数学2点直线平面之间的位置关系

合集下载

点、直线、平面之间的位置关系(知识点汇总)大全

点、直线、平面之间的位置关系(知识点汇总)大全

必修2第二章 点、直线、平面之间的位置关系1.四个公理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(此公理可以用来判断直线是否在平面内)。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面; ② 经过两条相交直线,有且只有一个平面; ③ 经过两条平行直线,有且只有一个平面; (它们给出了确定一个平面的依据)。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(这条公共直线即为两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈⇒=∈ 且。

公理4:平行于同一直线的两条直线互相平行(平行线的传递性)。

符号语言://,////a l b l a b ⇒且。

2.空间中直线与直线之间的位置关系(1)位置关系:两条直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(2)异面直线:把不在任何一个平面内的两条直线叫做异面直线。

(3)两条异面直线所成的角:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角)。

(易知:夹角范围090θ<≤︒)(4)等角定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

3.空间中直线与平面之间的位置关系直线l 与平面α//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点4.空间中平面与平面之间的位置关系平面α与平面β//l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线5.直线与平面平行的判定及其性质定理定理 定理内容 符号表示直线与平面 平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ 平面与平面平行的判定 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行βαααββ//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂P b a b a b a 直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα平面与平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎭⎪⎬⎫==βγαγβα(1)线面平行的其它判定方法 ①定义:直线与平面无公共点;②若两个平面平行,则在其中一个平面内的任意一条直线平行于另一个平面; 符号语言:αββα////a a ⇒⎭⎬⎫⊂; (2)面面平行的其它判定方法 ①定义:两个平面无公共点;②垂直于同一条直线的两个平面平行;符号语言:βαβα//⇒⎭⎬⎫⊥⊥a a ; ③平行于同一个平面的两个平面平行;符号语言:βαγβγα//////⇒⎭⎬⎫; ④如果一个平面内的两条相交直线平行于另一个平面内的两条相交直线,那么这两个平面互相平行;符号语言:βαβα//,,////⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==⊂⊂B d b A c a d b c a dc b a ;6.直线与平面所成的角(1)直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。

高中数学必修2点、直线、平面之间的位置关系(1)

高中数学必修2点、直线、平面之间的位置关系(1)

1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。

2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。

人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件

人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件

C D
B A
C1 D1
B1 A1
知识小结
实例引 入平面
平面的画 法和表示
点和平面的 位置关系
平面三 个公理
空间图形
文字叙述
符号表示
2.1.2空间中两直线的位置 关系
平面有知识(复习 )
判断下列命题对错: 1、如果一条直线上有一个点在一个平面上,则这条直线上
的所有点都在这个平面内。( )
2、将书的一角接触课桌面,这时书所在平面和课桌所在平
直线。(既不相交也不平行的两条直线) 判断:
(1)
m
β
m
l
α
l
直线m和l是异面直线吗?
(2)
,则 与 是异面直线
(3)a,b不同在平面 内,则a与b异面
异面直线的画法:
通常用一个或两个平面来衬托,异面直线
不同在任何一个平面的特点
a
b
b
a
b
a
2、空间中两直线的三种位置关系
1、相交
m P
l
2、平行
m l
b′

a′ θ O

若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b 异面直线所成角θ的取值范围:
例 3 在正方体ABCD—A1B1C1D1中指出下列各对线段所
成的角:
D1
C1
1)AB与CC1; 2)A1 B1与AC; A1
B1
3)A1B与D1B1。
1)AB与CC1所成的角 = 9 0°
4、平面的基本性质
公理3 如果两个不重合的平面有一个公共点,
那么它们有且只有一条过该点的公共直线.
符号表示为:
P l, Pl.

2021_2022年高中数学第二章点直线平面之间的位置关系1

2021_2022年高中数学第二章点直线平面之间的位置关系1
• 因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理 可知l⊂β.
• 因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公
理2的推理2知:经过两条相交直线,有且只有一个平面,所
以平面α与平面β重合,所以直线a,b,c和l共面.
• 规律总结:(1)证明点线共面的主要依据:公理1、公理2及其 推论.
• [证明] 如右图所示,
• ∵PA∩PB=P, • ∴过PA,PB确定一个平面α. • ∴A∈α,B∈α. • ∵A∈l,B∈l, • ∴l⊂α. • ∴PA,PB,l共面.
3. 证明多点共线问题
• 例题3 已知△ABC在平面α外,AB∩α=P,AC∩α=R,
BC∩α=Q,如图.求证:P、Q、R三点共线.
自主预习
1.平面
描述
几何里所说的“平面”是从生活中的一些物体抽象出 来的,是无限___延__展_____的
通常把水平的平面画成一个__平__行__四__边__形__,并且其锐 角画成45°,且横边长等于其邻边长的___2__倍,如图 1所示;如果一个平面被另一个平面遮挡住,为了增强 立体感,被遮挡部分用__虚__线___画出来,如图2所示
练习1
(1)若点 M 在直线 a 上,a 在平面 α 内, 则 M,a,α 间的关系可记为________.
(2) 根 据 右 图 , 填 入 相 应 的 符 号 : A________平面 ABC,A________平面 BCD, BD________平面 ABC,平面 ABC∩平面 ACD =________.
• (2)公理2中“有且只有一个”的含义要准确理解,这里的“有 ”是说图形存在,“只有一个”是说图形唯一,强调的是存在 和唯一两个方面,因此“有且只有一个”必须完整地使用,不 能仅用“只有一个”来代替,否则就没有表达出存在性.确定 一个平面中的“确定”是“有且只有”的同义词,也是指存在 性和唯一性这两个方面,这个术语今后也会常常出现.

点直线平面之间的位置关系知识点总结

点直线平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

点线面的位置关系知识点

点线面的位置关系知识点

点线面的位置关系知识点在几何学中,点、线和面是三个基本的几何概念,它们之间存在着一系列的位置关系。

这些位置关系的理解对于解决几何问题以及应用几何知识有着重要的意义。

本文将介绍点线面的位置关系的几个重要知识点。

一、点与直线的位置关系1. 在直线上:当一个点恰好位于一条直线上时,我们可以说这个点在直线上。

例如,点A在直线AB上。

2. 在直线的两侧:如果一个点既不在直线上,也不在直线的延长线上,我们可以说这个点在直线的两侧。

例如,点C在直线AB的两侧。

3. 在直线的延长线上:如果一个点不在直线上,但位于直线的延长线上,我们可以说这个点在直线的延长线上。

例如,点D在直线AB的延长线上。

4. 平行于直线:如果一条直线与给定直线没有任何交点,我们可以说这条直线平行于给定直线。

例如,直线CD平行于直线AB。

二、点与平面的位置关系1. 在平面上:当一个点位于一个平面内部时,我们可以说这个点在平面上。

例如,点A在平面P上。

2. 不在平面上:如果一个点既不在平面上,也不在平面的延长线上,我们可以说这个点不在平面上。

例如,点B不在平面P上。

3. 在平面的延长线上:如果一个点不在平面上,但位于平面的延长线上,我们可以说这个点在平面的延长线上。

例如,点C在平面P的延长线上。

4. 垂直于平面:如果一条直线与给定平面的任意一条线都垂直,我们可以说这条直线垂直于给定平面。

例如,直线EF垂直于平面P。

三、直线与平面的位置关系1. 相交于一点:当一条直线与平面有且仅有一个交点时,我们可以说这条直线与平面相交于一点。

例如,直线L与平面P相交于点A。

2. 平行于平面:如果一条直线与给定平面的任意一条线都平行,我们可以说这条直线平行于给定平面。

例如,直线M平行于平面P。

3. 包含于平面:当一条直线上的所有点都位于给定平面上时,我们可以说这条直线被包含于给定平面中。

例如,直线N被包含于平面P 中。

4. 相交于一条线:当一条直线与平面有无穷多个交点时,我们可以说这条直线与平面相交于一条线。

直线与平面的位置关系

直线与平面的位置关系

直线与平面的位置关系直线与平面的位置关系是几何学中的重要概念之一,研究它们的相互关系有助于我们深入理解空间几何。

在本文中,我们将探讨直线与平面的几种基本位置关系及其性质。

一、直线与平面的交点直线与平面可以相交于一点,此时它们具有唯一的交点。

假设有直线l和平面P,如果l与P相交于点A,我们可以得出以下结论:1. 点A在直线l上,同时也在平面P上;2. 点A在直线l上,但不在平面P上;3. 点A不在直线l上,但在平面P上。

这些情况中,最常见的是第一种情况,即直线与平面相交于一点,该点同时属于直线和平面。

二、直线与平面的重合直线与平面有可能重合,即它们完全重合于同一几何形状。

在这种情况下,直线与平面的所有点都是重合的,它们具有相同的位置和方向。

三、直线与平面的平行关系直线与平面可能平行,即它们始终保持着固定的距离,永不相交。

对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P平行,则其上的任意点都不在平面P上;2. 若直线l与平面P平行,则直线l上的一切点与平面P上的一切点的距离相等。

需要注意的是,直线与平面的平行关系是相对的,当我们谈论直线l与平面P平行时,必须指定相对于哪种参考系来判断。

四、直线与平面的垂直关系直线与平面可能垂直,即直线与平面形成一个直角。

对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P垂直,则直线l上的任意向量与平面P上的任意向量之间的内积为零;2. 若直线l与平面P垂直,则直线l与平面P相交于一点,该点同时属于直线和平面。

需要注意的是,直线与平面的垂直关系也是相对的,需要指定相对于哪种向量或平面来判断。

五、直线与平面的夹角除了垂直关系外,直线与平面之间还可以存在其他夹角。

对于直线l和平面P,我们可以定义它们之间的夹角为直线l上的某条与平面P 垂直的直线与平面P的交线的夹角。

直线与平面的夹角可以是锐角、直角或钝角,具体取决于直线与平面的位置关系和夹角的大小。

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。

叫做垂足。

的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。

符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。

符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。

所成的角。

2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。

三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。

必修二2.1.空间点、直线、平面之间的位置关系(教案)

必修二2.1.空间点、直线、平面之间的位置关系(教案)

