1-1.密码学-概述与古典密码
密码学基础-密码学(古典密码)-精品文档
10
古典密码
象形文字的修改(Modified Hieroglyphics):密 码学的第一个例子是对标准书写符号的修改 ,例如古埃及法老坟墓上的文字(3200-1100 B.C.),核心思想是代替(Substitution)
古典密码
400 B.C.,希腊人艾奈阿斯《城市防卫论 》
艾奈阿斯绳结密码 不同的绳结距离代表不同的字母
第一章 古典密码
密码学的意义 •密码学的历史、现状和未来 •基本术语和定义 •古典密码和相关基础数学理论 •如何用精确的数学语言定义和分析古典密码
•
密码学的重要性
密码学是信息安全技术的核心和基石,在 信息安全领域起着基本的、无可替代的作 用。这方面的任何重大进展,都会有可能 改变信息安全技术的走向 密码技术和理论的发展始终深刻影响着信 息安全技术的发展和突破
古典密码
曾公密码
选择一首五言律诗作为密码本
国破山河在,城春草木深 感时花溅泪,恨别鸟惊心 烽火连三月,家书抵万金 白头搔更短,浑欲不胜簪
——杜甫《春望》
加密过程:找到军情对应的字,做标记后 放在普通公文中发送 解密过程:字验
17
古典密码
500 B.C.,斯巴达人在军事上用于加解密
2
密码学的地位
信息安全大厦
应用安全
系统安全 网络安全 安全协议 安全的密码算法
密码学
学习密码学的意义
密码学相关理论和技术,是进一步学习和 运用安全技术的基本功
数据保密 身份鉴别 数字签名 数字水印
密码学的发展历史
密码学-古典密码
P 中同行, 为紧靠各自右端的字母 P 中同列, 为紧靠各自下方的字母
密文 非同行同列, 为确定矩阵的对角字母
2. Vigenere体制
设明文m = m1m2…mn,k = k1k2…kn,则密文 c = Ek(m) = c1c2…cn,
其中ci = (mi + ki) mod 26, i = 1, 2, …, n。 当密钥的长度比明文短时,密钥可以周期性地
4. Vernam体制
Vernam密码在加密前首先将明文编码为(0, 1)字符串。
设明文m = m1m2…mn,k = k1k2…kn,其中mi , ki∈GF(2) , 则密文c = c1c2…cn ,其中
ci = mi⊕ki , i ≥1。
在用Vernam密码对明文加密时,如果对不同的明文使 用不同的密钥,则这时Vernam密码为“一次一密”(onetime pad)密码,在理论上是不可破译的。如果存在不 同的明文使用相同的密钥,则这时Vernam密码就比较 容易被破译。
例2.5(P16)
2.3.2 多表古典密码的统计分析
在多表古典密码的分析中,首先要确定密钥字的长度, 也就是要首先确定所使用的加密表的个数,然后再分析确 定具体的密钥。
确定密钥字长的常用方法有:
设设 设
对任意
对任意
密文
对任意
密其密文中文其的中乘的法加都法是都模是q 模乘q法加. 法显.然显, 然简,单简乘单法
密加码法的密密码钥的量密为钥量为
其中的加法和乘法都是模q 加法和乘法.
显然, 简单仿射密码的密钥量为
2. 2 几种典型的古典密码体制
几种典型的单表 古典密码体制
密码学——精选推荐
密码学密码学(第⼆讲)古典密码古典密码张焕国武汉⼤学计算机学院⽬录1 , 密码学的基本概念密码学的基本概念古典密码2 , 古典密码3 ,数据加密标准(DES) ,数据加密标准(DES )4 , ⾼级数据加密标准(AES) ⾼级数据加密标准(AES)5 ,中国商⽤密码(SMS4) ,中国商⽤密码(SMS4)6 ,分组密码的应⽤技术7 , 序列密码8 ,习题课:复习对称密码9 ,公开密钥密码(1) ,公开密钥密码(1⽬录10, 公开密钥密码(2 10 , 公开密钥密码(2) 11, 数字签名(1 11, 数字签名(1) 12,数字签名(2 12,数字签名(2) 13, HASH函数 13 , HASH 函数 14, 14 , 认证 15, 15 , 密钥管理 16, PKI技术 16 , PKI技术17,习题课:复习公钥密码 17 ,习题课:复习公钥密码 18,总复习/ 18 ,总复习/检查:综合实验⼀,古典密码⼀,古典密码虽然⽤近代密码学的观点来看,许多古典密码是很不安全的,或者说是极易破译的.但是我们不能忘记古典密码在破译的.但是我们不能忘记古典密码在历史上发挥的巨⼤作⽤. 历史上发挥的巨⼤作⽤. 另外,编制古典密码的基本⽅法对于另外,编制古典密码的基本⽅法对于编制近代密码仍然有效. 编制近代密码仍然有效⼀,古典密码⼀,古典密码C. D. Shannon:采⽤混淆,扩散和乘积的⽅法来设计密码混淆:使密⽂和明⽂,密钥之间的关系复杂化扩散:将每⼀位明⽂和密钥的影响扩⼤到尽可能多的密⽂位中. 乘积和迭代:多种加密⽅法混合使⽤对⼀个加密函数多次迭代古典密码编码⽅法: 置换,代替,加法⼀,古典密码⼀,古典密码1,置换密码把明⽂中的字母重新排列,字母本⾝不变, 但其位置改变了,这样编成的密码称为置换密码.最简单的置换密码是把明⽂中的字母顺序倒过来 , 最简单的置换密码是把明⽂中的字母顺序倒过来, 然后截成固定长度的字母组作为密⽂. 然后截成固定长度的字母组作为密⽂. 明⽂:明晨 5点发动反攻. 明⽂:明晨5点发动反攻. MING CHEN WU DIAN FA DONG FAN GONG 密⽂:GNOGN 密⽂:GNOGN AFGNO DAFNA IDUWN EHCGN IM把明⽂按某⼀顺序排成⼀个矩阵, 然后按另⼀顺序选出矩阵中的字母以形成密⽂,最后截成固定长度的字母组作为密⽂.例如: 明⽂:MING 明⽂:MING CHEN WU DIAN FA DONG FAN GONG 矩阵:MINGCH 矩阵:MINGCH 选出顺序:按列 ENWUDI ANFADO 改变矩阵⼤⼩和取出序列 NGFANG 可得到不同的密码 ONG 密⽂:MEANO 密⽂:MEANO INNGN NWFFG GUAA CDDN HIOG⼀,古典密码⼀,古典密码理论上: ① , 置换密码的加密钥是置换矩阵 p , 解密钥是置换矩阵p-1 .P= 1 2 3 a1 a2 a3 … … n an② , 置换密码经不起已知明⽂攻击.