光纤陀螺罗经及其发展和应用

合集下载

光纤陀螺仪的原理与应用

光纤陀螺仪的原理与应用

光纤陀螺仪的原理与应用1. 引言光纤陀螺仪(Fiber Optic Gyroscope,简称FOG)是一种基于光学原理的惯性导航仪器,用于测量和检测物体的角速度。

光纤陀螺仪在航空航天、导航定位、地震监测等领域有着广泛的应用。

2. 原理光纤陀螺仪的工作原理基于光的干涉现象。

其主要由光源、光纤环、检测器等组成。

•光源:光源发出具有特定波长的光信号。

•光纤环:光纤环是由光纤绕成的一个环状结构,一端接光源,另一端接检测器。

•检测器:检测器用于接收和检测光信号。

当光源发出光信号后,光信号会在光纤环中传播,形成一个封闭光路径。

当光纤环受到旋转等外界作用力时,由于光的波长不变,光信号在光纤环中的传播速度会受到影响,从而引起光的相位差的变化。

通过检测器检测到这一变化,可以得到物体的角速度信息。

3. 优势与应用光纤陀螺仪相较于传统的机械陀螺仪具有以下优势:•高精度:光纤陀螺仪具有高精度的角速度测量能力,能够实现微小角度的测量。

•稳定性:光纤陀螺仪的结构简单,没有磨损部件,因此具有较长的寿命和较好的稳定性。

•抗干扰能力强:光纤陀螺仪能够抵抗振动、温度变化等外界干扰,确保测量的准确性。

•体积小、重量轻:光纤陀螺仪相较于传统陀螺仪,具有体积小、重量轻的特点,适用于各种空间受限的环境。

由于光纤陀螺仪的优势,它在许多领域都有广泛的应用:•航空航天:光纤陀螺仪可以用于航空航天器的导航、姿态控制等,提高飞行安全性和精确度。

•自动驾驶:光纤陀螺仪可以用于自动驾驶车辆的定位和导航系统,实现精确的定位和路径规划。

•地震监测:光纤陀螺仪可以用于地震监测,实时检测地壳运动,提供地震预警。

•水下探测:光纤陀螺仪可以用于水下机器人的导航和定位,提供精确的水下探测能力。

4. 发展与未来趋势光纤陀螺仪是惯性导航技术的重要组成部分,随着科技的不断进步,光纤陀螺仪将继续发展并在更多领域应用。

•提高精度:目前的光纤陀螺仪已经具备较高的精度,但未来仍有提升空间。

光纤陀螺仪应用

光纤陀螺仪应用

光纤陀螺仪应用
光纤陀螺仪应用
1、航海方面的应用
罗经是船舶重要的导航设备,主要有磁罗经和电罗经两种。

随着光纤陀螺技术的发展和商业化水平的提高,光纤陀螺仪已成为船用通导设备中的新成员,在商用和军用船舶及船用设备中得到应用。

基于捷联式惯导系统的光纤陀螺仪罗经其旋转轴与船舶坐标系的三个轴相对应,它不仅可以作为高精度航向的信息源,实现自动找北、指北,而且还可以得出航向回转速率、横、纵摇角度和航向的旋转速率等可靠数据,进一步推动船舶的自动化发展,保证了船舶的操纵效果和保证航行安全。

2、航天及空间方面的应用
在航天和空间应用方面一般都采用高精度的干涉型光纤陀螺。

IFOG 为主要惯性元件的捷联惯导系统,可为飞机提供三维角速度、位置以及攻角和侧滑角,实现火箭升空发射的跟踪和测定,也可用于空间飞行器稳定、摄影/测绘、姿态测量控制、运动补偿、EO/FLIR稳定、导航及飞控等,其中高精度、可靠性高的光纤陀螺与GPS组合定姿已成为国内外航天器定姿系统的典型构型。

光纤陀螺罗经的研制与应用研究进展

光纤陀螺罗经的研制与应用研究进展

光纤陀螺罗经的研制与应用研究进展摘要本文描述了SFIM研制的单轴光纤陀螺和惯性测量装置。

描述了光纤陀螺罗经的应用领域和它在各种领域中被广泛应用的理由。

光纤陀螺仪的应用程序实现了从机械陀螺仪向集成混合导航系统的转变更新。

经过不断发展和攻关努力,现正专注小型化多轴的陀螺仪的研究。

最有希望的子系统是将旋转速率传感器与光纤陀螺仪巧妙的结合在一起的惯性测量组合。

1、引言单轴光纤陀螺仪的基本设计已经被完成。

而在研制领域中仍然需要在实际设计和现有的生产条件下提高限制和分析误差的性能,光纤陀螺仪不断更新发展的主要驱动力是降低成本的需要。

已知的设计有很多共同的特点,但也有不同的解决方案,以应对不同的应用领域中的具体问题。

单轴陀螺仪的销售机会是直截了当的替换在此之前的单轴机械陀螺仪;使用在极端特殊的二维导航任务中,作为无人飞行器的导向罗经;作为经典惯性传感器组件中的传感器由三个单独的陀螺仪和三个加速计组成;应对古典式陀螺仪在灵活性和环境条件都完成不了的极端特殊的测量工作。

