福建中考考卷144期

合集下载

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。

2024届福建省部分市县中考语文全真模拟试卷含解析

2024届福建省部分市县中考语文全真模拟试卷含解析

2024届福建省部分市县中考语文全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、积累1.下列句子中,没有..语病的一项是()A.《广州市旅游事业发展第十三个五年规划》提出,到2020年旅游业要成为广州支柱产业,总收入达5000亿元以上。

B.通过阅读《格列佛游记》,使我们了解了主人公格列佛先后到小人国、大人国、慧骃国和飞岛国旅行的经历。

C.广州公共自行车运营管理有限公司从3月20日开始对BRT沿线公共自行车进行了升级改造,让市民出行更便捷。

D.语文与生活是密不可分的,在语文课上学习语文固然重要,但也不能忽视在生活中运用语文、学习语文。

2.下列句子中,加点成语使用不恰当...的一项是A.2010年的夏天是属于南非的,第十九届世界杯足球赛一定会让球迷们热血沸腾....。

B.部分同学意志不坚定,经营者随之应变....地逃避检查,是黑网吧难根除的主要原因。

C.和外形小巧而“肚量”超大的电子课本相比,笨重的传统书包只好甘拜下风....了。

D.骇人听闻....的校园伤害事件一再发生,提醒我们每一个学生要增强自我保护意识。

3.下列各句中,加点成语使用不正确的一项是()A.女排运动员朱婷近几年来取得一个又一个优异战绩,她不仅是中国女排的中流砥柱....,也无愧于世界女排第一人的赞誉。

B.学生贪玩忘了做寒假作业,有些家长竟然替代孩子完成任务,李代桃僵....,这其实是害了孩子。

C.“时代楷模”黄大年同志,为了祖国快速移动平台探测技术装备研发鞠躬尽瘁....,死而后已。

D.有些不良媒体为吸引眼球,不惜断章取义....、制造噱头,失实报道,不仅误导了舆论,更对当事人造成了伤害。

4.下面各项中加点字的注音完全正确的一项是A.诅.咒(zǔ)腻.味(nì)蔫.巴(niān)溢.于言表(yì)B.摩挲.(sūo)殷.红(yīn)蹊.跷(qī)万事俱.备(jǜ)C.剔.透(tì)撺掇.(duo)宁.可(nìn)明眸.善睐(mó)D.遴.选(líng)卷帙.(zhì)摒.弃(bìng)果实累.累(lěi)5.默写。

2024年福建省福州市中考三模数学试题(含答案)

2024年福建省福州市中考三模数学试题(含答案)

2024年福建省初中学业水平考试・数学本试卷共6页,满分150分.注意事项:1.答题前,考生务必在试卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时用0.5毫米黑色墨水签字笔将答案写在答题卡相应位置上.3.作图可先使用2B铅笔画出,确定后用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.的相反数是()A.B.C.D.102.如图是由一个圆柱和正三棱柱组成的几何体,则它的俯视图是()A.B.C.D.3.如图是单位长度为1的数轴,点,是数轴上的点,若点表示的数是,则点表示的数是()A.B.0C.1D.24.下列运算正确的是A.B.C.D.5.近年来,福建着力推进高水平对外开放,外贸外资量稳质升高,根据福建省统计局数据统计,福建省2021年的进口总额为7612.3亿元,2023年的进口总额为7977.1亿元,设这两年福建省地区进口贸易总额的年平均增长率为,根据题意可列方程()A.B.C.D.6.每年4月23日为“世界读书日”,读书能丰富知识,陶冶情操,提高文化底蕴.如图是某校七年级学生课外阅读最喜欢的书籍种类人数统计图.若喜欢历史类书籍的有125人,则下列说法正确的是()10-10-110-110A B A3-B1-3362a a a+=279a a a⋅=()325a a=22(2)24a a a-=-+x27612.3(1)7977.1x+=()7612.317977.1x+=27612.37977.1x=()27612.317977.1x+=A .的值为25B .此次统计的总人数为400人C .喜欢文学类书籍的人数比喜欢其他类书籍的人数多50人D .该年级学生课外阅读最喜欢的书籍种类是历史类7.如图,在中,,.阅读以下作图步骤:①以点为圆心,的长为半径作圆弧,交于点;②分别以点和点为圆心,大于的长为半径作圆弧,两弧相交于点;③作射线交于点.则下列说法错误的是()A .是的高B .是的中线C .D .8.如图,在等边中,于点,延长至点,使得,若,则的长为()ABC .D .29.如图,是的直径,,是的弦,交于点,且,连接.若,则的度数为( )m ABC △90BAC ∠= 30C ∠= A AB BC D B D 12BD E AE BC F AF ABC △AD ABC △2BDA CAD∠=∠AF BC =ABC △BD AC ⊥D BC E CE CD =2AB =DE 32AB O AC CD O CD AB E OD DE =BC 15BAC ∠= ODC ∠A .B .C .D .10.已知点,为抛物线上的两点,且,则的值可能为( )A .5B .1C .D .第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔将答案写在答题卡相应位置上.2.作图可先使用2B 铅笔画出,确定后用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.如果收入80元,记作元,那么支出37元应记作________元.12.若从2名女生,3名男生中随机选择1位担任班级的“环保卫士”,则女生被选中的概率是________.13.如图,在中,对角线与交于点,若的面积为5,则四边形的面积为________.14.不等式组的解集是________.15.如图,在正五边形中以为边作等腰直角,,连接,则的度数为________.16.如图,矩形的三个顶点,,分别在反比例函数的图象上,过点,矩形的边与轴交于点,且,若点的横坐标为1,则________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8.30 35 40 45(),M c m ()5,N n 243(0)y ax ax a =-->m n <c 1-5-80+ABCD AC BD O AOB △ABCD 63712x x x -+⎧⎨+>-⎩…ABCDE CD FCD △90DCF ∠= BF CBF ∠ABCD A B D ky x=AB O BC x E BE CE =A k =1122-⎛⎫+ ⎪⎝⎭18.(8分)如图,点,,,在同一条直线上,,,,求证:.19.(8分)先化简,再求值:,其中.20.(8分)福建永安特产笋干是闽西八大干之一,因其具有肉厚节密、色泽金黄、口感脆嫩的特点,在海内外享有盛誉.某特产店销售,两种不同品牌的笋干,已知销售1千克种笋干和2千克种笋干的销售额为280元,销售2千克种笋干和3千克种笋干的销售额为460元.(1)求,两种笋干每千克的销售价格;(2)据了解,销售,两种笋干的利润分别是40元/千克和70元/千克,该店计划再次购进,两种笋干共150千克,预算不超过5500元,厂家规定购进种笋干不多于种笋干的2倍,求该店最多购买种笋干多少千克?21.(8分)如图,四边形是的内接四边形,是的直径,过点作的切线交延长线于点,且,连接.(1)求证:;(2)若,求的度数.22.(10分)为了解学生体育中考的准备情况,某校对九年级全体学生进行了一次体能摸底测试,学校随机抽取了20名学生,记录他们的体能摸底测试成绩(单位:分)如下表所示.为增强学生的体能,学校组织了强化训练,经过一个月的强化训练后,再次进行测试,对原来抽取的20名学生跟踪调查,记录成绩.其中组为,组为,组为,组为.63819972848867959277849897888996789385根据以上信息,回答下列问题:(1)统计表中的一个数据因沾上污渍看不清了,已知这20个数据中存在唯一的众数84,则的值为________,本次抽样调查获取的样本数据的中位数是________;(2)第二次测试中发现组的同学平均成绩提高13分,组的同学平均成绩提高7分,组的同学平均成绩提高3分,组的同学平均成绩提高1分,若把测试成绩超过88分定为优秀,那么这些同学第二次测试的平均成绩能否达到优秀,并说明理由.(各组数据用该组数据的组中值代表,如取65)23.(10分)某景区因其特有的玻璃观光栈道吸引了众多游客前来打卡,景区内有两条可供游客观赏自然风光B EC F ACDE =BE FC =ACB DEF ∠=∠AB DF =2241224x x x x -⎛⎫-÷ ⎪--⎝⎭2x =-A B A B A B A B A B A B B A A ABCD O AB O C O AD E AE CE ⊥AC BC CD =40CAB ∠= DCA ∠x A 90100x <…B 8090x <…C 7080x <…D 6070x <…aa D C B A 6070x <…的观光玻璃栈道,,由于景区客流量日益增多,现景区准备新建一条新的玻璃栈道.某数学研究小组的同学们把测量玻璃栈道,之间的距离作为一项课题活动,设计了如下表所示的测量方案:课题测量玻璃栈道,之间的距离成员组长:×××组员:×××,×××,×××测量工具测角仪、皮尺等测量方案…测量示意图测量数据…(1)景区修建玻璃栈道后从到观光所用的时间缩短了,其中蕴含的数学原理是________;A .三角形具有稳定性B .两点确定一条直线C .两点之间线段最短D .垂线段最短(2)请你利用皮尺和测角仪,通过测量长度、角度等几何量,求出,之间的距离,并写出你的测量及求解过程.(要求:测量得到的长度用字母表示,角度用表示)24.(12分)如图,在等腰中,,,于点,点在线段上,连接,,将线段绕点逆时针旋转,点的对应点恰好落在的延长线上.(1)如图①,当时.①求证:;②求的值;(2)如图②,当时,求的长.25.(14分)已知抛物线与轴交于,两点(点在点左侧),与轴交于点.(1)若,求抛物线的顶点坐标(用含的式子表示);(2)已知该抛物线过点,且当时,函数有最大值.①求该抛物线的解析式;②若过点的直线与抛物线在对称轴右侧有且只有一个交点,直线与抛物线交于,两点,连接,,求当为何值时,的面积最小,并求出面积的最小值.AC BC AB A B A B AB A B A B ,,a b c ,,αβγ ABC △5AB AC ==8BC =AD BC ⊥D E AD BE CE CE E C F BA AD AF =ABE BCE ∠=∠sin F AE AF =AE 23y ax bx =+-x A B A B y C 12a =b ()1,8--2x =y ()0,6N 1l M ()2:330l y kx k k =--≠E F ME MF k MEF △2024年福建省初中学业水平考试·数学答案一、选择题(本题共10小题,每小题4分,共40分)1~5 DACBA6~10 CDBCB二、填空题(本题共6小题,每小题4分,共24分)11.12.13.20 14. 15. 16.三、解答题请看“逐题详析”P2~P4一、选择题:本题共10小题,每小题4分,共40分.1.D2.A3.C4.B 【解析】逐项分析如下:选项逐项分析正误A×B √C×D ×5.A6.C 【解析】,的值为20,故A 选项错误;(人),此次统计的总人数为500人,故B 选项错误;(人),喜欢文学类书籍的人数比喜欢其他类书籍的人数多50人,故C 选项正确;,文学类书籍的占比最大,该校七年级学生课外阅读最喜欢的书籍种类是文学类,故D 选项错误.7.D 【解析】由作图步骤可得,,是的高,选项A 正确,不符合题意;,,,,为等边三角形,,在中,,,,是的中线,选项B 正确,不符合题意;为等边三角形,,,,选项C 正确,不符合题意;在中,,选项D 错误,符合题意.37-2532x -<…81 333622a a a a +=≠279a a a ⋅=()3265a a a =≠222(2)4424a a aa a -=-+≠-+125%25%30% 20%---=m ∴12525%500÷=∴500(30%20%)50⨯-=∴30%25%20%>> ∴∴AF BC ⊥AD AB =AF ∴ABC △AD AB = 90BAC ∠= 30C ∠= 60ABC ∴∠= ABD ∴△AB BD ∴=Rt ABC △30C ∠= 12AB BC ∴=12BD BC ∴=AD ∴ABC △∴ABD △60BDA ∴∠= 30CAD BDA C ∴∠=∠-∠= 2BDA CAD ∴∠=∠∴Rt ABF △1sin602AF AB AB BC BC =⋅=== ∴8.B 【解析】是等边三角形,,.,,,,在中,.,,,9.C 【解析】是的直径,.,.设,则,,,,,解得,,.10.B 【解析】由题可得,该抛物线的对称轴为直线,点在对称轴右侧,点的位置不确定,需分类讨论:①当点在对称轴右侧(或在顶点)时,,,且在对称轴右侧随的增大而增大,,;②当点在对称轴左侧时,,由对称性可知抛物线过点,,且在对称轴左侧随的增大而减小,,,综上可得,的取值范围为,的值可能为1.二、填空题:本题共6小题,每小题4分,共24分.11. 12.13.20 【解析】四边形是平行四边形,.由等底同高可得,.14. 【解析】令,解不等式①得,解不等式②得,不等式组的解集为.15.【解析】多边形为正五边形,其内角的度数为,,.,.16.【解析】如解图,过点作轴于点,过点作轴于点,过点作轴于点,设点坐标为,其中,由对称性得,,ABC △2AB AC BC ∴===60ACB ABC ∠=∠= BD AC⊥ 90ADB ∴∠= 30ABD CBD ∠=∠= 1AD CD ==∴Rt ABD △BD ==CE CD = 1302E CDE ACB ∴∠=∠=∠= E CBD ∴∠=∠DE DB ∴==AB O 90ACB ∴∠= 15BAC ∠= 9075ABC BAC ∴∠=-∠= BCE x ∠=2BOD x ∠=OD DE = 2DEO BOD x ∴∠=∠=2CEB DEO x ∴∠=∠=275180x x ∴++= 35x = 70DEO BOD ∴∠=∠= 18027040ODC ∴∠=-⨯= 422ax a-=-=∴()5,N n (,)M c m (),M c m 2c …m n < y x 5c ∴<25c ∴<…(),M c m 2c <()1,n -m n < y x 1c ∴>-12c ∴-<<c 15c -<<c ∴37-25ABCD 5AOB S =△10ABD S =△20ABCD S ∴=四边形32x -<…63712x x x -+⎧⎨+>-⎩①②...2x ...3x >-∴32x -< (81)ABCDE ∴()521801085-⨯= 90FCD ∠=1089018BCF ∴∠=-=BC CD FC == 18018812CBF CFB -∴∠=∠==B BM x ⊥MC CN x ⊥N A AF x ⊥F A ()1,a 0a ≠()1,B a --OB OA ∴==,,,,,,,,,,,,,,,,,,,,,都在反比例函数图象上,,解得,反比例函数的图象在第二、四象限,,.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解:原式18.证明:,,.在和中,,.19.解:原式BM AF a ==1OM OF ==tan tan BOE AOF ∠=∠ BE AF OB OF ∴=1a =BE ∴2EM a ∴==BE CE = CEN BEM ∠=∠CNE BME ∠=∠CNE BME ∴≌△△CN BM a ∴==2NE EM a ==CE BE =221ON a ∴=+()221,C a a ∴--()1,A a ()1,B a --BC AD ∥AD BC =()212,3D a a ∴-A D ()23121a a a ∴-=⋅a = 1,A ⎛∴ ⎝1k ⎛∴=⨯= ⎝22=+=BE FC = BE CE FC CE ∴+=+BC FE ∴=ABC △DFE △AC DEACB DEFBC FE =⎧⎪∠=∠⎨⎪=⎩()SAS ABC DFE ∴≌△△AB DF ∴=22242224x x x x x x --⎛⎫=-÷ ⎪---⎝⎭,当时,原式.20.解:(1)设种笋干的销售价格为元/千克,种笋干的销售价格为元/千克,,解得,答:种笋干的销售价格为80元/千克,种笋干的销售价格为100元/千克.(2)设购进种笋干千克,则购进种笋干千克,共花费元,由题意得.预算不超过5500元,,解得,又由题可得,解得,,的最大值为100,答:最多可购买种笋干100千克.21.(1)证明:如解图,连接,是的切线,,,,,,,,,;()()()222222x x x x x -+=⋅-+-2222x x x +=⋅-+22x =-2x =-===A x B y 228023460x y x y +=⎧⎨+=⎩80100x y =⎧⎨=⎩A B A a B (150)a -w ()()()804010070150104500w a a a =-+--=+ 1045005500a ∴+…100a …1502a a -…50a …50100a ∴……a ∴A OC CE O OC CE ∴⊥AE CE ⊥ OC AE ∴∥EAC OCA ∴∠=∠OA OC = OAC OCA ∴∠=∠EAC OAC ∴∠=∠ DCBC∴=BC CD ∴=(2)解:是的直径,,,,四边形是的内接四边形,,,,,由(1)可得,,.22.解:(1)84,86.5;【解法提示】这20个数据中存在唯一的众数84,,将这组数据按照从小到大的顺序排列后,第10和第11个数据分别是85和88,本次抽样调查获取的样本数据的中位数是.(2)由表中数据可知,第一次测试的20名同学中,组的有7人,组的有8人,组的有3人,组的有2人.依题意得,,,,第二次测试中这些学生的平均成绩能达到优秀.23.解:(1)C ;(2)如解图①,测量过程:(i )利用测角仪测得和;(ii )用皮尺测得.计算过程:过点作于点,在中,,,在中,,AB O 90ACB ∴∠= 40CAB ∠= 9050ABC CAB ∴∠=-∠= ABCD O 50EDC ABC ∴∠=∠= AE CE ⊥ 90AEC ∴∠= 9040ECD EDC ∴∠=-∠= 40EAC CAB ∠=∠= 50ECA ∴∠= 10DCA ECA ECD ∴∠=∠-∠= 84a ∴=∴858886.52+=A B C D 1327338173.920⨯+⨯+⨯+⨯=6527538589578520⨯+⨯+⨯+⨯= 85 3.988.988∴+=>∴BAC α∠=ABC β∠=BC m =C CD AB ⊥D Rt BCD △cos cos BD BC ABC m β=⋅∠=sin sin CD BC ABC m β=⋅∠=Rt ACD △sin tan tan CD m AD BAC βα==∠.(答案不唯一)【一题多解】测量过程:(i )如解图②,延长,至点,,用测角仪测得.(ii )用皮尺测得,,.计算过程:,,,,即,解得.(答案不唯一)24.(1)①证明:在等腰中,,于点,,.,,.由旋转性质可得,又,,.易知,;②解:如解图,过点作于点,由①可得,.,sincos tan m AB AD BD m ββα∴=+=+AC BC E F CEF BAC α∠=∠=EF a =BC b =CF c =AEF BAE α∠=∠= AB EF ∴∥ACB ECF ∴∽△△AB BC EF FC ∴=AB b a c=ab AB c= ABC △AB AC =AD BC ⊥D 142BD CD BC ∴===3AD ∴===3AD AF ∴==8BF AB AF ∴=+=BF BC ∴=EC EF =BE BE = BEF BEC ∴≌△△FBE CBE ∴∠=∠EBC ECB ∠=∠ABE BCE ∴∠=∠E EM AB ⊥M FBE CBE ∠=∠F ECB ∠=∠AD BC ⊥.,,,.设,则.在中,,即,,,在中,,(2)解:由题可得.线段绕点逆时针旋转得到线段,,,.,,.,,,.,,设,则,,即,DE EM ∴=BE BE = Rt Rt ()BED BEM HL ∴≌△△4BD BM ∴==1AM ∴=DE EM x ==3AE x =-Rt AME △222AM EM AE +=2221(3)x x +=-43x ∴=43DE ∴=∴Rt DEC △CE ==sin sin DE F ECD CE ∴=∠==BE CE = CE E EF CE EF ∴=BE EF ∴=F ABE ∴∠=∠AE AF = F AEF ∠∠∴=AEF ABE ∴∠=∠F F ∠=∠ AEF EBF ∴∽△△EF AFBF EF ∴=2EF AF BF ∴=⋅222CE DE CD =+ 22AF BF DE CD ∴⋅=+AE AF m ==5BF m =+3DE m =-()225(3)4m m m +=-+解得,.25.解:(1)当时,抛物线的解析式为,抛物线的顶点坐标为;(2)①当时,函数有最大值,抛物线的对称轴为直线,且.,即,该抛物线的解析式为,该抛物线过点,将点代入中,得,抛物线解析式为;②如解图,抛物线与轴交于,两点,且点在点左侧,令,解得,,,.设直线的解析式为,联立,得,直线与抛物线在对称轴右侧有且只有一个交点,,解得(舍去),,,即,2511m =2511AE ∴=12a =222113()3222b y x bx x b =+-=+--∴2,32b b ⎛⎫--- ⎪⎝⎭ 2x =y ∴2x =0a <22b a∴-=4b a =-∴243y ax ax =-- ()1,8--∴()1,8--243y ax ax =--1a =-44b a ∴=-=∴243y x x =-+- 243y x x =-+-x A B A B 2430x x -+-=11x =23x =()1,0A ∴()3,0B 1l 6y nx =+2436y x x y nx ⎧=-+-⎨=+⎩()2490x n x +-+= 1l 2(4)4190n ∴--⨯⨯=110n =22n =-2690x x ∴-+=2(3)0x -=点坐标为,与点重合.直线,直线恒过点,,联立,得,,,,,当时,有最小值,最小值为M ∴()3,0B ()2:3333l y kx k k x =--=--∴2l ()3,3J -3MJ ∴=()24333y x x y k x ⎧=-+-⎪⎨=--⎪⎩()2430x k x k +--=()22(4)413416k k k k ∴--⨯⨯-=++1x ∴=2x =21x x ∴-=2111322MEF MJE MJF S S S MJ x x ∴=+=⋅-=⨯△△△2k =-MEF S △32⨯=。

