解析几何(练习一)(学生版)
空间解析几何习题答案
空间解析几何习题答案空间解析几何习题答案在学习数学的过程中,解析几何是一个重要的分支。
它通过坐标系和代数方法来研究几何图形的性质和变换。
而空间解析几何则是解析几何的一个延伸,它研究的是三维空间中的几何图形。
在空间解析几何的学习过程中,我们经常会遇到一些习题,下面我将给出一些空间解析几何习题的解答。
习题一:已知直线L1过点A(1, 2, 3)和点B(4, 5, 6),直线L2过点C(7, 8, 9)且与直线L1垂直,求直线L2的方程。
解答:首先,我们可以求出直线L1的方向向量。
直线L1的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。
因为直线L2与直线L1垂直,所以直线L2的方向向量与直线L1的方向向量垂直,即两个向量的点积为0。
设直线L2的方向向量为(a, b, c),则有3a + 3b + 3c = 0。
再代入直线L2过点C(7, 8, 9),得到7a + 8b + 9c = 0。
所以直线L2的方程为7x + 8y + 9z = d,其中d为常数。
习题二:已知点A(1, 2, 3)和点B(4, 5, 6),求直线AB的方程。
解答:直线AB的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。
设直线AB的方程为x = 1 + 3t,y = 2 + 3t,z = 3 + 3t,其中t为参数。
习题三:已知平面P过点A(1, 2, 3)、点B(4, 5, 6)和点C(7, 8, 9),求平面P的方程。
解答:平面P的法向量可以通过两个方向向量的叉积来得到。
设向量AB为(4-1, 5-2, 6-3),即(3, 3, 3),向量AC为(7-1, 8-2, 9-3),即(6, 6, 6)。
则平面P的法向量为(3, 3, 3) × (6, 6, 6),即(0, 0, 0)。
因为法向量为零向量,所以平面P的方程为0x + 0y + 0z = d,即0 = d,其中d为常数。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
解析几何练习1(含答案)
解析⼏何练习1(含答案)解析⼏何练习题(1)1.椭圆221132x y m m +=--的焦距为6,则m = . 2.⽅程22113x y m m+=--表⽰焦点在y 轴上的椭圆,则m 的取值范围是. 3.若F 1、F 2是2214x y +=的两个焦点,过F 1作直线与椭圆交于A 、B 两点,则△ABF 2的周长为.4.已知椭圆的中⼼在坐标原点,焦点在x 轴上,椭圆上点P 到两焦点的距离之和是12,则椭圆的标准⽅程是.5.如果椭圆的对称轴为坐标轴,短轴的⼀个端点与两焦点组成⼀正三⾓形,焦点在x 轴上,且a c - =3, 那么椭圆的⽅程是.6.已知点M 为椭圆15922=+y x 上⼀动点,F 为椭圆的右焦点,定点)2,1(-A ,则||23||MF MA +的最⼩值为_________ 7.直线134=+y x 椭圆191622=+y x 相交于A ,B 两点,该椭圆上点P ,使得PAB ?⾯积等于3,这样的点P 共有个.8.已知P 是椭圆63222=+y x 上的点,则点P 到椭圆的⼀个焦点的最短距离为_______.9.椭圆5522=+ky x 的⼀个焦点是)2,0(,那么=k 10.已知双曲线22215x y a -=的右焦点为(3,0),,则该双曲线的离⼼率等于 .11.双曲线22221x y a b-=的两条渐进线互相垂直,则该双曲线的离⼼率为 12.在平⾯直⾓坐标系xoy 中,若双曲线⽅程为22213x y m m -=+的焦距为6,则实数m=13.双曲线1422=-y x 的顶点到其渐近线的距离等于_________.14.已知双曲线22221(0,0)x y a b a b-=>>的渐近线⽅程为y ,则该双曲线的离⼼率为.15.已知双曲线22221(0,0)x y a b a b-=>>的渐近线⽅程为y ,则该双曲线的离⼼率为.16.设P 是双曲线22219x y a -=上⼀点,双曲线的⼀条渐近线⽅程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF 的值为.17.双曲线221416x y -=的渐近线⽅程为. 18.以双曲线2213y x -=的左焦点为圆⼼,实轴长为半径的圆的标准⽅程为___________. 19.抛物线28y x =的焦点坐标为 .20.点P 是抛物线24y x =上⼀动点,则点P 到y 轴距离与点P 到点A (2,3)距离之和的最⼩值等于 .21.若点A 的坐标为(3,2),F 为抛物线22y x =的焦点,点P 是抛物线上的⼀动点,则PA PF +取得最⼩值时,点P 的坐标是。
2024年数学七年级上册解析几何基础练习题(含答案)
2024年数学七年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点的坐标是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 下列选项中,点P(3, 5)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知点A(4, 0)和点B在x轴上,且AB=6,则点B的坐标可能是()A. (1, 0)B. (2, 0)C. (10, 0)D. (8, 0)4. 在平面直角坐标系中,点P(a, b)关于原点对称的点的坐标是()A. (a, b)B. (a, b)C. (a, b)D. (a, b)5. 已知点A(2, 3)和点B(2, 3),则线段AB的长度是()A. 4B. 5C. 6D. 86. 下列各点中,到原点距离相等的是()A. A(3, 4)和B(3, 4)B. A(3, 4)和B(3, 4)C. A(3, 4)和B(4, 3)D. A(3, 4)和B(4, 3)7. 在平面直角坐标系中,点P(3, 4)关于y轴的对称点的坐标是()A. (3, 4)B. (3, 4)C. (3, 4)D. (3, 4)8. 已知点A(3, 2)和点B(3, 2),则线段AB的长度是()A. 6B. 8C. 9D. 109. 在平面直角坐标系中,点P(0, 5)关于原点对称的点的坐标是()A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)10. 下列各点中,到原点距离最短的是()A. A(3, 4)B. B(5, 5)C. C(6, 8)D. D(7, 24)二、判断题:1. 在平面直角坐标系中,第一象限内的点横纵坐标都是正数。
()2. 点(3, 0)和点(3, 0)关于原点对称。
()3. 在平面直角坐标系中,到原点距离相等的点一定在同一个圆上。
()4. 点(0, 4)关于x轴的对称点是(0, 4)。
初中理科数学解析几何练习题
初中理科数学解析几何练习题
解析几何是数学中的一个重要分支,它将代数和几何相结合,用代数的方法研究几何问题。
初中阶段的学生通过研究解析几何可以培养抽象思维能力和几何直观性,同时提升数学解题能力。
以下是一些初中理科数学解析几何的练题,供学生们进行训练和巩固知识。
题目一:点的坐标
1. 已知平面直角坐标系中的点A的坐标为(2, 3),点B的坐标为(-1, 4),求线段AB的中点坐标。
题目二:距离公式
2. 已知平面上点A的坐标为(3, 2),点B的坐标为(-5, -1),求线段AB的长度。
题目三:直线方程
3. 已知直线L过点A(4, 1)和点B(-2, 3),求直线L的方程。
题目四:线段垂直平分
4. 已知平面上线段AB的中点坐标为(1, 2),直线L的方程为2x - 3y = 7,判断线段AB是否被直线L垂直平分。
题目五:两线段相交
5. 已知平面上线段AB的端点坐标为A(1, -2)和B(4, 3),线段CD的端点坐标为C(1, 2)和D(3, 0),判断线段AB和线段CD是否相交。
题目六:求斜率
6. 已知平面上直线L的方程为2x + 3y = 6,求直线L的斜率。
以上是初中理科数学解析几何的练习题,希望能够帮助学生们更好地理解和掌握解析几何的知识。
通过不断地练习和思考,相信你们可以在解析几何方面取得更好的成绩!加油!。
2024年高考真题分类专项(解析几何)(学生版)