新设计的驱动程序的多轴陀螺仪仍属于高功耗光纤陀螺仪,相比纯机械陀螺,其仍存在相当大的尺寸,而且造价又一次成为考虑的因素。

所有这些都是多轴光纤陀螺仪朝着解决信号处理的多路复用和光学组件的普遍应用的方向发展的原因。

2、单轴光纤陀螺仪2.1 设计和基本配置众所周知,在实际的FOG 中,光学部分是最小的配置。

电子信号的读取和处理高度的集成在一起,以联合的模拟和数字ASIC实现。

为了完成,简单的总结和重复设计的主要特点,如下所示:1、低成本的多模激光二极管作为光源,波长820nm,多达15mw的光功率射入单模光纤尾纤。

它安装在热电冷却器、唯独传感器和显示器二极管半蝴蝶包中。

2、多功能集成光学模块包括一个含有偏光片的辫状射出或输入通道、Y型分叉管和一对与钛非漫射波导安装在Z切理铌酸盐底片上的调相器。

3、保偏光纤用来做尾纤和纤维线圈,其长度为100m,一个Sagnac相移大约为1μrad,输入速率为1 ° / h。

光纤陀螺的原理和应用前景

光纤陀螺的原理和应用前景

光纤陀螺的原理和应用前景1. 简介光纤陀螺作为一种高精度惯导传感器,广泛应用于导航、无人驾驶、航天航空等领域。

本文将介绍光纤陀螺的原理和应用前景。

2. 原理光纤陀螺基于Sagnac效应,利用光在旋转系统中传播的差相位来测量旋转角速度。

其主要原理如下:•光路拆分:将入射光束分为两束,经过旋转系统后再合并。

一束沿顺时针方向传播,另一束沿逆时针方向传播。

•光程差:当没有旋转时,两束光在旋转系统中传播距离相等,所以两束光在合并后能够干涉产生等相位。

•旋转效应:当旋转系统发生旋转时,顺时针方向的光程会变短,逆时针方向的光程会变长,导致干涉产生相位差。

•相位差测量:通过检测干涉产生的相位差,就可以计算出旋转角速度。

3. 应用前景光纤陀螺具有高精度、高稳定性、长寿命等优点,因此在许多领域有着广泛的应用前景。

3.1 导航与定位光纤陀螺可以用于惯性导航系统,实现对航空器、潜水器、导弹等的精确导航和定位。

与传统的机械陀螺相比,光纤陀螺具有更高的精度和更小的体积,更适用于高精度导航需求。

3.2 航天航空在航天航空领域,光纤陀螺可以用于姿态控制、角速度测量、飞行参数监测等方面。

光纤陀螺的高精度和高稳定性保证了飞行器的准确性和安全性。

3.3 无人驾驶随着无人驾驶技术的快速发展,光纤陀螺作为惯性导航传感器,在自动驾驶车辆上具有重要的应用前景。

它可以提供准确的车辆姿态信息,改善导航、定位和轨迹控制的精度,提高无人驾驶的安全性和可靠性。

3.4 工业自动化光纤陀螺可以在工业自动化系统中用于测量和控制机器人、加工设备等的姿态和运动状态。

通过实时监测机器人的姿态信息,可以提高生产效率和产品质量。

4. 总结光纤陀螺基于Sagnac效应,利用光在旋转系统中传播的差相位来测量旋转角速度。

其具有高精度、高稳定性、长寿命等优点,在导航、航天航空、无人驾驶和工业自动化等领域有着广泛的应用前景。

随着技术的不断进步,光纤陀螺将继续发挥重要的作用,推动相关领域的发展和进步。

光纤陀螺的军事应用及前景

光纤陀螺的军事应用及前景

光纤陀螺的原理及军事应用1前言光纤陀螺是一种轻便的由固体元件组成的全固态器件,作为新一代角速度敏感器件,它具有其它种类陀螺所不具有的独特优点。

在航天、航空、航海和兵器等领域以及工业领域中已具有相当强的竞争力,在战术级军用及民用场合中目前已得到广泛应用。

2 光纤陀螺的基本原理和种类自从1976年瓦利( V.Vali) 和肖迪尔(R. W.Shortill)首次提出光纤陀螺的概念到现在以来,光纤陀螺已经从第一代的干涉型光纤陀螺(IFOG) ,发展到了第二代谐振型光纤陀螺(RFOG)和第三代布里渊型光纤陀螺(BFOG)。

以上各种类型的光纤陀螺,其基本原理都是利用萨格纳克效应,只是各自所采用的位相或频率解调方式不同,或者对光纤陀螺的噪声补偿方法不同而已。

干涉型光纤陀螺是研究开发最早、技术最为成熟的光纤陀螺,属第一代光纤陀螺,它是利用干涉测量技术把相位调制光转变为振幅调制光,把光相位的直接测量转化成光强度测量,这样就能比较简单地测出萨格纳克相位变化。