人教版新课标普通高中◎数学 2 必修(A 版)第二章点、直线、平面之间的位置关系2. 1空间点、直线、平面之间的位置关系教案 A第 1 课时教学内容: 2. 1. 1平面教学目标一、知识与技能1.利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图;2.掌握平面的基本性质及作用,提高学生的空间想象能力.二、过程与方法在师生的共同讨论中,形成对平面的感性认识.三、情感、态度与价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1.平面的概念及表示;2.平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面基本性质的掌握与运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进行理解,清楚其用途.教法与学法导航教学方法:探究讨论,讲练结合法.学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.教学准备教师准备:投影仪、投影片、正(长)方形模型、三角板.学生准备:直尺、三角板.教学过程教学教学内容师生互动设计过程意图创设什么是平面?师:生活中常见的如黑板、情境一些能看得见的平面实桌面等,给我们以平面的印象,形成平导入例 .你们能举出更多例子吗?那么面的概新课平面的含义是什么呢?这就是念我们这节课所要学习的内容 .1教师备课系统──多媒体教案续上表1.平面含义随堂练习判定下列命题是否正确:主题① 书桌面是平面;探究② 8 个平面重叠起来要比合作 6 个平面重叠起来厚;交流③ 有一个平面的长是50m,宽是 20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念 .师:以上实物都给我们以平面的印象,几何里所说加强对知的平面,就是从这样的一些识的理解物体中抽象出来的,但是,培养,自几何里的平面是无限延展觉钻研的的 .学习习惯 . 数形结合,加深理解 .2.平面的画法及表示师:在平面几何中,怎(1)平面的画法:水平放样画直线?(一学生上黑板置的平面通常画成一个平行四画)边形,锐角画成 45°,且横边之后教师加以肯定,解说、画成邻边的 2 倍长(如图).类比,将知识迁移,得出平面的画法:D CαA B如果几个平面画在一起,主题当一个平面的一部分被另一个探究平面遮住时,应画成虚线或不合作画(打出投影片).交流(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC 、平面 ABCD等.(3)平面内有无数个点,平面可以看成点的集合 .点 A 在平面α内,记作:A ∈ α ; 点B 在平面α外,记作: Bα.β通过类比α探索,培养学生知识迁移能β力,加强知识的系统性 .α·B·Aα2续上表人教版新课标普通高中◎数学 2 必修(A 版)3.平面的基本性质公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.A Bα· C··教师引导学生思考教材P41 的思考题,让学生充分发表自己的见解 .师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理主题探究合作交流符号表示为A ∈ LB∈ L? L ? α.A ∈ αB∈ α公理 1:判断直线是否在平面内.公理 2:过不在一条直线上的三点,有且只有一个平面 .A· Bα·L符号表示为: A 、B、C 三点不共线 ? 有且只有一个平面α,使A ∈ α、 B∈ α、 C∈ α.公理 2 作用:确定一个平面的依据 .公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .βPα·L符号表示为: P∈ α∩β? α∩β =L,且P∈ L .公理 3 作用:判定两个平面是否相交的依据 .1.教师引导学生阅读教材P42 前几行相关内容,并加以解析.师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等.通过类比引导学生归纳出公理探索,培2.养学生知教师用正(长)方形识迁移能模型,让学生理解两个平力,加强面的交线的含义.知识的系注意:( 1)公理中“有统性 .且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“ 有且只有一个平面”也可以说成“确定一个平面 . ”引导学生阅读P42 的思考题,从而归纳出公理3.3教师备课系统──多媒体教案续上表拓展 4. 教材 P43 例 1教师及时评价和纠正同创新通过例子,让学生掌握图形学的表达方法,规范画图和巩固应用中点、线、面的位置关系及符号符号表示 .提高.提高的正确使用 .1.平面的概念,画法及表示方法 .培养学2.平面的性质及其作用.生归纳3.符号表示.整合知4.注意事项.学生归纳总结、教师给识能小结力,以予点拨、完善并板书 .及思维的灵活性与严谨性 .课堂作业1.下列说法中,(1)铺得很平的一张白纸是一个平面;( 2)一个平面的面积可以等于 6cm 2;( 3)平面是矩形或平行四边形的形状. 其中说法正确的个数为().A . 0 B . 1 C. 2 D . 32.若点 A 在直线 b 上,在平面内,则 A, b,之间的关系可以记作().A . A b B. A b C. A b D . A b3.图中表示两个相交平面,其中画法正确的是().A B C D4.空间中两个不重合的平面可以把空间分成()部分.答案: 1. A 2. B 3. D 4. 3 或 4第 2 课时教学内容2.1. 2 空间中直线与直线之间的位置关系教学目标一、知识与技能1.了解空间中两条直线的位置关系;4人教版新课标普通高中◎数学 2 必修(A 版)2.理解异面直线的概念、画法,提高空间想象能力;3.理解并掌握公理 4 和等角定理;4.理解异面直线所成角的定义、范围及应用.二、过程与方法1.经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法.2.体会平移不改变两条直线所成角的基本思想和方法.三、情感、态度与价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1.异面直线的概念 .2.公理 4 及等角定理 .教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法 .教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法与学法导航教学方法探究讨论法.学习方法学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板.学生准备三角板 .教学过程详见下表 .教学教学内容师生互动设计环节意图创设通过身边实物,相互设疑激情境异面直线的概念:不同在任何一个交流异面直线的概念.趣点出导入平面内的两条直线叫做异面直线.师:空间两条直线有主题.新课多少种位置关系?1. 空间的两条直线的位置关系教师给出长方体模多媒体5教师备课系统──多媒体教案相交直线:同一平面内,有且只有型,引导学生得出空间的演示提一个公共点;两条直线有如下三种关高上课平行直线:同一平面内,没有公共系.效率 .探索点;异面直线:不同在任何一个平面内,教师再次强调异面直新知没有公共点 .线不共面的特点.师生互异面直线作图时通常用一个或两个动,突平面衬托,如下图:破重点 .2. 平行公理师:在同一平面内,例 2 的思考:长方体ABCD-A'B'C'D' 中,如果两条直线都与第三条讲解让BB' ∥AA', DD' ∥AA',那么 BB' 与直线平行,那么这两条直学生掌DD' 平行吗?线互相平行 . 在空间中,是握了公否有类似的规律?理 4 的运用.生:是.强调:公理 4 实质上探索是说平行具有传递性,在新知公理 4:平行于同一条直线的两条平面、空间这个性质都适直线互相平行 .用.符号表示为:设a、b、c 是三条直线如果 a//b, b//c,那么 a//c.例 2 空间四边形ABCD 中, E、 F、G、 H 分别是AB 、BC 、 CD 、 DA 的中点.求证:四边形 EFGH 是平行四边形 .续上表3. 思考:在平面上,我们容易证明让学生观察、思考:等角定“如果一个角的两边与另一个角的两边理为异探索分别平行,那么这两个角相等或互补”.面直线新知空间中,结论是否仍然成立呢?所成的等角定理:空间中如果两个角的两角的概边分别对应平行,那么这两个角相等或念作准6人教版新课标普通高中◎数学 2 必修(A 版)互补 .∠ ADC与A'D'C' 、备.∠ ADC与∠ A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ ADC = A'D'C' ,∠ ADC +∠ A'B'C' = 180°4.异面直线所成的角如图,已知异面直线 a、b,经过空探索间中任一点 O 作直线 a'∥ a、b'∥ b,我新知们把 a'与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角).教师画出更具一般性的图形,师生共同归纳出如下等角定理.师:① a'与 b'所成的角的以教师大小只由 a、b 的相互位置讲授为来确定,与 O 的选择无关,主,师为了简便,点 O 一般取在生共同两直线中的一条上;交流,② 两条异面直线所成的导出异角θ∈( 0,π);面直线2所成的③ 当两条异面直线所成角的概探索的角是直角时,我们就说念 .新知这两条异面直线互相垂例 3 让直,记作 a⊥ b;学生掌④ 两条直线互相垂直,有握了如共面垂直与异面垂直两种何求异情形;面直线⑤ 计算中,通常把两条异所成的例 3(投影)面直线所成的角转化为两角,从条相交直线所成的角 .而巩固了所学知识 .续上表充分调动学拓展生动手创新教材 P49 练习 1、 2.生完成练习,教师当的积极应用堂评价 .性,教提高师适时7教师备课系统──多媒体教案给予肯定 .本节课学习了哪些知识内容?小结知2.计算异面直线所成的角应注意什学生归纳,然后老师补识,形小结么?充、完善.成整体思维.课堂作业1. 异面直线是指().A.空间中两条不相交的直线B.分别位于两不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.如右图所示,在三棱锥 P-ABC 的六条棱所在的直线中,异面直线共有().A. 2 对 B . 3 对 C. 4 对 D. 6 对3.正方体 ABCD-A 1B1C1D1中与棱AA1平行的棱共有().A. 1 条 B . 2 条 C. 3 条 D. 4 条4.空间两个角、,且与的两边对应平行,若=60 °,则的大小为()..答案: 1. D 2.B 3. C 4. 60 °或 120°第 3 课时教学内容8人教版新课标普通高中◎数学 2 必修(A 版)2. 1. 3 空间中直线与平面之间的位置关系 2. 1. 4 平面与平面之间的位置关系教学目标一、知识与技能1.了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系;2.提高空间想象能力 .二、过程与方法1.通过观察与类比加深了对这些位置关系的理解、掌握;2.利用已有的知识与经验归纳整理本节所学知识.三、情感、态度与价值观感受空间中图形的基本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学关键借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系.教法与学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺.教学过程详见下表 .