⼀,古典密码⼀,古典密码2, 代替密码⾸先构造⼀个或多个密⽂字母表, ⾸先构造⼀个或多个密⽂字母表 , 然后⽤密⽂字母表中的字母或字母组来代替明⽂字母或字母组,各字母或字母组的相对位置不变, 或字母组,各字母或字母组的相对位置不变 , 但其本⾝改变了. 但其本⾝改变了. 这样编成的密码称为代替密码.①单表代替密码②多表代替密码③多名代替密码⼀,古典密码⼀,古典密码⑴ . 单表代替密码只使⽤⼀个密⽂字母表, 只使⽤⼀个密⽂字母表,并且⽤密⽂字母表中的⼀个字母来代替明⽂字母表中的⼀个字母. 个字母来代替明⽂字母表中的⼀个字母. 明⽂字母表:A = { a 0 , a 1 , ... , a n - 1 } ...,密⽂字母表:B 密⽂字母表:B = { b 0 , b 1 , ... , b n - 1 } ..., 定义⼀个由A 定义⼀个由A到 B 的映射: f:A→B 的映射:f f(a i )= b i 设明⽂:M 设明⽂: M = ( m 0 , m 1 , ... , m n - 1 ) , ..., 则密⽂: C =(f(m0 ),f(m1 ), ...,f(mn-1 )) . 则密⽂:C ),...,f(m )). 简单代替密码的密钥就是映射函数 f 简单代替密码的密钥就是映射函数f或密⽂字母表 B.⼀,古典密码⼀,古典密码⑴单表代替密码①,加法密码 A 和 B 是有 n个字母的字母表. 定义⼀个由A到B的映射: f:A→B 定义⼀个由A 的映射:f:A→Bf(a i )= b i =a j j=i+k mod n 加法密码是⽤明⽂字母在字母表中后⾯第 k 个字母来代替. K=3 时是著名的凯撒密码.⼀,古典密码⼀,古典密码⑴单表代替密码②,乘法密码 A 和 B 是有n个字母的字母表. 定义⼀个由A到B的映射: f:A→B 定义⼀个由A 的映射:f:A→Bf(a i )= b i = a j j=ik mod n 其中,( n,k)=1. 其中, ( n,k)=1. 注意: 只有(n,k)=1 ,才能正确解密. 只有(n,k)=1,⼀,古典密码⼀,古典密码⑴单表代替密码③密钥词组代替密码:随机选⼀个词语,去掉其中的重复字母, 写到矩阵的第⼀⾏,从明⽂字母表中去掉这第⼀⾏的字母,其余字母顺序写⼊矩阵.然后按列取出字母构成密⽂字母表.⼀,古典密码⼀,古典密码举例:密钥: HONG YE 选出顺序:按列矩阵: HONGYE 选出顺序:按列 ABCDFI JKLMPQ 改变密钥,矩阵⼤⼩ RSTUVW 和取出序列,得到不同的 XZ 密⽂字母表. 密⽂字母表 : B={ HAJRXOBKSZNCLTGDMUYFPVEIQW }⑵,多表代替密码单表代替密码的安全性不⾼,⼀个原因是⼀个明⽂字母只由⼀个密⽂字母代替.构造多个密⽂字母表, 在密钥的控制下⽤相应密⽂字母表中的⼀个字母来代替明⽂字母表中的⼀个字母.⼀个明⽂母来代替明⽂字母表中的⼀个字母.⼀个明⽂字母有多种代替.Vigenere密码: 著名的多表代替密码密码:著名的多表代替密码⼀,古典密码⼀,古典密码Vigenre⽅阵 Vigenre⽅阵A B 密C ⽂H 明⽂字母 AB C D E F G H I J K LM N O P Q R S TU V WX YZAB C D E F G H I J K LM N O PQ R S T UV WX YZ BCDE FG HIJ KLMNO PQ RSTUVWXYZA CDE FG HIJ KLMNO PQ RSTUVWXYZAB H I J K LM N O P Q R S TU V WXY ZAB C D EF G字 X X YZAB C D E F G H I J K LM N O P Q R S TU V W 母 Y YZAB CDEFGHIJKLMNOPQRSTUVW X Z ZAB C D E F G H I J K LM N O PQ R S TU VWX Y⼀,古典密码⼀,古典密码Vigenre密码的代替规则是⽤明⽂字母在 Vigenre ⽅阵中的列和密钥字母在 Vigenre⽅阵中的⾏的交点处的字母来代替该明⽂字母. 例如, 点处的字母来代替该明⽂字母 . 例如 , 设明⽂字母为 P, 密钥字母为 Y , 则⽤字母 N来代替明⽂字母 P.明⽂: 明⽂ : MING CHEN WU DIAN FA DONG FAN GONG 密钥: 密钥 : XING CHUI PING YE KUO YUE YONG DA JIANG LIU 密⽂: 密⽂ : JQAME OYVLC QOYRP URMHK DOAMR NP解密就是利⽤Vigenre⽅阵进⾏反代替. ⽅阵进⾏反代替.⼀,古典密码⼀,古典密码3,代数密码:① Vernam密码 Vernam密码明⽂,密⽂,密钥都表⽰为⼆进制位:M=m1,m2,… ,mn K =k1,k2,… ,kn C =c1,c2,… ,cn ②加密: c1= mi⊕ ki ,i=1,2,… ,n 解密: m1= ci⊕ ki ,i=1,2,… ,n ③因为加解密算法是模2加,所以称为代数密码. 因为加解密算法是模2 ④对合运算:f=f-1, 模 2加运算是对合运算. 对合运算:密码算法是对和运算,则加密算法=解密算法,⼯程实现⼯作量减半.⑤ Vernam密码经不起已知明⽂攻击. Vernam密码经不起已知明⽂攻击.⼀,古典密码⼀,古典密码⑥如果密钥序列有重复,则Vernam密码是不安全如果密钥序列有重复,则 Vernam密码是不安全的. ⼀种极端情况:⼀次⼀密⑦⼀种极端情况:⼀次⼀密密钥是随机序列. 密钥⾄少和明⽂⼀样长. ⼀个密钥只⽤⼀次. ⑧⼀次⼀密是绝对不可破译的,但它是不实⽤的. ⑨⼀次⼀密给密码设计指出⼀个⽅向,⼈们⽤序列密码逼近⼀次⼀密.