2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。
解析几何例题
解析几何例题解析几何是数学中的一个重要分支,它研究的是几何图形在坐标平面上的性质和变换规律。
通过解析几何的方法,我们可以更加直观地理解和推导几何图形的性质。
下面我们来分析一些典型的解析几何例题,以便更好地掌握这一知识点。
例题一:直线的方程已知直线L过点A(1,2)和点B(3,4),求直线L的方程。
解析:设直线L的方程为y=ax+b,其中a为斜率,b为截距。
由于直线L 过点A和点B,代入相应的点坐标得到两个方程:2=a+b (1)4=3a+b (2)解这个方程组,可以求得a=1/2,b=3/2。
所以直线L的方程为y=x/2+3/2。
例题二:直线的垂直平分线已知直线L的方程为y=2x+1,求直线L的垂直平分线的方程。
解析:直线L的斜率为2,垂直平分线的斜率为-1/2(斜率互为倒数且符号相反),设垂直平分线的方程为y=ax+b。
由于垂直平分线过直线L的中点M,求中点M的坐标。
直线L上任意两点的横坐标和纵坐标分别求平均,得到中点M的坐标为:x=(1+3)/2=2,y=(2+4)/2=3。
代入直线L的方程,得到3=2*2+1=5,所以点M的坐标为(2,3)。
垂直平分线通过点M,代入点坐标得到方程:3=a*2+b,所以b=1-4a。
垂直平分线的方程为y=-1/2*x+1-2a。
例题三:圆的方程已知圆C的圆心为点O(2,3),半径为r=4,求圆C的方程。
解析:圆C上任意一点P(x,y)到圆心O的距离等于半径r,可以得到方程:sqrt((x-2)^2+(y-3)^2)=4对上式进行平方处理得到:(x-2)^2+(y-3)^2=16所以圆C的方程为(x-2)^2+(y-3)^2=16。
例题四:两条直线的交点已知直线L1的方程为y=2x+1,直线L2的方程为y-3=3(x-2),求直线L1和L2的交点坐标。
解析:将直线L2的方程变形为y=3x-3+3=3x,得到y=3x。
将L1的方程和L2的方程联立,解这个方程组即可求出交点的坐标。
解析几何小题基础练-高考数学重点专题冲刺演练(学生版)
解析几何小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·福建莆田·统考二模)已知F 为抛物线C :y 2=4x 的焦点,A 为C 上的一点,AF 中点的横坐标为2,则|AF |=()A.3B.4C.5D.62.(2023·广东惠州·统考模拟预测)“m >2”是“方程x 22-m +y 2m +1=1表示双曲线”的( )条件A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(2023·浙江·统考一模)设直线y =2x 与抛物线y =x -3 2交于A ,B 两点,M 是线段AB 的中点,则点M 的横坐标是()A.3B.4C.5D.64.(2023·浙江·校联考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,若a -c =4,b =6,则C 的离心率为()A.512B.35C.513D.12135.(2023·江苏·统考一模)已知椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为F c ,0 ,点P ,Q 在直线x =a 2c 上,FP ⊥FQ ,O 为坐标原点,若OP ⋅OQ =2OF 2,则该椭圆的离心率为()A.23B.63C.22D.326.(2023·广东肇庆·统考二模)已知F 为双曲线C :x 24-y 25=1的左焦点,P 为其右支上一点,点A 0,-6 ,则△APF 周长的最小值为()A.4+62B.4+65C.6+62D.6+657.(2023·广东佛山·统考一模)已知双曲线C 的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线4x +3y -20=0与C 的一条渐近线垂直,则C 的离心率为()A.54B.43C.53D.748.(2023·江苏常州·校考一模)设点A -2,3 ,B 0,a ,若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是()A.13,32B.-∞,13 ∪32+∞ C.12,1D.-∞,12 ∪1+∞二、多选题9.(2023·江苏南通·统考模拟预测)已知双曲线x 2-y 23=1的右顶点为A ,右焦点为F ,双曲线上一点P 满足PA =2,则PF 的长度可能为()A.2B.3C.4D.510.(2023·山东枣庄·统考二模)已知曲线C 1:5x 2+y 2=5,C 2:x 2-4y 2=4,则()A.C 1的长轴长为5B.C 2的渐近线方程为x ±2y =0C.C 1与C 2的离心率互为倒数D.C 1与C 2的焦点相同11.(2023·湖北武汉·统考模拟预测)若椭圆x 2m 2+2+y 2m2=1(m >0)的某两个顶点间的距离为4,则m 的可能取值有()A.5B.7C.2D.212.(2023·湖北·校联考模拟预测)已知F 1,F 2是椭圆E :y 24+x 23=1的两个焦点,点P 在椭圆E 上,则()A.点F 1,F 2在x 轴上B.椭圆E 的长轴长为4C.椭圆E 的离心率为12D.使得△F 1PF 2为直角三角形的点P 恰有6个13.(2023·湖南长沙·统考一模)已知双曲线的方程为y 264-x 216=1,则()A.渐近线方程为y =±12xB.焦距为85C.离心率为52D.焦点到渐近线的距离为814.(2023·湖南·模拟预测)已知圆C 1:x -1 2+y -3 2=12与圆C 2:x +1 2+y -m 2=4,则下列说法正确的是()A.若圆C 2与x 轴相切,则m =±4B.直线kx -y -2k +1=0与圆C 1始终有两个交点C.若m =-3,则圆C 1与圆C 2相离D.若圆C 1与圆C 2存在公共弦,则公共弦所在的直线方程为4x +6-2m y +m 2+2=015.(2023·广东江门·统考一模)已知曲线C :x 2sin α+y 2cos α=10≤α<π ,则下列说法正确的是()A.若曲线C 表示两条平行线,则α=0B.若曲线C 表示双曲线,则π2<α<πC.若0<α<π2,则曲线C 表示椭圆 D.若0<α<π4,则曲线C 表示焦点在x 轴的椭圆16.(2023·浙江·校联考模拟预测)已知圆O 1:(x -1)2+y 2=4,圆O 2:(x -5)2+y 2=4m ,下列说法正确的是()A.若m =4,则圆O 1与圆O 2相交B.若m =4,则圆O 1与圆O 2外离C.若直线x -y =0与圆O 2相交,则m >258D.若直线x -y =0与圆O 1相交于M ,N 两点,则|MN |=142三、填空题17.(2023·山东青岛·统考一模)已知O 为坐标原点,在抛物线y 2=2px p >0 上存在两点E ,F ,使得△OEF 是边长为4的正三角形,则p =.18.(2023·浙江·统考一模)已知F 1,F 2分别是双曲线C :x 2a2-y 2=1a >0 的左右焦点,且C 上存在点P 使得PF 1 =4PF 2 ,则a 的取值范围是.19.(2023·浙江温州·统考二模)已知抛物线y 2=4x 和椭圆x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,且抛物线的焦点F 也是椭圆的焦点,若直线AB 过点F ,则椭圆的离心率是.20.(2023·江苏连云港·统考模拟预测)直线y =23x 与双曲线x 2a2-y 28=1(a >0)相交于A ,B 两点,且A ,B 两点的横坐标之积为-9,则离心率e =.21.(2023·江苏泰州·统考一模)已知圆O :x 2+y 2=r 2(r >0),设直线x +3y -3=0与两坐标轴的交点分别为A ,B ,若圆O 上有且只有一个点P 满足AP =BP ,则r 的值为.22.(2023·江苏·统考一模)已知圆C :x 2-2x +y 2-3=0,过点T 2,0 的直线l 交圆C 于A ,B 两点,点P 在圆C 上,若CP ∥AB ,PA ⋅PB =12,则AB =23.(2023·江苏·统考一模)已知抛物线y 2=4x 的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为.24.