2007年高考.湖南卷.理科数学试题及解答
2007年高考全国1卷数学理科试卷含答案
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =g g球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =o∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积112S AB == 连结DB ,得DAB △的面积21sin13522S AB AD ==o g 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =g g , 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =o∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(0CB =u u u r,0SA CB =u u r u u u r g ,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =g ,0AB OG =g ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.cos OG DS OG DSα==g g sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+21221)32k BD x x k +=-==+g ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦g ≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=-+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考数学卷(全国卷Ⅰ.理)含详解
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。
2007年高考理科数学试题及答案(全国卷2)
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟. 2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB .C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A .4B .4C .2D .28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( )A B CD 12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0 ,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分 二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列. 19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分) 在直角坐标系xOy 中,以O为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.A EBCFSD2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin sin 4sin sin sin BC AC B x x A ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan DH DMH HM ∠===. AEBCFSD H G M所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭ ,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥,所以向量MD 和EA的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA<>==, 所以二面角A EF D --的大小为. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a -<即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '-=-, 即 23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则2()66g t t at '=- 6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根; 当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根. 综上,如果过()ab ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。
2007年高考理科数学试题及参考答案(湖南卷)
第三单元“关注经济生活”,引导学生在 理解身边的经济生活的同时,学会用法律来维 护个人经济生活中的正当权益。 第四单元“做负责任的公民”,是把学生 对个人生命的理解融入到现代社会生活之中, 感受个人在社会生活中的责任,增强责任意识, 学会在积极完善自我的同时,对社会负责,提 高个人对社会的认同。 第五单元“生活在法律的保护中”,引导 学生在初识法律、不违法犯罪的基础上,初步 理解现代法律之于个人生活的意义,学会运用 法律来保护自我,增进对法律的理性认同。
第二单元 在成长的道路上 本单元主题“在成长的道路上”,旨在 帮助中学生正确认识挫折和逆境,锻炼学生 坚强的意志品质,提高化解矛盾、应对挫折 的能力,引导中学生养成积极达观、勇敢向 上的意志品质。 第一节 感受成长 第二节 直面挫折 第三节 立志与成功
第三单元 相处之道 与家长、老师、同学的交往乃是中学生活 的主要内容,为此,我们设计了“相处之 道”,意在使学生通过体验、了解与自己生 活中最切近的人的交往,来理解、领会与人 相处的道理,学习、掌握在不断拓展的生活 中与人交往的艺术。 第一节 亲子之间 第二节 师生之间 第三节 与友同行
法律伴我们健康成长 勿以恶小而为之 做守法护法的好公民
6.教材的前后连接
本册教材紧扣不断拓展的学生生活为主 线,从学生身边的家庭、学校、班级生活, 逐步扩展到社会公共生活。
1.本册教材基本主题
本册教材以“让青春充满活力”、“做
八 年 级 上 册
教 材 解 读
负责任的公民”为基本生活主题,引导学生
其次,进一步引导中学生从关注周围的生 命世界开始,去感悟生命,理解生命的价值, 提高学生的生命意识。 然后,把学生的视野引向社会,从对与个 人密切相关的经济生活入手,拓展学生的社会 生活视野。
2007年高考全国1卷数学理科试卷含答案
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e e 2x -x x x -+=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考理科数学试题及参考答案(湖南卷)
俯视图侧视图正视图3342007年普通高等学校招生全国统一考试(湖南卷)数学((理科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中,2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .363. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( )A .2-B .2C .-4D .44.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( )A. 192-B. 192C. -6D. 6 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x ,若A B C D12012x x <<<<,则ba的取值范围是( ) A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b a b+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅= ,123tan 3PF F ∠=,则该椭圆的离心率为 .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A bB a= 且sin cos C A = (Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.7 98 4 4 6 4 7 9 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i i i =2009输出 f i (x )17. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分,负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过C B F ,,三点作圆P ,其中圆心P 的坐标为()n m ,.(Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论.19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4, 公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由. 21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ).对阵队员A 队队员胜 A 队队员负 1A 对1B 23 132A 对2B 25 353A 对3B 37 35(Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2007年高考全国1卷数学理科试卷含答案