⼆,古典密码的穷举分析1 ,单表代替密码分析①加法密码因为 f(ai )= b i =aj 因为f(a j=i+k mod n所以k=1,2,... ,n - 1,共n- 1种可能,密钥空所以 k=1,2, ,n- 1,共间太⼩.以英⽂为例,只有25种密钥. 间太⼩.以英⽂为例,只有 25种密钥. 经不起穷举攻击.⼆,古典密码的穷举分析1 ,单表代替密码分析②乘法密码因为 f(ai )= b i =aj 因为f(a j=ik mod n , 且( k,n)=1 . n, 且(k,n)=1. 所以 k 共有φ(n)种可能,密钥空间更⼩. 所以k 对于英⽂字母表,n=26, 对于英⽂字母表,n=26 , k=1,3,5,7,9,11,15,17,19,21,23,25 取掉1 ,共11种,⽐加法密码更弱.取掉 1 ,共 11种,⽐加法密码更弱. 经不起穷举攻击.⼆,古典密码的穷举分析1 ,单表代替密码分析③密钥词语代替密码因为密钥词语的选取是随机的,所以密⽂字母因为密钥词语的选取是随机的,所以密⽂字母表完全可能穷尽明⽂字母表的全排列.以英⽂字母表为例,n=26,所以共有26!种可以英⽂字母表为例,n=26,所以共有26 !种可能的密⽂字母表. 26! ≈4× 26 ! ≈4 ×1026⽤计算机也不可能穷举攻击. 注意: 穷举不是攻击密钥词语代替密码的唯⼀注意:穷举不是攻击密钥词语代替密码的唯⼀⽅法.三,古典密码的统计分析2 ,密钥词组单表代替密码的统计分析任何⾃然语⾔都有⾃⼰的统计规律. 如果密⽂中保留了明⽂的统计特征,就可⽤如果密⽂中保留了明⽂的统计特征,就可⽤统计⽅法攻击密码. 由于单表代替密码只使⽤⼀个密⽂字母表, ⼀个明⽂字母固定的⽤⼀个密⽂字母来代替, ⼀个明⽂字母固定的⽤⼀个密⽂字母来代替, 所以密⽂的统计规律与明⽂相同. 所以密⽂的统计规律与明⽂相同.因此,单表代替密码可⽤统计分析攻破.三,古典密码的统计分析英语的统计规律每个单字母出现的频率稳定. 最⾼频率字母 E 次⾼频率字母 T A O I N S H R 中⾼频率字母 D L 低频率字母 C U M W F G Y P B 最低频率字母 V K J X Q Z三,古典密码的统计分析英语的统计规律频率最⾼的双字母组: TH HE IN ER AN RE ED ON ESST EN AT TO NT HA ND OU EA NG AS OR TI IS ET IT AR TE SE HI OF 三,古典密码的统计分析英语的统计规律频率最⾼的三字母组: THE ING AND HER ERE ENT THA WAS ETH FOR DHT HAT SHE ION HIS ERS VER其中THE的频率是ING的其中THE的频率是ING的3倍!三,古典密码的统计分析英语的统计规律英⽂单词以E,S,D,T 为结尾的超过⼀半. 英⽂单词以E 英⽂单词以T,A,S,W 为起始字母的约占⼀英⽂单词以T 半.还有其它统计规律! 还有其它统计规律! 教科书上有⼀个完整的统计分析例⼦.三,古典密码的统计分析经得起统计分析是对近代密码的基本要求!复习题①已知置换如下: 1 2 3 4 5 6 P= 3 5 1 6 4 2 明⽂=642135 ,密⽂= 明⽂= 642135 ,密⽂= 密⽂=214365 密⽂= 214365 , 明⽂= ②使加法密码算法称为对合运算的密钥k ②使加法密码算法称为对合运算的密钥k称为对合密钥, 以英⽂为例求出其对合密钥.复习题③已知⼀个加法密码的密⽂如下: BEEAKFYDJXUQYHYJIQRYHTYJIQFBQDUYJIIKF UHCQD ⽤穷举法求出明⽂.④以英⽂为例,⽤加法密码,取密钥常数 k= 7,对明⽂ 7, 对明⽂INFORMATION SECURITY, 进⾏加密,求出密⽂. SECURITY, ⑤证明,在置换密码中,置换p是对合的,当且仅当对任意证明,在置换密码中,置换p 的 i和j(i, j=1,2,3,…,n), 若 p(i)=j, 则必有p(j)=i . j=1,2,3,…,n), p(i)=j, 则必有p(j)=i ⑥编程实现Vigenre密码. 编程实现Vigenre密码. ⑦分析仿射密码的安全性.谢谢!单字母替换密码及实例通过把信息隐藏起来的这种秘密通信称为Staganography(隐⽂术),由希腊词Steganos(意为“覆盖”)和Graphein(意为“写”)派⽣⽽来。
古典密码简介
古典密码简介从密码学发展历程来看,可分为古典密码(以字符为基本加密单元的密码)以及现代密码(以信息块为基本加密单元的密码)两类。
⽽古典密码有着悠久的历史,从古代⼀直到计算机出现以前,古典密码学主要有两⼤基本⽅法:①置换密码(⼜称易位密码):明⽂的字母保持相同,但顺序被打乱了。
②代替密码:就是将明⽂的字符替换为密⽂中的另⼀种的字符,接收者只要对密⽂做反向替换就可以恢复出明⽂。
古典密码是密码学的根源,虽然都⽐较简单⽽且容易破译,但研究古典密码的设计原理和分析⽅法对于理解、分析以及设计现代密码技术是⼗分有益滴^_^⼀.置换密码1.列置换密码(矩阵置换密码)明⽂:ming chen jiu dian fa dong fan gong密钥:yu lan hua去掉密钥重复字母:yulanh,得出距阵列数为6;将明⽂按⾏填充距阵。
得到密钥字母顺序: 653142;按列(依顺序)写出距阵中的字母。
密⽂:giffg hddn0 njngn cuaa0 inano meiog解密:加密的逆过程;2.周期置换密码 周期置换密码是将明⽂串P按固定长度m分组,然后对每组中的⼦串按1,2,...,m的某个置换重排位置从⽽得到密⽂C。
其中密钥σ包含分组长度信息。
解密时同样对密⽂C按长度m分组,并按σ的逆置换σ-1把每组⼦串重新排列位置从⽽得到明⽂P。