干涉型光纤陀螺的光纤元器件一般都用单模光纤或保偏光纤制作。

目前,低、中性能的干涉型光纤陀螺已经实用化,而高性能干涉型光纤陀螺正处于研制之中。

谐振型光纤陀螺是第二代光纤陀螺,它是通过检测旋转非互易性造成的顺、逆时针两行波的频率差来测量角速率。

采用无源谐振腔的R—FOG的基本结构是由光纤构成一个谐振腔,其谐振频率随萨格纳克效应的大小而改变,由此测量旋转角速度。

谐振型光纤陀螺的研究较晚,主要用来解决光源的波长稳定性,对光源的要求十分苛刻,在技术上还不太成熟,但是很多研究人员认为它能提供最大潜在的精度。

布里渊型光纤陀螺是第三代光纤陀螺,又称光纤环形激光陀螺,或受激布里渊散射光纤环形激光陀螺。

采用有源谐振腔的布里渊光纤陀螺是利用高功率光在光纤中激发布里渊散射光的光纤陀螺仪。

当光纤环中传输的光强达到一定程度时就会产生布里渊散射,散射光的频率由于受萨格奈克效应的影响,顺、逆时针的两束布里渊散射光的频差与旋转角速度成正比。

光纤陀螺仪的发展及应用

光纤陀螺仪的发展及应用

光纤陀螺仪的发展及应用光纤陀螺仪是一种基于光学原理的精密仪器,用于测量和检测物体的角速度和角位移。

它的工作原理是利用光纤作为传感器,在光的干涉和干扰效应下实现对角速度进行精确测量和计算。

光纤陀螺仪具有高精度、快速响应、长寿命和抗干扰性强等优点,因此在航空航天、导航、地震监测和工业控制等领域得到广泛应用。

光纤陀螺仪的发展经历了几个重要的阶段。

最早的光纤陀螺仪出现在20世纪70年代,它使用了光纤作为传感器,在光的干涉效应下实现对角速度的测量。

然而,当时的光纤陀螺仪体积庞大、价格昂贵、性能不稳定,限制了其在实际应用中的推广和应用。

随着技术的发展,光纤陀螺仪逐渐趋于小型化、高精度化和低功耗化。

在20世纪90年代,研究人员提出了一种新的光纤陀螺仪结构,即光纤环结构。

这种结构有效地实现了对光在光纤中传播时产生的微小光程差的测量,大大提高了陀螺仪的灵敏度和稳定性。

近年来,随着光纤技术的不断进步,光纤陀螺仪实现了更高的分辨率、更低的噪声和更宽的测量范围。

同时,光纤陀螺仪的体积也不断减小,造价也大大降低,使得其在大规模商业化应用中更具有竞争力。

光纤陀螺仪目前在航天航空领域有着广泛的应用。

它可以用于飞行器的导航、姿态控制和稳定系统,实时测量飞行器的角速度和绕各轴旋转角度,从而保证飞行器的安全和稳定。

光纤陀螺仪还可以用于航天器的精确定位和导航,为太空探测任务提供准确的数据支持。

此外,光纤陀螺仪还被广泛应用于民用领域。

例如,光纤陀螺仪可以用于汽车导航系统,提供准确的行驶方向和距离信息;在地震监测中,光纤陀螺仪可以实时监测地壳的变化,预警地震;还可以在工业控制系统中实现精确的角位移测量和控制,提高生产过程的自动化和智能化水平。

总的来说,光纤陀螺仪以其高精度、快速响应和抗干扰性强的特点,成为现代导航和控制系统中不可或缺的重要元件。

随着技术的进一步发展,相信光纤陀螺仪在更多领域的应用前景将更加广阔。

光纤陀螺技术及其发展应用

光纤陀螺技术及其发展应用

光纤陀螺技术及其发展应用
光纤陀螺技术及其发展应用
1976年,美国学者V.Vali和R.W.Shorthill首次提出光纤陀螺(Fiber-Optic Gyro,FOG)的概念,他们使用多圈光纤环形成大等效面积的闭合光路,利用萨格纳克效应(Sagnac Effect)实现了载体的角运动测量,使得这种光纤角运动传感器具备了完整的陀螺功能.光纤陀螺是全固态的陀螺,与传统的机械陀螺或激光陀螺相比,具有以下特点: 作者:蔡明作者单位:中国人民解放军驻二一二厂军代表室刊名:航空科学技术英文刊名:AERONAUTICAL SCIENCE AND TECHNOLOGY 年,卷(期):2009 ""(4) 分类号:V2 关键词:。

光纤陀螺的原理及应用

光纤陀螺的原理及应用

光纤陀螺的原理及应用光纤陀螺是一种基于光纤的惯性导航装置,利用光纤的特性来测量物体在空间中的转动角速度。

它的核心原理是著名的光路差原理,即利用光在不同介质中传播速度不同的性质,通过测量光信号的相位差来推测陀螺的旋转情况。

光纤陀螺的主要构成部分包括光源、光分束器、光偏置器、光栅、光检测器等。

光源发出的光经过光分束器分成两束,依次通过光偏置器,其中一束光经过光栅与另一束光混合后通过光检测器检测。

当光纤陀螺不发生旋转时,两束光的相位相同,检测器输出信号为零;当光纤陀螺发生旋转时,光栅会引起两束光之间的相位差随着陀螺旋转导致变化,通过检测器可以将转动的角速度转化为电信号输出。