(2023·山东潍坊·统考模拟预测)已知圆M 满足与直线l :x -6=0和圆N :x -1 2+y -2 2=9都相切,且直线MN 与l 垂直,请写出一个符合条件的圆M 的标准方程.25.(2023·湖北·校联考模拟预测)过抛物线y 2=2px (p >0)焦点F 的射线与抛物线交于点A ,与准线交于点B ,若|AF |=2,|BF |=6,则p 的值为.26.(2023·湖北武汉·统考模拟预测)若两条直线l 1:y =3x +m ,l 2:y =3x +n 与圆x 2+y 2+3x +y +k =0的四个交点能构成矩形,则m +n =.27.(2023·广东茂名·统考一模)过四点-1,1 、1,-1 、2,2 、3,1 中的三点的一个圆的方程为(写出一个即可).28.(2023·广东·统考一模)在平面直角坐标系中,等边三角形ABC 的边AB 所在直线斜率为23,则边AC 所在直线斜率的一个可能值为.29.(2023·广东·统考一模)已知动圆N 经过点A -6,0 及原点O ,点P 是圆N 与圆M :x 2+(y -4)2=4的一个公共点,则当∠OPA最小时,圆N的半径为.30.(2023·浙江温州·统考模拟预测)已知F1,F2是椭圆C的两个焦点,点M在C上,且MF1的最大⋅MF2值是它的最小值的2倍,则椭圆的离心率为.。
解析几何经典练习题(含答案)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
解析几何向量积练习题
解析几何向量积练习题一、基础题1. 已知向量a = (2, 3),向量b = (4, 1),求向量a与向量b 的向量积。
2. 计算向量a = (1, 2, 3)与向量b = (2, 3, 1)的向量积。
3. 已知向量a = (3, 4, 5),向量b = (2, 1, 4),求向量a与向量b的向量积的模。
4. 已知向量a = (2, 1, 3),向量b = (4, 5, 2),求向量a与向量b的向量积的方向。
5. 判断向量a = (1, 2, 3)与向量b = (2, 1, 4)是否垂直。
二、进阶题6. 已知向量a = (x, y),向量b = (y, x),求向量a与向量b 的向量积。
7. 设向量a = (2, 3, 4),向量b = (4, 3, 2),求向量a与向量b的向量积,并判断其与向量a是否垂直。
8. 已知向量a = (3, 4, 5),向量b = (2, 1, 4),求向量a与向量b的向量积在x轴、y轴和z轴上的分量。
9. 设向量a = (cosα, sinα),向量b = (sinα, cosα),求向量a与向量b的向量积的模。
10. 已知向量a = (2t, t^2),向量b = (t, 3t^2),求向量a与向量b的向量积,并讨论t为何值时,向量积为零。
三、综合题11. 在空间直角坐标系中,已知点A(1, 2, 3),点B(4, 1, 2),点C(3, 5, 2),求向量AB与向量AC的向量积。
12. 已知向量a = (2, 3, 4),向量b = (4, 3, 2),向量c = (1, 2, 3),求向量a、向量b和向量c的混合积。
13. 设向量a = (x, y, z),向量b = (y, z, x),向量c = (z, x, y),求向量a、向量b和向量c的混合积。
14. 已知向量a = (2, 1, 3),向量b = (4, 5, 2),求向量a与向量b的向量积,并求该向量积与向量a的夹角。
解析几何专题练习(带答案)
解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。
高中解析几何专题练习1-圆1-22
高中解析几何专题练习1-圆1-221. 已知圆的方程为226490x y x y ++-+=,则圆心坐标为 ,圆的半径为 .【答案】(3,2)-;22. 求圆心在直线23y x =+上,且过点(12)A ,,(2,3)B -的圆的方程 .【答案】()()22115x y ++-=3. 已知圆22:230()C x y x ay a +++-=∈R 上任意一点关于直线:20l x y -+=的对称点都在圆C 上,____a =.【答案】2-.4. 已知一圆的圆心为点(23)-,,一条直径的两个端点分别在x 轴和y 轴上,求此圆的方程______.【答案】22(2)(3)13x y -++=5. 圆22220x y x y +-+=的周长是( )A .B .2π CD .4π 【答案】A .6. 如果圆的方程为22220x y kx y k ++++=,那么当圆面积最大时,圆心坐标为( ).A .(11)-,B .(11)-,C .(10)-,D .(01)-,【答案】D ;7. 点(2,1a a -)在圆22240x y y +--=的内部,则a 的取值范围是 . 【答案】115a -<<8. 已知ABC ∆三边所在直线方程:60AB x -=,:280BC x y --=,:20CA x y +=,求此三角形外接圆的方程是_______. 【答案】222143002x y x y +-++=9. 以点(5,4)A -为圆心,且与x 轴相切的圆的标准方程为( ) A .22(5)(4)16x y ++-= B .22(5)(4)16x y -++=C .22(5)(4)25x y ++-=D .22(5)(4)25x y -++=【答案】A ;10. 若a ∈R ,则动圆22224510x y ax ay a +--+-=的圆心满足的方程为( )A .221x y +=B .222x y +=C .20y x -=D .20x y -=【答案】C ;11. 设0k >,则动圆22()(2)9x k y k +++=的圆心的轨迹恒过点( )A .(1,2)B .(1,2)--C .(2,1)D .(2,1)--【答案】B ;12. 方程224250x y mx y m ++-+=表示圆的充要条件是( )A .114m << B .1m >C .14m <D .14m <或1m >【答案】D ;13. 求以直线34120x y -+=夹在两坐标轴间的线段为直径的圆的方程 【答案】22325(2)()24x y ++-=14. 半径为1的圆分别与y 轴的正半轴和射线(0)y x x =≥相切,求这个圆的方程.【答案】22(1)(1x y -+-=.15. 已知圆C 的圆心是直线1,1x y t =⎧⎨=+⎩(t 为参数)与x 轴的交点,且圆C 与直线30x y ++=相切,则圆C 的方程为【答案】22(1)2x y ++=;16. 以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A .2220x y x ++=B .220x y x ++=C .220x y x +-=D .2220x y x +-=【答案】D ;17. 若圆心在x O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是 .【答案】()2222x y ++=18. 圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 . 【答案】()()22235x y -++=19. 求过点(5,2)A ,(1,6)B ,且圆心在直线:330l x y --=上的圆的方程__________. 【答案】22(2)(3)10x y -+-=20. 若圆C 经过点(0,4)A ,(4,6)B ,且圆心C 在直线220x y --=上.(1)求圆的方程;(2)若直线34y x b =-+和圆C 相切,求直线的方程.【答案】(1)直线AB 的斜率641402k -==- ∴AB 的垂直平分线m 的斜率为2-∴AB 中点的坐标为0422x +==,4652y +== ∴直线m 的方程为52(2)y x -=--,即290x y +-=又圆心在直线l 上,∴圆心是直线m 与直线l 的交点,解方程组290220x y x y +-=⎧⎨--=⎩,得41x y =⎧⎨=⎩∴圆心坐标为(4,1)C,又半径为5r CA =∴所求圆的方程是22(4)(1)25x y -+-=(2)∴直线304x y b +-=和圆C 相切,∴圆心到直线的距离为半径长,且圆心为(4,1),半径为5∴5r =,解得: 414b =或94- ∴直线的方程为34410x y +-=或3490x y ++=21. a 为何值时,直线0l y a +-=与圆22:4O x y +=:(1) 相交;(2)相切;(3)相离.【解析】把直线l0y a +-=代入圆O 的方程224x y +=并整理,得224240x a -+-=.这个方程的判别式2464a ∆=-+.依次令0∆>,0∆=,0∆<,得44a -<<;4a =±;4a >,或4a <-.(1) 当44a -<<时,直线与圆相交.(2) 当4a =±时,直线与圆相切.(3)当4a >或4a <-时,直线与圆相离.22. 直线10x y -+=与圆()2211x y ++=的位置关系是( ) A .相切 B .直线过圆心 C .直线不过圆心但与圆相交 D .相离【答案】B ;。