教学教学内容师生互动设计过程意图创设问题1:空间中直线和直线有几生 1:平行、相交、异复习9教师备课系统──多媒体教案情境种位置关系?面;回顾,导入问题 2:一支笔所在的直线和一生 2:有三种位置关系:激发新课个作业本所在平面有几种位置关(1)直线在平面内;学习系?(2)直线与平面相交;兴趣 .(3)直线与平面平行.师肯定并板书,点出主题 .1.直线与平面的位置关系 .师:有谁能讲出这三种( 1)直线在平面内——有无数位置有什么特点吗?个公共点 .生:直线在平面内时二( 2)直线与平面相交——有且者有无数个公共点 .仅有一个公共点 .直线与平面相交时,二( 3)直线在平面平行——没有者有且仅有一个公共点 .公共点 .直线与平面平行时,三其中直线与平面相交或平行的者没有公共点(师板书).情况,统称为直线在平面外,记作师:我们把直线与平面加强a.相交或直线与平面平行的对知直线 a 在面内的符号语言是情况统称为直线在平面外 .识的a. 图形语言是:师:直线与平面的三种理解位置关系的图形语言、符号培养,主题语言各是怎样的?谁来画自觉探究图表示一个和书写一下 .钻研合作学生上台画图表示 .的学交流直线 a 与面相交的 a∩ = A.师;好 . 应该注意:画习习图形语言是符号语言是:直线在平面内时,要把直线惯,数画在表示平面的平行四边形结形内;画直线在平面外时,合,加应把直线或它的一部分画深理在表示平面的平行四边形解 .外 .直线 a 与面平行的符号语言是a∥. 图形语言是:10人教版新课标普通高中◎数学 2 必修(A 版)续上表2.平面与平面的位置关系师:下面请同学们思考以( 1)问题 1:拿出两本书,看下两个问题(投影).作两个平面,上下、左右移动和翻生:平行、相交 .转,它们之间的位置关系有几种?师:它们有什么特点?( 2)问题 2:如图所示,围成生:两个平面平行时二者长方体 ABCD –没有公共点,两个平面相交A′B′C′D′的六个时,二者有且仅有一条公共直通过面,两两之间的线(师板书).类比位置关系有几师:下面请同学们用图形探索,种?和符号把平面和平面的位置培养主题关系表示出来⋯⋯学生( 3)平面与平面的位置关系探究——没有公师:下面我们来看几个例知识平面与平面平行合作子(投影例 1).迁移共点 .交流能力 .平面与平面相交——有且只有一条公共直线 .加强平面与平面平行的符号语言知识是∥ . 图形语言是:的系统性 .11教师备课系统──多媒体教案续上表拓展创新应用提高例 1 下列命题中正确的个数是( B ).①若直线 l 上有无数个点不在平面内,则 l∥ .②若直线l 与平面平行,则l与平面内的任意一条直线都平行 .③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行 .④若直线 l 与平面平行,则 l 与平面内的任意一条直线没有公共点 .A . 0B . 1 C. 2 D. 3例 2 已知平面∥,直线a,求证 a∥ .证明:假设 a 不平行,则 a在内或 a 与相交 .∴ a 与有公共点 .又 a.∴ a与有公共点,与面∥面矛盾 .∴∥ .学生先独立完成,然后讨例 1 通论、共同研究,得出答案. 教师过示范利用投影仪给出示范 .传授学师:如图,我们借助长方体生一个模型,棱 AA 1所在直线有无数点通过模在平型来研面究问题ABCD的方外,但法,加棱 AA 1深对概所在直线与平面ABCD 相交,所念的理以命题①不正确; A1B1所在直线解. 例 2平行于平面 ABCD ,A1B1显然不目标训平行于 BD,所以命题②不正确;练学生A1 B1∥AB,A1B1所在直线平行于思维的平面 ABCD ,但直线 AB平灵活,面 ABCD ,所以命题③不正确;并加深l 与平面平行,则 l 与无公对面面共点, l与平面内所有直线都平行、没有公共点,所以命题④正确,线面平应选 B .行的理师:投影例2,并读题,先解.让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解 .1.直线与平面、平面与平培养学面的位置关系 .生整合2.“正难到反”数学思想知识能与反证法解题步骤 .学生归纳总结、教师给予点力,以小结拨、完善并板书 .及思维3. “分类讨论”数学思想.的灵活性与严谨性 . 12人教版新课标普通高中◎数学 2 必修(A 版)课堂作业1.直线与平面平行的充要条件是这条直线与平面内的().A .一条直线不相交B.两条直线不相交C.任意一条直线都不相交 D .无数条直线都不相交【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C.2. “平面内有无穷条直线都和直线l 平行”是“l //”的().A.充分而不必要条件 B .必要而不充分条件C.充分必要条件 D .即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选 B.3.如图,试根据下列要求,把被遮挡的部分改为虚线:( 1)AB 没有被平面遮挡;( 2)AB 被平面遮挡.答案:略4.已知,,直线a,b,且∥,a,b,则直线 a 与直线 b 具有怎样的位置关系?【解析】平行或异面.5.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内 .已知: l ∥,点P∈,P∈ m,m∥ l,求证: m.证明:设 l 与 P 确定的平面为,且= m′,则 l ∥ m′.又知 l ∥ m, m m P ,由平行公理可知,m 与 m′重合 .所以 m.13教师备课系统──多媒体教案教案 B第 1 课时教学内容: 2. 1. 1 平面教学目标1.了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2.理解公理一、二、三,并能运用它们解决一些简单的问题;3.通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形.教学难点:公理三,由抽象图形认识空间模型.学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行 .实践活动:1.仔细观察教室,举出空间的点、线、面的实例.2.只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块.3.请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题. 今后我们将研究空间中的点、线、面之间的关系.图 1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系.练习一:试画出下列各种位置的平面.1.水平放置的平面2.竖直放置的平面14人教版新课标普通高中◎数学 2 必修(A 版)图 2( 1)图2(2)3.倾斜放置的平面图 34.请将以下四图中,看得见的部分用实线描出.图 4(1)图4(2)图4(3)图4(4)小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图 5.平行四边形的锐角通常画成45o,且横边长等于其邻边长的 2 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图 6.βFA DA DααB E CB C图 5图 6图 7平面常用希腊字母, ,等表示(写在代表平面的平行四边形的一个角上),如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图 5 的平面,也可表示为平面ABCD ,平面 AC 或平面BD .前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系?15教师备课系统──多媒体教案显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系.从集合的角度,点 A 在平面内,记为A;点B在平面外,记为B (如图 7).再来研究一下直线与平面的位置关系.将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系?由“两点确定一条直线”这一公理,我们不难理解如下结论:公理 1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内 .A l ,B l , 且 A, B,l.A l Bα图8例1 分别用符号语言、文字语言描述下列图形.AA aa图 9( 1)图 9( 2)图 9( 3)例 2 识图填空(在空格内分别填上, , ,).A____ a;A____ α,B____ a; B____ α,Aa____ α;a____ α = B,B bb____ α;B____ b.a图 10图 11问题情景:制作一张桌子,至少需要多少条腿?为什么?公理 2 经过不在同一条直线上的三点,有且只有一个平A面 .CB实践活动:取出两张纸演示两个平面会有怎样的位置关α图 12系,并试着用图画出来 .图 12试问:如图13 是两个平面的另一种关系吗?(相对于同学们得出的关系)由平面的无限延展性,不难理解如下结论:公理 3如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点16人教版新课标普通高中◎数学 2 必修(A 版)的直线 .βP l 且P l.αP l图 13例 3如图14用符号表示下列图形中点、直线、平面之间的位置关系.l【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.【解析】在(1)中,l , a A , a B .l , a, b, a l P , B l P .在( 2)中,三、巩固练习教材 P43 练习 1— 4.四、课堂小结(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?(3)判断共面的方法 .五、布置作业P51 习题 A 组 1, 2.第 2 课时教学内容: 2. 1. 2 空间中直线与直线之间的位置关系教学目标:一、知识目标1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,培养学生的空间想象能力;3.理解并掌握公理 4.二、能力目标1.让学生在观察中培养自主思考的能力;17教师备课系统──多媒体教案2.通过师生的共同讨论培养合作学习的能力.三、情感、态度与价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点: 1.异面直线的概念; 2.公理 4.教学难点:异面直线的概念.学法与教学用具1.学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标;2.教学用具:多媒体、长方体模型、三角板.教学过程一、复习引入1.平面内两条直线的位置关系有(相交直线、平行直线).相交直线(有一个公共点);平行直线(无公共点).2.实例 . 十字路口——立交桥.立交桥中,两条路线 AB , CD 既不平行,又不相交(非平面问题).六角螺母DCA B二、新课讲解1.异面直线的定义不同在任何一个平面内的两条直线叫做异面直线.练习:在教室里找出几对异面直线的例子.注1:两直线异面的判别一 : 两条直线既不相交、又不平行.两直线异面的判别二 : 两条直线不同在任何一个平面内.合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行.空间两直线的位置关系:按平面基本性质分(1)同在一个平面内:相交直线、平行直线;( 2)不同在任何一个平面内:异面直线.按公共点个数分( 1)有一个公共点 : 相交直线;( 2)无公共点:平行直线、异面直线.2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托. 18。