光纤陀螺具有许多优势和应用前景。

首先,光纤陀螺具有高精度和高稳定性,可以测量微小的角速度变化,适用于高精度导航和姿态控制。

其次,光纤陀螺不受外部电磁干扰的影响,可以用于恶劣环境下的导航。

此外,光纤陀螺体积小、重量轻,便于安装和集成到各种设备中。

光纤陀螺广泛应用于航空、航天、航海、导弹、船舶、地质勘探以及工业自动化等领域。

在航空和航天领域,光纤陀螺可用于惯性导航系统,实现飞行器的精确定位、测速和姿态控制。

在导弹领域,光纤陀螺可以提供快速、精确的导航信息,有效支持导弹的制导和弹道控制。

在地质勘探中,光纤陀螺可以应用于油气勘探、地震监测等领域,提供地下结构和地震信号的测量。

在工业自动化中,光纤陀螺可用于机器人导航和姿态控制,提高自动化生产线的准确性和效率。

除了以上应用领域,光纤陀螺还具有许多潜在的应用前景。

例如,在虚拟现实和增强现实领域,光纤陀螺可用于实现更精确的姿态追踪和身体定位。

在医疗领域,光纤陀螺可以应用于体内导航和手术辅助等方面,提高手术精确度和安全性。

在车辆导航和自动驾驶领域,光纤陀螺可以用于精确定位和路径规划,提高车辆导航的准确性和安全性。

总之,光纤陀螺是一种基于光纤的惯性导航装置,利用光路差原理测量物体的转动角速度。

它具有高精度、高稳定性和抗干扰性强的特点,广泛应用于航空、航天、航海、导弹、船舶、地质勘探和工业自动化等领域。

光纤陀螺罗经

光纤陀螺罗经
• 惯性导航系统是利用惯性敏感器、基准方向及最初的位置信 息来确定运载体的方位、位置和速度的自主式船位推算导航 系统,有时简称惯导。
二、 光纤陀螺寻北原理 ----基于捷联式惯导系统
载体的参考北向沿水平面的地球自转角速度分量为:
N con e con con
已知: e ----地球自转角速度 ----载体所在地地理纬度 由陀螺仪测得: 计算: θ----载体的参考北向(沿水平面)与真北方向的夹角
退出
第一章 小结
罗经种类 下重式 液体连通器 式 电磁式 光纤式 陀螺仪 动量矩指北 动量矩指南 动量矩指北 无动量矩 控制设备 重心下移 液体连通器 阻尼设备 液体阻尼器 西侧重物
电磁摆力矩器 角速度传感器
第六节 光纤陀螺罗经
Navigat 2100陀螺罗经和姿态基准系统
• 一、Sagnac效应
圆周:L=2πR 弧长:I=ΦR 路径差:△L=2I=2ΦR 相位差:△Φ=2π△L/λ ∵Φ=ΩT=ΩL/c Φ P
P’
R Ω
4RL c
二、 光纤陀螺寻北原理 ----基于捷联式惯导系统
第六节 光纤陀螺罗经
第六节 光纤陀螺罗经
• • • • • • • 四、光纤罗经的特征: 无转动部件 采用固态技术 不用维修 精度高 启动时间短 提供航向、纵摇、横摇信 息
退出
第六节 光纤陀螺罗经
• • • • • 五、光纤罗经在航海上的应用: 磁罗经校差的新手段 对航行中的船舶进行监控 丰富船舶操纵理论与实践 可推动相关规则、规定等的修改 和制定 • 进一步推动船舶驾驶自动化的发 展
x 1 con e con con y 1 sin e con sin z陀螺罗经