明⽂:State Key Laboratory of Networking and Switching加密密钥:σ=(15623)明⽂分为七组:(StateK)(eyLabo)(ratory)(ofNetw)(orking)(andSwi)(tching)加密变换:密钥⾥没有4,则第4位保持不变,然后对应的第1位换到第5位,第5位换到第6位,第6位换到第2位....密⽂:(aKttSe)(Loyaeb)(tyaorr)(Nwfeot)(kgrion)(dinSaw)(hgcitn)解密密钥:σ-1 = (13265)3.栅栏密码此密码⼀般适⽤于较短的密码,原理是字母的错位。
古典密码和流密码的原理及应用
古典密码和流密码的原理及应用古典密码和流密码是密码学中两种基本的加密方法,它们都有着各自独特的原理和应用。
本文将深入介绍古典密码和流密码的原理,以及它们在实际中的应用。
古典密码是指一种使用简单的替换或排列规则对明文进行加密的加密方法。
古典密码包括凯撒密码、简单曹文和多替换密码等。
凯撒密码是最为典型的古典密码之一。
凯撒密码顾名思义,就是由古罗马军事家凯撒创立的一种密码算法。
凯撒密码的原理是将明文中的每个字母按照一个固定的偏移量进行位移,以得到密文。
若偏移量为3,那么明文中的字母A就被替换成D,B替换为E,以此类推。
而解密过程则是将密文中的字母按同样的偏移量进行逆向位移,得到原始明文。
古典密码的原理相对简单,适用于只具备基本加密需求的场景。
由于其固定的替换或者排列规则,古典密码容易受到密码分析的攻击,安全性较低。
在现代的密码保护领域,古典密码已经渐渐被更安全的加密方法所替代。
流密码是另一种加密方法,它采用了更为复杂的原理进行加密。
流密码的基本原理是利用一个伪随机序列对明文进行逐位的加密。
这个伪随机序列可以通过特定的算法以及一个密钥生成,而密钥则决定了伪随机序列的生成规则。
流密码的一个经典应用是RC4流密码算法。
RC4是由著名密码学家罗纳德·里维斯提出的一种流密码算法,它被广泛应用于SSL/TLS协议中,用于保护网络通信的安全性。
RC4算法使用了一个变长的密钥进行初始化,并以此生成一个伪随机的密钥流,再将这个密钥流与明文进行逐位的异或运算,得到密文。
解密过程与加密过程类似,将密文与生成的密钥流进行异或运算,还原出原始明文。
流密码相对于古典密码来说,具有更高的安全性。
因为伪随机序列的长度会根据密钥的长度而变化,使得密码分析者难以找到规律进行破解。
流密码的加密过程是逐位进行的,使得即使部分明文泄露,也无法得知整个密文的信息。
流密码则可以提供更高的安全性,适用于对信息保密要求较高的场景,比如网络通信和金融交易等领域。
清华大学出版社 密码学PPT课件
清华大学出版社 2008年9月
课程主要内容
第1章 密码学概述 第2章 古典密码技术 第3章 分组密码 第4章 公钥密码体制 第5章 散列函数与消息鉴别 第6章 数字签名技术 第7章 密钥管理技术 第8章 身份鉴别技术 第9章 序列密码 第10章 密码技术应用
第1章 密码学概述
✓ 二十世纪末的AES算法征集活动使密码学界又掀起了一次分组密码研究的 高潮。同时,在公钥密码领域,椭圆曲线密码体制由于其安全性高、计算 速度快等优点引起了人们的普遍关注和研究,并在公钥密码技术中取得重 大进展。
✓ 在密码应用方面,各种有实用价值的密码体制的快速实现受到高度重视, 许多密码标准、应用软件和产品被开发和应用,美国、德国、日本和我国 等许多国家已经颁布了数字签名法,使数字签名在电子商务和电子政务等
图1.4(a) ENIGMA密码机
图1.4(b) TYPEX密码机
近代密码时期可以看作是科学密码学的前夜,这阶段的密码技术可以
说是一种艺术,是一种技巧和经验的综合体,但还不是一种科学,密码专 家常常是凭直觉和信念来进行密码设计. 和分析,而不是推理和证明。
6/31
第1章 密码学概述
• 现代密码时期
本章主要内容
• 信息安全与密码技术 • 密码技术发展简介 • 密码学基本概念
➢ 密码学的主要任务 ➢ 密码系统的概念 ➢ 对密码系统的攻击 ➢ 密码系统的安全性 ➢ 密码体制的分类 ➢ 对称与非对称密码体. 制的主要特点
3/31
Байду номын сангаас
第1章 密码学概述
1.1 信息安全与密码技术
• 密码技术是一门古老的技术;
④ 抗抵赖性
是一种用于阻止通信实体抵赖先前的通信行为及相关内容的安全特性 。密码学通过对称加密或非对称加密,以及数字签名等技术,并借助可信机 构或证书机构的辅助来提供这种服务。
密码学第1章
第1章 古典密码 1.2.3 代换密码
26个英文字母和Z26的元素之间可以建立一个一一对应关系, 于是Z26上的任一个置换也就对应了26个英文字母表上的一个置 换。因此可以借助Z26上的置换来改变英文字符的原有位置,以 达到加密的目的,Z26上的置换看成了加密所需的密钥。这样可 以将加密和解密过程直接看做是对英文字母表进行了置换变换。
第1章 古典密码 定义1.2.1 移位密码体制 令M=C=K=Z26。对任意的
key∈Z26,x∈M,y∈C,定义 ekey(x)=(x+key) mod26 dkey(y)=(y-key) mod26 在使用移位密码体制对英文符号进行加密之前,首先需要 在26个英文字母与Z26中的元素之间建立一一对应关系,然后应 用以上密码体制进行相应的加密计算和解密计算。 例1.2 设移位密码的密钥为key=7,英文字符与Z26中的元
中,如下表所示:
第1章 古典密码
1 1 2 3 4 5 q y a h c
2 w u s k v
3 e i/j d l b
4 r o f z n
5 t p g x m
第1章 古典密码 在给定了字母排列结果的基础上,每一个字母都会对应一
个数字αβ,其中α是该字母所在行的标号,β是该字母所在列的 标号。通过设计的棋盘就可以对英文消息进行加密,如u对应 的是22,f对应的是34。
可见,加密方法、解密方法、密钥和消息(明文、密文) 是保密
通信中的几个关键要素,它们构成了相应的密码体制。