第二章 2.1.1空间点、直线、平面之间的位置关系

第二章 2.1.1空间点、直线、平面之间的位置关系

§2.1 空间点、直线、平面之间的位置关系2.1.1 平 面学习目标 1.了解平面的表示方法,点、直线与平面的位置关系.2.掌握关于平面基本性质的三个公理.3.会用符号表示图形中点、直线、平面之间的位置关系.知识点一 平面 1.平面的概念(1)平面是最基本的几何概念,对它加以描述而不定义. (2)几何中的平面的特征:⎩⎪⎨⎪⎧绝对的平无限延展不计大小不计厚薄2.平面的画法常常把水平的平面画成一个平行四边形,并且其锐角画成45°,且横边长等于其邻边长的2倍一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来3.平面的表示方法(1)用希腊字母表示,如平面α,平面β,平面γ.(2)用表示平面的平行四边形的四个顶点的大写字母表示,如平面ABCD .(3)用表示平面的平行四边形的相对的两个顶点表示,如平面AC,平面BD.知识点二点、直线、平面之间的位置关系及其表示方法1.直线在平面内的概念如果直线l 上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.2.点、直线、平面之间的基本位置关系及语言表达文字语言符号语言图形语言A在l外A∉lA在l上A∈lA在α内A∈αA在α外A∉αl在α内l⊂αl在α外l⊄αl,m相交于A l∩m=Al,α相交于A l∩α=Aα,β相交于l α∩β=l知识点三平面的基本性质公理文字语言图形语言符号语言作用公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α①确定直线在平面内的依据②判定点在平面内公理2 过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α①确定平面的依据②判定点线共面公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α且P∈β⇒α∩β=l,且P∈l①判定两平面相交的依据②判定点在直线上1.两个不重合的平面只能把空间分成四个部分.(×)2.两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A.(×)3.空间不同三点确定一个平面.(×)4.两两相交的三条直线最多可以确定三个平面.(√)题型一图形语言、文字语言、符号语言的相互转换例1用符号表示下列语句,并画出图形.(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化解(1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.反思感悟(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.跟踪训练1(1)若点A在直线b上,b在平面β内,则点A,直线b,平面β之间的关系可以记作()A.A∈b∈βB.A∈b⊂βC.A⊂b⊂βD.A⊂b∈β(2)如图所示,用符号语言可表述为()A.α∩β=m,n⊂α,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,n⊂α,A⊂m,A⊂nD.α∩β=m,n∈α,A∈m,A∈n考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案(1)B(2)A题型二点、线共面问题例2如图,已知a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.考点平面的基本性质题点点线共面问题证明因为PQ∥a,所以PQ与a确定一个平面β,所以直线a⊂β,点P∈β.因为P∈b,b ⊂α,所以P∈α.又因为a⊂α,P∉a,所以α与β重合,所以PQ⊂α.引申探究将本例中的两条平行线改为三条,即求证:和同一条直线相交的三条平行直线一定在同一平面内.证明已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:a,b,c和l共面.证明:如图,∵a∥b,∴a与b确定一个平面α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴l⊂α.∵b∥c,∴b与c确定一个平面β,同理l⊂β.∵平面α与β都包含l和b,且b∩l=B,由公理2的推论知:经过两条相交直线有且只有一个平面,∴平面α与平面β重合,∴a,b,c和l共面.反思感悟证明点、线共面问题的理论及常用方法(1)依据:公理1和公理2.(2)常用方法.①先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入法”;②先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“同一法”;③假设不共面,结合题设推出矛盾,用“反证法”.跟踪训练2如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.考点平面的基本性质题点点线共面问题证明方法一(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.∵B∈l3,C∈l3,∴l3⊂α.∴直线l1,l2,l3在同一平面内.方法二(辅助平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴l2,l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A,B,C既在平面α内,又在平面β内,∴平面α和β重合,即直线l1,l2,l3在同一平面内.证明点共线、线共点问题典例(1)如图,已知平面α,β,且α∩β=l,设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点.证明∵在梯形ABCD中,AD∥BC,∴AB与CD必交于一点,设AB交CD于M.则M∈AB,M∈CD,又∵AB⊂α,CD⊂β,∴M∈α,M∈β,又∵α∩β=l,∴M∈l,∴AB,CD,l共点.(2)如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.证明∵AB∥CD,∴AB,CD确定一个平面β,∵AB∩α=E,E∈AB,E∈α,∴E∈β,∴E在α与β的交线l上.同理,F,G,H也在α与β的交线l上,∴E,F,G,H四点必定共线.[素养评析](1)点共线与线共点的证明方法①点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.②三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.(2)通过证明题的学习,掌握推理的基本形式和规则,形成重论据,有条理,合乎逻辑的思维品质,培养逻辑推理的数学核心素养.1.有以下结论:①平面是处处平的面;②平面是无限延展的;③平面的形状是平行四边形;④一个平面的厚度可以是0.001 cm.其中正确的个数为()A.1B.2C.3D.4考点平面的概念、面法及表示题点平面概念的应用答案 B解析平面是无限延展的,但是没有大小、形状、厚薄,①②两种说法是正确的;③④两种说法是错误的.故选B.2.若一直线a在平面α内,则正确的作图是()考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案 A解析B中直线a不应超出平面α;C中直线a不在平面α内;D中直线a与平面α相交.3.如果点A在直线a上,而直线a在平面α内,点B在平面α内,则可以表示为()A.A⊂a,a⊂α,B∈αB.A∈a,a⊂α,B∈αC.A⊂a,a∈α,B⊂αD.A∈a,a∈α,B∈α考点平面的概念、画法及表示题点自然语言、符号语言与图形语言的互化答案 B解析点A在直线a上,而直线a在平面α内,点B在平面α内,表示为A∈a,a⊂α,B∈α.4.能确定一个平面的条件是()A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线答案 D解析A项,三个点可能共线,B项,点可能在直线上,C项,无数个点也可能在同一条直线上.5.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P与直线DE的位置关系是________.考点平面的基本性质题点点共线、线共点、点在线上问题答案P∈直线DE解析因为P∈AB,AB⊂平面ABC,所以P∈平面ABC.又P∈α,平面ABC∩平面α=DE,所以P∈直线DE.1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时初步体会三个公理的作用,突出先部分再整体的思想.一、选择题1.经过同一条直线上的3个点的平面()A.有且只有一个B.有且只有3个C.有无数个D.不存在答案 C2.满足下列条件,平面α∩平面β=AB,直线a⊂α,直线b⊂β且a∥AB,b∥AB的图形是()答案 D3.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则()A.l⊂αB.l⊄αC.l∩α=MD.l∩α=N答案 A解析∵M∈a,a⊂α,∴M∈α,又∵N∈b,b⊂α,∴N∈α,又M,N∈l,∴l⊂α.4.下列说法中正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点考点平面的基本性质题点确定平面问题答案 C解析不共线的三点确定一个平面,故A不正确;四边形有时指空间四边形,故B不正确;梯形的上底和下底平行,可以确定一个平面,故C正确;两个平面如果相交,一定有一条交线,所有这两个平面的公共点都在这条交线上,故D不正确.故选C.5.下列图形中不一定是平面图形的是()A.三角形B.菱形C.梯形D.四边相等的四边形答案 D解析四边相等的四边形可能四边不共面.6.如果空间四点A,B,C,D不共面,那么下列判断中正确的是()A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行考点平面的基本性质题点点共线、线共点、点在线上问题答案 B解析两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面.7.在空间四边形ABCD的边AB,BC,CD,DA上分别取点E,F,G,H,若EF与HG交于点M,则()A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M不在直线AC上,也不在直线BD上答案 A解析由题意得EF在平面ABC内,HG在平面ACD内,EF与HG交于点M,∴M一定落在平面ABC与平面ACD的交线AC上.8.空间不共线的四点可以确定平面的个数是()A.0B.1C.1或4D.无法确定答案 C解析若有三点共线,则由直线与直线外一点确定一个平面,得不共线的四点可以确定平面的个数为1;若任意三点均不共线,则空间不共线的四点可以确定平面的个数是4,故选C.二、填空题9.如图所示的图形可用符号表示为________.答案α∩β=AB10.A,B,C为空间三点,经过这三点的平面有________个.答案1或无数解析当A,B,C不共线时,有一个平面经过三点;当A,B,C共线时,有无数个平面经过这三点.11.用符号表示“点A在直线l上,l在平面α外”为________.答案A∈l,l⊄α三、解答题12.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,求证:O,C,D三点共线.考点平面的基本性质题点点共线、线共点、点在线上问题证明∵AC∥BD,∴AC 与BD 确定一个平面,记作平面β,则α∩β=直线CD .∵l ∩α=O ,∴O ∈α.又∵O ∈AB ⊂β,∴O ∈直线CD ,∴O ,C ,D 三点共线.13.如图在正方体ABCD -A 1B 1C 1D 1中,E 是AB 的中点,F 是A 1A 的中点,求证:(1)E ,C ,D 1,F 四点共面;(2)直线CE ,D 1F ,DA 三线共点.考点 平面的基本性质题点 点共线、线共点、点在线上问题证明 (1)如图,连接EF ,D 1C ,A 1B .∵E 为AB 的中点,F 为AA 1的中点,∴EF ∥A 1B ,且EF =12A 1B , 又∵A 1B ∥D 1C ,且A 1B =D 1C ,∴EF ∥D 1C ,且EF =12D 1C ,∴E,F,D1,C四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理,P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.14.已知空间三条直线两两相交,点P不在这三条直线上,则由点P和这三条直线最多可以确定的平面个数为________.答案 6解析当三条直线共点但不共面相交时,这三条直线可以确定三个平面,而点P与三条直线又可以确定三个平面,故最多可以确定六个平面.15.如图,在直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.考点平面的基本性质题点平面基本性质的其他简单应用解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上.由于AB>CD,则分别延长AC和BD交于点E,如图所示,∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,则连接SE,直线SE就是平面SBD和平面SAC的交线.。

空间点直线平面之间的位置关系例题

空间点直线平面之间的位置关系例题

空间点直线平面之间的位置关系例题空间几何是数学中一个非常重要的分支,在空间几何中,点、直线和平面是最基本的元素。

它们之间的位置关系既复杂又深刻,需要我们用深度和广度兼具的方式进行全面评估。

在本文中,我们将从简到繁,由浅入深地探讨空间点、直线和平面之间的位置关系,以及解决一些典型的例题。

一、空间点、直线和平面的基本概念1. 点:在几何中,点是最基本的概念,它是没有大小,没有形状,只有位置的。

点在空间中是唯一的,通过坐标来表示。

2. 直线:直线是由无数个点组成的,在空间中是一条无限延伸的路径。

直线有方向和长度,可以根据方向向量来表示。

3. 平面:平面是由无数个点和直线组成的,在空间中是没有边界的二维图形。

平面可以通过点和法向量来表示。

二、点、直线和平面之间的位置关系1. 点和直线的位置关系:(1)点是否在直线上:给定点P(x,y,z),直线L:Ax+By+Cz+D=0,要判断点P是否在直线L上,可以将点P的坐标代入直线方程,若等式成立,则点P在直线L上。

(2)点到直线的距离:点P到直线L的距离可以通过点到直线的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。

(3)点和直线的位置关系还包括点在直线的上、下、左、右、内、外等方面。

2. 点、直线和平面的位置关系:(1)点是否在平面上:给定点P(x,y,z),平面π:Ax+By+Cz+D=0,要判断点P是否在平面π上,可以将点P的坐标代入平面方程,若等式成立,则点P在平面π上。

(2)点到平面的距离:点P到平面π的距离可以通过点到平面的公式来计算,即d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)。

(3)点和平面的位置关系还包括点在平面的前、后、内、外等方面。

三、例题解析:空间点、直线、平面的位置关系1. 例题一:已知点A(1,2,3)、直线L:2x-3y+z+4=0和平面π:3x+y-2z-7=0,判断点A是否在直线L上和平面π上,若不在,求点A到直线L和平面π的距离。