光纤陀螺仪原理及其工程应用

光纤陀螺仪原理及其工程应用

光纤陀螺仪原理及其工程应用光纤陀螺仪的基本构成由光源、光纤环、探测单元组成。

光源波长单色一致的激光,被光纤环分成两个光路,分别是顺时针和逆时针方向。

当光沿两个光路经过光纤环传播后,两束光会重合,形成干涉。

若光纤环不发生任何旋转,则两束光在探测单元中产生完全相干干涉。

但若光纤环发生了旋转,对应的光程差会发生变化,从而干涉现象也会发生变化,通过观察干涉光强的变化,就可以得到光纤陀螺仪的输出信号,进而计算出旋转角速度。

光纤陀螺仪在航空航天、导航定位、地震监测以及智能交通等领域中有着重要的应用。

在航空航天中,光纤陀螺仪可以用于飞行器的姿态控制、导航定位和惯性导航系统等,可以实现精确的飞行操作和导航定位。

在地震监测中,可以利用光纤陀螺仪对地震产生的地壳运动进行精确测量,以便及时预警和采取应急措施。

在智能交通领域中,光纤陀螺仪可以用于地铁、高铁等交通工具的导航定位和运行控制中,确保交通运行的精准和稳定。

另外,光纤陀螺仪还可以应用于油井钻井、测量仪器、无人车等领域。

在油井钻井中,可以利用光纤陀螺仪实现井深测量和定向钻井,提高钻井效率和精确度。

在测量仪器领域,光纤陀螺仪可以用于惯性测量单元、陀螺仪罗盘等设备中,实现精确的测量和定位功能。

在无人车领域,光纤陀螺仪可以用于自动驾驶系统中,提供准确的姿态和角速度信息,以实现安全稳定的驾驶。

综上所述,光纤陀螺仪具有高精度、稳定性好、抗振能力强等特点,使其在航空航天、导航定位、地震监测以及智能交通等领域中得到了广泛的应用。

随着技术的不断发展和创新,光纤陀螺仪在工程应用中将会有更广阔的前景和应用空间。

光纤陀螺仪的原理及应用

光纤陀螺仪的原理及应用

光纤陀螺仪的原理及应用光纤陀螺仪(Fiber Optic Gyroscope,FOG)是一种基于光学原理的精密惯性测量装置,用于测量和监测旋转运动。

它利用光纤的传输特性和Sagnac效应实现测量旋转运动的原理。

光纤陀螺仪的原理是基于Sagnac效应。

Sagnac效应是20世纪初法国物理学家Sagnac发现的一种光学现象,它是由于光在旋转系统中传播时,相对于旋转系统固连的坐标系,光沿顺时针和逆时针方向传播所需的时间不同而导致的。

光纤陀螺仪利用这个效应,通过测量光在光纤中的传播时间差来推测出旋转系统的旋转信息。

光纤陀螺仪的基本结构包括光源模块、光纤环和检测模块,其中光纤环是光纤陀螺仪的关键部件。

光纤环是由一个光纤来回缠绕而成的环形结构,通过环形的光纤路径,光可以顺时针和逆时针两个方向传播。

当光纤环不发生旋转时,两束光沿相同路径传播,其光程差为零;而当光纤环发生旋转时,两束光会在循环路线上产生不同程度的光程差,其大小与旋转角速度和环形光纤长度有关。

光纤陀螺仪通过光纤环中的相位差来测量旋转运动。

光纤陀螺仪通过向光纤环中注入一束激光光束,并分成顺时针和逆时针两个传输方向,经过一段一致长度的光纤后再汇合,再通过光探测器对两束光信号进行比较,并检测出相位差。

应用方面,光纤陀螺仪具有广泛的应用领域:1. 惯性导航系统:光纤陀螺仪广泛应用于航天、航海、军事等领域中的惯性导航系统中,用于测量航天器、舰船或导弹的姿态、角速度和角加速度,实现精确导航和定位。

2. 地震预警:光纤陀螺仪可以用于测量地震、地壳运动和地球自转等地球物理学参数,通过分析和监测这些数据,可以提前预警地震活动,为地震防灾提供重要信息。

3. 石油勘探:光纤陀螺仪可以应用于石油勘探领域,用于测量地下油田的地质构造、井筒位置和地震勘探过程中的旋转运动等参数,提高勘探效果和资源利用率。

4. 智能车辆导航系统:光纤陀螺仪可以用于智能车辆导航系统中,用于测量车辆的姿态和旋转运动,提供准确的车辆导航和行驶方向。

陀螺罗经

陀螺罗经

20世纪70年代,伴随着光纤通信技术的发展,光纤传感技术也迅速发展起来。

该技术是以光波为载体,光纤为媒质,感应和传输外界被测量信号的新型传感技术,以独特的优良性能赢得极大的重视,并在各个领域中广泛应用。

光纤陀螺技术是光纤传感技术的一个特例,是利用光学传输特性而非转动部件来感应角速率和角偏差的惯性传感技术。

1 光纤陀螺的结构按照元器件类型,光纤陀螺分为分立元件型、集成光学型和全光纤型。

由于分立元件型光纤陀螺存在体积较大、可靠性较差、误差较大等缺点,现在世界各国都已停止发展。

集成光学型光纤陀螺将主要光学元件如耦合器、偏振器、调制器都集成在一块芯片上,将光纤线圈、光源、检测器接在芯片适当的位置,就构成了实用的集成光学型光纤陀螺。

从光纤陀螺的发展方向来看,集成光学型光纤陀螺是最有发展前途的光纤陀螺形式。

全光纤陀螺是将主要的光学元件都加工在一条保偏光纤上,从而可以避免因元器件连接造成的误差。

目前,全光纤陀螺技术比较成熟,其性能在三种中最好,适合在现阶段研制实用的商品光纤陀螺。

根据干涉型光纤陀螺的信号检测方式的不同,可以分为开环式和闭环式两大类。

开环式光纤陀螺直接检测干涉条纹的相移,因而动态范围较窄,检测精度较低。

闭环式系统采取相位补偿的方法,实时抵消萨格奈克相移,使陀螺始终工作在零相移状态,通过检测补偿相位移来测量角速度,其动态范围大,检测精度高。

此外,闭环式光纤陀螺对环境尤其是对振动不敏感,是研制高精度光纤陀螺仪的理想形式。

开环式全光纤陀螺是中低精度、低成本光纤陀螺中比较流行的结构。

目前,在中高精度光纤陀螺仪领域,最为流行的设计结构为全数字闭环式光纤陀螺仪。

光纤陀螺示意图2 光纤陀螺的特点光纤陀螺的主要特点是:①无运动部件,仪器牢固稳定,耐冲击且对加速度不敏感;②结构简单,零部件少,价格低廉;③启动时间短(原理上可瞬间启动);④检测灵敏度和分辨率极高;⑤可直接用数字输出并与计算机接口联网;⑥动态范围极宽;⑦寿命长,信号稳定可靠;⑧易于采用集成光路技术;⑨克服了因激光陀螺闭锁现象带来的负效应;⑩可与环形激光陀螺一起集成捷联式惯性系统传感器。