2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= (5)设a b ∈R ,,集合{}10b a b a b a⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35 D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件AB 1B1A1D1C CD(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )A .4B .C .D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上. (13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答)(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .(16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e x xf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值. (22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D(2)B(3)A(4)A(5)C(6)C(7)D(8)D(9)B(10)D(11)C(12)A二、填空题:(13)36 (14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S ABSA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得h =设SD与平面SAB 所成角为α,则sin 11h SD α===. 所以,直线SD 与平面SBC 所成的我为arcsin 11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AOOB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D,(DS =.22cos 11OG DS OG DSα==,sin 11β=,所以,直线SD 与平面SAB 所成的角为arcsin . (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x xg x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20x xg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x +=,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明: (Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤.(Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x kx x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解: (Ⅰ)由题设:11)(2)n n aa +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1n n a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<.当1n k =+时,13423k k k b b b ++-=-+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+ 所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)
2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)求值sin210°=()A.B.﹣C.D.﹣2.(5分)函数y=|sinx|的一个单调增区间是()A.B.C.D.3.(5分)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i4.(5分)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln25.(5分)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣6.(5分)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.8.(5分)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.9.(5分)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣310.(5分)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种11.(5分)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.12.(5分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1+2x2)(x﹣)8的展开式中常数项为.14.(5分)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.15.(5分)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.16.(5分)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y (1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.18.(12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).19.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.20.(12分)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.21.(12分)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;,其中n为正整数.(2)设,求证b n<b n+122.(12分)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅱ)求值sin210°=()A.B.﹣C.D.﹣【分析】通过诱导公式得sin 210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.【解答】解:∵sin 210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D2.(5分)(2007•全国卷Ⅱ)函数y=|sinx|的一个单调增区间是()A.B.C.D.【分析】画出y=|sinx|的图象即可得到答案.【解答】解:根据y=|sinx|的图象,如图,函数y=|sinx|的一个单调增区间是,故选C.3.(5分)(2007•全国卷Ⅱ)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i【分析】将复数z设a+bi,(a,b∈R),代入复数方程,利用复数相等的条件解出复数z.【解答】解:设复数z=a+bi,(a,b∈R)满足=i,∴1+2i=ai﹣b,,∴z=2﹣i,故选C.4.(5分)(2007•全国卷Ⅱ)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln2【分析】根据lnx是以e>1为底的单调递增的对数函数,且e>2,可知0<ln2<1,ln(ln2)<0,故可得答案.【解答】解:∵0<ln2<1,∴ln(ln2)<0,(ln2)2<ln2,而ln=ln2<ln2,∴最大的数是ln2,故选D.5.(5分)(2007•全国卷Ⅱ)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣【分析】本题要求字母系数,办法是把表示出来,表示时所用的基底要和题目中所给的一致,即用和表示,画图观察,从要求向量的起点出发,沿着三角形的边走到终点,把求出的结果和给的条件比较,写出λ.【解答】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.6.(5分)(2007•全国卷Ⅱ)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【分析】首先不等式的分母可化为(x+2)(x﹣2),不等式的分子和分母共由3个一次因式构成.要使得原不等式大于0,可等同于3个因式的乘积大于0,再可根据串线法直接求解.【解答】解:依题意,原不等式可化为等同于(x+2)(x﹣1)(x﹣2)>0,可根据串线法直接解得﹣2<x<1或x>2,故答案应选B.7.(5分)(2007•全国卷Ⅱ)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【分析】根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.8.(5分)(2007•全国卷Ⅱ)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【分析】根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.9.(5分)(2007•全国卷Ⅱ)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣3【分析】平移向量=(h,k)就是将函数的图象向右平移h个单位,再向上平移k个单位.【解答】解:把函数y=e x的图象按向量=(2,3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y=f(x)的图象,∴f(x)=e x﹣2+3,故选C.10.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.11.(5分)(2007•全国卷Ⅱ)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【分析】由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|﹣|AF2|=2,,由此可以求出双曲线的离心率.【解答】解:设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t>0)双曲线中2a=|AF1|﹣|AF2|=2t,t,∴离心率,故选B.12.(5分)(2007•全国卷Ⅱ)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9【分析】先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅱ)(1+2x2)(x﹣)8的展开式中常数项为﹣42.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.(5分)(2007•全国卷Ⅱ)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.【分析】根据ξ服从正态分布N(1,),得到正态分布图象的对称轴为x=1,根据在(0,1)内取值的概率为0.4,根据根据随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,得到随机变量ξ在(0,2)内取值的概率.