2024年福建省福州市屏东中学等多校联考中考数学模拟试卷及参考答案

2024年福建省福州市屏东中学等多校联考中考数学模拟试卷及参考答案

2024年福建省福州市屏东中学等多校联考中考数学模拟试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)在实数,,0,﹣1中,最小的数是()A.﹣1B.0C.D.2.(4分)据统计,2024年元旦假期,某市推出多项文旅活动,共接待游客204.58万人次,实现旅游收入14.12亿元.将数据1412000000用科学记数法表示为()A.1.412×108B.14.12×108C.1.412×109D.0.1412×10103.(4分)下列几何体中三个视图完全相同的是()A.B.C.D.4.(4分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°5.(4分)对于非零实数a,下列运算一定正确的是()A.a3•a2=a5B.(a3)2=a9C.a6÷a2=a3D.(3a)2=6a2 6.(4分)如图,已知BC是⊙O的直径,点A,D在⊙O上,若∠ACB=32°,则∠ADC 的大小为()A.68°B.62°C.58°D.52°7.(4分)近年来,随着创建“生态文明城市”活动的开展,某市的社会知名度越来越高,为了吸引更多外地游客,该市于当月1日至7日晚举办了大型“灯光秀”活动,每场光影秀的时长(单位:min)为26,30,34,35,40,40,40.因活动反响大,游客好评如潮,故主办方又加了一场灯光秀演出,时长为35min.现分析加场前后的数据,受影响的统计量是()A.平均数B.中位数C.众数D.方差8.(4分)如图,在半⊙O中,尺规作图的作法如下:①分别以弦AB的端点A、B为圆心,适当的等长为半径作弧,两弧相交于点P;②连结OP交AB于点C,并延长交半⊙O于D点.若OA=10,CD=4,则cos∠A的值为()A.B.C.D.9.(4分)已知点A(﹣6,m+2),B(﹣3,m),C(3,m)在同一个函数图象上,则这个函数图象可能是()A.B.C.D.10.(4分)如图,矩形OABC的对角线OB与反比例函数y=(x>0)相交于点D,且,则矩形OABC的面积为()A.50B.25C.15D.二、填空题:本题共6小题,每小题4分,共24分。

福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)