人教版高一数学必修二《空间点、直线、平面之间的位置关》教案及教学反思

人教版高一数学必修二《空间点、直线、平面之间的位置关》教案及教学反思

人教版高一数学必修二《空间点、直线、平面之间的位置关》教案及教学反思一、教学目标通过本次教学,学生将能够:1.掌握空间点、直线、平面之间的位置关系;2.学会使用空间几何中的基本概念和基本问题;3.进一步培养学生的数学思维,提高学生的空间想象能力和综合运用能力。

二、教学重点和难点教学重点:1.理解空间中点、直线、平面的概念和特征;2.掌握点与直线、点与平面的位置关系以及直线与平面的位置关系;3.运用三视图法和参考投影法解决平面与平面的位置关系。

教学难点:1.掌握点、直线、平面的共面关系;2.学会在空间中画出图形;3.掌握平面间的位置关系。

三、教学过程1. 导入环节(5分钟)引导学生通过生活实际情境,复习几何学中的点、线、面的概念,并对此进行概括,展现本课内容的片面性和局限性,进而引导学生思考如何通过分别考虑点、直线、平面的位置关系的方法来全面把握几何学中的空间图形。

同时,激发学生空间想象的能力。

2. 正式教学环节(40分钟)1)点与直线的位置关系教师介绍点与直线的位置关系,并用图形进行示范。

然后,让学生自己分析和总结,归纳出点与直线的位置关系的有关性质。

例如:•点在直线上;•点在直线上的外部;•点在线的两侧;•点与直线相离。

2)点与平面的位置关系引入点与平面的位置关系,老师同样先给出范例进行示范,帮助学生加深理解。

然后,再让学生自己探究和总结,归纳点与平面的位置关系的有关性质。

例如:•点在平面上;•点在平面上的内部;•点在平面上的外部。

3)直线与平面的位置关系讲述直线与平面的位置关系,为学生提供相关的图形,并进行实操。

教师同样应给学生提供足够多的机会,让学生自行探究总结,得出有关性质。

例如:•直线在平面上;•直线与平面交于一点;•直线与平面平行;•直线与平面垂直。

4)平面与平面的位置关系在学习与应用前面的知识点后,适当引入平面与平面的位置关系。

老师还是要以图形为依据,实践出多重案例,使学生理解平面与平面的位置关系的本质。

高中数学第二章点直线平面之间的位置关系2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定课

高中数学第二章点直线平面之间的位置关系2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定课
(2)平面平行有传递性吗?
[提示] (1)根据直线与平面平行的判定定理可知该结论错误. (2)有.若 α、β、γ 为三个不重合的平面,则 α∥β,β∥γ⇒α∥γ.
1.能保证直线 a 与平面 α 平行的条件是( ) A.b⊂α,a∥b B.b⊂α,c∥α,a∥b,a∥c C.b⊂α,A∈a,B∈a,C∈b,D∈b,且 AC=BD D.a⊄α,b⊂α,a∥b D [A 错误,若 b⊂α,a∥b,则 a∥α 或 a⊂α;B 错误,若 b⊂α, c∥α,a∥b,a∥c,则 a∥α 或 a⊂α;C 错误,若满足此条件,则 a∥α 或 a⊂α 或 a 与 α 相交;D 正确,a⊄α,b⊂α,a∥b 恰好是判定定理所 具备的不可缺少的三个条件.]
线面、面面平行的综合问题 [探究问题] 观察下面两个图形:
1.怎样证明平面 β 中的直线与平面 α 平行? [提示] 利用线面平行的判定定理,只需在平面α中找到一条与 平面β中的直线平行的直线即可.
2.怎样证明两个平面平行? [提示] 利用面面平行的判定定理,只需平面 β 中的两条相交直 线分别与平面 α 平行即可.
故四边形BDD1B1为平行四边形, ∴BD∥B1D1, 又BD⊄平面AB1D1,B1D1⊂平面AB1D1, ∴BD∥平面AB1D1.
1.判断或证明线面平行的常用方法 (1)定义法:证明直线与平面无公共点(不易操作); (2)判定定理法(a⊄α,b⊂α,a∥b⇒a∥α); (3)排除法:证明直线与平面不相交,直线也不在平面内. 2.证明线线平行的常用方法 (1)利用三角形、梯形中位线的性质; (2)利用平行四边形的性质; (3)利用平行线分线段成比例定理.
【例 3】 已知底面是平行四边形的四棱锥 P-ABCD,点 E 在 PD 上,且 PE∶ED=2∶1,在棱 PC 上是否存在一点 F,使 BF∥平面 AEC? 证明你的结论,并说出点 F 的位置.

高中数学必修2知识点总结02点直线与平面的位置关系

高中数学必修2知识点总结02点直线与平面的位置关系

高中数学必修2知识点总结02点、直线、平面的位置关系点、直线、平面是构成空间几何体基本元素,研究它们之间的性质以及相互之间的位置关系,是研究空间几何体性质的一般方法。

教材要求:理解空间中点、直线、平面的位置关系;学会用数学语言表述有关平行、垂直的判定与性质,并对某些结论进行论证;掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念;掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理等一、直线与平面位置关系高考考试内容及考试要求:考试内容:1、平面及其基本性质;2、平行直线;对应边分别平行的角;异面直线所成的角;异面直线的公垂线;异面直线的距离;3、直线和平面平行的判定与性质;直线和平面垂直的判定与性质;点到平面的距离;斜线在平面上的射影;直线和平面所成的角;三垂线定理及其逆定理;4、平行平面的判定与性质;平行平面间的距离;二面角及其平面角;两个平面垂直的判定与性质;考试要求:1、掌握平面的基本性质;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系。

2、掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离;3、掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理;4、掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

