.2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76B .78C .80D .82解析:选B.由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,两式相减得a n +2+a n =(-1)n·(2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.已知数列{a n },若a n +1=a n +a n +2(n ∈N +),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 019项和为________.解析:由“凸数列”的定义及b 1=1,b 2=-2,得b 3=-3,b 4=-1,b 5=2,b 6=3,b 7=1,b 8=-2,…,所以数列{b n }是周期为6的周期数列,且b 1+b 2+b 3+b 4+b 5+b 6=0,于是数列{b n }的前2 019项和等于b 1+b 2+b 3=-4.答案:-44.(2020·某某质量监测)已知数列{a n }和{b n }满足a 1a 2a 3…a n =2b n (n ∈N +),若数列{a n }为等比数列,且a 1=2,a 4=16,则数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =________.解析:因为{a n }为等比数列,且a 1=2,a 4=16,所以公比q =3a 4a 1=3162=2,所以a n =2n ,所以a 1a 2a 3…a n =21×22×23×…×2n =21+2+3+…+n=2n (n +1)2.因为a 1a 2a 3…a n =2b n ,所以b n =n (n +1)2.所以1b n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.所以⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =b 1+b 2+b 3+…+b n=2⎝ ⎛⎭⎪⎫11-12+12-13+13-14+…+1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 答案:2n n +15.已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n4na n a n +1=(-1)n(12n -1+12n +1), 当n 为偶数时,T n =-(1+13)+(13+15)-(15+17)+…-(12n -3+12n -1)+(12n -1+12n +1),所以T n =-1+12n +1=-2n2n +1. 当n 为奇数时,T n =-(1+13)+(13+15)-(15+17)+…+(12n -3+12n -1)-(12n -1+12n +1), 所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.。

数列求和课件高三数学一轮复习(完整版)

数列求和课件高三数学一轮复习(完整版)

考点一 分组(并项)法求和
【点拨】分组求和法就是对一类既不是(或不明显是)等差数列,也不 是(或不明显是)等比数列的数列,若将这类数列适当拆开,分为几个 等差、等比数列或常见的数列,然后分别求和,最后将其合并的方法.
考点二 裂项相消法求和
考点三 倒序相加法求和
考点四 错位相减法求和
祝你学业有成
2024年5月3日星期五9时47分29秒
6.4 数列求和
【常用结论】
1.判断下列命题是否正确,正确的在括号内画“√”,错误的著,程大位著,共17卷,书中有这样一个 问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到 其关,要见次日行里数,请公仔细算相还.”大致意思是:有一个人要到距离 出发地378里的地方,第一天健步行走,从第二天起因脚痛每天走的路程为 _____.

高三数学一轮复习 第5篇 数列求和学案 理

高三数学一轮复习 第5篇 数列求和学案 理

第三十七课时 数列求和课前预习案1.熟练掌握和应用等差、等比数列的前n 项和公式.2.熟练掌握常考的倒序相加法,错位相减法,裂项相消以及分组求和这些基本方法,注意计算的准确性和方法选择的灵活性.1.直接法:即直接用等差、等比数列的求和公式求和:(1)等差数列的求和公式:_______________________n S ==(2)等比数列的求和公式______________________________n S ⎧⎪⎪=⎨⎪⎪⎩(切记:公比含字母时一定要讨论)2.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的(阅读课本39页回顾等差数列求和公式的推导过程)。

3.错位相减法:数列{}n n a b ⋅,其中{}n a 成等差数列,{}n b 成等比数列,那么这个数列的前n 项和即可用此法来求(阅读课本49页回顾等比数列的前n 项和推导过程)。

[深入探究]:错位相减法步骤是怎样进行的?需要注意哪些问题?4.分组求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和。

5.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:1()n n k =+___________=____________1(21)(21)n n =-+___________;若{}n a 是等差数列,公差为d 则11n n a a +=___________=___________;[究疑点]:通过上述裂项方式思考①裂项相消法适合于哪一类数列求和? ②裂项相消法的前提是什么?③求和过程有哪些需要注意的问题?1.数列}{n a 的通项14-=n a n ,na a ab nn +++=Λ21,则数列}{n b 的前n 项和为( )A .2n B .)1(+n n C .)2(+n n D .)12(+n n 2.(2013大纲)已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于( ) A.()10613--- B.()101139-- C.()10313-- D.()1031+3- 3.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.4.(课本题再现)设()442xx f x =+求证:(1)()(1)1f x f x +-=(2)计算121000100110011001f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 的值.课堂探究案考点1 分组求和【典例1】已知数列{}n a 的通项公式321nn a n =+-,求数列{}n a 的前n 项和n S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十七课时 数列求和
课前预习案
1.熟练掌握和应用等差、等比数列的前n 项和公式.
2.熟练掌握常考的倒序相加法,错位相减法,裂项相消以及分组求和这些基本方法,注意计算的准确性和方法选择的灵活性.
1.直接法:即直接用等差、等比数列的求和公式求和:
(1)等差数列的求和公式:_______________________n S ==
(2)等比数列的求和公式______________________________
n S ⎧
⎪⎪
=⎨⎪⎪⎩(切记:公比含字母时一定要讨论)
2.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的(阅读课本39页回顾等差数列求和公式的推导过程)。