福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024—2025学年第一学期期中适应性练习九年级数学(全卷满分:150分,考试时间:120分钟)友情提示:请将答案写在答题卡规定位置上,不得错位、越界答题.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中不是中心对称图形的是()A .B .C .D .2.将抛物线向右平移2个单位,然后向上平移3个单位,则平移后得到的抛物线解析式是( )A .B .C .D .3.如图,是的直径,点在上.若,.则的半径长为( )第3题A .1B .2CD4.下列一元二次方程中,根是的方程是()A .B.C .D .5.已知一个圆心角为120°,半径为3的扇形,则这个扇形的弧长是( )A .B .C .D .6.对于二次函数,下列判断正确的是( )A .当时,取得最大值B .当时,取得最小值2y x =()223y x =--()223y x =+-()223y x =-+()223y x =++AB O e C O e 2AC =BC =O e x =23210x x +-=23210x x --=23410x x +-=2230x x --+=π2π3π4π()226y x =--+2x =y 2x =yC .当时,取得最大值D .当时,取得最小值7.一根排水管的截面如图所示,截面水深是4dm ,水面宽是16dm ,则排水管的截面圆的半径是()第7题A .6dmB .10dmC .D .20dm8.将点绕原点逆时针旋转90°得到点,则点的坐标为( )A .B .C .D .9.如图,,分别切于,两点,点在优弧上,,则的度数为()第9题A .40°B .50°C .80°D .100°10.已知二次函数的图象上有两点和(其中),则下列判断正确的是()A .若时,B .若时,C .若,时,D .若,时,二、填空题:本题共6小题,每小题4分,共24分.11.若一元二次方程的一个根为,则的值为______.12.一元二次方程根的判别式的值是______.13.已知的半径是5cm ,若圆心到直线的距离是4cm ,则直线与的位置关系是______.(填“相交”、“相切”或“相离”)14.如图,在等边三角形中,为的中点,,与关于点中心对称,连接,则的长为______.2x =-y 2x =-y CD ABOB ()2,3A O B B ()2,3-()2,3-()3,2-()3,2-PA PB O e A B C ACB 80P ∠=︒C ∠()220y ax ax c a =-+≠()11,A x y ()22,B x y 12x x <122x x +<120y y ->122x x +>120y y ->0a >122x x +>120y y ->0a <122x x +<120y y -<210x ax +-=1x =a 2310x x --=O e O AB AB O e ABC O BC 2AB =BPQ △BAO △B CP CP第14题15.某品牌汽车刹车后行驶的距离(单位:m )与滑行时间(单位:s )的函数关系式是.汽车刹车后到停下来前进了______m .16.我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,的半径为1,如用的内接正十二边形面积来近似估计圆的面积,则可得的近似值为3.若用半径为1的圆的内接正八边形面积作近似估计,可得的近似值为______.(参考数据:,结果精确到0.1)第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解方程.18.(8分)已知二次函数.(1)完成下表:…0123……__________________…(2)根据(1)的结果在如图所示的平面直角坐标系中,利用描点法画出这个二次函数的图象;(3)结合函数图象,当时,的取值范围是______19.(8分)已知二次函数.求证:不论取何值,该函数图象与轴总有两个交点.s t 2156s t t =-O e O e ππ1.414≈ 1.732≈2410x x --=223y x x =--x 1-223y x x =--0y <x ()2221y x m x m =-++-m x20.(8分)如图,,是的直径,点在上,,求证:.21.(8分)如图,在中,,,,以点为圆心,2.4为半径作.求证:是的切线.22.(10分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.(1)求二次函数的解析式;(2)若是二次函数图象上的一点,且点在第一象限,线段交轴于点,,求点的坐标.23.(10分)如图,在矩形中,,.将绕点顺时针旋转一个角度得到,点,的对应点分别为点,.图1图2(1)如图1,若点落在边上,求旋转角的度数;(2)如图2,若点落在线段上,与交于点,求的长.24.(12分)长乐栽培龙眼历史悠久,据文献记载宋光宗皇帝曾赐匾青山龙眼为“黄龙”.请你运用数学知识,根据素材,帮果农解决问题.信息及素材AB CD O e E »BC»»BD BE =CE AB ∥Rt OAB △90AOB ∠=︒3OA =4OB =O O e AB O e 2y x bx c =++x A B y C ()1,0A -()3,0B P P PC x D PAD CAD S S =△△PABCD AB =2BC =ABC △C αFEC △A B F E E AD αE AF CE AD G AG素材一在专业种植技术人员的正确指导下,果农对龙眼种植技术进行了研究与改进,使产量得到了增长,根据果农们的记录,2021年龙眼平均年产量是2.8万吨,2023年达到了3.2万吨,每年的增长率基本相同.素材二龙眼一般用长方体包装盒包装后进行售卖.素材三果农们通过调查发现,顾客们也很愿意购买用美观漂亮的其它造型的纸盒包装的龙眼.任务1:设龙眼产量的年平均增长率为,根据素材一列方程得______;任务2:现有长80cm ,宽75cm 的长方形纸板,将四角各裁掉一个正方形(如图1),折成无盖长方体纸盒(如图2).为了放下适当数量的龙眼,需要设计底面积为的纸盒,计算此时纸盒的高;图1 图2任务3:为了增加包装盒的种类,打算将任务2中的纸板通过图3的方式裁剪,得到底面为正六边形的无盖纸盒(如图4),求纸盒的底面边长.(图中实线表示剪切线,虚线表示折痕.板厚度及剪切接缝处损耗忽略,结果取整数)图3 图425.(14分)学习完一元二次方程的知识后,数学兴趣小组对关于的一元二次方程开展探究.(1)当时,该方程的正根称为“黄金分割数”,求“黄金分割数”;(2)若实数,满足,,且,求的值;(3)若两个不相等的实数,满足,,求的值.x 21400cm 1.732≈x 210x mx +-=1m =a b 21a ma -=224b mb +=2b a ≠-ab p q 21p mp q +-=21q mq p +-=pq m -2024—2025学年第一学期期中阶段反馈练习九年级数学参考答案一、选择题:本题共10小题,每小题4分,共40分.1-5 ACDAB6-10 ABDBD二、填空题:本题共6小题,每小题4分,共24分11.0 12.13 13.相交 14.15.9.375 16.2.8三、解答题:本题共9小题,共86分.17.(8分)解:∴另解:∵,,∴∴∴18.(8分)(1)完成下表:…0123………解:(2)描点、连线,如图所示;(3).19.(8分)证明:令,则241x x -=24414x x -+=+()225x -=2x -=12x =22x =1a =4b =-1c =-()()2244411b ac ∆=-=--⨯⨯-200=>x =2=±12x =22x =x 1-223y x x =--3-4-3-13x -<<0y =()22210x m x m -++-=()()224121m m ⎡⎤∆=-+-⨯⨯-⎣⎦()2240m =-+>∴方程总有两个不相等的实数根∴不论取何值,该函数图象与轴总有两个交点.20.(8分)证明:连接∵ ∴ ∴∵ ∴ ∴.21.(8分)证明:过点作,垂足为∵,, ∴∵ ∴∵的半径为2.4 ∴ ∴是的切线.22.(10分)解:(1)∵二次函数的图象过点,∴ 解得∴二次函数的解析式为;(2)设(,)在中,当时,∴m x OE»»BDBE =BOD BOE ∠=∠12BOD DOE ∠=∠12C DOE ∠=∠BOD C ∠=∠CE AB ∥O OC AB ⊥C90AOB ∠=︒3OA =4OB=5AB ===1122OAB S OA OB AB OC =⋅=⋅△342.45OA OB OC AB ⋅⨯===O e r OC r =AB O e 2y x bx c =++()1,0A -()3,0B 10930b c b c -+=⎧⎨++=⎩23b c =-⎧⎨=-⎩223y x x =--(),P m n 0m >0n >223y x x =--0x =3y =-3OC =∵∴∴∵点在二次函数图象上 ∴解得(舍去)∴点的坐标为. 23.(10分)解:(1)∵四边形是矩形图1∴, ∴由旋转,得,在中,∴ ∴∴旋转角的度数为45°;(2)由旋转,得,图2∴ ∵∴ ∴∵四边形是矩形∴,,∴ ∴ ∴设,则,在中, ∴解得 ∴的长为.PAD CAD S S =△△1122AD n AD OC ⋅=⋅3n =(),P m n 2233m m --=11m =21m =P ()1ABCD CD AB ==90D ∠=︒AD BC ∥DEC BCE∠=∠2CE BC ==BCE α∠=Rt CDE △DE ===CD DE =45DEC ∠=︒α90FEC B ∠=∠=︒CE BC=90AEC B ∠=∠=︒AC AC=()Rt Rt HL AEC ABC ≌△△ACE ACB ∠=∠ABCD AD BC ∥2AD BC ==CD AB ==90D ∠=︒GAC ACB ∠=∠GAC ACE ∠=∠AG CG =AG m =CG m =2DG AD AG m =-=-Rt CDG △222CG CD DG =+()2222m m =+-32m =AG 3224.(12分)解:任务1:;任务2:设裁掉正方形的边长为,根据题意,得解得,(不合题意,舍去)答:此时纸盒的高为20cm ;任务3:设底面正六边形为,连接,,,和交于点,和交于点,所在直线交长方形纸板的边于点,设底面正六边形的边长为,纸盒的高为∵正六边形的每条边相等,每个内角都为120°∴为等腰三角形, ∴由正六边形的性质可得平分 ∴ ∴∴, 同理可得∵ ∴①∵左侧小三角形顶点的角度∴左侧小三角形是边长为的等边三角形根据图形的轴对称可得与长方形纸板的左右两边垂直∴为等边三角形的高 ∴ 同理可得∵四边形是矩形 ∴∵ ∴②联立①②式可得答:纸盒的底面边长约为30cm .25.(14分)解:(1)将代入,得解得.()22.813.2x +=cm m ()()7528021400m m --=120m =21152m =ABCDEF AC FD BE AC BE G FD BE H BE M Ncm acmb ABC △120ABC ∠=︒30BAC BCA∠=∠=︒BE ABC ∠60ABE ∠=︒90AGB ∠=︒1122BG AB a ==AG CG==12HE BG a ==75b AG CG b +++=275b +=B 360120909060︒︒︒︒︒=---=b MN BM BM =EN BM ==AGHF GH AF a==80BM BG GH HE EN ++++=280a +=16030a =-≈1m =210x mx +-=210x x +-=x ==;(2)∵ ∴ ∴∵ ∴∵ ∴,是一元二次方程的两个根∴ ∴;(3)①,②①-②,得∴∵ ∴ ∴∴③,④将④代入①,得 ∴将③代入②,得 ∴∴,是一元二次方程的两个根∴ ∴.224b mb +=2240b mb +-=21022b b m ⎛⎫+⋅-= ⎪⎝⎭21a ma -=()()210a m a -+⋅--=2b a ≠-a -2b210x mx +-=12ba -⋅=-2ab =21p mp q +-=21q mq p +-=()22p q m p q q p-+-=-()()()()p q p q m p q p q -++-=--p q ≠()1p q m ++=-1p q m +=--1p m q =---1q m p =---211p mp m p +-=---()210p m p m +++=211q mq m q +-=---()210q m q m +++=p q ()210x m x m +++=pq m =0pq m -=。

福建省厦门市双十中学2024届中考联考数学试题含解析

福建省厦门市双十中学2024届中考联考数学试题含解析

福建省厦门市双十中学2024届中考联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<02.如图,在平面直角坐标系中,△ABC 位于第二象限,点B 的坐标是(﹣5,2),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于于x 轴对称的△A 2B 2C 2,则点B 的对应点B 2的坐标是( )A .(﹣3,2)B .(2,﹣3)C .(1,2)D .(﹣1,﹣2)3.下列关于x 的方程一定有实数解的是( )A .2x mx 10--=B .ax 3=C x 64x 0--=D .1x x 1x 1=-- 4.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(7,4)C .(6,4)D .(8,3)5.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->6.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )A .3B .3.2C .4D .4.57.已知某几何体的三视图(单位:cm )如图所示,则该几何体的侧面积等于( )A .12πcm 2B .15πcm 2C .24πcm 2D .30πcm 28.如图,从圆O 外一点P 引圆O 的两条切线PA ,PB ,切点分别为A ,B ,如果60APB ∠=, 8PA =,那么弦AB 的长是( )A.4B.43C.8D.83 9.下列各类数中,与数轴上的点存在一一对应关系的是()A.有理数B.实数C.分数D.整数10.下列各组数中,互为相反数的是()A.﹣2 与2 B.2与2 C.3与13D.3与3二、填空题(共7小题,每小题3分,满分21分)11.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.12.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.13.分式方程2154x=-的解是_____.14.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=23.其中正确的序号是(把你认为正确的都填上).15.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.16.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.17.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.三、解答题(共7小题,满分69分)18.(10分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.19.(5分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.20.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.21.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=32.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.22.(10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.23.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.24.(14分)A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B 手中的概率;(2)求三次传球后,球恰在A 手中的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】根据抛物线的开口方向确定a ,根据抛物线与y 轴的交点确定c ,根据对称轴确定b ,根据抛物线与x 轴的交点确定b 2-4ac ,根据x=1时,y >0,确定a+b+c 的符号.【题目详解】解:∵抛物线开口向上,∴a >0,∵抛物线交于y 轴的正半轴,∴c >0,∴ac >0,A 错误;∵-2b a>0,a >0, ∴b <0,∴B 正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,C 错误;当x=1时,y >0,∴a+b+c>0,D错误;故选B.【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x轴交点的个数确定.2、D【解题分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【题目详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【题目点拨】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.3、A【解题分析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.【题目详解】A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;B.ax=3中当a=0时,方程无解,不符合题意;C.由6040xx-≥⎧⎨-≥⎩可解得不等式组无解,不符合题意;D.111xx x=--有增根x=1,此方程无解,不符合题意;故选A.【题目点拨】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.4、B【解题分析】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .5、C【解题分析】根据各点在数轴上位置即可得出结论.【题目详解】由图可知,b <a <0,A. ∵b <a <0,∴a +b <0,故本选项错误;B. ∵b <a <0,∴ab >0,故本选项错误;C. ∵b <a <0,∴a >b ,故本选项正确;D. ∵b <a <0,∴b −a <0,故本选项错误.故选C.6、B【解题分析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B. 7、B【解题分析】由三视图可知这个几何体是圆锥,高是4cm ,底面半径是3cm 22435(cm ),∴侧面积=π×3×5=15π(cm 2),故选B .8、C【解题分析】先利用切线长定理得到PA PB =,再利用60APB ∠=可判断APB 为等边三角形,然后根据等边三角形的性质求解.【题目详解】解:PA,PB为O的切线,PA PB∴=,60APB∠=,APB∴为等边三角形,8AB PA∴==.故选C.【题目点拨】本题考查切线长定理,掌握切线长定理是解题的关键.9、B【解题分析】根据实数与数轴上的点存在一一对应关系解答.【题目详解】实数与数轴上的点存在一一对应关系,故选:B.【题目点拨】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.10、A【解题分析】根据只有符号不同的两数互为相反数,可直接判断.【题目详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与13互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【题目点拨】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.二、填空题(共7小题,每小题3分,满分21分)11、8【解题分析】如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【题目详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【题目点拨】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.12、【解题分析】∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的12,∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的14.同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的1 16,∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的1 256.13、x=13【解题分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.2154x =-, 去分母,可得x ﹣5=8,解得x=13,经检验:x=13是原方程的解.【题目点拨】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.14、①②④【解题分析】 分析:∵四边形ABCD 是正方形,∴AB=AD 。