【解答】解:∵测量结果ξ服从正态分布N(1,),∴正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,∴随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,∴随机变量ξ在(0,2)内取值的概率为0.8.故答案为:0.815.(5分)(2007•全国卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为2+4cm2.【分析】本题考查的知识点是棱柱的体积与表面积计算,由一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,我们根据球的直径等于棱柱的对角线长,我们可以求出棱柱的各棱的长度,进而得到其表面积.【解答】解:由一个正四棱柱的各个顶点在一个直径为2cm的球面上.正四棱柱的对角线的长为球的直径,现正四棱柱底面边长为1cm,设正四棱柱的高为h,∴2R=2=,解得h=,那么该棱柱的表面积为2+4cm2.故答案为:2+416.(5分)(2007•全国卷Ⅱ)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.【分析】由通项公式知该数列是等差数列,先求出首项和公差,然后求出其前n 项和,由此能得到的值.【解答】解:∵数列的通项a n=﹣5n+2,∴a1=﹣3,a2=﹣8,d=﹣5.∴其前n项和为S n,则=﹣.故答案为:﹣.三、解答题(共6小题,满分70分)17.(10分)(2007•全国卷Ⅱ)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.【分析】(1)由内角A=,边BC=2,设内角B=x,周长为y,我们结合三角形的性质,△ABC的内角和A+B+C=π,△ABC的周长y=AB+BC+AC,我们可以结合正弦定理求出函数的解析式,及自变量的取值范围.(2)要求三角函数的最值,我们要利用辅助角公式,将函数的解析式,化为正弦型函数的形式,再根据正弦型函数的最值的求法进行求解.【解答】解:(1)△ABC的内角和A+B+C=π,由得.应用正弦定理,知,.因为y=AB+BC+AC,所以,(2)∵=,所以,当,即时,y取得最大值.18.(12分)(2007•全国卷Ⅱ)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).【分析】(1)有放回地抽取产品二次,每次随机抽取1件,取出的2件产品中至多有1件是二等品包括无二等品和恰有一件是二等品两种情况,设出概率,列出等式,解出结果.(2)由上面可以知道其中二等品有100×0.2=20件取出的2件产品中至少有一件二等品的对立事件是没有二等品,用组合数列出结果.【解答】解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1﹣p)2+C21p(1﹣p)=1﹣p2于是0.96=1﹣p2.解得p1=0.2,p2=﹣0.2(舍去).(2)记B0表示事件“取出的2件产品中无二等品”,则.若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.19.(12分)(2007•全国卷Ⅱ)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.【分析】法一:(1)作FG∥DC交SD于点G,则G为SD的中点.要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可.(2)取AG中点H,连接DH,说明∠DMH为二面角A﹣EF﹣D的平面角,解三角形求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,平面SAD即可证明(1);(2)求出向量和,利用,即可解答本题.【解答】解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.20.(12分)(2007•全国卷Ⅱ)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.【分析】首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.【解答】解:(1)依题设,圆O的半径r等于原点O到直线的距离,即.得圆O的方程为x2+y2=4.(2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(﹣2,0),B(2,0).设P(x,y),由|PA|,|PO|,|PB|成等比数列,得,两边平方,可得(x2+y2+4)2﹣16x2=(x2+y2)2,化简整理可得,x2﹣y2=2.=x2﹣4+y2=2(y2﹣1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[﹣2,0).21.(12分)(2007•全国卷Ⅱ)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;(2)设,求证b n<b n+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故b n>0.那么,b n+12﹣bn2=an+12(3﹣2a n+1)﹣a n2(3﹣2a n)=由此可知b n<b n+1,n为正整数.方法二:由题设条件知,所以.由此可知b n<b n+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故b n>0.那么,b n+12﹣bn2=a n+12(3﹣2a n+1)﹣a n2(3﹣2a n)==又由(1)知a n>0且a n≠1,故b n+12﹣bn2>0,因此b n<b n+1,n为正整数.方法二:由(1)可知,因为,所以.由a n≠1可得,即两边开平方得.即b n<b n+1,n为正整数.22.(12分)(2007•全国卷Ⅱ)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)【分析】(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;(2)设切线过点(a,b),则存在t使b=(3t2﹣1)a﹣2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.【解答】解:(1)求函数f(x)的导函数;f'(x)=3x2﹣1.曲线y=f(x)在点M(t,f(t))处的切线方程为:y﹣f(t)=f'(t)(x﹣t),即y=(3t2﹣1)x﹣2t3;(2)如果有一条切线过点(a,b),则存在t,使b=(3t2﹣1)a﹣2t3.于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,则g'(t)=6t2﹣6at=6t(t﹣a).当t变化时,g(t),g'(t)变化情况如下表:)由g(t)的单调性,当极大值a+b<0或极小值b﹣f(a)>0时,方程g(t)=0最多有一个实数根;当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根;当b﹣f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根.综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则即﹣a<b<f(a).。
2007年高考数学试题(全国卷Ⅰ·理)含答案
2007年普通高等学校招生全国统一考试理科数学第Ⅰ卷一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=(D ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( B ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( A ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( A )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( C ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( C ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( D ) AB .2C.D .4AB1B1A1D1C CD(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( B ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( D )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C )A .4B .C .D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( A ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答)(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x =3()x x ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为31 一般我们根据题目列出的方程是可以解出,如果方程太复杂,则换种思路列方程。
2007年高考理科数学试题及参考答案(湖南卷)
表观密度和毛体积密度试验:将待测试样用4.75mm方孔筛或5mm的圆孔筛过筛,用四分法缩分成需要的质量,留两份待用。
将待测试样浸泡水中一段时间后漂洗干净。
取一份放在盛水器中注入清水高出试样至少20mm搅动石料排气泡,室温浸水24h。
将吊篮浸入水槽中控制水温15-25度,天平调平。
将试样转入吊篮称取集料水中质量mw。
将试样用毛巾擦干表面的水。
称取集料的质量为饱和面干质量mf。
将试样放入烘箱中烘干至恒重,冷却称重ma。
结果计算ra=ma/ma-mwrb=ma/ma-mw水泥混凝土用粗集料针片状颗粒含量试验(规准仪法)将待测风干试样采用四分法缩分成规定的检测数量称重m0。
采用标准筛将试样划分不同粒级。
首先目测将不可能是针状或片状的颗粒挑出,对有怀疑的逐一对应于规准仪相应位置进行鉴定,凡长度大于针状水准仪上相应间距的为针状,颗粒厚度小于片状规准仪相应孔宽的为片状颗粒,结束后称出各粒级挑出的针状和片状总质量m1。
沥青混合料针片状颗粒含量试验(游标卡尺法)采用随机取样方式采集待测试样。
待测试样国4.75mm标准筛称至少800试样。
先目测挑出接近立方体的颗粒剩余的用卡尺作鉴别。
观察待测颗粒找出一相对平整且面积较大的面作为基准面然后用卡尺逐一测量集料颗粒的厚度和长度。
长度与厚度之比大于或等于3的颗粒挑出判定为针状或片状颗粒称出总质量。
压碎试验水泥混凝土压碎试验:用10mm和20mm圆孔筛剔除10以下和20以上的颗粒用针片状规准仪挑出针状和片状颗粒备三份每份3kg待用。
将圆筒置于底盘上取份试样分两层装入筒中,每装完一层在底盘上垫一根10mm圆钢筋,按住圆筒左右颠击25下在第二层装好后要求试样装填高度从底盘量起在100mm左右。