二、空间中的平行关系课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

高二数学点,直线,平面之间的位置关系

高二数学点,直线,平面之间的位置关系

点,直线,平面之间的位置关系一、知识网络二、高考考点1、空间直线,空间直线与平面,空间两个平面的平行与垂直的判定或性质.其中,线面垂直是历年高考试题涉及的容.2、上述平行与垂直的理论在以多面体为载体的几何问题中的应用;求角;求距离等.其中,三垂线定理及其逆定理的应用尤为重要.3、解答题循着先证明后计算的原则,融推理于计算之中,主要考察学生综合运用知识的能力,其中,突出考察模型法等数学方法,注重考察转化与化归思想;立体问题平面化;几何问题代数化.三、知识要点〔一〕空间直线1、空间两条直线的位置关系〔1〕相交直线——有且仅有一个公共点;〔2〕平行直线——在同一个平面,没有公共点;〔3〕异面直线——不同在任何一个平面,没有公共点.2、平行直线〔1〕公理4〔平行直线的传递性〕:平行于同一条直线的两条直线互相平行. 符号表示:设a,b,c为直线,〔2〕空间等角定理如果一个角的两边和另一个角的两边分别平行且方向一样,则这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,则这两条直线所成的锐角〔或直角〕相等.3、异面直线〔1〕定义:不同在任何一个平面的两条直线叫做异面直线.〔2〕有关概念:〔ⅰ〕设直线a,b为异面直线,经过空间任意一点O作直线a',b',并使a'//a,b'//b,则把a'和b'所成的锐角〔或直角〕叫做异面直线a和b所成的角.特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.认知:设为异面直线a,b所成的角,则 .〔ⅱ〕和两条异面直线都垂直相交的直线〔存在且唯一〕,叫做两条异面直线的公垂线.〔ⅲ〕两条异面直线的公垂线在这两条异面直线间的线段〔公垂线段〕的长度,叫做两条异面直线的距离.〔二〕空间直线与平面直线与平面的位置关系:〔1〕直线在平面——直线与平面有无数个公共点;〔2〕直线和平面相交——直线与平面有且仅有一个公共点;〔3〕直线和平面平行——直线与平面没有公共点.其中,直线和平面相交或直线和平面平行统称为直线在平面外.1、直线与平面平行〔1〕定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.〔2〕判定判定定理:如果平面外的一条直线和这个平面的一条直线平行,则这条直线和这个平面平行.认知:应用此定理证题的三个环节:指出 .〔3〕性质性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行.2、直线与平面垂直〔1〕定义:如果直线l和平面的任何一条直线都垂直,则说直线l和平面互相垂直,记作l⊥ .〔2〕判定:判定定理1:如果一条直线和一个平面的两条相交直线都垂直,则这条直线垂直于这个平面.判定定理2:如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面. 符号表示:.〔3〕性质性质定理:如果两条直线垂直于同一个平面,则这两条直线平行. 符号表示:〔4〕概念〔ⅰ〕点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.〔ⅱ〕直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.〔三〕空间两个平面1、两个平面的位置关系〔1〕定义:如果两个平面没有公共点,则说这两个平面互相平行.〔2〕两个平面的位置关系〔ⅰ〕两个平面平行——没有公共点;〔ⅱ〕两个平面相交——有一条公共直线.2、两个平面平行〔1〕判定判定定理1:如果一个平面有两条相交直线都平行于另一个平面,则这两个平面平行.判定定理2:〔线面垂直性质定理〕:垂直于同一条直线的两个平面平行.〔2〕性质性质定理1:如果两个平行平面同时和第三个平面相交,则它们的交线平行.性质定理2〔定义的推论〕:如果两个平面平行,则其中一个平面的所有直线都平行于另一个平面.3、有关概念〔1〕和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的局部,叫做这两个平行平面的公垂线段.〔2〕两个平行平面的公垂线段都相等. 〔3〕公垂线段的长度叫做两个平行平面间的距离.4、认知:两平面平行的判定定理的特征:线面平行面面平行,或线线平行面面平行;两平面平行的性质定理的特征:面面平行线面平行,或面面平行线线平行.它们恰是平行畴中同一事物的相互依存和相互贯穿的正反两个方面.四、高考真题〔一〕选择题1,设为两个不同的平面,l,m为两条不同的直线,且,有如下的两个命题:①假设;②假设则〔〕A、①是真命题,②是假命题;B、①是假命题,②是真命题;C、①②都是真命题;D、①②都是假命题.分析:这里 . 对于①,假设,则l,m可能平行,也可能异面;对于②,假设则可能垂直,也可能不垂直. 故应选D.2、m,n是两条不重合的直线,是三个两两不重合的平面,给出以下四个命题:①②③④假设m,n是异面直线,其中真命题是〔〕A、①和②B、①和③C、③和④D、①和④分析:由面面平行判定定理知①为真命题;注意到垂直于同一个平面的两个平面不一定平行,②为假命题;③显然为假命题;④由于m,n为异面直线,故可在确立两条相交直线与平行,因而为真命题. 故应选D.3,设为平面,m,n,l为直线,则m⊥的一个充分条件是〔〕分析:对于选项A,由于这里的直线m不一定在,故不一定有m⊥;对于选项B,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;对于选项C,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m也垂直于另一个平面,此命题亦为假命题;排除法可知应选D.选项D与m⊥构成的命题是:假设直线m与两个平行平面中的一个平面垂直,则它和另一个平面也垂直,这显然为真命题.4、对于不重合的两个平面,给定以下条件:①存在平面,使得都垂直于;②存在平面,使得都平行于;③有不共线三点到的距离相等;④存在异面直线l,m,使得;其中可以判定平行的条件有〔〕A、1个B、2个C、3个D、4个分析:对于①,垂直于同一平面的两个平面可能相交;对于②,由面面平行的传递性可以判定;对于③,当相交时,仍可存在不共线三点到的距离等;对于④,在m上取定点P,经过点P在l与点P确定的平面作l'//l,则l'与m可确定平面 .由于于是可知,此题应选B.〔二〕填空题1、m,n是不同的直线,是不重合的平面,给出以下命题:①假设②假设③假设④m,n是两条异面直线,假设上面的命题中,真命题的序号是〔写出所有真命题的序号〕分析:①显然为假命题;对于②,的直线m,n不一定相交,故②亦为假命题;对于③,由题设知∴③为真命题;对于④,由前面选择题第4题知此为真命题.因此,答案为③、④.2、在正方体中,过对角线的一个平面交于E,交于F,则①四边形一定是平行四边形;②四边形有可能是正方形;③四边形在底面ABCD的投影一定是正方形;④平面有可能垂直于平面以上结论正确的为〔写出所有正确结论的编号〕分析:注意到正方体的特性,由面面平行性质定理和,故四边形为平行四边形,①正确;在这里,当时,平行四边形即为矩形,且不可能为正方形,②不正确;③正确;而当平面与底面ABCD〔或〕重合时有平面,故④正确.于是可知答案为①,③,④.〔三〕解答题1、如图1,ABCD是上下底面边长分别为2和6,高为的等腰梯形,将它沿对称轴折成直二面角,如图2.〔1〕证明:;〔2〕求二面角的大小.分析:循着解决平面图形折叠问题的根本思路:〔1〕认知平面图形中有关线段的长度与联系;〔2〕了解折叠前后有关线段的长度或联系的"变"与"不变";〔3〕利用"不变"的量与"不变"的关系解题.在这里,由图1知, .至此〔1〕易证;对于〔2〕,由〔1〕知,,故,于是可利用三垂线定理构造所求二面角的平面角.解:〔1〕证明:由题设知∴∠AOB是所成的直二面角的平面角,即,∴∴OC是AC在平面上的射影①又由题设得从而②∴根据三垂线定理由①②得, .〔2〕解:由〔1〕知,,∴设,在平面AOC过点E作EF⊥AC于F,连结〔三垂线定理〕由题设知,∴∴又∴即所求二面角的大小为.点评:利用原来平面图形折叠后“不变的量〞与线段间不变的垂直或平行关系,推出立体图形中,是证明〔1〕以及解答〔2〕的根底与关键.由此可见,这类问题中认知平面图形的重要.2、在四面体P-ABC中,PA=BC=6,PC=AB=10,AC=8,PB= .F是线段PB上一点,,点E在线段AB上,且EF⊥PB.〔1〕证明:PB⊥平面CEF;〔2〕求:二面角B-CE-F的大小.分析:〔1〕要证PB⊥平面CEF,只要证PB垂直于CE或CF.这一设想的实现与否,要看对有关三角形的特性的认知与把握.在这里,,故易得BC⊥平面PAC,BC⊥AC等.注意到,,便得PB⊥CF,于是问题获证.〔2〕由〔1〕知CE⊥PB,从而CE⊥平面PAB,CE⊥AB,CE⊥EF,故∠BEF为所求二面角的平面角.至此,解题的难点得以突破.解:〔1〕证明:∵PA2+AC2=36+64=100=PC2∴△PAC是以∠PAC为直角的直角三角形,同理可证:△PAB是以∠PAB为直角的直角三角形,△PCB是以∠PCB为直角的直角三角形。

高中数学必修2第二章-空间点、直线、平面之间的位置关系

高中数学必修2第二章-空间点、直线、平面之间的位置关系
两个平面的位置关系有且只有两种 ①两个平面平行——没有公共点 ②两个平面相交——有一条公共直线.
分类的依据是什么?
公理3 如果两个不重合的平面有一个公共 点,那么它们有且只有一条过该点的公共直线.
两个平面平行或相交的画法及表示


m


//
=m
2.1
直线、平面平行的 判定及其性质
主要内容
平面内两条相交直线 空间中两条异面直线
已知两条异面直线a,b,经过空间任一点O作直
线 a // a, •b // b ,把 与a 所b 成的锐角(或直角)叫
做异面直线a与b所成的角.
b

a
b
b
O
a
O aa
异面直线所成的角
探究
我们规定两条平行直线的夹角为0°,那么 两条异面直线所成的角的取值范围是什么?
两条直线的位置关系
空间中的直线与直线之间有三种位置关系:
共面直线
相交直线: 同一平面内,有且只有一 个公共点;
平行直线: 同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
定理的应用
A
例1. 如图,空间四边形ABCD中, F
E、F分别是 AB,AD的中点. E
D
求证:EF∥平面BCD.
B
C
分析:要证明线面平行只需证明线线平行,
即在平面BCD内找一条直线 平行于EF,由已
知的条件怎样找这条直线?
定理的应用
A
例1. 如图,空间四边形ABCD中, F

高中数学必修二课件:空间点、直线、平面之间的位置关系

高中数学必修二课件:空间点、直线、平面之间的位置关系

5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.