福建省龙岩市永定区金丰片2024届中考联考数学试题含解析

福建省龙岩市永定区金丰片2024届中考联考数学试题含解析

福建省龙岩市永定区金丰片2024学年中考联考数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A.16B.12C.13D.232.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m3.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.184.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A.B.C .D .6.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++7.﹣3的绝对值是( ) A .﹣3B .3C .-13D .138.如图的立体图形,从左面看可能是( )A .B .C .D .9.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是()A .91032π⎛ ⎝米2B .932π⎛ ⎝米2C .9632π⎛- ⎝米2D .(693π-米2 10.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是线段BO 上的一个动点,点F 为射线DC 上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF 可能的整数值是_____.12.如图,在平行四边形ABCD 中,过对角线AC 与BD 的交点O 作AC 的垂线交于点E ,连接CE ,若AB=4,BC=6,则△CDE 的周长是______.13.12019的相反数是_____. 14.计算:5-=____.15.2-的相反数是______,2-的倒数是______. 16.化简()()201720182121-+的结果为_____.三、解答题(共8题,共72分) 17.(8分)解方程:+=1.18.(8分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?19.(8分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.20.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.21.(8分)小明对A,B,C,D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女超市 ABCD女工人数占比62.5%62.5%50%75%A 超市共有员工多少人?B 超市有女工多少人?若从这些女工中随机选出一个,求正好是C 超市的概率;现在D 超市又招进男、女员工各1人,D 超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.22.(10分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m +-的解集(请直接写出答案).23.(12分)如图,A (4,3)是反比例函数y=kx 在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .求反比例函数y=kx的表达式;求点B 的坐标;求△OAP的面积.24.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算. 【题目详解】依题意得P(朝上一面的数字是偶数)=31 = 62故选B.【题目点拨】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.2、A【解题分析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=1AC=1×15=7.5m,3153,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【题目点拨】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.3、A【解题分析】由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF 的周长.【题目详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【题目点拨】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.4、D【解题分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【题目详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数∴选D.5、D【解题分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【题目详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A.【题目点拨】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.6、B【解题分析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.【题目详解】解:∵y=x2+2x+3=(x+1)2+2,∴原抛物线的顶点坐标为(-1,2),令x=0,则y=3,∴抛物线与y轴的交点坐标为(0,3),∵抛物线绕与y轴的交点旋转180°,∴所得抛物线的顶点坐标为(1,4),∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].故选:B.【题目点拨】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.7、B【解题分析】根据负数的绝对值是它的相反数,可得出答案.根据绝对值的性质得:|-1|=1.故选B.【题目点拨】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.8、A【解题分析】根据三视图的性质即可解题.【题目详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角, 故选A.【题目点拨】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.9、C【解题分析】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD62∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.10、C严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【题目详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【题目点拨】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题(本大题共6个小题,每小题3分,共18分)11、2,3,1.【解题分析】分析:根据题意得出EF的取值范围,从而得出EF的值.详解:∵AB=1,∠ABC=60°,∴当点E和点B重合时,∠FBD=90°,∠BDC=30°,则EF=1;当点E和点O重合时,∠DEF=30°,则△EFD为等腰三角形,则EF=FD=2,∴EF可能的整数值为2、3、1.点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E在何处时取到最大值和最小值,从而得出答案.12、1【解题分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.【题目详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【题目点拨】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13、1 2019根据只有符号不同的两个数互为相反数,可得答案.【题目详解】1 2019的相反数是−12019.故答案为−1 2019.【题目点拨】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.14、5.【解题分析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.15、2,1 2 -【解题分析】试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,﹣2的倒数是1 2 -.考点:倒数;相反数.16+1【解题分析】利用积的乘方得到原式=[﹣1))]2017•+1),然后利用平方差公式计算.【题目详解】原式=[﹣1)+1)]2017•)=(2﹣1)2017•+1+1.+1.【题目点拨】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题(共8题,共72分)17、-3试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.18、 (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解题分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【题目详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36;(4)根据题意得:3000×903020200++=2100(个). 答:该社区学习时间不少于1小时的家庭约有2100个.【题目点拨】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.19、(1)AE=DF ,AE ⊥DF ,理由见解析;(2)成立,或2;(3)1【解题分析】试题分析:(1)根据正方形的性质,由SAS 先证得△ADE ≌△DCF .由全等三角形的性质得AE=DF ,∠DAE=∠CDF ,再由等角的余角相等可得AE ⊥DF ;(2)有两种情况:①当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理求出a 即可;②当AE=AC 时,设正方形的边长为a ,由勾股定理求出a ,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可.试题解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中 AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,222==+=,AC CE a a a则:2:2==;CE CD a a②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:222==+=,AC AE a a a∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即2或2;(3)∵点P 在运动中保持∠APD=90°,∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+= ∴51CP QC QP =+=+,即线段CP 的最大值是51+.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.20、(1)(2)证明见解析【解题分析】(1)如图1中,在AB 上取一点M ,使得BM=ME ,连接ME .,设AE=x ,则ME=BM=2x ,AM=x ,根据AB 2+AE 2=BE 2,可得方程(2x+x )2+x 2=22,解方程即可解决问题. (2)如图2中,作CQ ⊥AC ,交AF 的延长线于Q ,首先证明EG=MG ,再证明FM=FQ 即可解决问题.【题目详解】解:如图 1 中,在 AB 上取一点 M ,使得 BM=ME ,连接 ME .在 Rt △ABE 中,∵OB=OE ,∴BE=2OA=2,∵MB=ME ,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设 AE=x ,则 ME=BM=2x ,AM=x , ∵AB 2+AE 2=BE 2,∴, ∴x= (负根已经舍弃),∴AB=AC=(2+)• , ∴BC= AB= +1.作CQ⊥AC,交AF 的延长线于Q,∵ AD=AE ,AB=AC ,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【题目点拨】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1)32(人),25(人);(2)13;(3)乙同学,见解析.【解题分析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.【题目详解】解:(1)A超市共有员工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B超市有女工:20×54=25(人);(2)C超市有女工:20×64=30(人).四个超市共有女工:20×45634+++=90(人).从这些女工中随机选出一个,正好是C超市的概率为3090=13.(3)乙同学.理由:D超市有女工20×34=15(人),共有员工15÷75%=20(人),再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为1622=811≠75%.【题目点拨】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解题分析】试题分析:(1)将B 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;将A 坐标代入反比例解析式求出n 的值,确定出A 的坐标,将A 与B 坐标代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式;(2)对于直线AB ,令y=0求出x 的值,即可确定出C 坐标,三角形AOB 面积=三角形AOC 面积+三角形BOC 面积,求出即可;(3)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B (2,﹣4)在y=m x 上, ∴m=﹣1.∴反比例函数的解析式为y=﹣8x . ∵点A (﹣4,n )在y=﹣8x上, ∴n=2.∴A (﹣4,2).∵y=kx+b 经过A (﹣4,2),B (2,﹣4), ∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 23、(1)反比例函数解析式为y=12x;(2)点B 的坐标为(9,3);(3)△OAP 的面积=1. 【解题分析】(1)将点A 的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB ∥x 轴即可得点B 的坐标;(3)先根据点B 坐标得出OB 所在直线解析式,从而求得直线与双曲线交点P 的坐标,再利用割补法求解可得.【题目详解】(1)将点A(4,3)代入y=kx,得:k=12,则反比例函数解析式为y=12x;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴2243+,∵AB∥x轴,且AB=OA=1,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=13 x,由1312y xyx⎧=⎪⎪⎨⎪=⎪⎩可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=1.【题目点拨】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.24、(1)见解析(210【解题分析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.。

福建省福州铜盘中学2024-2025学年上学期八年级期中考数学试卷

福建省福州铜盘中学2024-2025学年上学期八年级期中考数学试卷

福建省福州铜盘中学2024-2025学年上学期八年级期中考数学试卷一、单选题1.下列手机中的图标是轴对称图形的是()A .美B .丽C .榕D .城2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是()A .B .C .D .3.下列计算正确的是()A .()326a a =B .236a a a ⋅=C .()3322a a =D .1025a a a ÷=4.如图,在△ABC 中,∠A =50°,∠C =70°,则外角∠ABD 的度数是()A .110°B .120°C .130°D .140°5.若三角形三个角的度数比为1:3:4,则这个三角形一定是()A .锐角三角形B .直角三角形C .钝角三角形D .无法确定6.如图所示,AB =AC ,要说明△ADC ≌△AEB ,需添加的条件不能是()A .∠B =∠CB .AD =AEC .DC =BED .∠ADC =∠AEB7.如果等腰三角形的两边长分别3和6,则它的周长为()A .9B .12C .15D .12或158.如图,AB AC =,40A ∠=︒,AB 的垂直平分线MN 交AC 于点D ,则DBC ∠=()A .20︒B .30︒C .40︒D .50︒9.如图,在长为32a +,宽为21b -的长方形铁片上,挖去长为24a +,宽为b 的小长方形铁片,则剩余部分面积是()A .634ab a b -+B .432ab a --C .6382ab a b -+-D .4382ab a b -+-10.在平面直角坐标系xOy 中,点()0,3A ,(),0B a ,()(),0C m n n >.若ABC V 是等腰直角三角形,且AB BC =,当02a <<时,点C 的横坐标m 的取值范围是()A .03m <<B .23m <<C .35m <<D .3m >二、填空题11.造房子时屋顶常用三角结构,从数学角度来看,是根据三角形具有.12.已知正n 边形的每一个内角都等于144︒,则n 的值为.13.已知点(),3M a 与点()4,N b 关于x 轴对称,则a b -=.14.如图,在ABC V 中,BD 是AC 边上的高,AE 平分BAC ∠,交BD 于点E ,若5DE =,则点E 到AB 的距离为.15.已知2a x =,5b x =,则a b x +=.16.已知ABC V 中,如果存在过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这个三角形为“等直三角形”.如图1,Rt ABC △为“等直三角形”.在图2中,ABC V 为“等直三角形”,110ABC ∠=︒,则A ∠的度数为.三、解答题17.计算题(1)4242x y xy -÷;(2)()22322536ab ab a b a b +-.18.已知:如图,点B ,D 在线段AE 上,AD=BE ,AC ∥EH ,∠C=∠H.求证:BC=DH.19.已知2a =,1b =-,求代数式()()()332253a b a b b a b -+--的值.20.如图,在平面直角坐标系中,ABC V 的三个顶点分别为A 、B 、C .(1)在图中作出ABC V 关于y 轴的对称图形111A B C △.(2)求ABC V 的面积.(3)在x 轴上画出点P ,使PA PC +最小.21.如图,在ABC V 中,AB AC D =,是AB 上的一点,过点D 作DE BC ⊥于点E ,延长ED 和CA ,交于点F .(1)求证:ADF △是等腰三角形;(2)若3046F BD EC ∠=︒==,,,求AC 的长.22.已知,如图,在ABC V 中,点D 、E 分别是边AB 、BC 上的点,且ACB BED ∠=∠.(1)连接CD ,在AB 上找一点F 使EF CD ∥;(尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若CD 平分ACB ∠,求证:EF 平分BED ∠.23.如图①,AFH ∠和CHF ∠的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、G .(1)若100AFH CHF ∠+∠=︒,求FOH ∠的度数.(2)如图②,AFH ∠和CHI ∠的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、G .若AFH CHF α∠+∠=,求FOH ∠的度数(用含α的代数式表示).24.规定两数a ,b 之间的一种运算,记作(),a b ,如果c a b =,那么(),a b c =,例如:因为328=,所以()2,83=.(1)根据上述规定,填空:()3,27=_______,()5,1=_______.(2)证明:()()()3,43,53,20+=.(3)小明在研究这种运算时提出:()()3,43,4n n =,你觉得这个结论正确吗?请说明理由.25.如图,点s 0,点()0,B b ,且a 、b 满足()2530a b -+-=.(1)填空:a =_______;(2)如图1,作等腰Rt ABC △,90ABC ∠=︒,AB BC =,求C 点坐标;(3)如图2,点(),0M m 在x 轴负半轴上,分别以AB 、BM 为腰,点B 为直角顶点,在第一、第二象限作等腰Rt ABD △、等腰Rt MBE ,连接DE 交y 轴于点F ,求点F 的坐标(用含m 的式子表示).。

福建省龙岩市永定区、连城县重点名校2024届中考联考物理试卷含解析

福建省龙岩市永定区、连城县重点名校2024届中考联考物理试卷含解析

福建省龙岩市永定区、连城县重点名校2024届中考联考物理试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、单项选择题(本大题7小题,每题3分,共21分)1.下图是课本中的四个实验,哪个实验与其他三个实验的物理思想方法不同A.烛焰随着声音节奏晃动B.电流周围存在磁场C.验证电磁波的存在D.水流使水轮机转动电流使灯泡发光2.用相同的电加热器分别对质量相等的A和B两种液体(不计热量损失)如图是A和B的温度随加热时间变化的图象,下列说法正确的是()A.A的比热容与B的比热容之比为2:1B.A的比热容与B的比热容之比为2:3C.都加热t时间,B吸收热量比A吸收热量多D.A和B升高相同的温度,B吸收热量较多3.如图所示,电源电压不变,灯泡L及R0的电阻不变,闭合开关S,滑动变阻器的滑片向右端移动的过程中,各元件均安全工作,下列说法正确的是( )A.电流表的示数变小B.灯泡L的亮度变亮C.电压表示数的变化量与电流表示数的变化量之比变大D.通过R0的电流的变化量大于通过滑动变阻器的电流的变化量4.某风力报警器的风力探头通过中心滑杆可带动下端的金属片上下移动。

当风速较小时,仅绿灯亮,电铃不响;当风速增大到一定程度后,绿灯不亮,电铃响发出警报。

下列四幅风力报警器的原理图符合要求的是A.B.C.D.5.在体育测试过程中,以下选项正确的是()A.跳远测试时,必须选用分度值为1mm的刻度尺进行测量B.小明在50m测试中看到旁边的看台向后运动,选取的参照物是跑道C.小明50m测试的成绩是7s,则他的平均速度为6.25m/sD.1000m测试小明的平均速度为5m/s、小亮的成绩是240s,小明更快6.在国际单位制中,电功的单位是A.安培B.伏特C.焦耳D.瓦特7.以下说法中符合生活实际的是A.人正常步行的速度约15km/hB.对人体最适宜的洗澡水温度约为60℃C.光在空气中的传播速度约为340m/sD.家用挂壁式空调正常工作时功率约为1.2kW二、填空题(本大题7小题,共21分)8.在高速公路上做匀速直线运动的汽车,此时汽车的牵引力________(选填“大于”、“小于”或“等于”)汽车受到的阻力,坐在汽车里的小华,看见路边房子向北运动,他是以________为参照物;若以路旁树为参照物,小华的车是向________(选填“东”“南”“西”或“北”)行驶的.9.太阳能路灯的灯杆顶端是太阳能电池板,它能将太阳能转化为电能,并向灯杆下方的蓄电池充电,将电能转化为化学能储存起来,供夜晚路灯照明.若在一定时间内,太阳光辐射到该太阳能电池板的能量为2.7×107J,这与完全燃烧_____kg的煤放出的热量相当;若该太阳能路灯的能量转化效率是24%,则这些能量经转化后,可供额定功率为30W 的路灯正常工作_____h(煤的热值为3.0×107J/kg).10.一节干电池的电压为_________伏.家庭电路中,电冰箱与电视机是________的(选填“串联”或“并联”),家中电烤箱工作时主要将电能转化为_________能.11.水面上漂浮着甲、乙两个实心球,且甲球的质量大丁乙球的质量,甲球和乙球露出水面的体积相等,则甲球受到的浮力_____乙球受到的浮力,甲球的密度______乙球的密度。

2023-2024学年福建省南平市顺昌县九年级(上)期中数学试卷+答案解析

2023-2024学年福建省南平市顺昌县九年级(上)期中数学试卷+答案解析

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列图形是中心对称图形而不是轴对称图形的是( )A. B.C.D.2.方程化成一般形式后,它的一次项系数是( )A.B.C. 2D. 13.对于二次函数的图象,下列说法正确的是2023-2024学年福建省南平市顺昌县九年级(上)期中数学试卷( )A. 开口向下B. 对称轴是直线C. 顶点坐标是D. 与x 轴有两个交点4.如果一个正多边形的中心角是,那么这个正多边形的边数是( )A. 4B. 5C. 6D. 75.若关于x 的一元二次方程有实数根,则实数k 的取值范围是( )A.B.C.且D. 且6.如图,线段AB 是的直径,弦CD 丄AB ,,则等于( )A. B. C. D. 7.如图,将绕点B 顺时针旋转得,点C 的对应点E 恰好落在AB 延长线上,连接下列结论一定正确的是( )A. B. C. D.8.《我和我的家乡》一上映就获得追捧,目前票房已突破27亿.第一天票房约亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达亿元,若把增长率记作x ,则方程可以列为( )A.B.C.D.9.如图,已知与坐标轴交于点A,B,O三点,点C在圆上,且若点B坐标为,则弧OA长为( )A. B. C. D.10.已知二次函数与x轴只有一个交点,且图象过、两点,则m、n 的关系为( )A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