将试样顶面整平压上加压盖放到压力机上施加荷载,3-5分内均匀加荷200kn。
倒出试样称实验时总质量然后用2.5mm圆孔筛过筛,筛除被压碎颗粒称留在筛上的质量。
沥青混合料压碎试验:风干试样用13.2mm和16mm标准筛过筛取3kg待用。
2007年(全国卷II)(含答案)高考理科数学
2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.sin 210= ( ) A .32B .32-C .12D .12-2.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2)B .ln(ln 2)C .ln 2D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-, B .(2)+∞, C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A .64B .104C .22D .328.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e 2x -+B .3e 2x +-C .2e 3x -+D .2e 3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种B .60种C .100种D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( ) A .52B .102C .152D .512.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++= ( )A .9B .6C .4D .3二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2. 16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD-中,底面A B C D为正方形,侧棱SD⊥底面A B C D E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线34x y -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设32n n n b a a =-,证明1n n b b +<,其中n 为正整数.22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析: 一、选择题 1.答案:D解析:sin2100 =1sin 302-︒=-,选D 。
2007年湖南高考数学试卷和答
2007年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.不等式2x x >的解集是( ) A .(0)-∞,B .(01),C .(1)+∞,D .(0)(1)-∞+∞,,2.若O E F ,,是不共线的任意三点,则以下各式中成立的是( ) A .EF OF OE =+ B .EF OF OE =- C .EF OF OE =-+D .EF OF OE =--3.设2:40p b a c ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p是q 的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( ) A .4122-B .2122-C .10122-D .11122-5.在(1)n x +(n ∈N *)的二次展开式中,若只有3x 的系数最大,则n =( ) A .8B .9C .10D .116.如图1,在正四棱柱1111ABCD A BC D -中,E F ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11AC 异面7.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米 B .49米 C .50米 D .51米ABC1A 1C1D1BDEF8.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,的图象和函数2()log g x x =的图象的交点个数是( )A .1B .2C .3D .49.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P 是其右准线上纵坐标(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( ) AB .12CD10.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j =,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )A .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.11.圆心为(11),且与直线4x y -=相切的圆的方程是 . 12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = . 13.若0a >,2349a =,则14log a = . 14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,(1)b 的取值范围是 ;水位(米)图2(2)若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .15.棱长为1的正方体1111ABCD A BC D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E F ,分别是该正方体的棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率. 18.(本小题满分12分) 如图3,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30. (I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.19.(本小题满分13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C的坐标是(10),. (I )证明CA ,CB 为常数;ABCQ αβ P(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. 20.(本小题满分13分)设n S 是数列{}n a (n ∈N *)的前n 项和,1a a =,且22213n n n S n a S -=+,0n a ≠,234n =,,,.(I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N *)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项. 21.(本小题满分13分) 已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.2007年普通高等学校招生全国统一考试(湖南卷)数学(文史类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.B 3.A 4.B 5.C 6.D 7.C 8.C 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-= 12.π613.314.(1)[2)+∞,(2)9215.3π三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=. (I )函数()f x 的最小正周期是2ππ2T ==;(II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z )时,函数()f x x=是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z ).17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯=. 所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是330.90.729P ==.所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=. 解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=.3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=. 18.解:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=,从而BO PQ ⊥,又CO PQ ⊥, 所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO 3sin 30OH AO ==. 在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=. 不妨设2AC =,则AO 1CO =.AB CQαβ POH在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以(3AB =,,(0AC =.设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z =+=⎪⎩,取1x =,得1n =.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,.所以1212cos 5||||51n n n nθ===⨯. 故二面角B AC P --的大小为 19.解:由条件知(20)F ,,设11()A x y ,,22()B x y ,.(I )当AB 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2,, 此时(12)(12)1CA CB =-=-,,.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=,有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++-- Q22(42)411k k =--++=-.综上所述,CA CB 为常数1-.(II )解法一:设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由CM CA CB CO =++得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y +=+⎧⎨+=⎩,于是AB 的中点坐标为222x y +⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-.将1212()2yy y x x x -=--代入上式,化简得224x y -=. 