第1章 古典密码 定义1.1.1 密码体制
密码体制的构成包括以下要素: (1) M:明文消息空间,表示所有可能的明文组成的有限集。 (2) C:密文消息空间,表示所有可能的密文组成的有限集。 (3) K:密钥空间,表示所有可能的密钥组成的有限集。 (4) E:加密算法集合。 (5) D:解密算法集合。
古典密码原理
古典密码原理古典密码原理是密码学领域中一门基础的密码学原理,初衷是为了保护通信内容的安全性,同时利用加密和解密的算法确保信息的保密性。
古典密码原理主要基于替换和排列的思想,在古典密码学中,常见的加密技术有凯撒密码、栅栏密码和多表密码等。
凯撒密码是古典密码学中最早出现的一种密码算法。
它使用了一种简单的替换技术,即将明文中的每个字母替换为字母表中的另一个字母。
在凯撒密码中,字母表按字母顺序排列,密钥表示字母表中字母的偏移量。
例如,若密钥为3,则明文中的字母A将被替换为字母D,字母B将被替换为字母E,以此类推。
凯撒密码的加解密算法简单易懂,但安全性较低,容易被破解。
栅栏密码是古典密码学中另一种常见的加密算法。
它利用了一种排列技术,即将明文按照一定规则排列成栅栏形式,然后从上至下读取加密后的密文。
在栅栏密码中,密钥表示栅栏的高度。
例如,若密钥为3,则明文"HELLO WORLD"首先按照栅栏高度3排列如下:H . . . O . . . L . . . .. E . L . . O . . W . R .. . L . . . . . D . . . .然后从上至下读取加密后的密文"HOEULRLDLOLDW"。
栅栏密码的特点是简单明了,但加密后的密文存在一定规律,易被破解。
多表密码是古典密码学中一种复杂的加密算法。
它通过使用多个不同的替代字母表对明文进行加密,增加了密码分析者破译密文的难度。
多表密码利用了一系列字母表在密码系统中的循环使用,使得同一个字母在不同情况下可能被替换为不同的字母。
例如,一个使用三个不同的字母表的多表密码,明文中的字母A可能被替换为字母B、C或D,具体替换规则依赖于明文中字母的位置和上下文环境。
多表密码的复杂性使得破译者难以识别加密规则和找出明文与密文之间的关系。
古典密码学虽然有一些不足之处,但在密码学历史中扮演了重要角色,为现代密码学的发展奠定了基础。
1-1.密码学-概述与古典密码
11
替换
• 单表置换密码的分析
– 利用频数分析进行攻击 – 字母频率:e-0.13,t-0.1,…z-0.0008 – 字母组合频率:th,he,in,er,the……
12
古典密码
• 多表替换密码:维吉利亚密码
– 使用多个密码表,根据密钥字母不同,每个明 文字母使用不同的密码表进行加密 – 简单字母频率分析方法失效
44
对破译Enigma做出贡献的人
雷杰夫斯基、 雷杰夫斯基、罗佐基和佐加尔斯基
1954年7月7日,图灵自杀,时年 岁 年 月 日 图灵自杀,时年42岁
45
Lessons from Enigma
• 安全不能依赖于对设备和算法的保密 • 密钥空间是安全的关键 • 防止“ Crib”,例如:加密一个标准的短语、 加密两次相同的消息、等等 • 最重要的是:把安全完全建立在一台不够 安全的加密设备上,将导致灾难性的后果!
21
初始方向个数
• 转子位置:17576 • 转子排列:6 • 连接板:100391791500
• 17576*6*1003 9179 1500 =1*1016 =1 0000 0000 0000 0000
22
与Enigma类似的发明
• 荷兰,亚历山大·科赫 • 瑞典,阿维德·达姆 • 美国,爱德华·赫本 这些发明均以失败告终
中途岛海战
AF is short of water!
50
山本五十六的阵亡
51
美军 M-209 密码机
52
SIGSALY
最早实现的语音加密 最早使用了多级移频键控(FSK) 最早使用了多级移频键控(FSK) 最早将PCM(脉码调制)应用于语音通信 最早将PCM(脉码调制)应用于语音通信
密码学概述
在第二次世界大战中,密码的应用与破译成为影响战争 胜负的一个重要因素。如,1940年太平洋战争中,美军破 译了日军所使用的密钥;在后来的中途岛海战中,日军再 次使用了同样的密钥,电报被美军截获后成功破译,使得 其海军大将的座机被击落。
明文 hello world
密钥:K=5 密文 mjqqt btwqi
解密算法:(C-K) mod 26
22
3. 密码系统数学模型
发送信息的一方使用密钥K加密明文M,通过加密 算法得到密文C,即C = EK(M);接收信息的一 方使用密钥K’解密密文C,通过解密算法得到明文 M,即M = DK’ ( C );K与K’可能相等,也可能不等 ,具体取决于所采用的密码体制。
21
3. 密码系统数学模型
例如:恺撒密码体制
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
加密算法:(M+K) mod 26
两个分支:是既相互对立,又相互依存的科学。
16
2. 密码系统构成
密码系统主要包括以下几个基本要素:明文、密文、加密算法 、解密算法和密钥。
明文(plaintext):希望得到保密的原始信息。
密文(ciphertext):明文经过密码变换后的消息。
加密(encryption):由明文变换为密文的过程。 解密(decryption):从密文恢复出明文的过程。
第二讲:密码学计算机安全 -----密码学历史
11. Ciphers Machines 1-- 1
♦ 为了简化加密/解密过程 , 导致密码设备出现 ♦ Jefferson cylinder , 1790s被研制成功 , 包含36个 圆盘 , 每个圆盘
有个随机字母表
1920年还被美国军队使用
参考文献:《密码传奇-从军事隐语到电子芯片》 上海译文出版社
eg. L FDPH L VDZ L FRQTXHUHG
♦ -> I CAME I SAW I CONQUERED