11.点关于原点对称的点的坐标是______.12.半径为2的圆中,的圆心角所对的弧的弧长为______.13.将抛物线向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为______.14.如图,将绕点A按逆时针方向旋转得到,连接EB,若,则______.15.如图,PA,PB分别与相切于A,B两点,PO与AB相交于点C,,,则OC的长为______.16.如图,半圆的圆心与坐标原点重合,半圆的半径1,直线l的解析式为若直线l与半圆只有一个交点,则t的取值范围是__________.三、计算题:本大题共1小题,共6分。

2024届福建省建宁县中考联考数学试卷含解析

2024届福建省建宁县中考联考数学试卷含解析

2024学年福建省建宁县中考联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.CDBCB.ACABC.ADACD.CDAC2.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是1n.其中正确的个数()A.1 B.2 C.3 D.43.在下列条件中,能够判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线4.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm25.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A.91,88 B.85,88 C.85,85 D.85,84.56.如图,在正八边形ABCDEFGH中,连接AC,AE,则AEAC的值是()A.1 B.2C.2 D.3 7.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山8.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a29.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a<52B.a>52C.a<﹣52D.a>﹣5210.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=10011.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF 与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.112.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A.83×105B.0.83×106C.8.3×106D.8.3×107二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.14.若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.15.如图,角α的一边在x轴上,另一边为射线OP,点P(2,23),则tanα=_____.16.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.17.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.18.函数3y x =+的定义域是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)20.(6分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.21.(6分)如图,△ABC 中,D 是AB 上一点,DE ⊥AC 于点E ,F 是AD 的中点,FG ⊥BC 于点G ,与DE 交于点H ,若FG=AF ,AG 平分∠CAB ,连接GE ,GD . 求证:△ECG ≌△GHD ;22.(8分)按要求化简:(a ﹣1)÷22111a a a ab -+⋅+,并选择你喜欢的整数a ,b 代入求值. 小聪计算这一题的过程如下:解:原式=(a ﹣1)÷2(1)(1)a a ab +-…①=(a ﹣1)•2(1)(1)ab a a +-…② =21ab a +…③ 当a =1,b =1时,原式=12…④ 以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____; 还有第_____步出错(填序号),原因:_____. 请你写出此题的正确解答过程.23.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:()1求甲、乙两种节能灯各进多少只?()2全部售完100只节能灯后,该商场获利多少元?24.(10分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:y=()()220110401015x x x x x ⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x 天创造的产品利润为W 元.直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?25.(10分)计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.26.(12分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.27.(12分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2. ①求BCAE的值;②若点G为AE上一点,求OG+12EG最小值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【题目详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=CDBC,故A正确,不符合题意;B、在Rt△ABC中,sinα=ACAB,故B正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【题目点拨】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、A【解题分析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.【题目详解】①平分弦(不是直径)的直径垂直于弦,故此结论错误;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,试验次数足够大时可近似地看做事件A的概率,故此结论错误;③各角相等的圆外切多边形是正多边形,此结论正确;④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是1n.故此结论错误;故选:A.【题目点拨】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.3、C【解题分析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.4、A【解题分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【题目详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【题目点拨】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5、D【解题分析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题6、B【解题分析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【题目详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故AEAC2.故选:B.【题目点拨】本题考查了正多边形的性质,正确作出辅助线是关键.7、D【解题分析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.8、A【解题分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【题目详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【题目点拨】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.9、D【解题分析】先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【题目详解】解方程3x+2a=x﹣5得x=522a --,因为方程的解为负数,所以522a--<0,解得:a>﹣5 2 .【题目点拨】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.10、A【解题分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【题目详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【题目点拨】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.11、B【解题分析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.12、C【解题分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.【题目详解】830万=8300000=8.3×106.故选C【题目点拨】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【题目详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案为1【题目点拨】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.14、1【解题分析】根据题意找到等量关系x2﹣6x+b=(x+a)2﹣5,根据系数相等求出a,b,即可解题.【题目详解】解:由题可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,∴a+b=1.【题目点拨】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.15、3【解题分析】解:过P作PA⊥x轴于点A.∵P(2,23),∴OA=2,PA=23,∴tanα=2332PAOA==.故答案为3.点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键.16、132. 【解题分析】试题分析:解:∵在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D 为AB 的中点,∴CD=AD=BD=AB=2.5, 过D′作D′E ⊥BC ,∵将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A′处,点D 落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.17、1:3【解题分析】根据相似三角形的判定,由DE ∥AC ,可知△DOE ∽△COA ,△BDE ∽△BCA ,然后根据相似三角形的面积比等于相似比的平方,可由:1:16DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知BDE S ∆与CDE S ∆的比是1:3.故答案为1:3.18、x≥-1【解题分析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.详解:根据题意得:x+1≥0,解得:x≥﹣1.故答案为x≥﹣1.点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:(1)当函数表达式是整式时,定义域可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数非负.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)袋子中白球有2个;(2).【解题分析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.20、(1)证明过程见解析;(2)1.【解题分析】试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴11=2(2+AD),∴AD=1.考点:(1)切线的性质;(2)相似三角形的判定与性质.21、见解析【解题分析】依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【题目详解】证明:∵AF=FG,∴∠FAG=∠FGA,∵AG 平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∵F 是AD 的中点,FG∥AE,∴H 是 ED 的中点∴FG 是线段 ED 的垂直平分线,∴GE=GD ,∠GDE=∠GED ,∴∠CGE=∠GDE ,∴△ECG ≌△GHD .(AAS ).【题目点拨】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.22、①, 运算顺序错误; ④, a 等于1时,原式无意义.【解题分析】由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a =1时,211a a -+等于0,原式无意义.【题目详解】①运算顺序错误;故答案为①,运算顺序错误;④当a=1时,211a a -+等于0,原式无意义. 故答案为a 等于1时,原式无意义.()22111,1a a a a ab-+-÷⋅+ ()()()2111,11a a a a a ab++=-⋅⋅-+ 21.a ab += 当2,1a b ==时,原式2213.212+==⨯ 【题目点拨】 本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.23、()1甲、乙两种节能灯分别购进40、60只;()2商场获利1300元.【解题分析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【题目详解】(1)设商场购进甲种节能灯x 只,购进乙种节能灯y 只,根据题意,得30353300x 100x y y +=⎧⎨+=⎩, 解这个方程组,得 4060x y =⎧⎨=⎩, 答:甲、乙两种节能灯分别购进40、60只.(2)商场获利()()4040306050351300(=⨯-+⨯-=元),答:商场获利1300元.【题目点拨】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.24、(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解题分析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【题目详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【题目点拨】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.25、1.【解题分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【题目详解】=1.解:原式1+3﹣4×2【题目点拨】本题考查实数的运算及特殊角三角形函数值.26、2.【解题分析】根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.【题目详解】解:∵AD是△ABC的中线,且BC=10,∴BD=12BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵CD=BD,∴AC=AB=2.【题目点拨】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.27、(1)证明见解析(2)①23②3【解题分析】(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以23 BC CEAE DE==;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM =3.故OG+12EG最小值是3.【题目详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO ∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB ∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴23 BC CEAE DE==②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC ∴BC CE AC BC=∴22 322xx x=+解得:x1=2,21 2x=-(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+12EG最小值是3.【题目点拨】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.。

2024届福建省晋江市潘径中学中考数学全真模拟试卷含解析

2024届福建省晋江市潘径中学中考数学全真模拟试卷含解析

2024届福建省晋江市潘径中学中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若代数式23x -有意义,则实数x 的取值范围是( ) A .x=0 B .x=3 C .x≠0 D .x≠32.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 3.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x4.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A .24π cm 2B .48π cm 2C .60π cm 2D .80π cm 25.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .0.5B .1C .3D .π6.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( )A .(2,4)B .(2,﹣4)C .(﹣2,4)D .(﹣2,﹣4) 7.对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定8.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( ) A .20% B .11% C .10% D .9.5%9.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×10910.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A .223B .5C .322D .35511.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( )A .1k <B .0k ≠C .1k <且0k ≠D .0k >12.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升______cm .14.一个多边形的每个内角都等于150°,则这个多边形是_____边形.15.如图,Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AC =,将ABC 绕点C 逆时针旋转至A B C '',使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A CD '△的面积为_________.16.计算:102(2018)--=___.17.如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.当点E 、F 在BC 、CD 上滑动时,则△CEF 的面积最大值是____.18.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:在△ABC 中,AC=BC ,D ,E ,F 分别是AB ,AC ,CB 的中点.求证:四边形DECF 是菱形.20.(6分)如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E. F .试判断直线BC 与⊙O 的位置关系,并说明理由;若BD=2,BF=2,求⊙O 的半径.21.(6分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.22.(8分)如图,在△ABC中,BC=12,tan A=34,∠B=30°;求AC和AB的长.23.(8分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.24.(10分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?25.(10分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?26.(12分)菱形ABCD的边长为5,两条对角线AC、BD相交于O点,且AO,BO的长分别是关于x的方程22(21)30x m x m+-++=的两根,求m的值.27.(12分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=mx(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2时,x的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、A【解题分析】利用待定系数法即可求解.【题目详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.3、B【解题分析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.4、A【解题分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【题目详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【题目点拨】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5、C【解题分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【题目详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【题目点拨】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.6、A【解题分析】首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【题目详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON ,在△PMO 和△ONQ 中,∵{PMO ONQMPO NOQ PO OQ∠=∠∠=∠= ,∴△PMO ≌△ONQ ,∴PM=ON ,OM=QN ,∵P 点坐标为(﹣4,2),∴Q 点坐标为(2,4),故选A .【题目点拨】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.7、C【解题分析】判断一元二次方程的根的情况,只要看根的判别式2b 4ac ∆=-的值的符号即可:∵a=1,b=()2k 1-+,c=2k 2k 1-+-,∴()()2222b 4ac 2k 141k 2k 188k 0⎡⎤∆=-=-+-⨯⨯-+-=+>⎣⎦. ∴此方程有两个不相等的实数根.故选C .8、C【解题分析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【题目详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【题目点拨】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数.9、A【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108 故选:A【题目点拨】本题考查科学记数法—表示较大的数.10、D【解题分析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【题目详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2 ,2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅,12CH =⨯,∴. 故选D.【题目点拨】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键. 11、C【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1.故选:C .【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.12、B【解题分析】根据勾股定理得到OA ,根据菱形的性质得到AB=OA =5,AB ∥x 轴,求得B (-8,-4),得到E (-4,-2),于是得到结论.【题目详解】∵点A 的坐标为(﹣3,﹣4),∴OA=2234+=5,∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、10或1【解题分析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【题目详解】如图,作半径OD AB⊥于C,连接OB,由垂径定理得:BC=12AB=12×60=30cm,在Rt OBC中,22OC503040cm=-=,当水位上升到圆心以下时水面宽80cm时,则22OC'504030cm-=,水面上升的高度为:403010cm-=;当水位上升到圆心以上时,水面上升的高度为:403070cm+=,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1.【题目点拨】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.14、1【解题分析】根据多边形的内角和定理:180°•(n-2)求解即可.【题目详解】由题意可得:180°•(n-2)=150°•n ,解得n=1.故多边形是1边形.15【解题分析】首先证明△CAA′是等边三角形,再证明△A′DC 是直角三角形,在Rt △A′DC 中利用含30度的直角三角形三边的关系求出CD 、A′D 即可解决问题.【题目详解】在Rt △ACB 中,∠ACB=90°,∠B=30°,∴∠A=60°,∵△ABC 绕点C 逆时针旋转至△A′B′C ,使得点A′恰好落在AB 上,∴CA=CA′=2,∠CA′B′=∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,∴∠A′DC=180°-∠CA′B′-∠BC A′=90°,在Rt △A′DC 中,∵∠A′CD=30°,∴A′D=12CA′=1,,∴12A CD S CD A D ''=⋅⋅△112==故答案为:2 【题目点拨】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.16、12- 【解题分析】 直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案. 【题目详解】 原式11122=-=-. 故答案为12-. 【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.17、3【解题分析】解:如图,连接AC ,∵四边形ABCD 为菱形,∠BAD =120°,∠1+∠EAC =60°,∠3+∠EAC =60°,∴∠1=∠3,∵∠BAD =120°,∴∠ABC =60°,∴△ABC 和△ACD 为等边三角形,∴∠4=60°,AC =AB .在△ABE 和△ACF 中,∵∠1=∠3,AC =AC ,∠ABC =∠4,∴△ABE ≌△ACF (ASA ),∴S △ABE =S △ACF ,∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值,作AH ⊥BC 于H 点,则BH =2,∴S 四边形AECF =S △ABC =12BC •AH =12BC •22AB BH -=43,由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短,∴△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又∵S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大,∴S △CEF =S 四边形AECF ﹣S △AEF =43﹣12×23×22(23)(3)- =3.故答案为:3.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE ≌△ACF ,得出四边形AECF 的面积是定值是解题的关键.18、1【解题分析】解:由于点C为反比例函数6yx=-上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解题分析】证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形20、(1)相切,理由见解析;(1)1.【解题分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可.【题目详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODB=90°,即OD ⊥BC ,∵OD 为半径,∴直线BC 与⊙O 的位置关系是相切;(1)设⊙O 的半径为R ,则OD=OF=R ,在Rt △BDO 中,由勾股定理得:OB =BD +OD ,即(R+1) =(1)+R ,解得:R=1,即⊙O 的半径是1.【题目点拨】此题考查切线的判定,勾股定理,解题关键在于求出OD ⊥BC.21、证明见解析.【解题分析】【分析】利用AAS 先证明∆ABH ≌∆DCG ,根据全等三角形的性质可得AH=DG ,再根据AH =AG +GH ,DG =DH +GH 即可证得AG =HD.【题目详解】∵AB ∥CD ,∴∠A =∠D ,∵CE ∥BF ,∴∠AHB =∠DGC ,在∆ABH 和∆DCG 中, A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【题目点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.22、3【解题分析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【题目详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH22BC CH-3在Rt△ACH中,tan A=34=CHAH,∴AH=8,∴AC22AH CH+10,【题目点拨】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【解题分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【题目详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P随m的增大而减小,∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【题目点拨】本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.24、(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解题分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【题目详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P (一男一女)=1220=35. 25、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.【解题分析】(1)设第一批购进蒜薹a 吨,第二批购进蒜薹b 吨.构建方程组即可解决问题.(2)设精加工x 吨,利润为w 元,则粗加工(100-x )吨.利润w=800x+400(200﹣x )=400x+80000,再由x≤3(100-x ),解得x≤150,即可解决问题.【题目详解】(1)设第一次购进a 吨,第二次购进b 吨,2002000500160000a b a b +=⎧⎨+=⎩, 解得40160a b =⎧⎨=⎩, 答:第一次购进40吨,第二次购进160吨;(2)设精加工x 吨,利润为w 元,w=800x+400(200﹣x )=400x+80000,∵x≤3(200﹣x ),解得,x≤150,∴当x=150时,w 取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1.【题目点拨】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.26、3m =-.【解题分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.【题目详解】解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根, 设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∴AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∴222125+=x x ,则()21212225x x x x +-=, 由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∴[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵>0∆,∴()22(21)430--+>m m ,解得114m <-, ∴3m =-.【题目点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.27、(1)y 1=-2x +4,y 2=-6x ;(2)x <-1或0<x <1. 【解题分析】(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x 的取值即可.【题目详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x =(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b得:632k bk b-+=⎧⎨+=-⎩,∴24kb=-⎧⎨=⎩,∴124y x=-+;(2)由函数图象可得:x<﹣1或0<x<1.【题目点拨】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.。