当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程. 所以点M 的轨迹方程是224x y -=.解法二:同解法一得12122x x x y y y +=+⎧⎨+=⎩,……………………………………①当AB 不与x 轴垂直时,由(I ) 有212241k x x k +=-.…………………②21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.………………………③ 由①②③得22421k x k +=-.…………………………………………………④241ky k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,2x k y+=,将其代入⑤有2222244(2)(2)(2)1x y x y y x x yy +⨯+==++--.整理得224x y -=. 当0k =时,点M 的坐标为(20)-,,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程. 故点M 的轨迹方程是224x y -=.20.解:(I )当2n ≥时,由已知得22213n n n S S n a --=. 因为10n n n a S S -=-≠,所以213n n S S n -+=. …………………………① 于是213(1)n n S S n ++=+. …………………………………………………② 由②-①得:163n n a a n ++=+.……………………………………………③ 于是2169n n a a n +++=+.……………………………………………………④ 由④-③得:26n n a a +-=.…………………………………………………⑤ 即数列2{}n n a a +-(2n ≥)是常数数列. (II )由①有2112S S +=,所以2122a a =-. 由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列.所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N *. 由题设知,1187n n b -=⨯.当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项.若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N *,从而n b 是数列{}n a 中的第167n -⨯项.(注:考生取满足36n a k =-,n k ∈N*的任一奇数,说明n b 是数列{}n a 中的第126723n a-⨯+-项即可) 21.解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=,且2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是 (1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.。
2007年高考.全国Ⅱ卷.理科数学试题及解答
2007年普通高等学校招生全国统一考试试题卷理科数学(必修+选修II)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页,总分150分考试时间120分钟. 2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。
3. 选择题的每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。
5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。
6. 考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C knP k (1-P)n -k一.选择题 1. sin2100 =(A)23 (B) 23-(C)21(D) 21-2.函数f(x)=|sinx|的一个单调递增区间是 (A)⎪⎭⎫⎝⎛-4,4ππ (B) ⎪⎭⎫⎝⎛43,4ππ(C) ⎪⎭⎫ ⎝⎛23,ππ (D) ⎪⎭⎫ ⎝⎛ππ2,233.设复数z 满足i z2i1=+,则z = (A) -2+i(B) -2-i(C) 2-i(D) 2+i4.以下四个数中的最大者是 (A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln25.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA 31λ+,则λ= (A)32 (B)31 (C)31-(D) 32-球的表面积公式S=42R π 其中R 表示球的半径,球的体积公式 V=334Rπ,其中R 表示球的半径6.不等式:04x 1x 2>--的解集为 (A)( -2, 1) (B) ( 2, +∞)(C) ( -2, 1)∪ ( 2, +∞)(D) ( -∞, -2)∪ ( 1, +∞)7.已知正三棱柱ABC-A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于(A)46(B)410 (C)22 (D) 238.已知曲线3lnx 4x y 2-=的一条切线的斜率为21,则切点的横坐标为 (A)3 (B) 2 (C) 1 (D) 219.把函数y =e x 的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )=(A) e x -3+2 (B) e x +3-2 (C) e x -2+3 (D) e x +2-310.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(A)40种 (B) 60种 (C) 100种 (D) 120种11.设F 1,F 2分别是双曲线1by a x 2222=-的左、右焦点。
2007年全国统一高考数学试卷(理科)(全国卷一)及答案
2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b 的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x ﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A 的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x ≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax 相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k 时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。
2007年湖南高考理科数学试卷和答案
年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数22i 1+i ⎛⎫⎪⎝⎭等于( )A .4iB .4i -C .2iD .2i -2.不等式201x x -+≤的解集是( )A .(1)(12]-∞-- ,,B .[12]-,C .(1)[2)-∞-+∞ ,,D .(12]-,3.设M N ,是两个集合,则“M N =∅ ”是“M N ≠∅ ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件4.设,a b 是非零向量,若函数()()()f x x x =+- a b a b 的图象是一条直线,则必有( ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b5.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( ) A .0.025B .0.050C .0.950D .0.9756.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( ) A .4B .3C .2D .17.下列四个命题中,不正确...的是( ) A .若函数()f x 在0x x =处连续,则0lim ()lim ()x x x x f x f x +-=→→B .函数22()4x f x x +=-的不连续点是2x =和2x =-C .若函数()f x ,()g x 满足lim[()()]0x f x g x ∞-=→,则lim ()lim ()x x f x g x ∞∞=→→D .111lim12x x x -=-→8.棱长为1的正方体1111ABC D A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1A A ,1DD 的中点,则直线E F 被球O 截得的线段长为( ).22B .1C .212+D .29.设12F F ,分别是椭圆22221x y ab+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .202⎛⎤ ⎥ ⎝⎦,B .303⎛⎤ ⎥ ⎝⎦,C .212⎡⎫⎪⎢⎪⎣⎭, D .313⎡⎫⎪⎢⎪⎣⎭, 10.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈ 、,,,,),都有m in m inj j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( ) A .10 B .11 C .12 D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .12.在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,π3C =,则B = .13.函数3()12f x x x =-在区间[33]-,上的最小值是 .14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅ , (1)b 的取值范围是 ;(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b 的值是 .15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………图1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间. 17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望. 18.(本小题满分12分)如图2,E F ,分别是矩形A B C D 的边A B C D ,的中点,G 是E F 上的一点,将G A B △,G C D △分别沿A B C D ,翻折成1G AB △,2G C D △,并连结12G G ,使得平面1G AB ⊥平面A B C D ,12G G AD ∥,且12G G AD <.连结2B G ,如图3.