专题:解析几何中的动点轨迹问题 - 学生版
专题:解析几何中的动点轨迹问题Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。
例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
过程是“建系设点,列出几何等式,坐标代换,化简整理”,主要用于动点具有的几何条件比较明显时。
例1 已知动点M 到定点A (1,0)与到定直线L :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?例2 已知直角坐标平面上点Q (2,0)和圆C 的切线长与MQ的比等于常数()0>λλ,求动点M 的轨迹方程,说明它表示什么曲线.二、定义法圆锥曲线是解析几何中研究曲线和方程的典型问题,当动点符合圆锥曲线定义时,可直接写出其轨迹方程。
新高考卷解析几何热门考题汇编(学生版)
新高考卷解析几何热门考题汇编选填部分一、基本原理1.圆中与距离最值有关的常见的结论结论1. 圆外一点A 到圆上距离最近为AO -r ,最远为AO +r ;结论2. 过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3. 直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d +r ,最近为d -r ;从圆外任一点P (x 0,y 0)向圆引两条切线,圆心C ,两切点A ,B ,我们把线段PA ,PB 的长度叫做切线长,设圆的半径为r ,则有:结论4.切线长的计算:PA =PB =PC 2−r 2,当半径给定,切线长最小等价于PC 最小.结论5. 过圆外一点P 向圆O 引两条切线,切点记为A ,B ,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.结论6. 圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7. 圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8. 圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.2.椭圆三定义1.椭圆的第二定义:a 2−cx =a (x −c )2+y 2⇒(x −c )2+y 2a 2c−x=ca①. ①式表明椭圆上的点P 到右焦点F 2的距离与到直线x =a 2c 的距离之比是离心率e .2.角度形式焦半径:上加下减.QF 2 =b 2a -c ⋅cos θ,PF 2 =b 2a +c ⋅cos θ,AB =2ab 2a 2-c 2⋅cos 2θ3.第三定义假设A ,B 是椭圆上任意两点且关于坐标原点中心对称,那么椭圆上任意点P (不与A ,B 重合)到A ,B 点的斜率之积为一个定值.证明:设A ,B 的坐标分别为(x 0,y 0),(−x 0,−y 0),P (x ,y ),则由于三点均在椭圆上,故满足:x 20a 2+y 20b 2=1,x 2a 2+y 2b 2=1,即x 20a 2+y 20b 2=x 2a 2+y 2b 2⇒y −y 0x −x 0⋅y +y 0x +x 0=−b 2a2.3.椭圆焦点三角形焦点三角形主要结论:椭圆定义可知:ΔPF 1F 2中,(1). |PF 1|+|PF 2|=2a ,|F 1F 2|=2c .(2). 焦点三角形的周长为L =2a +2c .(3).|PF 1||PF 2|=2b 21+cos ∠F 1PF 2.(4). 焦点三角形的面积为:S =12|PF 1||PF 2|sin ∠F 1PF 2=b 2tan ∠F 1PF 22.①设F 1、F 2是椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点,P 是椭圆C 上的一个动点,则当P 为短轴端点时,∠F 1PF 2最大.②.S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;(5). 假设焦点ΔPF 1F 2的内切圆半径为r ,则S =(a +c )r .(6).焦半径公式:设P (x 0,y 0)是椭圆上一点,那么|PF 1|=a +ex 0,|PF 2|=a −ex 0,进一步,有PF 1 •PF 2 =a 2-ex 2∈b 2,a 2推导:根据两点间距离公式:|PF 1|=(x 0+c )2+y 2,由于x 20a 2+y 20b2=1,(a >b >0)代入两点间距离公式可得|PF 1|=(x 0+c )2+b 21−x 20a2,整理化简即可得|PF 1|=a +ex 0. 同理可证得|PF 1|=a −ex 0.(7).设P (x 0,y 0)是椭圆上一点,那么PF 1 ⋅PF 2 =b 2−c 2+e 2x 20,由于x 0∈[0,a 2],故我们有PF 1 •PF 2 =b 2-c 2+e 2x 2∈b 2-c 2,b 2(8)若约定椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为左、右焦点;顶点P (x 0,y 0)在第一象限;∠PF 2F 1=α,∠PF 1F 2=β(α>β),∠F 1PF 2=γ,则对于椭圆,离心率e =2c 2a =ca =sin γsin α+sin β=sin (α+β)sin α+sin β4.双曲线焦点三角形1.如图,F 1、F 2是双曲线的焦点,设P 为双曲线上任意一点,记∠F 1PF 2=θ,则△PF 1F 2的面积S =b 2tan θ2.OF 1F 2Pxy .2.离心率e =2c 2a =ca =sin γsin α−sin β=sin (α+β)sin α−sin β.3.焦半径公式:如图,对于双曲线,PF 1 =ex 0+a ,PF 2 =ex 0−a ,对双曲线,其焦半径的范围为c −m ,+∞ .4.双曲线中,焦点三角形的内心I 的轨迹方程为x =a (−b <y <b ,y ≠).5.已知具有公共焦点F 1,F 2的椭圆与双曲线的离心率分别为e 1,e 2,P 是它们的一个交点,且∠F 1PF 2=2θ,则有sin θe 12+cos θe 22=1.6.如图,过焦点F 2的弦AB 的长为t ,则ΔABF 1的周长为4m +2t .5.双曲线的渐近线1.双曲线x 2a 2−y 2b 2=1中,右焦点为F 2,作F 2P 垂直于渐近线y =b a x ,垂足为P ,则点P 在双曲线的右准线上,且P 的坐标为a 2c ,abc,且OP =a ,F 2P =b ,F 2O =c .2.过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 且与渐近线y =ba x 垂直的直线分别交C 的两条渐近线于P 、Q 两点,则OF =c ,FQ =b ,OQ =a .(1)当1<e <2时,设∠FOQ =α,则tan α=ba,tan2α=2tan α1−tan 2α=2⋅b a 1−b a2=2aba 2−b 2,PQ =a ⋅tan2α=2a 2b a 2−b 2,PF =PQ −FQ =2a 2b a 2−b 2−b =bc 2a 2−b2,OP =a 2+2a 2b a 2−b 22=ac 2a 2−b 2.进一步,若QF =λFP(0<λ<1),则e 2=2λ+1(2)当e >2时,设M 是直线PQ 与y 轴的交点,∠MOQ =β,则tan β=a b,tan2β=2βtan 1-2βtan =2⋅a b 1-a b 2=2ab b 2-a 2,PQ =a ⋅tan2β=2a 2bb 2−a 2,OP =a 2+2a 2b b 2−a 22=ac 2b 2−a2,MQ =a tan β=a 2b ,PM=PQ -MQ =2a 2b b 2−a 2-a 2b =a 2c 2b b 2−a 2OM =a 2b 2+a 2=ac b ,MF =ac b 2+c 2=c 2b.