♦ Caesar cipher 可以描述如下:
♦ P l a i n : ♦ Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
♦ 例: ♦ 写出明文 ♦ 在明文下重复写出密钥字 ♦ 依次使用每个字母作为caesar cipher 的密钥 ♦ 加密对应的明文字母 ♦ Plaintext
THISPROCESSCANALSOBEEXPRESSED
Keyword CIPHERCIPHERCIPHERCIPHERCIPHE
Plaintext
ABCDEFGHIJKLMNOPQRSTUVWXYZ
tomap theaboveplaintextletters. ‘
T"useskey "C"mapsto "V" ‘ H " useskey " I " mapsto " P " ‘ I"iseskey "P"mapsto "X" etc
10. History of the Vigenère Cipher
Ch1-1 古典密码学
ENIGMA加密机
ENIGMA加密机
连接板上的连线状况也是收发信息的双方 需要预先约定的。
ENIGMA加密机操作
每个月每台ENIGMA机的操作员都会收到一本当月的新密 钥。一天的密钥可能是:
1.连接板的连接:A/L-P/R-T/D-B/W-K/F-O/Y 2.转子的顺序:2,3,1 3.转子的初始方向:Q-C-W
英格码的破解
波兰先千方百计获得ENIGMA操作和转子内部线路 资料 。 要破译ENIGMA密码,靠这些情报还远远不够。 德军的一份对ENIGMA的评估写道:“即使敌人获 取了一台同样的机器,它仍旧能够保证其加密系 统的保密性。” 而且德国采取更加严谨的作法:每次通信先约定 转子位置,防止同一密码加密过多文件。这恰恰 是ENIGMA被破解的破绽之处。
而得到密文,我们把这种加密方法叫做 置换技术。
改变明文内容元素的相对位置,保持内
容的表现形式不变。
置换技术
一维变换-矩阵转置
输入 输出
C A N Y O U U N
D E R S T A N D
明文:can you understand
密文: codtaueanurnynsd
置换技术
二维变换-图形转置
谢尔比乌斯发明的 加密电子机械名叫 ENIGMA,在以后的 年代里,它将被证 明是有史以来最为 可靠的加密系统之 一。 三个部分:键盘、 转子和显示器。一 共有26个键,键盘 排列接近我们现在 使用的计算机键盘。
ENIGMA加密机
ENIGMA加密的关键:这不是一种简单代换 密码。同一个字母在明文的不同位置时, 可以被不同的字母替换,而密文中不同位 置的同一个字母,可以代表明文中的不同 字母,频率分析法在这里就没有用武之地 了。这种加密方式被称为“多表代换密 码”。 为了使消息尽量地短和更难以破译,空格 和标点符号都被省略。
古典密码 对称密码 公钥密码
古典密码对称密码公钥密码
古典密码是指在计算机技术出现之前使用的一种加密方法,通
常是基于替换或移位的原理。
古典密码包括凯撒密码、培根密码、
维吉尼亚密码等,它们的特点是加密和解密使用相同的密钥,安全
性相对较低。
对称密码是一种加密方法,加密和解密使用相同的密钥。
常见
的对称密码算法包括DES、AES、IDEA等。
对称密码的优点是加密解
密速度快,缺点是密钥管理困难,需要确保密钥的安全传输和存储。
公钥密码(也称非对称密码)是一种使用不同密钥进行加密和
解密的加密方法。
公钥密码包括RSA、DSA、ECC等算法。
公钥密码
的优点是密钥管理方便,不需要安全地传输密钥,缺点是加密解密
速度较慢。
从安全性来看,公钥密码相对于对称密码更安全,因为它不需
要在通信过程中传输密钥,而对称密码需要确保密钥的安全传输。
但是公钥密码的加密解密速度相对较慢,所以在实际应用中,通常
会将公钥密码与对称密码结合使用,以兼顾安全性和效率。
另外,对称密码和公钥密码的组合也被广泛应用在数字签名、SSL/TLS协议等安全通信领域,以确保通信的安全性和完整性。
总
的来说,古典密码、对称密码和公钥密码都是加密领域的重要概念,它们在信息安全领域都有着重要的应用和意义。
古典密码及分析
2
第 1 章 古典密码
设 P = { m1,m2,…,mn };C = { c1,c2,…,cm }。即可能的明文元素有 n 个,密文元素有 m 个。从实用角度看,应该有 m≥n,否则不同的明文将映射到相同的密文。因为加、解密变 换必须是互逆的,所以 E 和 D 都是一一映射。容易求出从 P 到 C 的一一映射的数目有: ∣S∣= m×(m-1) ×(m-2) ×…×(m-n+1) = m!/(m-n)! (1.3) 由此可见,当 m,n 较大时,可能的加密和解密变换对的数目是十分巨大的。从理论上说, 从 P 到 C 和从 C 到 P 的任意一对互逆映射都可以用来构成一个密码算法。 但在实际应用中, 在已知密钥的条件下,密码算法的计算必须是简洁有效的,而在不知道密钥的条件下,解密 计算应该是不可行的。所以构造密码算法时,必须从∣S∣个一一映射中选取那些可以用解 析表达式或某些确定的规则来表达明文和密文关系的一一映射。 设 K = { k1, k2,…, kp },则密钥数︱K︱= p。由于加解密变换的选择是由密钥来确定的, 因此,对于密钥空间的密钥数应该有:∣K∣≥∣S∣。在∣K∣>∣S∣的情况下,会出现 不同的两个密钥对应同一个加密变换, 从而产生相同加密结果的情况。 这时称这两个密钥为 等价密钥。 由于等价密钥的存在, 破译者可能不需要找到加密时使用的那个特定密钥也可以 进行破译, 使密码系统的安全性降低。 因此, 在选择密钥时要注意避开可能存在的等价密钥。 值得指出的是,即使在∣K∣<∣S∣时,也不能排除存在等价密钥的可能性。因此,即使 在∣K∣<∣S∣的情况下,也应注意等价密钥问题。
4
第 1 章 古典密码