图2 图3(I )证明:平面1G AB ⊥平面12G AD G ;(II )当12AB =,25B C =,8E G =时,求直线2B G 和平面12G AD G 所成的角. 19.(本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<<),且2sin 5θ=,点P 到平面α的距离0.4P H =(km ).沿山脚原有一段笔直的公路A B 可供利用.从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为2a 万元/km .当山坡上公路长度为l km(12l ≤≤)时,其造价为2(1)l a +万元.已知O A AB ⊥,PB AB ⊥, 1.5(km )AB =,1G2GD FC BAEA E BC FDG3(km )O A =.(I )在A B 上求一点D ,使沿折线P D A O 修建公路的总造价最小;(II ) 对于(I )中得到的点D ,在D A 上求一点E ,使沿折线P D E O 修建公路的总造价最小.(III )在A B 上是否存在两个不同的点D ',E ',使沿折线P D E O ''修建公路的总造价小于(II )中得到的最小总造价,证明你的结论.20.(本小题满分12分)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.(I )若动点M 满足1111F M F A F B F O =++(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使C A ·C B为常数?若存在,求出点C 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知()n n n A a b ,(n ∈N *)是曲线xy e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…. (I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列;(II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N *)的斜率随n 单调递增.OAEDBHP年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-= 12.5π613.16-14.(1)[1)+∞,(2)9215.21n -,32三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(I )由题设知1π()[1cos(2)]26f x x =++.因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =,即0 π2π6x k =-(k ∈Z ).所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin12644g x =+=+=.(II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π31313cos 2sin 2cos2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭ 1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时,函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). 17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是 1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是21110.10.9P P =-=-=. 解法二:任选1名下岗人员,该人只参加过一项培训的概率是 3()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是4()0.60.750.45P P A B ==⨯= . 所以该人参加过培训的概率是5340.450.450.9P P P =+=+=.(II )因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,,33()0.90.1kkkP k C ξ-==⨯⨯,0123k =,,,,即ξ的分布列是 ξ0 1 2 3 P0.0010.0270. 2430.729ξ的期望是10.02720.24330.729 2.7E ξ=⨯+⨯+⨯=.(或ξ的期望是30.9 2.7E ξ=⨯=)18.解:解法一:(I)因为平面1G AB ⊥平面A B C D ,平面1G AB 平面A B C D A B =,AD AB ⊥,AD ⊂平面A B C D ,所以A D ⊥平面1G A B ,又AD ⊂平面12G AD G ,所以平面1G A B ⊥平面12G AD G .(II )过点B 作1BH AG ⊥于点H ,连结2G H . 由(I )的结论可知,BH ⊥平面12G AD G , 所以2BG H ∠是2B G 和平面12G AD G 所成的角.因为平面1G AB ⊥平面A B C D ,平面1G AB 平面A B C D A B =,1G E AB ⊥,1G E ⊂平面1G A B ,所以1G E ⊥平面A B C D ,故1G E EF ⊥.1G 2GDF CB A EOH12G G AD <,AD EF =,所以可在E F 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EO G 是矩形.由题设12AB =,25B C =,8E G =,则17G F =.所以218G O G E ==,217G F =, 2217815OF =-=,1210G G EO ==.因为A D ⊥平面1G A B ,12G G AD ∥,所以12G G ⊥平面1G A B ,从而121G G G B ⊥. 故222222221126810200BG BE EG G G =++=++=,2102BG =. 又2216810AG =+=,由11BH AG G E AB = 得81248105B H ⨯==.故22481122sin 525102BH BG H BG ∠==⨯=.即直线2B G 与平面12G AD G 所成的角是122arcsin25.解法二:(I )因为平面1G AB ⊥平面A B C D ,平面1G AB 平面A B C D A B =,1G E AB ⊥,1G E ⊂平面1G A B ,所以1G E ⊥平面A B C D ,从而1G E AD ⊥.又A B A D⊥,所以A D ⊥平面1G A B .因为AD ⊂平面12G AD G ,所以平面1G A B ⊥平面12G AD G .(II )由(I )可知,1G E ⊥平面A B C D .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题设12AB =,25B C =,8E G =,则6E B =,25E F =,18EG =,相关各点的坐标分别是(600)A -,,,(6250)D -,,,1(008)G ,,,(600)B ,,.所以(0250)AD =,,,1(608)AG = ,,.设()n x y z =,,是平面12G AD G 的一个法向量,由100n A D n A G ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =- ,,. 过点2G 作2G O ⊥平面A B C D 于点O ,因为22G C G D =,所以O C O D =,于是点O 在y 轴上.1G2GDFCB A EOxyz12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =, 所以2(0108)(600)(6108)BG =-=-,,,,,,.设2B G 和平面12G AD G 所成的角是θ,则2222222|2424|122sin 25610843BG nBG nθ--===+++.故直线2B G 与平面12G AD G 所成的角是122arcsin25.19.解:(I )如图,P H α⊥,H B α⊂,PB AB ⊥, 由三垂线定理逆定理知,AB H B ⊥,所以P B H ∠是 山坡与α所成二面角的平面角,则P B H θ∠=,1sin P H P B θ==.设(km )BD x =,0 1.5x ≤≤.则 2221PD x PB x =+=+[12]∈,.记总造价为1()f x 万元, 据题设有2211111()(1)(3)224f x P D A D A O a x x a =+++=-++21433416x a a ⎛⎫⎛⎫=-++⎪ ⎪⎝⎭⎝⎭当14x =,即1(km )4B D =时,总造价1()f x 最小.(II )设(km )AE y =,504y ≤≤,总造价为2()f y 万元,根据题设有222131()13224f y PD y y a ⎡⎤⎛⎫=++++-- ⎪⎢⎥⎝⎭⎣⎦2433216y y a a ⎛⎫=+-+ ⎪⎝⎭. 则()22123yf y a y ⎛⎫'⎪=- ⎪+⎝⎭,由2()0f y '=,得1y =. 当(01)y ∈,时,2()0f y '<,2()f y 在(01),内是减函数; 当514y ⎛⎫∈ ⎪⎝⎭,时,2()0f y '>,2()f y 在514⎛⎫⎪⎝⎭,内是增函数.αAOE DBHP1y =,即1A E =(km )时总造价2()f y 最小,且最小总造价为6716a 万元.(III )解法一:不存在这样的点D ',E '.事实上,在A B 上任取不同的两点D ',E '.为使总造价最小,E 显然不能位于D ' 与B 之间.故可设E '位于D '与A 之间,且BD '=1(km )x ,1(km )AE y '=,12302x y +≤≤,总造价为S 万元,则221111113224x y S x y a ⎛⎫=-++-+⎪⎝⎭.类似于(I )、(II )讨论知,2111216x x --≥,2113322y y +-≥,当且仅当114x =,11y =同时成立时,上述两个不等式等号同时成立,此时1(km )4B D '=,1(km )AE =,S 取得最小值6716a ,点D E '',分别与点D E ,重合,所以不存在这样的点 D E '',,使沿折线P D E O ''修建公路的总造价小于(II )中得到的最小总造价. 解法二:同解法一得221111113224x y S x y a ⎛⎫=-++-+⎪⎝⎭()()2221111111433334416x a y y y y a a ⎛⎫⎡⎤=-++-++++ ⎪⎢⎥⎣⎦⎝⎭22111114323(3)(3)416y y y y a a ⨯+-++⨯+≥6716a =.当且仅当114x =且2211113(3)(3)y y y y +-++,即11114x y ==,同时成立时,S 取得最小值6716a ,以上同解法一.20.