进一步:若FP =λFQ λ>0,λ≠1 ,则e 2=2λλ−16.抛物线焦半径假设抛物线方程为y 2=2px .过抛物线焦点的直线l 与抛物线交于A ,B 两点,其坐标分别为A (x 1,y 1),B (x 2,y 2).性质1.|AF |=x A +p 2,|BF |=x B +p2,|AB |=x A +x B +p .性质2.抛物线y 2=2px 的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:x 1x 2=p 24,y 1y 2=−p 2.一般地,如果直线l 恒过定点M (m ,0)与抛物线y 2=2px (p >0)交于A ,B 两点,那么x A x B =m 2,y A y B =−2pm .于是,若OA ⊥OB ⇒AB 恒过定点(2p ,0).性质3.已知倾斜角为θ直线的l经过抛物线y2=2px的焦点F,且与抛物线交于A,B两点,则(1)|AF|=p1−cosθ,|BF|=P1+cosθ,1|FA|+1|FB|=2p.(2)|AB|=2psin2θ,SΔOAB=p22sinθ,|AB|=2p1+1k2.性质4.抛物线的通径(1).通径长为2p.(2).焦点弦中,通径最短.(3).通径越长,抛物线开口越大.性质5.已知直线l经过抛物线y2=2px的焦点F,且与抛物线交于A,B两点,若弦AB中点的坐标为(x0,y0),则|AB|=2x0+p 2.性质6.以焦点弦为直径的圆与准线相切.7.抛物线中的阿基米德三角形如图,假设抛物线方程为x2=2py(p>0),过抛物线准线y=−p2上一点P(x0,y0)向抛物线引两条切线,切点分别记为A,B,其坐标为(x1,y1),(x2,y2). 则以点P和两切点A,B围成的三角形PAB中,有如下的常见结论:结论1.直线AB过抛物线的焦点F.结论2.直线AB的方程为x0x=2p y0+y2=p(y0+y).结论3.过F的直线与抛物线交于A,B两点,以A,B分别为切点做两条切线,则这两条切线的交点P (x0,y0)的轨迹即为抛物线的准线.结论4.PF⊥AB.结论5.AP⊥PB.结论6.直线AB的中点为M,则PM平行于抛物线的对称轴.二.试题汇编1.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知⊙O 1:(x -2)2+(y -3)2=4,⊙O 1关于直线ax +2y +1=0对称的圆记为⊙O 2,点E ,F 分别为⊙O 1,⊙O 2上的动点,EF 长度的最小值为4,则a =( )A.-32或56B.-56或32C.-32或-56D.56或322.(福建省厦门市2023届高三下学期第二次质量检测)圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP ⋅AO的取值范围为( )A.-12,4B.0,2C.-12,2D.0,43.(广东省2023届高考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),点B 的坐标为0,b ,若C 上的任意一点P 都满足PB ≥b ,则C 的离心率取值范围是( )A.1,5+12B.5+12,+∞ C.1,2D.2,+∞4.(广东省佛山市2023届高三教学质量检测(一))已知双曲线C 的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线4x +3y -20=0与C 的一条渐近线垂直,则C 的离心率为( )A.54B.43C.53D.745.(广东省广州市2023届高三综合测试(一))已知抛物线C 的顶点为坐标原点O ,焦点F 任x 铀上,过点2,0 的且线交C 于P ,Q 两点,且OP ⊥OQ ,线段PQ 的中点为M ,则直线MF 的斜率的取大值为( )A.66B.12C.22D.16.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB=3F 2A ,BF 2平分∠F 1BC ,则双曲线Γ的离心率为( )A.7B.5C.3D.27.(湖北省武汉市2023届高三下学期二月调研)设A ,B 是半径为3的球体O 表面上两定点,且∠AOB =60°,球体O 表面上动点P 满足PA =2PB ,则点P 的轨迹长度为( )A.121111π B.4155π C.6147π D.121313π8.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为( )A.54B.85C.52D.21059.(江苏省南京市、盐城市2023届高三下学期一模)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB ⊥x 轴,CD ⊥y 轴.若PA :PB :PC :PD =1:3:1:5,则椭圆E 的离心率为( )A.55B.105C.255D.210510.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))已知椭圆x 2a 2+y 2b 2=1a >b >0的右焦点为F c ,0 ,点P ,Q 在直线x =a 2c 上,FP ⊥FQ ,O 为坐标原点,若OP ⋅OQ =2OF 2,则该椭圆的离心率为( )A.23B.63C.22D.3211.(2023年湖北省八市高三(3月)联考)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,OD =3,E 为线段的DF 1中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB成立,且△BF 1F 2内切圆的圆心在直线x =2上.则双曲线的离心率是()A.43B.3C.2D.3212.(山东省青岛市2023届高三下学期第一次适应性检测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,直线y =3x 与C 的左、右两支分别交于A ,B 两点,若四边形AF 1BF 2为矩形,则C 的离心率为( )A.3+12B.3C.3+1D.5+113.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知一个抛物线形拱桥在一次暴雨前后的水位之差是1.5m ,暴雨后的水面宽为2m ,暴雨来临之前的水面宽为4m ,暴雨后的水面离桥拱顶的距离为( )A.0.5mB.1mC.1.5mD.2m多选14.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知曲线C :x 24+y 22m 2-4=1( )A.若m >2,则C 是椭圆B.若-2<m <2,则C 是双曲线C.当C 是椭圆时,若m 越大,则C 越接近于圆D.当C 是双曲线时,若m 越小,则C 的张口越大15.(广东省2023届高考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是( )A.若BF 为△ACF 的中线,则AF =2BF B.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF16.(广东省佛山市2023届高三教学质量检测(一))设单位圆O 与x 轴的左、右交点分别为A 、B ,直线l :x cos θ-y sin θ+1=0(其中0<θ<π)分别与直线x +1=0、x -1=0交于C 、D 两点,则( )A.θ=2π3时,l 的倾斜角为π6B.∀θ∈0,π ,点A 、B 到l 的距离之和为定值C.∃θ∈0,π ,使l 与圆O 无公共点D.∀θ∈0,π ,恒有OC ⊥OD17.(广东省广州市2023届高三综合测试(一))平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的,已知在平面直角坐标系xOy 中,M (-2,0),N (2,0),动点P 满足|PM |⋅|PN |=5,则下列结论正确的是( )A.点P 的横坐标的取值范围是-5,5 B.OP 的取值范围是1,3C.