福建省霞浦第一中学2024届中考数学模拟试题含解析

福建省霞浦第一中学2024届中考数学模拟试题含解析

福建省霞浦第一中学2024届中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在实数π,0,17,﹣4中,最大的是()A.πB.0 C.17D.﹣42.下列实数中,为无理数的是()A.13B.2C.﹣5 D.0.31563.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1904 2850发芽的频率mn0.960 0.940 0.955 0.950 0.948 0.952 0.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4000,估计绿豆发芽的粒数大约为3800粒.其中推断合理的是()A.①B.①②C.①③D.②③4.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc >1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③5.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .6.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个7.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)8.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( ) A .13.51×106B .1.351×107C .1.351×106D .0.1531×1089.已知一元二次方程2310x x --= 的两个实数根分别是 x 1 、 x 2 则 x 12 x 2 + x 1 x 22 的值为( ) A .-6 B .- 3C .3D .610.计算:9115()515÷⨯-得( ) A .-95B .-1125C .-15D .1125二、填空题(共7小题,每小题3分,满分21分) 11.若一个棱柱有7个面,则它是______棱柱. 12.如图,点A (m ,2),B (5,n )在函数ky x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .13.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B 7•tan63°27′≈_____(精确到0.01). 14.计算:5-=____.15.已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上且1tan 3EAC ∠=,则BE 的长为__________.16.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.17.如果当a≠0,b≠0,且a≠b 时,将直线y=ax+b 和直线y=bx+a 称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______. 三、解答题(共7小题,满分69分)18.(10分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.19.(5分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.20.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?21.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?23.(12分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.24.(14分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.414参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据实数的大小比较即可得到答案.【题目详解】解:∵16<17<25,∴45>π>0>-4 C.【题目点拨】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、B【解题分析】根据无理数的定义解答即可.【题目详解】选项A、13是分数,是有理数;选项B是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【题目点拨】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.3、D【解题分析】①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【题目详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【题目点拨】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4、C【解题分析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.5、B【解题分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【题目详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【题目点拨】由几何体的俯视图可确定该几何体的主视图和左视图.6、D【解题分析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.7、C【解题分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【题目详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【题目点拨】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.8、B【解题分析】根据科学记数法进行解答.【题目详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B.【题目点拨】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).9、B 【解题分析】根据根与系数的关系得到x 1+x 2=1,x 1•x 2=﹣1,再把x 12x 2+x 1x 22变形为x 1•x 2(x 1+x 2),然后利用整体代入的方法计算即可. 【题目详解】根据题意得:x 1+x 2=1,x 1•x 2=﹣1,所以原式=x 1•x 2(x 1+x 2)=﹣1×1=-1. 故选B . 【题目点拨】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2b a =-,x 1•x 2ca=. 10、B 【解题分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化. 【题目详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125故选B. 【题目点拨】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.二、填空题(共7小题,每小题3分,满分21分) 11、5 【解题分析】分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断. 详解:由题意可知:7-2=5. 故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键. 12、2. 【解题分析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A (2,2),∴k=2×2=2.故答案为2. 考点:2.反比例函数系数k 的几何意义;2.平移的性质;3.综合题.13、20 5.1【解题分析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【题目详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【题目点拨】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.14、5.【解题分析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.15、3或1【解题分析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.【题目详解】解:当点E在对角线交点左侧时,如图1所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,222253AB AO--=4,∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,222253AB AO --, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4+1=1, 故答案为3或1.【题目点拨】本题主要考查了菱形的性质,解决问题时要注意分当点E 在对角线交点左侧时和当点E 在对角线交点左侧时两种情况求BE 得长.16、甲【解题分析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【题目详解】甲种水稻产量的方差是:()()()()()2222219.8109.91010.110101010.2100.025⎡⎤-+-+-+-+-=⎣⎦, 乙种水稻产量的方差是:()()()()()2222219.41010.31010.8109.7109.8100.045⎡⎤-+-+-+-+-=⎣⎦, ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.17、3,31y x y x =+=+【解题分析】把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a 、b 的值.【题目详解】把(1,4)代入y ax b =+得:a+b=4又因为0a ≠,0b ≠,且a b ≠,所以当a=1是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:3,31y x y x =+=+故答案为3,31y x y x =+=+【题目点拨】此题为新定义题型,关键是理解新定义,并按照新定义的要求解答.三、解答题(共7小题,满分69分)18、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解题分析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%. 答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升. 19、1【解题分析】解:取时,原式.20、(2)证明见试题解析;(2)32+.【解题分析】(2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM 和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.【题目详解】解:(2)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=12OB=2,OM=3BM =3,∵BE⊥AB,∴四边形OMBN是矩形,∴ON=BM=2,BN=OM=3.∵OF=OM=3,由勾股定理得NF=2.∴BF=BN+NF=32+.考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.21、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级. 【解题分析】试题分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.试题解析:(1)根据题意得:31671819110 6.710 {111110a ba b⨯++⨯+⨯+⨯+=⨯+++++=解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为111105+==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.22、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解题分析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,,解得x≥50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.23、m的值是12.1.【解题分析】根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值【题目详解】由题意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【题目点拨】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.24、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【解题分析】根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.【题目详解】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=CDBC,∴CD=BC sin∠CBD2.∵∠CBD=15°,∴BD=CD2在Rt△ACD中,sin A=CDAC,tan A=CDAD,∴AC=CDsinA≈20.59≈1.8,AD=CDtanA=236tan︒,∴AB=AD﹣BD=236tan︒﹣22=2 1.4140.73﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【题目点拨】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.。

福建省龙岩市永定区2024-2025学年初三9月初态考试语文试题试卷含解析

福建省龙岩市永定区2024-2025学年初三9月初态考试语文试题试卷含解析

福建省龙岩市永定区2024-2025学年初三9月初态考试语文试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、积累与运用1.下面一段文字依次填入横线处的语句,衔接最恰当的一组是()春日踏青,青芜如毯,___________________;夏日听雨,雨声淅沥,___________________;秋日看花,花叶相辉,_____________;冬日观雪,雪意阑珊, ______________。

好诗如四季,岁岁不相同。

①诗是千缕缤纷下那一丝虚幻的朦胧②诗是玉田琼屋上那一份惊艳的洁白③诗是绿茵遍野时那抹久违的清新④诗是红叶清风里那一派无尽的潇洒A.③①④②B.④③①②C.④②③①D.③④②①2.下列句中加点成语或俗语使用不当..的一项是()A.在美丽乡村建设中,不能“眉毛胡子一把抓.......”,要找准着力点,软硬兼施,内外兼修,使乡村既有颜值担当,更有内涵气质。

B.2016年4月4日,曹文轩问鼎世界儿童文学最高荣誉——国际安徒生奖。

这标志着中国儿童文学已经走向世界,也是中国文学多年发展指日可待....的结果。

C.家风是一种“软约束”,通过潜移默化....的影响,实现对家庭成员行为、作风、操守的有效约束。

D.中国历来不乏出色的工匠,如游刃有余....的庖丁,刻木成鸟的鲁班……他们不仅是工艺纯熟的技者,还是明法通道的智者。

3.下列句子,排序最恰当...的一项是( )①有一些远虑,可以预见,也可以预作筹划,不妨就预作筹划,以解除近忧。

②不过,远虑是无穷尽的,必须适可而止。

福建省南平市浦城县2023-2024学年九年级上学期期中考试语文试题(含答案)

福建省南平市浦城县2023-2024学年九年级上学期期中考试语文试题(含答案)

2023—2024学年第一学期期中考试九年级语文试题(考试时间:120分钟;满分:150分;)一、积累与运用(23分)1. 根据语境,补写出古代诗文名句。

(8分)(1)范仲淹在《岳阳楼记》中“而或长烟一空,皓月千里,__________,__________。

”描写了月夜美轮美奂的景象。

(2)温庭筠在《商山早行》中“鸡声茅店月,_________________。

”运用有特征性的意象,表现了早行之早。

(3)杜甫在《月夜忆舍弟》中“露从今夜白,__________________。

”抒写了思乡之苦。

(4)苏轼在《水调歌头》中“___________________,___________________。

”表达对亲人美好祝愿和乐观旷达情怀。

(5)李白《行路难》中的“______________ ______,___________ ________”两句可以作为座右铭激励自己积极进取、乐观向上。

2. 阅读下面的文字,按要求作答。

(9分)2023年10月19日,由浦城县委、县政府策①(huà)排演的大型情景音画《梦笔生花的地方》在浦城大剧院盛大开演。

《梦笔生花的地方》大型情景音画围绕千年古邑闽越重镇、中原文化入闽的重要走廊、古闽越文化的发②(xi áng)地、新石器时代牛鼻山文化遗址、一座横跨闽浙赣三省的南方边城、“梦笔生花”成语的发源地等文化(),将()的浦城文化③(fú)号、民风民俗、非遗技艺等融入剧情之中。

“梦笔生花”这条主线()了整个表演过程,情景音画通过“中华第一桂”“旷世一个梦”“漫漫一条道”“万顷稻米香”四幕12个节目,把融入浦城文化精髓的场景像画卷般徐徐展开,让观众恍若步入这块浦城蕴蓄着丰厚的文化沉淀里,去享受艺术的精彩。

(1)根据拼音,依次写出①②③处相应的汉字(正楷字或行楷字)。

(3分)(2)依次填入文中括号内的词语,全都恰当..的一项是()(3分)A. 元素脍炙人口贯串B. 元素家喻户晓贯穿C. 因素家喻户晓贯串D. 因素脍炙人口贯穿(3)文中画横线的句子有语病,下列修改最恰当...的一项是()(3分)A. 让观众恍若步入这块蕴蓄着浦城丰厚的文化沉淀里,去享受艺术的精彩。

福建省武夷山市2024届中考冲刺卷物理试题含解析

福建省武夷山市2024届中考冲刺卷物理试题含解析

福建省武夷山市2024届中考冲刺卷物理试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、单选题(本大题共10小题,共30分)1.以下研究方法相同的是()①研究压力作用效果与压力大小的关系时,保持受力面积不变②研究声音的产生时,将发声的音叉与水面接触,水花四溅表明音叉在振动③研究磁场时,引入“磁感线”④研究电阻大小与导体长度的关系时,选择材料、横截面积相同的导体A.①②B.②③C.③④D.①④2.关于声音,下列说法正确的是A.一切发声的物体都在振动B.只要物体在振动,我们就能听到声音C.声音在不同介质中的传播速度相同D.声音在真空中的传播速度为3×108m/s3.用注射器抽取药液时,药液是在_____的作用下被压入针管。

用吸尘器吸灰尘时,灰尘是由于空气流速越大的位置压强越_____(填“大”或“小” )的缘故被压入吸尘器中。

4.2019年11月8日至10日,中国杯世界花样滑冰大奖赛将在重庆举行,重庆成为国内第五座举办城市,下列关于花样滑冰说法正确的是A.运动员滑得越快,越难停下来,说明速度越大惯性越大B.运动员在冰面上能自由滑行,而在普通地面上不能,是因为人在冰面上受到的摩擦力小C.运动员静止在水平冰面上时,地面对他的支持力与他对地面的压力是一对平衡力D.运动员在起跳上升时,重力势能转化为动能5.人在B处观察到一个彩色玻璃球沉在水池底A处,如图所示.B处用激光射到玻璃球上,则激光应对着A.正对A 点B.A 点的上方些C.A 点的下方些D.A 点的左侧6.如图所示,杠杆AB的A点挂边长为10cm的正方体C,B点挂体积为2000cm3实心小球D,AO:OB=1:2,杠杆在水平位置平衡时,D静止在空中,C对水平地面的压强为p1;若将小球D浸没在某种液体中(未接触到容器底),杠杆在水平位置平衡时,C对水平地面的压强p2比p1增大了4000Pa,A点受到竖直向下的拉力为10N,则下列选项正确的是(g取10N/kg)A.小球D浸没在某种液体中受到的浮力为20NB.小球D浸没在某种液体中受到的浮力为40NC.该液体的密度是2.0×103kg/m3D.小球D的密度是1.0×103kg/m37.如图所示,一束光线由介质Ⅰ射入介质Ⅱ,下列说法中正确的是A.α为入射角,γ为折射角B.α为入射角,β 为折射角C.如果角δ增大5°,则角β也一定增大5°D.入射光线AO与折射光线OB一定在同一平面内8.关于粒子和宇宙的认识,正确的是A.雪花漫天飞舞,说明分子在做无规则运动B.光年是长度的单位C.质子、中子和电子就像行星绕太阳运动一样在绕原子核运动D.在探索比分子更小的微观粒子的历程中,人们首先发现了质子9.在如图所示的电路中,电源电压保持不变,开关闭合后,滑动变阻器的滑片向右移动时,三个电表的示数变化情况是()A .A 的示数变小,V 1的示数不变,V 2的示数变小B .A 的示数变大,V 1的示数变大,V 2的示数变小C .A 的示数变小,V 1的示数不变,V 2的示数变大D .A 的示数变大,V 1的示数变小,V 2的示数变大10.如图所示,小灯泡标有“6V 3W ”字样 (电阻不受温度影响),R 1为定值电阻,R 2为滑动变阻器,其最大阻值为40Ω。