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y F O =+= ,,,,由1111F M F A F B F O =++ 得 121226x x x y y y +=++⎧⎨=+⎩,即12124x x x y y y +=-⎧⎨+=⎩,于是A B 的中点坐标为422x y-⎛⎫⎪⎝⎭,.A B 不与x 轴垂直时,121224822yy y y x x x x -==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当A B 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点(0)C m ,,使C A C B 为常数.当A B 不与x 轴垂直时,设直线A B 的方程是(2)(1)y k x k =-≠±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241kx x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k m m m m k k -+-=+=-++--.因为C A C B 是与k 无关的常数,所以440m -=,即1m =,此时C A C B=1-.当A B 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1C A C B =-=-,,.故在x 轴上存在定点(10)C ,,使C A C B为常数. 解法二:(I )同解法一的(I )有12124x x x y y y +=-⎧⎨+=⎩,A B 不与x 轴垂直时,设直线A B 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241kx x k +=-.21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭. 由①②③得22441kx k -=-.…………………………………………………④241k y k =-.……………………………………………………………………⑤当0k ≠时,0y ≠,由④⑤得,4x k y-=,将其代入⑤有2222444(4)(4)(4)1x y x yy x x yy-⨯-==----.整理得22(6)4x y --=.当0k =时,点M 的坐标为(40),,满足上述方程.当A B 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 故点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点点(0)C m ,,使C A C B为常数,当A B 不与x 轴垂直时,由(I )有212241k x x k+=-,2122421k x x k +=-.以上同解法一的(II ).21.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …… ①于是213(1)n n S S n ++=+. ……②由②-①得163n n a a n ++=+. …… ③ 于是2169n n a a n +++=+. …… ④26n n a a +-=, …… ⑤ 所以2262n n nna a a n a nb eee b e++-+===,即数列2(2)n n b n b +⎧⎫⎨⎬⎩⎭≥是常数数列.(II )由①有2112S S +=,所以2122a a =-.由③有3215a a +=,4321a a +=,所以332a a =+,4182a a =-.而 ⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列, 所以226(1)k a a k =+-,2136(1)k a a k +=+-,2246(1)()k a a k k +=+-∈N *, 数列{}n a 是单调递增数列12a a ⇔<且22122k k k a a a ++<<对任意的k ∈N *成立.12a a ⇔<且2346(1)6(1)6(1)a k a k a k +-<+-<+- 1234a a a a ⇔<<<9151223218244a a a a a ⇔<-<+<-⇔<<.即所求a 的取值集合是91544M aa ⎧⎫=<<⎨⎬⎩⎭. (III )解法一:弦1n n A A +的斜率为1111n na a n n n n nn nb b eek a a a a ++++--==--任取0x ,设函数0()x xe ef x x x -=-,则0020()()()()xxxe x x e ef x x x ---=-记00()()()x x x g x e x x e e =---,则00()()()x x x xg x e x x e e e x x '=-+-=-,当0x x >时,()0g x '>,()g x 在0()x +∞,上为增函数, 当0x x <时,()0g x '<,()g x 在0()x -∞,上为减函数,所以0x x ≠时,0()()0g x g x >=,从而`()0f x '>,所以()f x 在0()x -∞,和0()x +∞,上都是增函数.由(II )知,a M ∈时,数列{}n a 单调递增, 取0n x a =,因为12n n n a a a ++<<,所以11n na a n n neek a a ++-=-22n na a n neea a ++-<-.取02n x a +=,因为12n n n a a a ++<<,所以12112n n a a n n n eek a a +++++-=-22nn a a n n eea a ++->-.1n n k k +<,即弦1()n n A A n +∈N *的斜率随n 单调递增.解法二:设函数11()n a xn e ef x x a ++-=-,同解法一得,()f x 在1()n a +-∞,和1()n a ++∞,上都是增函数, 所以111111lim nn n n n a a a xa n n an n n eee ek ea a x a +++-+++--=<=--→,211111211lim n n n n n a a a xa n n a n n n eee ek ea a x a ++++++++++--=>=--→.故1n n k k +<,即弦1()n n A A n +∈N *的斜率随n 单调递增.。
2007年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)
2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题目(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1B.﹣1C.2D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B 与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3B.4C.5D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题目(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题目(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1B.﹣1C.2D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g (x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3B.4C.5D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A (3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题目(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x 轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.参与本试卷答题和审题的老师有:wsj1012;qiss;wkqd;danbo7801;豫汝王世崇;minqi5;wdlxh;wdnah;涨停;zhwsd;yhx01248;sllwyn;zlzhan (排名不分先后)菁优网2017年2月4日祝福语祝你马到成功,万事顺意!。
2007年高考湖南卷(理科数学)
2007年普通高等学校招生全国统一考试理科数学(湖南卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数22()1i i+等于A .4iB .4i -C .2iD .2i -2.不等式201x x -≤+的解集是A .(1)(12]-∞--,,B .[12]-,C .(1)[2)-∞-+∞,,D .(12]-, 3.设M ,N 是两个集合,则“MN ≠∅”是“M N ≠∅”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.设a ,b 是非零向量,若函数()()()f x xa b a xb =+⋅-的图象是一条直线,则必有A .a b ⊥B .a b ∥C .a b =D .a b ≠ 5.设随机变量ξ服从标准正态分布(0,1)N ,已知( 1.96)0.025Φ-=,则(1.96)P ξ<A .0.025B .0.050C .0.950D .0.9756.函数2441()431x x f x x x x -≤⎧=⎨-+>⎩的图象和函数2()log g x x =的图象的交点个数是A .4B .3C .2D .17.下列四个命题中,不正确...的是 A .若函数()f x 在0x x =处连续,则0lim ()lim ()x x x x f x f x +-=→→B .函数22()4x f x x +=-的不连续点是2x =和2x =- C .若函数()f x 、()g x 满足lim[()()]0x f x g x ∞-=→,则lim ()lim ()x x f x g x ∞∞=→→D .111lim12x x =-→8.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为 A.2 B .1 C.12+ D9.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在P ,使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 10.设集合{1,2,3,4,5,6}M =,1S ,2S ,,k S 都是M 的含两个元素的子集,且满足:对任意的{,}i i i S a b =,{,}j j j S a b =(i j ≠,{1,2,3,,}i j k ∈、),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是A .10B .11C .12D .13 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.11.圆心为(11),且与直线4x y +=相切的圆的方程是 . 12.