△PMN 面积的最大值为52D.PM +PN 的取值范围是25,518.(广东省深圳市2023届高三第一次调研)已知抛物线C :y 2=2x 的准线为l ,直线x =my +n 与C 相交于A 、B 两点,M 为AB 的中点,则( )A.当n =12时,以AB 为直径的圆与l 相交B.当n =2时,以AB 为直径的圆经过原点OC.当AB =4时,点M 到l 的距离的最小值为2D.当AB =1时,点M 到l 的距离无最小值19.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知直线l :y =k x +2 交y 轴于点P ,圆M :x -2 2+y 2=1,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则( )A.若直线l 与圆M 相切,则k =±1515B.当k =2时,四边形PAMB 的面积为219C.直线AB 经过一定点D.已知点Q 74,0,则CQ 为定值20.(湖北省武汉市2023届高三下学期二月调研)若椭圆x 2m 2+2+y 2m 2=1(m >0)的某两个顶点间的距离为4,则m 的可能取值有( )A.5B.7C.2D.221.(江苏省南京市、盐城市2023届高三下学期一模)已知点A -1,0 ,B 1,0 ,点P 为圆C :x 2+y 2-6x -8y +17=0上的动点,则( )A.△PAB 面积的最小值为8-42 B.AP 的最小值为22C.∠PAB 的最大值为5π12D.AB ⋅AP的最大值为8+4222.(山东省济南市2023届高三下学期3月一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则( )A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=023.(山东省青岛市2023届高三下学期第一次适应性检测)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA ⋅OB =r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是( )A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则AD AE为定值24.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知圆的方程为(x -m )2+(y -m )2=m 2,对任意的m >0,该圆( )A.圆心在一条直线上 B.与坐标轴相切C.与直线y =-x 不相交D.不过点1,1填空25.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知曲线f x =x 3-3x 2+6x +2在点P 处的切线与在点Q 处的切线平行,若点P 的纵坐标为1,则点Q 的纵坐标为__________.26.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知椭圆C :x 212+y 26=1,直线l 与C在第二象限交于A ,B 两点(A 在B 的左下方),与x 轴,y 轴分别交于点M ,N ,且|MA |:|AB |:|BN |=1:2:3,则l 的方程为__________.27.(福建省厦门市2023届高三下学期第二次质量检测)写出与直线x =1, y =1,和圆x 2+y 2=1都相切的一个圆的方程________.28.(福建省厦门市2023届高三下学期第二次质量检测)不与x 轴重合的直线l 过点N (x N ,0)(xN ≠0),双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上存在两点A 、B 关于l 对称,AB 中点M 的横坐标为x M .若x N =4x M ,则C 的离心率为____________.29.(广东省2023届高考一模)已知动圆N 经过点A -6,0 及原点O ,点P 是圆N 与圆M :x 2+(y -4)2=4的一个公共点,则当∠OPA 最小时,圆N 的半径为___________.30.(广东省佛山市2023届高三教学质量检测(一))抛物线C :y 2=8x 的焦点为F ,准线为l ,M 是C 上的一点,点N 在l 上,若FM ⊥FN ,且MF =10,则NF =______.31.(广东省深圳市2023届高三第一次调研)若椭圆上的点到焦点距离的最大值是最小值的2倍,则该椭圆的离心率为_________.32.(广东省深圳市2023届高三第一次调研)设a >0,A 2a ,0 ,B 0,2 ,O 为坐标原点,则以OA 为弦,且与AB 相切于点A 的圆的标准方程为____;若该圆与以OB 为直径的圆相交于第一象限内的点P (该点称为直角△OAB 的Brocard 点),则点P 横坐标x 的最大值为______.33.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知M 1,2 为抛物线C :y 2=2px p >0 上一点,过点T 0,1 的直线与抛物线C 交于A ,B 两点,且直线MA 与MB 的倾斜角互补,则TA ⋅TB =__________.34.(湖北省武汉市2023届高三下学期二月调研)若两条直线l 1:y =3x +m ,l 2:y =3x +n 与圆x 2+y 2+3x +y +k =0的四个交点能构成矩形,则m +n =____________.35.(湖北省武汉市2023届高三下学期二月调研)设F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为双曲线E 的左右顶点,点P 为双曲线E 上异于A ,B 的动点,直线l :x =t 使得过F 作直线AP 的垂线交直线l 于点Q 时总有B ,P ,Q 三点共线,则t a的最大值为____________.36.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知点P 在抛物线C :y 2=2px p >0 上,过P 作C 的准线的垂线,垂足为H ,点F 为C 的焦点.若∠HPF =60°,点P 的横坐标为1,则p =_______.37.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)过点-1,0 作曲线y =x 3-x 的切线,写出一条切线的方程_______.38.(江苏省南京市、盐城市2023届高三下学期一模)已知抛物线y 2=4x 的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为____________.39.(江苏省南京市、盐城市2023届高三下学期一模)直线x =t 与曲线C 1:y =-e x +ax a ∈R 及曲线C 2:y =e -x +ax 分别交于点A ,B .曲线C 1在A 处的切线为l 1,曲线C 2在B 处的切线为l 2.若l 1,l 2相交于点C ,则△ABC 面积的最小值为____________.40.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))已知圆C :x 2-2x +y 2-3=0,过点T 2,0 的直线l 交圆C 于A ,B 两点,点P 在圆C 上,若CP ∥AB ,PA ⋅PB =12,则AB =________41.(2023年湖北省八市高三(3月)联考)已知抛物线y 2=2px (p >0)的焦点为F ,过点F 的直线与该抛物线交于A ,B 两点,AB =52,AB 的中点纵坐标为2,则p =__________.42.(山东省济南市2023届高三下学期3月一模)已知圆C 1:x 2+y 2=2关于直线l 对称的圆为圆C 2:x 2+y 2+2x -4y +3=0,则直线l 的方程为______.43.已知O 为坐标原点,在抛物线y 2=2px p >0 上存在两点E ,F ,使得△OEF 是边长为4的正三角形,则p =______.44.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知抛物线y2=4x和椭圆x2+a2y2=1(a>b>0)相交于A,B两点,且抛物线的焦点F也是椭圆的焦点,若直线AB过点F,则椭圆的b2离心率是__________.。