光纤陀螺仪及其应用

光纤陀螺仪及其应用

光纤陀螺仪及其应用引言光纤陀螺仪是一种基于光纤技术制造的高精度陀螺仪,具有广阔的应用前景。

它在现代科技领域,如测量速长、角速度、导航系统、机器人控制等方面发挥着越来越重要的作用。

本文将详细介绍光纤陀螺仪的基本原理及在各领域的应用,并展望其未来发展。

光纤陀螺仪的基本原理光纤陀螺仪主要利用光的干涉原理来测量角速度。

在光纤陀螺仪中,激光束被分成两路,分别沿不同的路径传输,然后再合并。

当光纤环路中存在角速度时,两路光束的相位差会发生变化,通过测量相位差即可计算出角速度。

关键技术包括光捕捉、光路传输及数字信号处理等。

光纤陀螺仪的应用领域1、测量速长:光纤陀螺仪可以用于测量物体的速度和长度。

通过测量物体在不同位置的速度,结合光纤陀螺仪的高精度测角技术,可以计算出物体的长度。

2、角速度:光纤陀螺仪在军事、航空航天、无人驾驶等领域中被广泛应用于测量角速度。

例如,在导弹制导、无人机飞行控制、车船驾驶等场景中,需要精确的角速度信息来确保精确打击或安全行驶。

3、导航系统:光纤陀螺仪是惯性导航系统中的重要组成部分。

在卫星导航系统中,光纤陀螺仪可以提供高精度的角速度和加速度信息,与卫星信号相结合,实现更加精确的导航。

4、机器人控制:在机器人控制领域,光纤陀螺仪可以用于监测机器人的姿态和角速度,以确保机器人的精确动作和稳定运行。

特别是在一些恶劣环境(如高温、低温、强电磁场等)中,光纤陀螺仪更是具有其他类型陀螺仪无法比拟的优势。

光纤陀螺仪的未来展望随着科技的不断发展,光纤陀螺仪的技术也在不断进步。

未来,光纤陀螺仪将朝着更高精度、更小体积、更低成本、更高可靠性方向发展。

同时,随着5G、物联网、人工智能等技术的快速发展,光纤陀螺仪的应用场景也将越来越广泛。

市场潜力巨大,为光纤陀螺仪的发展带来了更多的机会和挑战。

结论光纤陀螺仪作为一种重要的传感器,在测量速长、角速度、导航系统、机器人控制等领域中具有广泛的应用。

本文详细介绍了光纤陀螺仪的基本原理及在各领域的应用,并展望了其未来的发展。

光纤陀螺仪的发展及应用

光纤陀螺仪的发展及应用

光纤陀螺仪的发展及应用摘要:作为光纤传感器的一种,光纤陀螺仪具有了更多的优点,它具有结构紧凑,灵敏度高,工作可靠等等优点,就是因为这些优点,光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。

本文主要介绍了光纤陀螺仪的工作原理,特点,分类,应用及发展现状。

关键词:光纤传感器,陀螺仪,光纤陀螺仪,导航系统。

Abstract:As one of the fiber sensors,FOG has more advantages.It has a compact structure,high sensitivity,high reliability and so on.Just because of these advantages,FOG nearly replace all the traditional mechanical gyroscopes and become the critical component of modern navigational instruments.This paper introduces the working principle,the features,sorts,usage and statues of development of the FOG.Key words:fiber sensors,gyroscopes,FOG,navigation system.引言:现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。

传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。

自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。

光纤陀螺仪原理及其工程应用

光纤陀螺仪原理及其工程应用

光纤陀螺仪的工作原理
Sagnac效应
光纤陀螺的工作原理是基于萨格纳克(Sagnac)效 应。萨纳克效应是相对惯性空间转动的闭环光路中 所传播光的一种普遍的相关效应,即在同一闭合光 路中从同一光源发出的两束特征相等的光,以相反 的方向进行传播,最后汇合到同一探测点。
若绕垂直于闭合光路所在平面的轴线,相对惯 性空间存在着转动角速度,则正、反方向传播的光 束走过的光程不同,就产生光程差,其光程差与旋 转的角速度成正比。因而只要知道了光程差及与之 相应的相位差的信息,即可得到旋转角速度。
总体而言 ,我国在光纤陀螺关键技术及实用化上与 国外先进水平相比仍有较大差距。光纤陀螺技术将 成为 21世纪惯性技术重点发展方向 ,必将在我国获 得更大发展 ,在军民两用领域得到更广泛应用。
光纤陀螺仪的工程应用
战术导弹 航天器姿态 卫星定位 精密航天器
制导
调整
应用
1.战略导弹系统和潜艇导航应用;2.卫星定向和跟踪;3.战术武器制导与控制系统;4.各种 运载火箭应用;5.姿态/航向基准系统; 6.舰船、导弹和军民用飞机的惯性导航;7.陆地导 航系统(+GPS);8.天体观测望远镜的稳定和调向;9.汽车导航仪、天线/摄像机的稳定、石 油钻井定向、机器人控制、各种极限作业的控制置等工业和民用领域。
光纤陀螺仪的工作原理
设光纤圈直径为D;L为光纤敏感环的光纤总长度, 则:
式中:
被s称为比例因子,它表征光纤陀螺灵
敏度的大小。所
以通过检测相位差 ,就可以确定旋转角速度力 , 这就Sagnac
效应。再通过角速度的时间积分即可确定旋转体的 角位置或方位角。
光纤陀螺仪的分类
01 干涉型光纤陀螺仪(I—FOG) 02 谐振式光纤陀螺仪(R-FOG) 03 受激布里渊散射光纤陀螺仪(B-FOG)