福建省南平市光泽县2024年部编版初中九年级上学期期中考试语文试卷

福建省南平市光泽县2024年部编版初中九年级上学期期中考试语文试卷

福建省南平市光泽县2024-2025学年上学期期中考试九年级语文试卷一、积累与运用(20分)1.补写出下列句子中的空缺部分。

(10分)(1)野芳发而幽香,。

(欧阳修《醉翁亭记》)(2)闲来垂钓碧溪上,。

(李白《行路难•其一》)(3),病树前头万木春。

(刘禹锡《酬乐天扬州初逢席上见赠》)(4)长风破浪会有时,。

(李白《行路难•其一》)(5),天与云与山与水,上下一白。

(张岱《湖心亭看雪》)(6),到乡翻似烂柯人。

(刘禹锡《酬乐天扬州初逢席上见赠》)(7)同是望月,白居易用“共看明月应垂泪,一夜乡心五处同”抒发深切的骨肉分离之情;而苏轼则用“,”表达对亲人的美好祝愿。

(苏轼《水调歌头》)(8)《岳阳楼记》中表明滕子京政绩的句子是,。

2.下列句子中没有语病的一项是()(3分)A.保持为政清廉是关系到党和政府能否取得广大群众信任的重大问题。

B.为了提高同学们的语文素养,我校团委今年积极开展了“读经典作品、建书香校园”。

C.继美国、法国和芬兰之后,我国成为第四个拥有“生物航油”自主研发技术的国家。

D.相关专家呼吁尽快建立防控校园欺凌的有效机制,及早干预、发现和制止欺凌行为。

3.阅读下面的文字,按要求作答。

(7分)疫情就是命令,防控就是责任。

新冠①(A.guān B.guàn)肺炎疫情暴发以来,中国采取最全面、最严格、最彻底的防控甲(A.举措B.举动),社会各jiè②(A.界B.届)纷纷行动,打响了一场乙(A.大张旗鼓B.声势浩大)的全面防控“人民战争”。

这不仅是对本国人民生命安全和身体健康负责,也是_______。

(1)为文中①处加点字选择正确读音,根据②处拼音选择正确的汉字,只填序号。

①处②处(2分(2)从文中甲、乙处选择符合语境的词语填入横线,只填序号。

甲乙(2分(3)在文段划线处,填入衔接最为恰当的一项是(3分①为世界防控病毒扩散提供第一手经验②对全球公共卫生事业尽责③彰显了中国一贯秉持的人类命运共同体理念A.②①③B.③②①C.②③①D.①③②二、阅读(70分)(一)阅读下面的诗歌,回答以下各题。

福建省福州市福建师范大学附属中学2024-2025学年九年级上学期期中考数学试卷

福建省福州市福建师范大学附属中学2024-2025学年九年级上学期期中考数学试卷

福建省福州市福建师范大学附属中学2024-2025学年九年级上学期期中考数学试卷一、单选题1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是()A .B .C .D .2.下列事件中,属于必然事件的是()A .投掷一枚硬币时,硬币的正面朝上B .投掷飞镖一次,命中靶心C .从只装有白球的盒子里摸出一个球,摸到一个白球D .玩“石头,剪刀,布”,对方出“剪刀”3.已知O 的半径为5,点P 在O 内,则OP 的长可能是()A .7B .6C .5D .44.抛物线()214y x =+-的开口方向、顶点坐标分别是()A .开口向下,顶点坐标为()1,4--B .开口向下,顶点坐标为()1,4C .开口向上,顶点坐标为()1,4D .开口向上,顶点坐标为()1,4--5.方程x (x +2)=0的根是()A .x =2B .x =0C .x 1=0,x 2=﹣2D .x 1=0,x 2=26.新能源汽车已逐渐成为人们喜爱的交通工具,据某品牌新能源汽车经销商7月份至9月份统计,该品牌新能源汽车7月份销售1000辆,9月份销售1690辆.设月平均增长率为x ,根据题意,下列方程正确的是()A .()2169011000x -=B .()2100011690x +=C .()1000121690x +=D .()1000121690x x ++=7.若反比例函数2ky x=的图象分布在第一、三象限,则()A .2k <B .0k <C .2k >D .0k >8.如图,把△OAB 绕点O 逆时针旋转80°,到△OCD 的位置,若∠AOB=45°,则∠AOD 等于().A .35°B .90°C .45°D .50°9.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADB ∠的度数是()A .70︒B .75︒C .80︒D .85︒10.已知实数a 、b 、c 满足420a b c ++=,420a b c -+<则有()A .0b <,240b ac -≥B .0b >,240b ac -≤C .0b >,240b ac -≥D .0b <,240b ac -≤二、填空题11.在平面直角坐标系中,点(1,2)-关于原点对称的点的坐标是.12.一元二次方程2210x x --=有两个实根(填“相等”或“不等”).13.圆锥凝聚着时间和空间的美学,它不仅仅是一个简单的几何图形,更是一种象征,代表着从一点到无限延伸的可能性.圆锥母线长为6,底面半径为2,则该圆锥的侧面积为(结果用带π的数的形式表示).14.反比例函数3y x=关于y 轴对称的函数的解析式为.15.如图,一张纸片上有一个不规则的图案(图中的小兔子),小雅想知道该图案的面积是多少,她采取了以下的办法:用一个长为10cm ,宽为6cm 的长方形将该图案围起来,然后在适当位置随机地向长方形区域内掷点,通过大量重复试验,发现点落在图案部分的频率稳定在0.6左右,由此她估计此不规则图案的面积大约为2cm .16.如图,在ABC V 中,60BCA ∠=︒,45A ∠=︒,2AC =,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点M ,N ,则线段MN 长度的最小值为.三、解答题17.解方程x 2﹣4x +1=0.18.如图,ABC V 和DEF 关于点O 成中心对称,点A 、B 、C 的对应的分别是点D 、E 、F .(1)在图中找出对称中心O (保留画图痕迹);(2)若7AB =,5AC =,6BC =,求DEF 周长.19.不透明的袋子中装有2个红球和1个白球,这些球除颜色外完全相同.(1)若从袋子中随机摸出1个球,则摸到红球的概率为______.(2)若从袋子中随机摸出2个球,请用列表或画树状图的方法,求摸出的2个球颜色不同的概率.20.如图,它是反比例函数2m y x-=(m 为常数,且2m ≠)图象的一支.(1)m 的取值范围为;画出图象另一支的示意图;(2)在这个函数图象上任取点11(,)M x y 和22(,)N x y .若12x x <,判断1y 和2y 的大小关系,并说明.21.在Rt ABC △中,90A ∠=︒,22.5B ∠=︒,点P 为线段BC 上一动点,当点P 运动到某一位置时,它到点A ,B 的距离都等于a ,到点P 的距离等于a 的所有点组成的图形为W ,点D 为线段BC 延长线上一点,且点D 到点A 的距离也等于a .(1)依题意补全图形;(2)求直线DA 与图形W 的公共点的个数.22.如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y7261528152n72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.23.如图,在ABC V 中,以边AB 为直径作O ,O 交边BC 于点D ,延长CA 交O 于点E ,连接DE 交AB 于点F ,且DE DC =.(1)求证:BD CD =;(2)若3EF DF ==,求图中阴影部分的面积.24.在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 为抛物线2(0)y ax bx c a =++>上任意两点,其中11x x <,设抛物线的对称轴为直线x t =.(1)若22x =,2y c =,求t 的值;(2)若对于123x x +>,都有12y y <,求t 的取值范围.25.(1)问题提出如图①,在Rt ABC △与Rt DEC △中,90ABC DEC ∠=∠=︒,30BAC ∠=︒,点D 在边BC 上,连接AD ,点E 在边AC 上,点F 为AD 的中点,连接BE ,BF ,EF ,则BEF △的形状是;(2)问题探究如图②,将图①中的DEC 绕点C 按逆时针方向旋转,当点D 在线段AE 上时,求证:BE BF =;(3)拓展延伸在图②中,若4CE =,45CD BC =,求线段EF 的长.。

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷一、单选题1.一抛物线的形状、开口方向与抛物线212y x =相同,顶点为()2,1,则此抛物线的解析式为()A .()21212y x =-+B .()21212y x =+-C .()21212y x =++D .()21122x y --=2.如图将ABC V 绕点A 顺时针旋转90︒到ADE V ,若50DAE ∠=︒,则CAD ∠等于()A .30︒B .40︒C .50︒D .90︒3.我国古代数学的许多创新与发明都在世界上具有重要影响.下列图标是中心对称图形的是()A .B .C .D .4.将抛物线y =x 2平移得到抛物线y =(x -5)2,下列平移方法正确的是()A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位5.已知关于x 的一元二次方程22590x x k ++-=的常数项为0,则k 的值为()A .9B .3C .3-D .3±6.若2x =是关于x 的一元二次方程220ax bx -+=的解,则代数式20242a b +-的值为().A .2022B .2023C .2024D .20257.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B (2,-l ),C (-m ,-n ),则点D 的坐标是()A .(-2,l )B .(-2,-l )C .(-1,-2)D .(-1,2)8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为()A .7B .8C .9D .109.如图,在ABC V 中,90308C A AC ∠=︒∠=︒=,,,点O 为AC 的中点,将ABC V 绕点O 按逆时针方向旋转得到A B C ''' ,点A ,B ,C 的对应点分别为A B C ''',,.当A '落在AB 边上时,两个三角形重叠部分(阴影部分)的面积为()A .833B .4C .D .10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )(a +n )=2,(b +m )(b +n )=2,则ab-mn 的值为()A .4B .1C .﹣2D .﹣1二、填空题11.已知抛物线()2221y x =--+,当2x >时,y 随x 的增大而.12.请写出一个关于x 的一元二次方程;并且方程有两个相等的实数根.则这个一元二次方程可以是.13.如图,用48m 长的篱笆靠墙(墙足够长)围成一个面积是2300m 的长方形鸡场,鸡场有一个2m 的门,设与墙垂直的边长为m x ,所列方程是.14.若抛物线28y x x k =-+与x 轴只有一个公共点,则k 的值为.15.二次函数²y ax bx c =++自变量和对应函数值的部分对应值如下表所示,则关于x 的不等式.²50ax bx c ++-≤的解集为x 4-3-2-1-012y13854581316.如图,一段抛物线:(3)(03)y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;L ,如此进行下去,直至得2024C ,若(,2)P m -在第2024段抛物线2024C 上,则m =.三、解答题17.解方程:x 2+4x+1=0.18.为了让大家都能用上实惠药,医保局与药商多次谈判,将一种原价每盒100元的药品,经过两次降价后每盒64元,两次降价的百分率相同,求每次降价的百分率.19.如图,在ABC V 中,2AB =, 3.6BC =,=60B ∠︒,将ABC V 绕点A 按顺时针旋转一定角度得到ADE V ,当点B 的对应点D 恰好落在BC 边上时.(1)作出ADE V ;(要求:尺规作图,保留作图痕迹,不写作法)(2)求CD 的长.20.如图,x 轴上依次有A B C D E F ,,,,,六个点,且AB BC CD DE EF =====2,从点A 处向右上方沿抛物线.2412y x x =-++.发出一个带光的点P .(1)求抛物线顶点坐标;并在图中补画出y 轴;(2)若抛物线上点(,)P m n ,若06m <<,直接写出n 的取值范围为.21.已知关于x 的一元二次方程()()220a b x cx b a +++-=,其中a ,b ,c 分别为ABC V 三边的长.(1)如果1x =-是方程的根,试判断ABC V 的形状,并说明理由;(2)如果ABC V 是等腰直角三角形,c 为斜边,解这个一元二次方程.22.综合与实践数学兴趣小组在学习了二次函数之后,对物理学中的探究实验“阻力对物体运动的影响”又有了新的认识.对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究.兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用,请完成下列任务.【实验过程】如图1所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动.从黑球运动到A 点处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间t (单位:s )、运动速度v (单位:/s cm )、滑行距离y (单位:cm )的数据.【收集数据】记录的数据如下:运动时间t /s 03691215…运动速度V /(/s cm )108.57 5.54 2.5…运动距离y /cm27.755169.758493.75…【建立模型】根据表格中的数值分别在图2、图3的平面直角坐标系中描点、连线;通过观察图像发现,我们可以用一次函数近似地表示v 与t 的函数关系,用二次函数近似地表示y 与t 的函数关系.请直接写....出v 与t 的函数关系式和y 与t 的函数关系式(不要求写出自变量的取值范围).①当黑球在水平木板上滚动了64cm 时,运动速度是多少?②若黑球到达木板A 点处的同时,在前方70cm 处有一辆电动小车,以2/s cm 的速度匀速向右直线运动,则黑球能否追上小车?请说明理由.23.在平面直角坐标系中,设二次函数()21232y x m m =--+-(m 是实数).(1)当2m =时,若点()8,A n 在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线132y x =-+上,你认为他的说法对吗?为什么?(3)已知点()1,P a c +,()45,Q m a c -+都在该二次函数图象上,是否存在m ,使得c 存在最大值,若存在,求出最大值,若不存在,请说明理由.24.综合与实践:问题情景:如图1、正方形ABCD 与正方形AEFG 的边AB ,()AE AB AE <在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α,在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE ,DG .(1)操作发现:当正方形AEFG 旋转至如图2所示的位置时,求证:BE DG =;(2)操作发现:如图3,当点E 在BC 延长线上时,连接FC ,求FCE ∠的度数;(3)问题解决:如图4,如果45α=︒,2AB =,AE =G 到BE 的距离.25.已知抛物线22y ax bx =+-的顶点是P ,且交x 轴于()2,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)过原点O 的直线与抛物线交于C ,D 两点,其中点C 在y 轴的左侧.①若直线CD 的表达式为y x =,求PCD △的面积;②若C ,E 两点关于y 轴对称,O ,Q 两点关于P 对称,求证:D ,E ,Q 三点共线.。

福建省南平市第三中学2024-2025学年九年级上学期期中考试数学试题(含答案)