高三文科数学(解析几何)练习
高三文科数学(解析几何)练习1.已知椭圆C :22221x y a b+=(0)a b >>的离心率2e =,原点到过点(,0)A a ,(0,)B b -的直线的距离是5. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线1y kx =+(0)k ≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为圆心的圆上,求k 的值.解(Ⅰ)因为2c a =,222a b c -=, 所以2a b =. ………………………………………………2分因为原点到直线AB :1x y a b -=的距离5d ==, 解得4a =,2b =. ………………………………………………5分故所求椭圆C 的方程为221164x y +=. ………………………………………………6分 (Ⅱ) 由题意 221,1164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得 22(14)8120k x kx ++-=. ………………………………………………7分可知0∆>. ………………………………………………8分设11(,)E x y ,22(,)F x y ,EF 的中点是(,)M M M x y , 则1224214M x x k x k +-==+,21114M M y kx k =+=+.……………………………10分 所以21M BM M y k x k +==-. ………………………………………………11分 所以20M M x ky k ++=. 即224201414k k k k k-++=++. 又因为0k ≠, 所以218k =.所以4k =±. ………………………………13分2.已知椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是边长为2,一内角为60 的菱形的四个顶点. (I )求椭圆C 的方程;(II )若直线y kx =交椭圆C 于,A B 两点,且在直线:30l x y +-=上存在点P ,使得PAB ∆为等边三角形,求k 的值.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2, 一内角为60 的菱形的四个顶点,所以1a b ==,椭圆C 的方程为2213x y +=………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠= ,所以PAB ∆是等边三角形,所以直线AB 的方程为0y =………………6分当直线AB 的斜率存在且不为0时,设AB 的方程为y kx = 所以2213x y y kx ⎧+=⎪⎨⎪=⎩,化简得22(31)3k x += 所以1||x =||AO ==8分 设AB 的垂直平分线为1y x k=-,它与直线:30l x y +-=的交点记为00(,)P x y 所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =10分 因为PAB ∆为等边三角形,所以应有|||PO AO =代入得到0k =(舍),1k =-……………13分 综上,0k =或1k =-………………14分3.已知椭圆2222:1x y C a b+=()0a b >>的右焦点F (1,0),长轴的左、右端点分别为12,A A ,且121FA FA ⋅=- . (Ⅰ)求椭圆C 的方程;(Ⅱ)过焦点F 斜率为k (0)k ≠的直线l 交椭圆C 于,A B 两点,弦AB 的垂直平分线与x 轴相交于点D .试问椭圆C 上是否存在点E 使得四边形ADBE 为菱形?若存在,试求点E 到y 轴的距离;若不存在,请说明理由.解:(Ⅰ)依题设1(,0)A a -,2(,0)A a ,则1(1,0)FA a =-- ,2(1,0)FA a =- .由121FA FA ⋅=- ,解得22a =,所以21b =.所以椭圆C 的方程为2212x y +=.…………………………………………4分 (Ⅱ)依题直线l 的方程为(1)y k x =-.由22(1),22y k x x y =-⎧⎨+=⎩得()2222214220k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,弦AB 的中点为00(,)M x y , 则2122421k x x k +=+,21222(1)21k x x k -=+,202221k x k =+,0221k y k -=+, 所以2222(,)2121k k M k k -++. 直线MD 的方程为22212()2121kk y x k k k +=--++, 令0y =,得2221D k x k =+,则22(,0)21k D k +. 若四边形ADBE 为菱形,则02E D x x x +=,02E D y y y +=. 所以22232(,)2121k k E k k -++. 若点E 在椭圆C 上,则2222232()2()22121k k k k -+=++.整理得42k =,解得2k =所以椭圆C 上存在点E 使得四边形ADBE 为菱形.此时点E 到y 的距离为127-.………………………………………………14分4.已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点5(,0)4Q ,动直线l 过点F ,且直线l 与椭圆C 交于A ,B 两点,证明:QA QB ⋅ 为定值.(Ⅰ)解:由题意知:1c =.根据椭圆的定义得:22a =,即a =……………………………………3分所以2211b =-=. 所以椭圆C 的标准方程为2212x y +=. ……………………………………4分 (Ⅱ)证明:当直线l 的斜率为0时,(A B .则557,0)(,0)4416QA QB ⋅=⋅=- . ……………………………………6分当直线l 的斜率不为0时,设直线l 的方程为:1x ty =+,()()1122,,,A x y B x y .由221,21x y x ty ìïï+=ïíïï=+ïî可得:22(2)210t y ty ++-=. 显然0∆>.1221222,21.2t y y t y y t ìïï+=-ïï+ïíïï=-ïï+ïî……………………………………9分 因为 111x ty =+,221x ty =+,所以 112212125511(,)(,)()()4444x y x y ty ty y y -?=--+ 2121211(1)()416t y y t y y =+-++ 2221121(1)24216t t t t t =-+++++ 22222172(2)1616t t t --+=+=-+. 即716QA QB ⋅=- .……………………………………13分。
高中数学平面解析几何练习题(含解析)
高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
平面解析几何练习题
平面解析几何练习题一、直线与圆的相交1. 已知圆的方程为:x^2 + y^2 - 4x - 6y + 9 = 0,求与直线y = 2x + 1相交的点坐标。
解析:首先将直线方程代入圆的方程,得到:x^2 + (2x + 1)^2 - 4x - 6(2x + 1) + 9 = 0。
将方程化简得到二次方程 5x^2 - 22x - 14 = 0。
解此二次方程,得两个不同实根:x1 ≈ 0.953 和x2 ≈ 2.337。
将x的值带入直线方程求得对应的y值,即可得到两个交点的坐标。
2. 已知直线过点A(2, 4)且与圆x^2 + y^2 - 6x + 8y + 9 = 0相切,求此直线的方程。
解析:首先求圆的切线方程,在圆的方程中,将x和y的系数前的项移至另一侧得到新方程 x^2 + y^2 = 6x - 8y - 9。
然后利用点到直线的距离公式,得到圆心O(a, b)到直线的距离公式:d = |a + 2b - 8| / √(1 + 4) = |a + 2b - 8| / 2。
因为直线与圆相切,所以圆心到直线的距离等于圆的半径。
将距离公式代入原方程,得到二次方程 (2a + 4b - 16)^2 = 4(a^2 + b^2 - 6a + 8b + 9)。