对应的密文为: MJCBNLDAQCH 由此可见,密钥改变时加密的结果也发生变化。 只要知道编码方式和密钥 k,加法密码的解密是十分简单的:m = c – k mod 26。 单用换位法和替代法构成的密码都比较简单, 一般都经不起攻击。 但以后我们可以看到, 若把它们结合起来使用,可以得到非常有效的密码系统。
古典密码和流密码的原理及应用
古典密码和流密码的原理及应用【摘要】古典密码和流密码是密码学领域中常见的两种加密方式。
古典密码是基于固定的密钥和特定的算法来加密和解密信息的传统加密方式,其原理包括替换、置换和移位等方法。
古典密码在历史上被广泛运用于军事和外交领域,如凯撒密码和维吉尼亚密码。
流密码则是一种根据密钥生成的伪随机比特流对信息进行加密,其原理包括异或运算和伪随机序列生成。
流密码在现代通信和计算机系统中得到广泛应用,如SSL/TLS协议和Wi-Fi加密。
古典密码和流密码在原理和应用上各有特点,比较之下可以发现各自的优劣。
未来,随着信息技术的不断发展,古典密码和流密码的应用前景将会更加广阔。
【关键词】古典密码、流密码、加密、解密、原理、应用、比较、前景展望1. 引言1.1 古典密码和流密码的原理及应用概述古典密码和流密码是密码学中两种基本的加密方法,它们在信息安全领域中有着重要的应用。
古典密码是一种基于固定密钥的加密算法,其原理是通过对明文进行一系列固定的置换和替换操作来生成密文,只有使用相同的密钥才能解密出明文。
古典密码在历史上曾经被广泛应用于军事和外交领域,如凯撒密码、仿射密码等。
流密码则是一种基于流密钥的加密算法,其原理是通过生成一系列伪随机的密钥流与明文进行按位异或操作来得到密文。
流密码的特点是每个明文位与密钥流中的对应位独立加密,提高了加密的安全性。
古典密码和流密码各自有其独特的应用场景和特点,古典密码适用于短文本的加密,而流密码则适用于大数据流的加密。
在当今信息安全日益重要的环境下,古典密码和流密码的原理及应用也在不断发展和完善,以应对新的安全挑战。
本文将分别介绍古典密码和流密码的原理和应用,以及对它们的比较和展望。
2. 正文2.1 古典密码的原理古典密码是一种使用固定密钥进行加密和解密的加密方式,其原理主要包括替换和置换两种方法。
替换是将明文中的字母或符号按照一定规则替换成密文中的字母或符号,从而实现加密。
最经典的替换密码是凯撒密码,即将所有字母按照一个固定的偏移量进行替换。
1.密码学概念及古典密码
1.密码学概念及古典密码⼀、前⾔ 信息安全⾯临的威胁⽆处不在,多为⼈为威胁,也就是对信息的⼈为攻击,⼈为攻击可分为被动攻击和主动攻击。
被动攻击:即为窃听,分为两类:⼀类是消息内容获取;另⼀类是业务流分析,如获取消息的格式,长度及位置等敏感信息。
该攻击因为对消息没有做出变动,难以检测,所以被动攻击重点在于预防⽽不是检测。
主动攻击:为对数据流的改动或产⽣假的数据流,分为三类:①中断,对系统可⽤性进⾏攻击,如破坏管理系统等;②篡改,对系统的完整性攻击,如修改传送的消息内容等;③伪造,对系统真实性攻击,如插⼊伪造的消息。
上述攻击⼀般多为通过恶意软件进⾏破坏,多为病毒、蠕⾍等恶意程序。
恶意软件可分为两类:⼀类需要主程序,⼀类不需要。
需要主程序的恶意软件是某个程序中的⼀段,例如,特洛伊⽊马、病毒、逻辑炸弹等;不需要主程序的恶意软件是能够单独运⾏的程序,如细菌和蠕⾍。
正因有诸多的恶意软件所在,在互联⽹中安全措施尤为重要且关键,即为对恶意软件的防范,称为安全业务,可有以下五种:1.保密业务。
保护数据防⽌被动攻击。
2.认证业务。
保证通信的真实性。
3.完整性业务。
保证所接受的消息和所发出的消息是完全⼀致的。
4.不可否认业务。
防⽌通信双⽅中某⼀⽅对所传输消息的否认。
5.访问控制。
防⽌对⽹络资源的⾮授权访问。
⼆、密码学概念2.1 保密通信系统采⽤保密通信系统可以隐蔽和保护需要发送的消息,使没有得到授权的⼈不能提取信息。
明⽂:发送⽅将要发送的消息;密⽂:明⽂被变换成⽆意义的随机消息。
明⽂变换成密⽂称为加密(encryption),密⽂恢复为明⽂称为解密(decryption)。
加密与解密的操作⼀般在⼀组密钥控制下进⾏。
2.2 密码体制分类 密码体制可分为两⼤类,即单钥体制和双钥体制。
系统的保密性主要取决于密钥的安全性,与所要的算法保密性⽆关,所以在整个过程中,需保密的仅是密钥即可。
单钥体制对明⽂消息的加密有两种⽅式,分别为流密码和分组密码; 双钥体制,有⼀对选定的密钥,⼀个是公开,⼀个是秘密的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
最安全的通讯
• 1925年开始,谢尔比乌斯开始大量给德国 军方生产Enigma
• 军用Enigma的转子线路是保密的 • Enigma的使用保障了德军的通信保密性 • 1926年开始,英国人、美国人、法国人都 再无法破译德国的通讯
24
汉斯· 提罗· 施密特
25
汉斯· 提罗· 施密特
• 1931年11月8日,在比利时的一家 酒店里,施密特将 Enigma 的使用 说明卖给了法国人
• 雷杰夫斯基用1年时间,分析了104456种可 能的转子设置下的字母链特征
※ 1933年~1939年,波兰破译了德国近10万条消息
34
新障碍
• 1939年,德国的Enigma转子增加到了5个, 破译工作无法继续进行
• 1939年7月24日,波兰人将破译方法提供给 英法 • 1939年9月1日,希特勒入侵波兰,9月29 日,华沙沦陷
11
替换
• 单表置换密码的分析
– 利用频数分析进行攻击 – 字母频率:e-0.13,t-0.1,…z-0.0008 – 字母组合频率:th,he,in,er,the……
12
古典密码
• 多表替换密码:维吉利亚密码
– 使用多个密码表,根据密钥字母不同,每个明 文字母使用不同的密码表进行加密
– 简单字母频率分析方法失效
• U 2.58 V 1.09 W 1.59 X 0.21 Y 1.58 Z 0.08
56
?