陀螺罗经

陀螺罗经

20世纪70年代,伴随着光纤通信技术的发展,光纤传感技术也迅速发展起来。

该技术是以光波为载体,光纤为媒质,感应和传输外界被测量信号的新型传感技术,以独特的优良性能赢得极大的重视,并在各个领域中广泛应用。

光纤陀螺技术是光纤传感技术的一个特例,是利用光学传输特性而非转动部件来感应角速率和角偏差的惯性传感技术。

1 光纤陀螺的结构按照元器件类型,光纤陀螺分为分立元件型、集成光学型和全光纤型。

由于分立元件型光纤陀螺存在体积较大、可靠性较差、误差较大等缺点,现在世界各国都已停止发展。

集成光学型光纤陀螺将主要光学元件如耦合器、偏振器、调制器都集成在一块芯片上,将光纤线圈、光源、检测器接在芯片适当的位置,就构成了实用的集成光学型光纤陀螺。

从光纤陀螺的发展方向来看,集成光学型光纤陀螺是最有发展前途的光纤陀螺形式。

全光纤陀螺是将主要的光学元件都加工在一条保偏光纤上,从而可以避免因元器件连接造成的误差。

目前,全光纤陀螺技术比较成熟,其性能在三种中最好,适合在现阶段研制实用的商品光纤陀螺。

根据干涉型光纤陀螺的信号检测方式的不同,可以分为开环式和闭环式两大类。

开环式光纤陀螺直接检测干涉条纹的相移,因而动态范围较窄,检测精度较低。

闭环式系统采取相位补偿的方法,实时抵消萨格奈克相移,使陀螺始终工作在零相移状态,通过检测补偿相位移来测量角速度,其动态范围大,检测精度高。

此外,闭环式光纤陀螺对环境尤其是对振动不敏感,是研制高精度光纤陀螺仪的理想形式。

开环式全光纤陀螺是中低精度、低成本光纤陀螺中比较流行的结构。

目前,在中高精度光纤陀螺仪领域,最为流行的设计结构为全数字闭环式光纤陀螺仪。

光纤陀螺示意图2 光纤陀螺的特点光纤陀螺的主要特点是:①无运动部件,仪器牢固稳定,耐冲击且对加速度不敏感;②结构简单,零部件少,价格低廉;③启动时间短(原理上可瞬间启动);④检测灵敏度和分辨率极高;⑤可直接用数字输出并与计算机接口联网;⑥动态范围极宽;⑦寿命长,信号稳定可靠;⑧易于采用集成光路技术;⑨克服了因激光陀螺闭锁现象带来的负效应;⑩可与环形激光陀螺一起集成捷联式惯性系统传感器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