高考数学复习空间点、直线、平面之间的位置关系

高考数学复习空间点、直线、平面之间的位置关系

第2讲 空间点、直线、平面之间的位置关系最新考纲考向预测借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解公理1~4及其相关定理.命题趋势主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,主要以选择题和填空题的形式出现,主要为中低档题.核心素养 直观想象、逻辑推理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行. 2.空间直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内 (2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎥⎤0,π2.(3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)空间中直线和平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内a⊂α有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.常见误区1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线即不平行,也不相交.2.在判断直线与平面的位置关系时最易忽视“线在平面内”.1.判断正误(正确的打“√”,错误的打“×”)(1)若P∈α∩β且l是α,β的交线,则P∈l.()(2)三点A,B,C确定一个平面.()(3)若直线a∩b=A,则直线a与b能够确定一个平面.()(4)若A∈l,B∈l且A∈α,B∈α,则l⊂α.()(5)分别在两个平面内的两条直线是异面直线.()答案:(1)√(2)×(3)√(4)√(5)×2.(多选)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系可能是()A.垂直B.相交C.异面D.平行解析:选ABC.依题意,m∩α=A,n⊂α,所以m与n可能异面、相交(垂直是相交的特例),一定不平行.3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选 D.两角相等,角的一边平行且方向相同,另一边不一定平行,故选D.4.(易错题)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD 的中点,则异面直线B1C与EF所成角的大小为________.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求角,又B1D1=B1C =D1C,所以∠D1B1C=60°.答案:60°5.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA 的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.解析:(1)因为四边形EFGH为菱形,所以EF=EH,故AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH,因为EF綊12AC,EH綊12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD平面的基本性质如图所示,在正方体ABCD-A1B1C1D中,E,F分别是AB和AA1的中点,求证:E,C,D1,F四点共面.【证明】如图所示,连接CD1,EF,A1B,因为E,F分别是AB和AA1的中点,所以EF∥A1B且EF=12A1B.又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥CD1,所以EF∥CD1,所以EF与CD1确定一个平面α,所以E,F,C,D1∈α,即E,C,D1,F四点共面.【引申探究】(变问法)若本例条件不变,如何证明“CE,D1F,DA交于一点”?证明:如图,由本例知EF∥CD1,且EF=12CD1,所以四边形CD1FE是梯形,所以CE与D1F必相交,设交点为P,则P∈CE且P∈D1F,又CE⊂平面ABCD,且D1F⊂平面A1ADD1,所以P∈平面ABCD,且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,所以P∈AD,所以CE,D1F,DA三线交于一点.共面、共线、共点问题的证明方法(1)证明点或线共面:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点:先证其中两条直线交于一点,再证其他直线经过该点. [提醒] 点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.1.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A .C 1,M ,O 三点共线B .C 1,M ,O ,C 四点共面 C .C 1,O ,A 1,M 四点共面D .D 1,D ,O ,M 四点共面解析:选ABC.连接A 1C 1,AC ,则AC ∩BD =O ,又A 1C ∩平面C 1BD =M ,所以三点C 1,M ,O 在平面C 1BD 与平面ACC 1A 1的交线上,所以C 1,M ,O 三点共线,所以选项A ,B ,C 均正确,选项D 错误.2.如图,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明:(1)因为E ,F 分别为AB ,AD 的中点,所以EF ∥BD .在△BCD 中,BG GC =DH HC =12,所以GH ∥BD ,所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)因为EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,所以P∈平面ABC.同理P∈平面ADC .所以P为平面ABC与平面ADC的公共点,又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.空间两直线的位置关系(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】如图,取CD的中点F,连接EF,EB,BD,FN,因为△CDE 是正三角形,所以EF⊥CD.设CD=2,则EF= 3.因为点N是正方形ABCD的中心,所以BD=22,NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=22,所以在等腰三角形BDE中,BM=7,所以BM≠EN.易知BM,EN是相交直线.故选B.【答案】 B1.已知a,b是异面直线,A,B是a上的两点,C,D是b上的两点,M,N分别是线段AC,BD的中点,则MN和a的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选A.若MN与AB平行或相交,则MN与AB共面,设该平面为α.因为C∈直线AM,D∈直线BN,所以C∈α,D∈α,所以b⊂α.又因为A∈α,B ∈α,所以a⊂α.这与a,b异面矛盾.故选A.2.(多选)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C 的中点,下列说法正确的有()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线解析:选CD.因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故A错;取DD1的中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故B错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN 与MB1是异面直线,故C正确;同理D正确,故选CD.异面直线所成的角(1)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB 的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.(2)四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.【解析】(1)取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.(2)如图,取BC的中点O,连接OE,OF,因为OE∥AC,OF∥BD,所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =12.当∠EOF =120°时,取EF 的中点M ,则OM ⊥EF , EF =2EM =2×34=32. 【答案】 (1)2 (2)12或32平移法求异面直线所成角的步骤具体步骤如下:1.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:选C.如图,可补成一个正方体,所以AC 1∥BD 1.所以BA 1与AC 1所成的角为∠A 1BD 1.又易知△A1BD1为正三角形.所以∠A1BD1=60°.即BA1与AC1所成的角为60°.2.(2021·济南市学习质量评估)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.解析:如图,连接DE交FC于点O,取BE的中点G,连接OG,CG,则OG∥BD且OG=12BD,所以∠COG为异面直线BD与CF所成的角或其补角.设正方形ABCD的边长为2,则CE=BE=1,CF=DE=CD2+CE2=5,所以CO=12CF=52.易得BE⊥平面CDFE,所以BE⊥DE,所以BD=DE2+BE2=6,所以OG=12BD=62.易知CE⊥平面ABEF,所以CE⊥BE,又GE=12BE=12,所以CG=CE2+GE2=52.在△COG中,由余弦定理得,cos∠COG=OC2+OG2-CG22OC·OG=⎝⎛⎭⎪⎫522+⎝⎛⎭⎪⎫622-⎝⎛⎭⎪⎫5222×52×62=3010,所以异面直线BD与CF所成角的余弦值为30 10.答案:3010[A级基础练]1.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析:选D.依题意,直线b和c的位置关系可能是相交、平行或异面.故选D.2.(多选)下列命题正确的是()A.梯形一定是平面图形B.若两条直线和第三条直线所成的角相等,则这两条直线平行C.两两相交的三条直线最多可以确定三个平面D.若两个平面有三个公共点,则这两个平面重合解析:选AC.对于A,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,故A正确;对于B,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,故B错误;对于C,两两相交的三条直线最多可以确定三个平面,故C正确;对于D,若两个平面有三个公共点,则这两个平面相交或重合,故D错误.3.(2021·安徽蚌埠第二中学期中)在四面体ABCD中,点E,F,G,H分别在直线AD,AB,CD,BC上,若直线EF和GH相交,则它们的交点一定() A.在直线DB上B.在直线AB上C.在直线CB上D.都不对解析:选A.直线EF和GH相交,设其交点为M.因为EF⊂平面ABD,HG ⊂平面CBD,所以M∈平面ABD且M∈平面CBD.因为平面ABD∩平面BCD=BD,所以M∈BD,所以EF与HG的交点在直线BD上.故选A.4.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC解析:选C.由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.5.如图,在三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°解析:选C.由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC为正三角形,所以AE⊥BC,D错误.6.已知棱长为a的正方体ABCD-A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________.解析:如图,由题意可知MN∥AC.又因为AC ∥A ′C ′,所以MN ∥A ′C ′.答案:平行7.(2020·高考全国卷Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:依题意得,AE =AD =3,在△AEC 中,AC =1,∠CAE =30°,由余弦定理得EC 2=AE 2+AC 2-2AE ·AC cos ∠EAC =3+1-23cos 30°=1,所以EC =1,所以CF =EC =1.又BC =AC 2+AB 2=1+3=2,BF =BD =AD 2+AB 2=6,所以在△BCF 中,由余弦定理得cos ∠FCB =BC 2+CF 2-BF 22BC ×CF =22+12-(6)22×2×1=-14. 答案:-148.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.解析:如图,将原图补成正方体ABCD -QGHP ,连接AG ,GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP ,所以∠APG =π3.答案:π39.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出l的位置;(2)设l∩A1B1=P,求PB1的长.解:(1)如图,延长DM与D1A1交于点O,连接NO,则直线NO即为直线l.(2)因为l∩A1B1=P,则易知直线NO与A1B1的交点即为P.所以A1M∥DD1,且M,N分别是AA1,D1C1的中点,所以A1也为D1O的中点.由图可知A1PD1N=OA1OD1=12,所以A1P=a4,从而可知PB1=3a4.10.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF 与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD 所在平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=12AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.[B级综合练]11.已知直线l⊄平面α,直线m⊂平面α,给出下面四个结论:①若l与m 不垂直,则l与α一定不垂直;②若l与m所成的角为30°,则l与α所成的角也为30°;③l∥m是l∥α的必要不充分条件;④若l与α相交,则l与m一定是异面直线.其中正确结论的个数为()A.1B.2C.3D.4解析:选A.对于①,当l与m不垂直时,假设l⊥α,那么由l⊥α一定能得到l⊥m,这与已知条件矛盾,因此l与α一定不垂直,故①正确;对于②,易知l与m所成的角为30°时,l与α所成的角不一定为30°,故②不正确;对于③,l∥m可以推出l∥α,但是l∥α不能推出l∥m,因此l∥m是l∥α的充分不必要条件,故③不正确;对于④,若l与α相交,则l与m相交或异面,故④不正确.故正确结论的个数为1,选A.12.如图,在正方体ABCD-A′B′C′D′中,平面α垂直于对角线AC′,且平面α截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则()A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值解析:选B.设平面α截得正方体的六个表面得到截面六边形ω,ω与正方体的棱的交点分别为I,J,N,M,L,K(如图).将正方体切去两个正三棱锥A­A′BD和C′­B′CD′,得到一个几何体V,则V的上、下底面B′CD′与A′BD互相平行,每个侧面都是等腰直角三角形,截面六边形ω的每一条边分别与V的底面上的每一条边平行.设正方体的棱长为a ,A ′K A ′B ′=γ,则IK =γB ′D ′=2aγ,KL =(1-γ)A ′B =2a (1-γ),故IK +KL =2aγ+2a (1-γ)=2a .同理可证LM +MN =NJ +IJ =2a ,故六边形ω周长为32a ,即周长为定值.当I ,J ,N ,M ,L ,K 都在对应棱的中点时,ω是正六边形.其面积S =6×12×⎝ ⎛⎭⎪⎫22a 2×32=334a 2,△A ′BD 的面积为12×(2a )2×32=32a 2,当ω无限趋近于△A ′BD 时,ω的面积无限趋近于32a 2,故ω的面积一定会发生变化,不为定值.故选B.13.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由已知FG =GA ,FH =HD 可得GH 綊12AD .又BC 綊12AD ,所以GH 綊BC .所以四边形BCHG 为平行四边形.(2)C ,D ,F ,E 四点共面,理由如下:由BE 綊12AF ,G 为F A 的中点知,BE 綊FG ,所以四边形BEFG 为平行四边形,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH ,所以EF 与CH 共面,又D ∈FH ,所以C ,D ,F ,E 四点共面.14.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当m=n时,四边形EFGH为平行四边形,理由如下:当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为EHBD=AEAE+EB=mm+1,所以EH=mm+1BD.同理可得FG=nn+1BD,由EH=FG,得m=n.故当m=n时,四边形EFGH为平行四边形.(3)证明:当m=n时,AE∶EB=CF∶FB,所以EF∥AC,又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°,从而平行四边形EFGH为矩形,所以EG=FH.[C级创新练]15.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.13解析:选A.如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,则m1∥m,又因为平面ABCD∥平面A1B1C1D1,平面CB1D1∩平面A1B1C1D1=B1D1,所以B 1D 1∥m 1,所以B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小. 又因为B 1C =B 1D 1=CD 1(均为面对角线),所以∠CD 1B 1=π3, 得sin ∠CD 1B 1=32,故选A.16.(2020·新高考卷Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.解析:如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M = 3.由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P = D 1M 2+MP 2=(3)2+(2)2=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH ︵的长为14×2π×2=2π2.答案:2π2第2讲 空间点、直线、平面之间的位置关系 最新考纲考向预测 借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解公理1~4及其相关定理. 命题趋势 主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,主要以选择题和填空题的形式出现,主要为中低档题. 核心素养 直观想象、逻辑推理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.空间直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)空间中直线和平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内a⊂α有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.常见误区1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线即不平行,也不相交.2.在判断直线与平面的位置关系时最易忽视“线在平面内”.1.判断正误(正确的打“√”,错误的打“×”)(1)若P∈α∩β且l是α,β的交线,则P∈l.()(2)三点A,B,C确定一个平面.()(3)若直线a∩b=A,则直线a与b能够确定一个平面.()(4)若A∈l,B∈l且A∈α,B∈α,则l⊂α.()(5)分别在两个平面内的两条直线是异面直线.()答案:(1)√(2)×(3)√(4)√(5)×2.(多选)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系可能是()A.垂直B.相交C.异面D.平行解析:选ABC.依题意,m∩α=A,n⊂α,所以m与n可能异面、相交(垂直是相交的特例),一定不平行.3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选 D.两角相等,角的一边平行且方向相同,另一边不一定平行,故选D.4.(易错题)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD 的中点,则异面直线B1C与EF所成角的大小为________.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求角,又B1D1=B1C =D1C,所以∠D1B1C=60°.答案:60°5.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA 的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.解析:(1)因为四边形EFGH为菱形,所以EF=EH,故AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH,因为EF綊12AC,EH綊12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD平面的基本性质如图所示,在正方体ABCD-A1B1C1D中,E,F分别是AB和AA1的中点,求证:E,C,D1,F四点共面.【证明】如图所示,连接CD1,EF,A1B,因为E,F分别是AB和AA1的中点,所以EF∥A1B且EF=12A1B.又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥CD1,所以EF∥CD1,所以EF与CD1确定一个平面α,所以E,F,C,D1∈α,即E,C,D1,F四点共面.【引申探究】(变问法)若本例条件不变,如何证明“CE,D1F,DA交于一点”?证明:如图,由本例知EF∥CD1,且EF=12CD1,所以四边形CD1FE是梯形,所以CE与D1F必相交,设交点为P,则P∈CE且P∈D1F,又CE⊂平面ABCD,且D1F⊂平面A1ADD1,所以P∈平面ABCD,且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,所以P∈AD,所以CE,D1F,DA三线交于一点.共面、共线、共点问题的证明方法(1)证明点或线共面:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点:先证其中两条直线交于一点,再证其他直线经过该点. [提醒] 点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.1.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,O 是DB 的中点,直线A 1C 交平面C 1BD 于点M ,则下列结论正确的是( )A .C 1,M ,O 三点共线B .C 1,M ,O ,C 四点共面 C .C 1,O ,A 1,M 四点共面D .D 1,D ,O ,M 四点共面解析:选ABC.连接A 1C 1,AC ,则AC ∩BD =O ,又A 1C ∩平面C 1BD =M ,所以三点C 1,M ,O 在平面C 1BD 与平面ACC 1A 1的交线上,所以C 1,M ,O 三点共线,所以选项A ,B ,C 均正确,选项D 错误.2.如图,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明:(1)因为E ,F 分别为AB ,AD 的中点,所以EF ∥BD .在△BCD 中,BG GC =DH HC =12,所以GH ∥BD ,所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)因为EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,所以P∈平面ABC.同理P∈平面ADC .所以P为平面ABC与平面ADC的公共点,又平面ABC∩平面ADC=AC,所以P∈AC,所以P,A,C三点共线.空间两直线的位置关系(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】如图,取CD的中点F,连接EF,EB,BD,FN,因为△CDE 是正三角形,所以EF⊥CD.设CD=2,则EF= 3.因为点N是正方形ABCD的中心,所以BD=22,NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=22,所以在等腰三角形BDE中,BM=7,所以BM≠EN.易知BM,EN是相交直线.故选B.【答案】 B1.已知a,b是异面直线,A,B是a上的两点,C,D是b上的两点,M,N分别是线段AC,BD的中点,则MN和a的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选A.若MN与AB平行或相交,则MN与AB共面,设该平面为α.因为C∈直线AM,D∈直线BN,所以C∈α,D∈α,所以b⊂α.又因为A∈α,B ∈α,所以a⊂α.这与a,b异面矛盾.故选A.2.(多选)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C 的中点,下列说法正确的有()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线解析:选CD.因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故A错;取DD1的中点E,连接AE(图略),则BN∥AE,但AE与AM相交,故B错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN 与MB1是异面直线,故C正确;同理D正确,故选CD.异面直线所成的角(1)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB 的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.(2)四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.【解析】(1)取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.(2)如图,取BC的中点O,连接OE,OF,因为OE∥AC,OF∥BD,所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =12.当∠EOF =120°时,取EF 的中点M ,则OM ⊥EF , EF =2EM =2×34=32. 【答案】 (1)2 (2)12或32平移法求异面直线所成角的步骤具体步骤如下:1.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:选C.如图,可补成一个正方体,所以AC 1∥BD 1.所以BA 1与AC 1所成的角为∠A 1BD 1.又易知△A1BD1为正三角形.所以∠A1BD1=60°.即BA1与AC1所成的角为60°.2.(2021·济南市学习质量评估)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.解析:如图,连接DE交FC于点O,取BE的中点G,连接OG,CG,则OG∥BD且OG=12BD,所以∠COG为异面直线BD与CF所成的角或其补角.设正方形ABCD的边长为2,则CE=BE=1,CF=DE=CD2+CE2=5,所以CO=12CF=52.易得BE⊥平面CDFE,所以BE⊥DE,所以BD=DE2+BE2=6,所以OG=12BD=62.易知CE⊥平面ABEF,所以CE⊥BE,又GE=12BE=12,所以CG=CE2+GE2=52.在△COG中,由余弦定理得,cos∠COG=OC2+OG2-CG22OC·OG=⎝⎛⎭⎪⎫522+⎝⎛⎭⎪⎫622-⎝⎛⎭⎪⎫5222×52×62=3010,。