通过求解此二次方程,得到a和b的值,即可得到直线的方程。
二、圆的切线与切点1. 已知圆C的方程为:(x-2)^2 + (y+1)^2 = 16,求过点P(3,2)的圆C 的切线方程及切点。
解析:首先求得点P到圆心C(2,-1)的距离,即两点之间的线段CP 的长度r = √((3-2)^2 + (2+1)^2) = √(2^2 + 3^2) = √13。
因为点P在圆C 上,所以点P到圆C的距离等于圆C的半径 r = 4。
接下来求得点P到圆C的切线斜率k,即斜率为 -1/k 的直线与圆C的切线。
切线斜率 k = (2 - (-1)) / (3 - 2) = 3。
调和点列与极点极线(解析几何)(学生版)
调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB |=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.类型3:证明直线过定点或三点共线【例4】如图, 过直线l:5x-7y-70=0上的点P作椭圆x225+y29=1的切线PM和PN, 切点分别为M,N, 连结MN.(1)当点P在直线l上运动时, 证明:直线MN恒过定点Q;(2)当MN⎳l时, 定点Q平分线段MN.【例5】已知A,B分别为椭圆E:x2a2+y2=1(a>1)的左、右顶点, G为E的上顶点, AG⋅GB=8,P为直线x=6上的动点, PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.类型4:证明两直线垂直【例6】已知A (-2,0),B (2,0), 点C 是动点, 且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P , 与直线x =4相交于点Q , 且F (1,0), 求证:∠PFQ =90∘.类型5:证明向量数量积(或线段长度之积)为定值【例7】如图, 椭圆有两顶点A (-1,0),B (1,0), 过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点, 并与x 轴交于点P , 直线AC 与直线BD 交于点Q .(1)当|CD |=322时, 求直线l 的方程A (-1,0);(2)当点P 异于A 、B 两点时, 求证:OP ⋅OQ 为定值.类型6:与斜率有关的定值问题【例8】设P x0,y0为桞圆x24+y2=1内一定点(不在坐标轴上), 过点P的两条直线分别与椭圆交于点A,C和B、D, 且AB⎳CD.(1)证明:直线AB的斜率为定值;(2)过点P作AB的平行线, 与椭圆交于E、F两点, 证明:点P平分线段EF.【例9】如图, 椭圆E:x2a2+y2b2=1(a>b>0 的离心率为22, 直线l:y=12x与椭圆E相交于A、B两点, AB=25,C、D是椭圆E上异于A、B的任意两点, 且直线AC、BD相交于点M, 直线AD、BC相交于点N, 连结MN.(1)求椭圆E的方程;(2)求证:直线MN的斜率为定值.【例10】四边形ABCD是椭圆x23+y22=1的内接四边形, AB经过左焦点F1,AC,BD交于右焦点F2, 直线AB与直线CD的斜率分别为k1,k2.(1)证明:k1k2为定值;(2)证明:直线CD过定点, 并求出该定点的坐标.类型7:等角问题【例11】设椭圆C:x22+y2=1的右焦点为F, 过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时, 求直线AM的方程;(2)设O为坐标原点, 证明:∠OMA=∠O MB.【例12】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点-1,32在椭圆C上, 过原点O的直线与椭圆C相交于M、N两点, 且|MF|+|NF|=4.(1)求椭圆C的方程;(2)设P(1,0),Q(4,0), 过点Q且斜率不为零的直线与椭圆C相交于A、B两点, 证明:∠APO=∠BPQ类型8:三斜率成等差数列引理:二次曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0与直线PQ交于点P,Q, 定点O在直线PQ上, PQ与O点关于曲线C的极线交于点R. 曲线C上有两动点A,B, 且直线AO、BO分别交曲线Γ于点C, D, 直线AB,CD分别交PQ于点M,N. 则M,O,N,R成调和点列.【证明】延长XO交BC于点E, 由定理5可知:B,E,C,Y成调和点列(完全四边形中的调和点列), 故M,O,N,R也成调和点列(调和点列在射影变换下的不变性).【例13】椭圆C:x2a2+y2b2=1,P的坐标是x0,0,Q点在P关于椭圆的极线x=a2x0上. 过P作直线交椭圆于点A,B. 求证:直线AQ,PQ,BQ的斜率成等差数列.该结论对于拋物线, 双曲线同样适用. 特别地,当Q点在x轴上时, 就是等角线, 此时PQ斜率为0 , PQ平分∠AQB.【例14】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0), 过焦点F任作一直线交椭圆C于A,B两点, 交F相应的准线于点M,P为过F与x轴垂直的直线上的任意一点, 则直线PA,PM,PB的斜率成等差数列.【例15】如下图, 椭圆x2a2+y2b2=1(a>b>0)的左右顶点为A1,B1,Q为直线x=m上一点, QA1,QB1分别于椭圆交于点A,B, 过点P作直线交桞圆于A,B两点, 直线AB与x轴交于点P, 与直线x=m交于点M, 记直线QA1,QB1,QP的斜率分别为k1,k2,k0, 则:(1)k1,k0,k2成等差数列;(2)x P x Q=a2.【例16】椭圆x2a2+y2b2=1(a>b>0)经过点M1,32, 离心率e=12.(1)求椭圆的方程;(2)设P是直线x=4上任意一点, AB是经过椭圆右焦点F的一条弦(不经过点M). 记直线PA,PF,PB的斜率依次为k1,k2,k3. 问:是否存在常数λ, 使得k1+k3=λk2. 若存在, 求λ的值;若不存在, 说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线
1.设双曲线
22221(00)x y a b a b -=>>,的离心率为3,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为
( ) A.2
2112
24x y -= B.2214896x y -= C.222133x y
-=
D.22136x y -=
2.设P 为又曲线11222
=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,则△PF 1F 2的面积为( )
A .36
B .12
C .312
D .24
3.以双曲线2
219
16x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .221090x y x +-+=
B .22
10160x y x +-+= C .2210160x y x +++= D .221090x y x +++= 4. 已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )
A .221412x
y
-= B .221124x
y
-= C .221106x
y
-= D .22
1610x
y
-=
5. 已知双曲线22221(00)x
y a b a b -=>>,的左、
右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab = ,则双曲线的离心率是( ) A.2 B.3 C.2 D.3
6.在平面直角坐标系xOy 中,双曲线的中心在坐标原点,焦点在y 轴上,一条渐近线的方程为20x y -=,则它的离心率为( ) A.5 B.5
2 C.
3 D.2
7.设F 1,F 2分别是双曲线22221x
y a b -=的左、右焦点。
若双曲线上存在点A ,使∠F 1AF 2=90º,且|AF 1|=3|AF 2|,则双曲线离心率为 (A)
52 (B) 102 (C) 152 (D) 5
8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|=
(A)9 (B) 6 (C) 4 (D) 3。