围大,检测精度高 。此外 ,闭环式光纤陀螺对环境
尤其 是对 振 动不敏 感 ,是研 制高精 度光纤 陀螺 仪 的 理 想形式 。开 环式 全光纤 陀 螺是 中低精度 、低 成本 光纤 陀螺 中 比较流 行 的结构 。 目前 ,在 中高精 度光
作 者简 介 :高 音 ( 9 3一), ,副 教 授 。 E—m i:goi@ du e ue 16 男 al ayn l . d. n f
式中: A是光路平面的面积 ;A是工作波长 ;c为
光速 ; 为垂 直于 光路所 在平 面 的转动 角速 度 。可 见 ,当波导 几何参 数 和工作 波长 确定 后 ,相位 差 的 大小 仅与 系统旋 转 的速度有 关 ,这就 是用 光纤 陀螺
收 稿 日期 : 0 9— 4— 7 2 0 0 0
提 出 了减 小 误 差 的 措 施 。
关 键词 : 光纤陀螺;基本原理;精度因素;S G A 效应 A NC
中图分 类号 :U 6.5 66 11
文献 标志 码 :A
2 0世 纪 7 年代 ,伴 随着 光 纤 通 信 技 术 的 发 0
展 ,光 纤传 感技术 也迅 速发展 起来 。该 技术 是 以光
△ :8 r C ×A A X力 XN,  ̄ / /
根据 干涉 型 光纤 陀螺 的信 号 检测 方 式 的不 同 ,
可 以分为 开环 式 和闭环式 两 大类 。开环式 光纤 陀螺
直接 检测 干涉 条纹 的相 移 ,因而动 态范 围较 窄 ,检 测精 度较 低 。闭环 式 系统 采 取相位 补偿 的方 法 ,实 时抵 消 萨格奈 克相 移 ,使 陀 螺始终 工作在 零相 移状 态 ,通过 检测 补偿 相位移 来 测量角 速度 ,其 动态范
转动动作 ,则正反两束光所传播 的光程将不同,于 是 产生 光 程 差 ,这 就是 萨 格 奈 克 相 移 。采 用 多 匝 ( Ⅳ匝)的光纤光路可以增强萨格奈克效应 ,加大 萨格 奈 克相 移 ,并 使 光纤 陀 螺 的光 路 尺 寸 大 大 减
小 。萨格奈 克相 移 的数学表 达式 如下 :
线 圈 、光 源 、检测 器接 在芯 片适 当的位置 ,就 构成
1 光 纤 陀 螺 的 工 作原 理 、 结构 及 特 点
1 1 光 纤陀螺 的工 作原理 .
了实用 的集成 光学 型光纤 陀 螺 。从 光纤 陀螺 的发展 方 向来看 ,集 成光 学型光 纤 陀螺是 最有发 展前 途 的 光纤 陀螺 形式 。全 光纤 陀螺是 将 主要 的光 学元 件都 加工 在一 条保 偏光 纤上 ,从 而可 以避免 因元器 件连 接造 成 的误 差 。 目前 ,全 光纤 陀螺 技术 比较 成 熟 , 其性 能在 三种 中最 好 ,适 合在 现 阶段研制 实用 的商
品光 纤 陀螺 。
光纤陀螺是基于萨格奈克效应 的新型光学陀 螺 … ,其工 作原 理 类 似 于 环 形 激 光 陀螺 。萨 格 奈
克 效应是 一种 与媒质 无关 的纯 空 间延 时 ,从 同一光
源发出的光分束成两束相同特征 的光在同一闭合光
路 中 以相 反 的方 向传 播 ,最 后 汇 聚 到 原 来 的 分 束 点 。但如 果 闭合 光路 所在平 面相 对 于 陨性 空 间存在
检测转 动角 速度 的工 作原理 。 目前 ,光 纤陀 螺 的结
构如 图 1 示 。 所 1 2 光 纤 陀螺的 结构 .
波为载体 ,光纤为媒质 ,感应和传输外界被测量信 号的新型传感技术 ,以独特的优 良性能赢得极大的 重 视 ,并 在 各个领域 中广 泛应 用 。光纤 陀螺技 术是 光纤传感技术 的一个特例 ,是利用光学传输特性而 非 转动 部件 来 感 应 角 速 率 和 角偏 差 的惯 性 传 感 技
18 6
光源 分束器 滤渡器 分柬器
大 连
水 产 学 院
学 报
第2 5卷
2 2 其 它影响 因素 .
f 厂

22 1 温度瞬 态 ..
理论 上 ,环 形 干涉 仪 中的两 个
光纤线
反 向传播光路是等长的,但仅在系统不随时间变化 时才严格成立。实验证明,相位误差以及旋转速率 测量值的漂移与温度的时间导数成正 比,这是十分
第 2 卷第 2 5 期
20 10年 4 月
大 连
水 产
学 院 学 报
Vo . 5 No 2 12 .
A r.20 10 p 来自J OURN AL AN F S RI S UNI RST AL OF D I IHE E VE I Y

综述 ・
文 编 10 9 7 0 ) —1 —5 章 号:0—9 ( 1 0 0 7 0 0 5202 6
光 纤 陀 螺 罗 经 及 其 发 展 和 应 用
高音
( 大连水产学院 海洋工程学院,辽宁 大连 16 2 ) 10 3
摘要 : 介绍了光纤陀螺罗经的基本原理和构造,对其优缺点做了阐述 ,描述了光纤陀螺罗经的发展过程并
对未来发展及应用前景进行 了展望 ;同时 ,分析了光纤罗经 的主要误差 源及影 响光 纤罗经的精度 因素 ,并
术。
按 照元 器件 类 型 ,光纤 陀螺 分 为 分立 元 件 型 、
集 成光学 型 和全光 纤 型 。
由于分立 元件 型光 纤陀 螺存在 体积较 大 、可靠 性 较差 、误 差较大 等缺 点 ,现在世 界各 国都 已停止 发 展 。集 成 光学型 光纤 陀螺 将主要 光学元 件 如耦合 器 、偏振 器 、调制 器都集 成 在一块 芯片上 ,将 光纤
有 害 的 ,特别是在 预热期 间 。
图 1 光纤 陀螺的工作示意 图
Fi. Th r i g s e c ft e o t a b r g r g1 e wo k n k t h o p i lf e y o h c i
222 振动 振动也会对测量产生影响,必须采 .. 用 适 当的封装 以确 保线 圈 良好 的坚 固性 ,内部机 械 设计必须十分合理 ,防止产生共振现象。 223 偏振 现在应用 比较多的单模光纤是一种 ..
相关文档
最新文档