3.错位相减法:数列{}n n a b ⋅,其中{}n a 成等差数列,{}n b 成等比数列,那么这个数列的前n 项和即可用此法来求(阅读课本49页回顾等比数列的前n 项和推导过程)。

[深入探究]:错位相减法步骤是怎样进行的?需要注意哪些问题?
4.分组求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和。

5.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:
1()n n k =+___________
=____________1
(21)(21)n n =-+___________;
若{}n a 是等差数列,公差为d 则
11n n a a +=___________
=
___________;
[究疑点]:通过上述裂项方式思考①裂项相消法适合于哪一类数列求和? ②裂项相消法的前提是什么?③求和过程有哪些需要注意的问题?
1.数列}{n a 的通项14-=n a n ,n
a a a
b n
n +++=
21,则数列}{n b 的前n 项和为( )
A .2
n B .)1(+n n C .)2(+n n D .)12(+n n 2.已知数列{}n a 满足124
30,3
n n a a a ++==-
,则{}n a 的前10项和等于( ) A.()
10
613--- B.
()101
139
-- C.()10313-- D.()1031+3- 3.设n S 为数列{}n a 的前n 项和,1(1),,2
n n n n S a n N *
=--∈则
(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.
4.(课本题再现)设()442
x
x f x =+求证:(1)()(1)1f x f x +-=
(2)计算121000100110011001f f f ⎛⎫
⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
的值.
课堂探究案
考点1 分组求和
【典例1】已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。

考点2裂项相消法
【典例2】已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a n 2
-1
(n ∈*
N ),求数列{b n }的前n 项和T n .
【变式1】求数列1
{
}(2)
n n +的前n 项和.
考点3 错位相减法
【典例3】设数列{a n }满足a 1+3a 2+32
a 3+…+3
n -1
a n =n
3
,n ∈N *.
(1)证明:数列{a n }为等比数列; (2)设21
n n
n b a -=,求数列{b n }的前n 项和S n
【变式2】设数列}{n a 的前n 项和为22n S n =,}{n b 为等比数列,.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设n
n
n b a c =,求数列}{n c 的前n 项和n T .
1.数列}{n a 的通项公式是)(1
1
+∈++=N n n n a n )(*∈N n ,若它的前n 项和为10,则其项数n 为 ( )
A .11
B .99
C .120
D .121 2.数列 ,211,,3211,211,
1n ++++++的前n 项和为 ( ) A .122+n n B .12+n n C .12++n n D .1
2+n n
课后拓展案
组全员必做题
1.已知数列{a n }满足a n +2=-a n (n ∈N *
),且a 1=1,a 2=2,则该数列前2005项的和为( )
A.0
B.-3
C.3
D.1
2.设{a n }是由正数组成的等比数列,n S 为其前n 项和。

已知a 2a 4=1, 37S =,则5S =( ) (A )
152 (B)314 (C)334
(D)17
2
3.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是( ) A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2
Y XZ =
D 、()()Y Y X X Z X -=-
4.函数y=x 2
(x>0)的图像在点(a k ,a k 2
)处的切线与x 轴的交点的横坐标为a k+1,*
∈N R ,若a 1=16,则a 1+a 3+a 5的值是_________
组提高选做题
1.数列{a n }的通项公式为)12n ()1(a n n --=,求数列{}n a 前n 项和n S .
2. 等比数列{n a }的前n 项和为n S , 已知对任意的*
∈N n ,点(,)n n S ,均在函数
(0x y b r b =+>且1,,b b r ≠均为常数)的图象上.
(1)求r 的值; (2)当b=2时,记 1()4n n
n b n N a ++=
∈ (*
∈N n ) 求数列{}n b 的前n 项和n T . 参考答案
1.C
2.C
3.(1)116
-
;(2)10011(1)32-.
4.(1)略;(2)500.
【典例1】21
342
2
n n n ++-+
【典例2】(1)221,2n n a n S n n =+=+;(2)
4(1)
n
n +.
【变式1】2354(1)(2)
n n n n +++
【典例3】(1)略;(2)3(1)3n n S n +
=+-13213+⨯-n
【变式2】(1)1242,4n n n a n b -=-=;(2)565499
n
n n T -=+

1.C
2.B
组全员必做题
1.D
2.B
3.D
4.21
组提高选做题
1.⎩⎨
⎧-=)
()(是奇数是偶数n n n n S n .
2.(1)-1;(2)1
33
22n n n T ++=
-.。

相关文档
最新文档