福建省南平市第三中学2024-2025学年九年级上学期期中考试数学试题(含答案)

南平三中2024-2025学年九年级(上)数学期中质量检测(满分:150分;考试时间:120分钟)一、选择题(共10题,每题4分,共40分,每题的四个选项中只有一项是正确)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.已知是关于的方程的一个根,则的值为( )A .6B .C .4D .3.如图,将绕点按逆时针方向旋转后得到,若,则的度数是( )A .B .C .D .4.用配方法解方程时,配方结果正确的是( )A .B .C .D .5.经过两次连续涨价,某药品销售单价由原来的32元涨到50元,设该药品平均每次涨价的百分率为,根据题意可列方程( )A .B .C .D .6.对于二次函数,下列说法正确的是( )A .图象的开口向上B .图象的对称轴为直线C .图象的顶点坐标是D .图象与轴没有交点7.将抛物线平移得到抛物线,则下列平移过程正确的是( )A .向左平移2个单位长度B .向右平移2个单位长度C .向上平移2个单位长度D .向下平移2个单位长度8.若点、在二次函数的图象上,则( )A B .C .D.1x =x 250x x m +-=m 6-4-AOB V O 60 A OB ''V 25AOB ∠= AOB ∠'85 4035 25 2410x x ++=()225x -=()223x -=()225x +=()223x +=x 23250x =()232150x +=()321250x +=()232150x +=()2213y x =--+1x =()1,3-x 2y x =()22y x =+()11,y -()23,y 2153y x =-+12y y <21y y <21y y ≤12y y ≤9.已知抛物线,当时,函数的最大值为2,则的值为( )A .B .C .2D .310.如图,在正方形中,,为边上一点,点在边上,且,将点绕着点顺时针旋转得到点,连接,则的长的最小值为( )A .2B .C .3D二、填空题(本题共6小题,每小题4分,共24分.)11.在平面直角坐标系中,点关于原点对称的点的坐标是________.12.当________,关于的方程是一元二次方程.13.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把顺时针旋转,则旋转点的对应点的坐标是________.14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有________个飞机场.15.已知抛物线的部分图象如图所示,则方程的解是________.16.抛物线的最低点为,其中,抛物线与轴交于点,221y x x =--0x a ≤≤a 2-1-ABCD 4AB =E AB F BC 1BF =E F 90G DG DG ()1,3A -A 'm =1247m x x +-=x OABC OA OC x y ()5,3D AB C CDB V 90D D '2y x bx c =++20x bx c ++=2y ax bx c =++1,3m ⎛⎫ ⎪⎝⎭10m -<<x ()1,0x,,,则下列结论中,正确的有________.(填序号)①;②;③;④关于的方程有两个不相等的实数根.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.(8分)解方程:(1)(2)18.(8分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.(1)画出关于原点对称的,并直接写出点的对应点的坐标;(2)画出以为旋转中心顺时针旋转的.19.(8分)已知关于的一元二次方程.求证:该方程总有两个不相等的实数根.20.(8分)如图将绕点顺时针旋转得到,使点的对应点落在边上.(1)若,,求的长;(2)若,,连接,求的度数.21.(8分)已知抛物线.(1)若点在此抛物线上,求此抛物线的表达式;()2,0x 110x -<<212x <<0abc >230a b +=()22a c b +<x 210ax bx c +++=2430x x ++=2230x x -=ABC V ()3,2A -()0,4B ()0,2C ABC V 111A B C V A 1A ABC V C 9022A B C V x ()2420x m x m +--=ABC V C DEC V A D BC 3AC =5CE =BD 70A ∠= 30B ∠=BE CBE ∠23y x mx m =-+()3,2A m(2)在(1)的条件下,求出此抛物线的顶点坐标.22.(10分)为响应“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边用墙,可利用的墙长不超过,另外三边由长的栅栏围成,设矩形空地中,垂直于墙的边,面积为(如图).(1)求与之间的函数关系式,并写出自变量的取值范围;(2)当为何值时,有最大值?最大值是多少?23.(10分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头距地面,水柱在距喷水头水平距离处达到最高,最高点距地面;建立如图所示的平面直角坐标系,并设抛物线的解析式为,其中是水柱距喷水头的力平距离,是水柱距地面的高度.(1)求抛物线的解析式;(2)爸爸站在水柱正下方,且距喷水头水平距离,身高的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.24.(12分)抛物线与轴交于,两点(点在点左侧),与轴交于点,是抛物线上不与点,,重合的一点.(1)点的坐标为(_____,_____),点的坐标为(_____,_____);(2)如图,若点在线段上方,连接,,当的面积最大时,求点的坐标及此时16m 36m ABCD m AB x =2m y y x x x y P 0.7m P 5m 3.2m ()2y a x h k =-+()m x ()m y P 3m 1.6m 223y x x =-++x A B A B y C P 223y x x =-++A B C A B P BC BP CP PBC V P的面积;25.(14分)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中,.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.(1)数学思考:四边形的形状是________.(2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当时,过点作,交的延长线于点,与交于点.试猜想线段和的数量关系,并加以证明;②“智慧小组”提出问题:如图4,当时,交于点,若,,求的长.PBC V ABC V DFE V 90ACB DEF ∠=∠=A D ∠=∠ABC V DFE VB F B ABE A ∠=∠DE AC G BCGE DBE V B E ABC V ABE BAC ∠=∠A AM BE ⊥BE M BM AC N AM BE CBE BAC ∠=∠AB DE M 9BC =12AC =AM南平三中2024-2025学年九年级(上)数学期中质量检测参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.B ;2.A ;3.C ;4.D ;5.B ;6.B ;7.A ;8.B ;9.D ;10.C .二、填空题(本大题共6小题,每小题4分,共24分)11.;12.1;13.;14.5;15.,;16.①②③.三、解答题(本大题共9小题,共86分)17.(8分)(1)解:.2分∴或∴,.4分(2)解:.2分∴或∴,.4分18.(8分)解:(1)如图,即为所求,.5分(2)如图,即为所求.8分19.(8分)()1,3-()2,0-11x =-23x =2430x x ++=()()130x x ++=10x +=30x +=11x =-23x =-2230x x -=()230x x -=0x =230x -=10x =232x =111A B C V ()13,2A -22A B C V证明:由题意可得:.5分∵∴∴该方程总有两个不相等的实数根.8分20.(8分)解:(1)将绕点顺时针旋转得到,∴,∴,,1分∴,∴的长为2.3分(2)如图所示,连接,由(1)可知,,∴,,,∴是等腰三角形,5分在中,,∴,7分∴,∴的度数为.8分21.(8分)解:(1)∵点二次函数的图象上∴.1分解得:.3分∴二次函数的解析式为.4分(2).6分∴此抛物线的顶点坐标为.8分()()2224441216b ac m m m =-=--⨯⨯-=+V 2m ≥2160m ∆=+>ABC V C DEC V ABC DEC ≅V V 5BC EC ==3AC DC ==532BD BC CD =-=-=BD BE ABC DEC ≅V V 70A EDC ∠=∠= 30ABC DEC ∠=∠= CB CE =BCE V ABC V 180180703080ACB A ABC ∠=-∠-∠=--= 80DCE ACB ∠=∠= ()()11180180805022CBE CEB BCE ∠=∠=-∠=⨯-= CBE ∠50()3,2A m 23y x mx m =-+()23332m m m m -⋅+=2m =262y x x =-+()()22262699237y x x x x x =-+=-+-+=--()3,7-22.(10分)解:(1)根据题意得:,2分∵,∴,4分∴与之间的函数关系式为;5分(2)由(1)知,化成顶点式:,6分∵,抛物线开口向下∴当时,随的增大而减小.7分又∵,∴当时,有最大值,最大值为,此时,符合题意.10分23.(10分)解:(1)由题意知,抛物线顶点为,则抛物线的解析式为.将代入得,解得.∴抛物线的解析式.4分(2)当时,.6分解得,.9分则她与爸爸的水平距离为或.答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是或.10分24.(12分)解:(1)点的坐标为,点的坐标为.4分(2)∵当时,∴.()2362236y x x x x =-=-+036216x <-≤1018x ≤<y x ()22361018y x x x =-+≤<()22361018y x x x =-+≤<()2223629162y x x x =-+=--+20-<9x >y x 1018x ≤<10x =y ()221091622162160y =--+=-+=()362362016m AD x =-=-=()5,3.2()25 3.2y a x =-+()0,0.725 3.20.7a +=110a =-()215 3.210y x =--+1.6y =()215 3.2 1.610x --+=11x =29x =()312m -=()936m -=2m 6m A ()1,0-B ()3,00x =3y =()0,3C设直线的解析式为,将点,代入中得解得∴直线的解析式为.6分过点作轴交直线于点设,则.8分∴,10分∵,抛物线开口向下∴当时,有最大值,最大值为.11分∴点的坐标为,此时的面积为.12分25.(14分)解:(1)数学思考:四边形的形状是正方形.2分(2)①.∵∴.4分BC ()0y mx n m =+≠()3,0B ()0,3C y mx n =+303m n n +=⎧⎨=⎩13m n =-⎧⎨=⎩BC 3y x =-+P PG y P BC G()()2,2303P p p p p -++<<(),3G p p -+()222333PG p p p p p =-++--+=-+()()221133273322228ABCB C S PG x x p p p ⎛⎫=⋅-=⨯-+⨯=--+ ⎪⎝⎭V 302-<32p =ABC S V 278P 315,24⎛⎫⎪⎝⎭PBC V 278BCGE AM BE =ABE BAC∠=∠AN BN =∵,∴在和中∴,∴.7分由旋转的性质可得,∴,8分∴.9分②由旋转的性质可得∴,,∵,,∴,∵,∴,∴.11分由勾股定理得,∴,12分设,∴∴,解得,∴.14分90C ∠=AM BE ⊥90M C ∠=∠=AMN V BCN V M C ANMBNC AN BN∠=∠⎧⎪∠=∠⎨⎪=⎩AMN BCN ≅V V AM BC =ACB DEB ≅V V BE BC =AM BE =ACB DEB ≅V V 9BE BC ==12DE AC ==BAC D ∠=∠ABC DBE ∠=∠CBE DBM ∠=∠CBE BAC ∠=∠D MBD ∠=∠MD MB =15AB ==15BD AB ==BM DM x ==222BM EM BE=+()222912x x =+-758x =75451588AM =-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七、写作(60分)
22.我们常常欣赏他人,却忽视了欣赏自己。

欣赏自己的暖暖善意,欣赏自己的拳挚孝心,欣赏自己的奇思妙想......欣赏自己可以增强信心,带给你前行的动力;欣赏自己可以完善自己,带给你完美的人生。

请以"欣赏自己"为题,写一篇文章。

要求:①文体自选(除诗歌外),不少于600字,不能套题。

②文中不得出现真实的地名、校名、人名。

2011年福建省南平市初中毕业、升学考试
语文试题参考答案及评分说明
一、(18分)
1.B 2.D 3.C 4.C 5.B 6.A
二、(27分)
7.(12分,每横线处1分,错1字该横线处不得分)①我寄愁心与明月,随风直到夜郎西②不畏浮云遮望眼,自缘身在最高层③入则无法家拂士,出则无敌国外患者④东风不与周郎便,铜雀春深锁二乔⑤感时花溅泪,恨别鸟惊心⑥只恐双溪舴艋舟,载不动许多愁。

8.(8分)
①(2分)赞美了古人孝敬父母的美德。

(意思相近即可)
②(2分)示例一:高节显傲骨示例二:高节展风采示例三:高节见人心
是来自平时学习积累总结的
五年级语文期中测试卷
一、根据音节写汉字
(6分)
ping zhàng lín xún niàng mìhuìjítuǒtiēwâi jiâ
()()()()()()
qián kūn fãn shāo kāng kǎi míbǔkuíwú
()()()()()
二、同音字填空
"ji"(6分)
()贯、贫()、()念、()然、奇()、()使
()静、供()、()苦、()祥、()背、()至
三、形近字组词
4分
邀()眠()蜷()誊()蔼()
遨()岷()倦()誉()竭()
檐()钮()馋()
瞻()扭()搀()
四、用给出的字组词并填空
5分
"开"______伟业、______活动、______道路、______产品、______荒地
"改"______体制、______品种、______生活、______罪犯、______计划
五、判断下列句子是否完整
完整的打"√"
不完整的打"×"3分
A只有一个地球
()B我的战友邱少云
()C螳螂捕蝉
()D海洋是多么广阔
()E桂林山水甲天下
()F狱中联欢
()
六、修改病句(使用修改符号修改)
5分
1、剧场里响起了要他们再一次表演的要求
2、经过教师的指导
使我明白了这个道理
3、我们一定要发扬和继承党的优良传统
4、麦子已经成熟
真是丰收在望
5欢迎会上
同学们唱起了动听的歌和欢乐的舞
七、按要求改写句子
"相呼应的句子是____________________________________________ 1分
○2"桂林的山真秀啊
像翠绿的屏障
像新生的竹笋
......"这一句采用了______的手法
把桂林的山比作________、_______
句中"啊"字读______(a、na、ya、nga、ra) 2分
○3《石灰吟》的作者是_______
这是一首______诗
表现了诗人___________、____________
________________________的高尚情操
○4也是
一盘沙果__________
一盘荔枝__________
对比过于_______
○5《一夜的工作》一文的中心句是_______________________
点睛之笔的句子是____________________
2分
○6《长征》是_______(谁)在1935年10月长征胜利结束时写的一首____言_____诗
诗句________________,_________________与以前所学课文《》的内容相对应;诗句__________________与课文《》的内容相对应
4分
十、根据自己的理解
写出"而今
荔枝依旧年年红
"一句作者没有说出的话
3分
十一、用简笔画分别画出"云横秦岭"的景象和大兴安岭的"岭"的特点
2分
十二、阅读
两种贫穷
这是两个人看到的
一个人看到:在一个美丽的乡村
一天来了一个乞丐
这个乞丐看上去只有30来岁
长得很结实
乞丐每天端着一个破碗到村民家中讨饭
他的要求不高
无论是稀饭还是馒头他从不嫌弃
日子稍稍长了
便有人看中他的身材和力气
想让他去帮着打打零工。

相关文档
最新文档