57
课后
• Feistel/lucifer/Shannon
58
9
替换
• 恺撒密码
abcdefghijklmnopqrstuvwxyz DEFGHIJKLMNOPQRSTUVWXYZABC
明文:veni, vidi, vici 密文:YHQL, YLGL, YLFL
10
替换
• 单表置换密码
Meet at midnight ->cuuz vz cgxsgibz
28
德国人的密码本
• 消息密钥
– 为防止日密钥加密过多信息,日密钥仅被用作 加密信息密钥,再使用信息密钥加密信息
– 信息密钥形式:QCWQCW
29
德国人的密码本
• 消息密钥
– 为防止日密钥加密过多信息,日密钥仅被用作 加密信息密钥,再使用信息密钥加密信息
– 信息密钥形式:QCWQCW
重复键入信息密钥
43
战后
• 英国继续保持秘密,Enigma机在英殖民地 继续使用
• 1967年,波兰出版有关Enigma的书籍 • 1974年,《The Ultra Secret》(温特伯坦 姆著)出版
44
对破译Enigma做出贡献的人
雷杰夫斯基、罗佐基和佐加尔斯基
1954年7月7日,图灵自杀,时年42岁
45
Lessons from Enigma
• 法国人认为这些资料仍不足以破译Enigma, 又将信息提供给了波兰人
• 在面对被德国侵略的恐惧下,波兰人开始 了Enigma破译的艰苦工作
26
马里安· 雷杰夫斯基
27
德国人的密码本
• 日密钥
– 日密钥的形式(例):
• 插接板设置:AL, PR, TD, BW, KF, QY • 转子排列:2,3,1 • 转子定位:Q,C,W
• 以罗马字母代替 日文假名
48
JN-25
WOSIZGHAIDAJSJXDEXS
• 使用密码本改变字 母顺序
• 由2本大约有45000 组5码数字的密本 和2本共约10万组 乱序数字密钥的加 密表组成 • 是一种移位密码
W_OSI_ZGHA_ID_AJS_JXDE_XS
4 W _ _ J D 5 _ Z I S E 2 O G D _ _ 1 S H _ J X 3 I A A X S
53
二战中最安全的密码
54
二战中最安全的密码
• 纳瓦霍语
55
练习
• 单表替换密码分析
• A 8.19 B 1.47 C 3.83 D 3.91 E 12.25 F 2.26 G 1.71 • H 4.57 I 7.10 J 0.14 K 0.41 L 3.77 M 3.34 N 7.06
• O 7.26 P 2.89 Q 0.09 R 6.85 S 6.36 T 9.41
SHJX OGD IAAXS WJD ZISE XXDDC SHJXL OGDZD IAAXS WJDQ ZISEA VVKWB
49
中途岛海战
AF is short of water!
50
山本五十六的阵亡
51
美军 M-209 密码机
52
SIGSALY
最早实现的语音加密 最早使用了多级移频键控(FSK) 最早将PCM(脉码调制)应用于语音通信
6
古典密码
• 密码学主要功能
– 保证机密性,防范被动攻击 – 保证完整性,防范主动攻击 – 保证信息来源的真实性,提供非否认服务
• 被动攻击:对机密性的破坏 • 主动攻击:对完整性和可用性的破坏
7
古典密码
• 最早的信息保护方法-隐写术
– 隐写术的弱点
• 密码术
– 与隐写术相比,密码术不是隐藏信息本身,而 是隐藏信息的含义
35
布莱切利庄园
36
阿兰· 图灵
37
阿兰· 图灵
• 1931年,进入皇家剑桥学 院
• 1937年,发表关于可计算 性问题的著名论文,提出 图灵机概念
• 1939年,进入布莱切利庄 园
38
破译密钥的新方法
• 利用明密文对照的方法进行破译
• 德国人严谨的优点变成致命弱点 • 图灵的回路(Wetter)
39
破译密钥的新方法
• 图灵将三台Enigma串联,使得只需 17576×60次就可以发现密钥
• 1941年3月14日,第一台自动密钥破译机 “炸弹”投入使用
40
炸弹
41
Ultra
42
辅助手段
• 如何获得更多的明密文信息
– 播种行动
• 秘密的保守
– Ultra的有限制使用 – “月光奏鸣曲”-空袭考文垂
导致致命弱点!
30
可以获得的密文信息
• 同一天得到的信息密钥密文
31
利用信息密钥建立字母关系表
※不同的情况
32
字母链特征
A F F W W A
※除了1、4字母链,还有2、5及3、6字母链
33
密码的指纹
• 字母链特征只与转子设置有关,而与插接 板设置无关
14
古典密码
• 加密机械化的出现-Enigma
– 产生背景
• 大量密码体系被攻破 • 无线电的普遍使用,增加了对密 码技术的需求
15
亚瑟· 谢尔比乌斯
ENIGMA
16
Enigma转子结构
17
18
已经安全了吗?
19
连接板
20
反射器
反射器的副作用:一个字母永远也不会被加密 成它自己!
21
初始方向个数
• 转子位置:17576
• 转子排列:6
• 连接板:100391791500
• 17576*6*1003 9179 1500
=1*1016
=1 0000 0000 0000 0000
22
与Enigma类似的发明
• 荷兰,亚历山大· 科赫
• 瑞典,阿维德· 达姆 • 美国,爱德华· 赫本 这些发明均以失败告终
– 密码术的两种基本方法:易位和替换
8
易位
• The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him ->Twelhhe … … … riem
– 加密:隐藏内容的过程
– 密文:被加密后的消息
– 解密:把密文转换为明文的过程
– 密码算法:用于加解密的数学函数 – 密码分析:对密码进行破解的过程
5
古典密码
• 密码学的公式表示
– 加密:E(M,K1)=C – 解密:D(C,K2)=M => D(E(M,K1),K2)=M
• 密码学基本原则
– 密码算法的安全性应基于密钥的安全性,而不 是基于算法的细节的安全性
• 维吉利亚密码的分析
– 弱点:当相同字母间隔密钥长度倍数时,被加 密成相同字母
– 攻击:利用此弱点,寻找密钥长度
13
古典密码
• 维吉利亚密码的分析
– 随机重合指数:0.0385 – 英文重合指数:0.0687 (1.784倍)
Aconstruct ivetheoryo frandomnes sforfuncti ons……
• 安全不能依赖于对设备和算法的保密
• 密钥空间是安全的关键 • 防止“ Crib”,例如:加密一个标准的短语、 加密两次相同的消息、等等 • 最重要的是:把安全完全建立在一台不够 安全的加密设备上,将导致灾难性的后果!
46
NEXT
以下为补充材料
47
Purple-紫密
• 二战日军使用的密 码机
• 与4转子Enigma类 似
密码学及应用
1
古典密码
2
古典密码
• 什么是密码学
数论 概率统计 密码学 自动机理论 计算复杂性理论 信息论 代数 编码理论
3
古典密码
• 什么是密码学
– 研究秘密通信为目的 – 包括:密码编码学、密码分析学
密钥 安全信道 密钥
明文 加密
密文 解密