高中数学第二章点、直线、平面之间的位置关系2.1.1平面aa高一数学

高中数学第二章点、直线、平面之间的位置关系2.1.1平面aa高一数学

2.点、直线、平面之间的位置(wèi zhi)关系及语言表达
文字语言表达
图形语言表达
点A在直线l上
点A在直线l外
点A在平面α内
2021/12/12
第十一页,共四十二页。
符号语言表达
A∈l .
A∉l
.
A∈α .
点 A 在平面α外 直线 l 在平面α内
直线 l 在平面α外
平面α,β相交于 l
2021/12/12
解:(1)点A在平面α内,点B不在平面α内. (2)直线(zhíxiàn)l在平面α内,直线m与平面α相交于点A,且点A不在直线l上. (3)直线l经过平面α外一点P和平面α内一点Q. 图形分别如图(1),(2),(3)所示.
2021/12/12
第二十四页,共四十二页。
题型二 点线共面
【思考】 过直线与直线外一点能否唯一确定一平面?两条相交直线能否唯一确定一平面?两条平 行直线呢? 提示(tíshì):由公理2,易证明上述三个问题中,均能唯一确定一平面.
2021/12/12
第三页,共四十二页。
②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理
解空间中线面平行、垂直的有关性质与判定. 通过直观感知、操作确认,归纳(guīnà)出以下判定定理.
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.

知识(zhī shi)探

1.平面
(1)平面的概念
几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教学辅导教案学科: 数学任课教师:授课时间:2012年2月25 日(星期六)姓名年级高一性别女课题点、直线、平面之间的位置关系总课时____第_3_课教学目标1.了解空间中直线与平面的位置关系;了解空间中平面与平面的位置关系。

2.理解并掌握直线与平面平行的判定定理;理解并掌握直线与平面垂直的判定定理。

3. 理解并掌握直线与平面平行的性质;理解并掌握直线与平面垂直的性质。

教学难点重点重点:空间直线与平面、平面与平面之间的位置关系。

难点:解析与证明直线与平面、平面与平面的位置关系。

课堂教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________过程课题一空间点、直线、平面之间的位置关系【知识点归纳】公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LB∈L => L αA∈αB∈α公理1作用:判断直线是否在平面内公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α。

公理2作用:确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P∈α∩β =>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

LBA·αC·B·A·αP·αLβ=>a∥c直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a ∥αa ∥b两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:a βb βa ∩b = P β∥α a ∥α b ∥α技巧:判断两平面平行的方法有三种: (1)用定义; (2)判定定理;(3)垂直于同一条直线的两个平面平行。

定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a ∥αa β a ∥b α∩β= b作用:利用该定理可解决直线间的平行问题。

定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:α∥βα∩γ= a a ∥b β∩γ= bα a b直线与平面垂直判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

特别强调:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。

两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图:空间平行、垂直之间的转化与联系:ab平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系直线与直线的位置关系 直线与平面的位置关系平面与平面的位置关系直线与直线平行直线与平面平行平面与平面平行直线与直线垂直 直线与平面垂直 平面与平面垂直【典例精析】例1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα; ②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα; ④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是( ) A .① B .② C .③ D .④例2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则n m ||其中真命题的个数是( )A .1B .2C .3D .4例3.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。

其中真命题是( ) A .①和②B .①和③C .③和④D .①和④例4.已知直线n m l 、、及平面α,下列命题中的假命题是( ) A .若//l m ,//m n ,则//l n . B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .例5.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)例6.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)例7. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB.(Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.解:P AC B F EF 1例8.如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,︒=∠=∠=∠120CDE BCD BAE⑴ 求异面直线CD 与SB 所成的角(用反三角函数值表示);⑵ 证明:BC ⊥平面SAB ;解:例9. 已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为60。

(1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离. 证明:ABCDESPBCAO参考答案例1.C 例2. B 例3.D 例4.D 例5.③⑤ ②⑤ 例6.①③④ 例7[解](I )证明:∵2221006436PC AC PA ==+=+∴△PAC 是以∠PAC 为直角的直角三角形,同理可证△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形 故PA ⊥平面ABC又∵11||||1063022PBC S PC BC ∆==⨯⨯= 而PBC S CF PB ∆==⨯⨯=3017341534221||||21 故CF ⊥PB,又已知EF ⊥PB∴PB ⊥平面CEF(II )由(I )知PB ⊥CE, PA ⊥平面ABC ∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE在平面PAB 内,过F 作FF 1垂直AB 交AB 于F 1,则FF 1⊥平面ABC , EF 1是EF 在平面ABC 上的射影,∴EF ⊥EC故∠FEB 是二面角B —CE —F 的平面角35610cot tan ===∠=∠AP AB PBA FEB 二面角B —CE —F 的大小为35arctan例8[解](Ⅰ)连结BE ,延长BC 、ED 交于点F ,则∠DCF=∠CDF=600,∴△CDF 为正三角形,∴CF=DF又BC=DE ,∴BF=EF 因此,△BFE 为正三角形, ∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE (或其补角)就是异面直线CD 与SB 所成的角∵SA ⊥底面ABCDE ,SA=AB=AE=2,∴SB=22,同理SE=22,又∠BAE=1200,所以BE=32,从而,cos ∠SBE=46, ∴∠SBE=arccos46 所以异面直线CD 与SB 所成的角是arccos46 PAC BF E F 1FABCD E S(Ⅱ) 由题意,△ABE 为等腰三角形,∠BAE=1200,∴∠ABE=300,又∠FBE =600, ∴∠ABC=900,∴BC ⊥BA∵SA ⊥底面ABCDE ,BC ⊂底面ABCDE ,∴SA ⊥BC ,又SA BA=A , ∴BC ⊥平面SAB例9[证明](1)取BC 边的中点D ,连接AD 、PD , 则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . ∴ BC PA ⊥.(2)如图, 由(1)可知平面⊥PBC 平面APD ,则PDA ∠是侧面与底面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离.设OE 为h ,由题意可知点O 在AD 上, ∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=,∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.【课后习题】1.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是A .BC ∥平面PDFB .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC2.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有A .1个B .2个C .3个D .4个3.连接抛物线上任意四点组成的四边形可能是(填写所有正确选项的序号)①菱形②有3条边相等的四边形③梯形④平行四边形⑤有一组对角相等的四边形课堂检测听课及知识掌握情况反馈_________________________________________________________。

相关文档
最新文档