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若1a =,b =,c =则B = .13.函数3()12f x x x =-在区间[3,3]-上的最小值是 . 14.设集合{(,)|2}2A x y y x =≥-1,{(,)|}B x y y x b =≤-+,A B ≠∅. (1)b 的取值范围是 ;(2)若(,)x y A B ∈,且2x y +的最大值为9,则b 的值是 . 15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的01-三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 已知函数2()cos ()12f x x π=+,1()1sin 22g x x =+. (Ⅰ)设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (Ⅱ)求函数()()()h x f x g x =+的单调递增区间. 17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择 相互之间没有影响.(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.18.(本小题满分12分)如图2,E ,F 分别是矩形ABCD 的边AB ,CD 的中点,G 是EF 上的一点,将GAB ∆,GCD ∆分别沿AB ,CD 翻折成1G AB ∆,2G CD ∆,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图3. (Ⅰ)证明:平面1G AB ⊥平面12G ADG ;(Ⅱ)当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角.CAB EFD G 2G 119.(本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<<),且2sin 5θ=,点P 到平面α的距离0.4PH =(km ).沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为2a万元/km .当山坡上公路长度为l km (12l ≤≤)时,其造价为2(1)l a +万元.已知OA AB ⊥,PB AB ⊥, 1.5AB =km,OA =km .(Ⅰ)在AB 上求一点D ,使沿折线PDAO 修建公路的总造价最小;(Ⅱ)对于(Ⅰ)中得到的点D ,在DA 上求一点E ,使沿折线PDEO 修建公路的总造价最小.(Ⅲ)在AB 上是否存在两个不同的点D ',E ',使沿折线PD E O ''修建公路的 总造价小于(Ⅱ)中得到的最小总造价,证明你的结论.20.(本小题满分12分)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A ,B 两点.(Ⅰ)若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA CB ⋅为常数?若存在,求出点C 的坐标; 若不存在,请说明理由. 21.(本小题满分12分)已知()n n n A a b ,(n ∈N*)是曲线x y e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,2,3,4n =,…. (Ⅰ)证明:数列2{}n nb b +(2n ≤)是常数数列; αABOED P H(Ⅱ)确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (Ⅲ)证明:当a M ∈时,弦1n n A A +(n N *∈)的斜率随n 单调递增.。
2007年湖南省高考数学试卷(理科)及解析
2007年湖南省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)复数等于()A.4i B.﹣4i C.2i D.﹣2i2.(5分)不等式≤0的解集是()A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2]C.(﹣∞,﹣1)∪[2,+∞)D.(﹣1,2]3.(5分)设M,N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.(5分)设,都是非零向量,若函数f(x)=(x+)•(﹣x)(x∈R)是偶函数,则必有()A.⊥B.∥C.||=||D.||≠||5.(5分)设随机变量ξ服从标准正态分布N(0,1).已知Φ(﹣1.96)=0.025,则P(|ξ|<1.96)=()A.0.025 B.0.050 C.0.950 D.0.9756.(5分)函数的图象和函数g(x)=log2x的图象的交点个数是()A.4 B.3 C.2 D.17.(5分)下列四个命题中,不正确的是()A.若函数f(x)在x=x0处连续,则B.函数的不连续点是x=2和x=﹣2C.若函数f(x)、g(x)满足,则D.8.(5分)棱长为1的正方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()A.B.1 C.D.9.(5分)设F1,F2分别是椭圆(a>b>0)的左、右焦点,若在其右准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()A.B.C.D.10.(5分)设集合M={1,2,3,4,5,6},S1、S2、…、S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i、j∈{1,2,3,…,k}),都有min≠min(min{x,y}表示两个数x、y中的较小者).则k的最大值是()A.10 B.11 C.12 D.13二、填空题(共5小题,每小题5分,满分25分)11.(5分)圆心为(1,1)且与直线x+y=4相切的圆的方程是.12.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=,,则B=.13.(5分)函数f(x)=12x﹣x3在区间[﹣3,3]上的最小值是.14.(5分)设集合,B={(x,y)|y≤﹣|x|+b},A∩B ≠∅.(1)b的取值范围是;(2)若(x,y)∈A∩B,且x+2y的最大值为9,则b的值是.15.(5分)将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0﹣1三角数表、从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第行;第61行中1的个数是.第1行1 1第2行1 0 1第3行1 1 1 1第4行1 0 0 0 1第5行1 1 0 0 1 1…三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=cos2(x+),g(x)=1+sin2x.(1)设x0是函数y=f(x)的一个零点,求g(x0)的值;(2)求函数h(x)=f(x)+g(x)的单调递增区间.17.(12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.18.(12分)如图1,E,F分别是矩形ABCD的边AB,CD的中点,G是EF上的一点,将△GAB,△GCD分别沿AB,CD翻折成△G1AB,△G2CD,并连接G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD、连接BG2,如图2.(Ⅰ)证明:平面G1AB⊥平面G1ADG2;(Ⅱ)当AB=12,BC=25,EG=8时,求直线BG2和平面G1ADG2所成的角.19.(12分)如图,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用、从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km、当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元、已知OA⊥AB,PB⊥AB,AB=1.5(km),.(Ⅰ)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;(Ⅱ)对于(I)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小.(Ⅲ)在AB上是否存在两个不同的点D′,E′,使沿折线PD′E′O修建公路的总造价小于(Ⅱ)中得到的最小总造价,证明你的结论、20.(12分)已知双曲线x2﹣y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点.(Ⅰ)若动点M满足(其中O为坐标原点),求点M的轨迹方程;(Ⅱ)在x轴上是否存在定点C,使•为常数?若存在,求出点C的坐标;若不存在,请说明理由.21.(15分)已知A n(a n,b n)(n∈N*)是曲线y=e x上的点,a1=a,S n是数列{a n}的前n项和,且满足S n2=3n2a n+S n﹣12,a n≠0,n=2,3,4,….(1)证明:数列{}(n≥2)是常数数列;(2)确定a的取值集合M,使a∈M时,数列{a n}是单调递增数列;(3)证明:当a∈M时,弦A n A n+1(n∈N*)的斜率随n单调递增.2007年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•湖南)复数等于()A.4i B.﹣4i C.2i D.﹣2i【分析】化简分式,分子、分母分别平方,化简可得结果.【解答】解:.故选C.2.(5分)(2007•湖南)不等式≤0的解集是()A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2]C.(﹣∞,﹣1)∪[2,+∞)D.(﹣1,2]【分析】将“不等式≤0”转化为“不等式组”,有一元二次不等式的解法求解.【解答】解:依题意,不等式化为,解得﹣1<x≤2,故选D3.(5分)(2007•湖南)设M,N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【分析】由并集和交集的定义可知“M∩N”⊆“M∪N”,可选.【解答】解:由并集和交集的定义知M∩N≠∅⇒M∪N≠∅,反之不成立.故选B.4.(5分)(2007•湖南)设,都是非零向量,若函数f(x)=(x+)•(﹣x)(x∈R)是偶函数,则必有()A.⊥B.∥C.||=||D.||≠||【分析】先将函数f(x)的解析式进行化简得到关于x的二次函数,根据偶函数的定义可知一次项的系数为0,即可求得a与b的关系.【解答】解:f(x)=(x+)•(﹣x)=(﹣•)x2+(2﹣2)x+•∵f (x)为偶函数,∴f(﹣x)=f(x)恒成立,故2﹣2=0,即||2=||2,故||=||.故选C5.(5分)(2007•湖南)设随机变量ξ服从标准正态分布N(0,1).已知Φ(﹣1.96)=0.025,则P(|ξ|<1.96)=()A.0.025 B.0.050 C.0.950 D.0.975【分析】根据变量符合正态分布,且对称轴是x=0,得到P(|ξ|<1.96)=P(﹣1.96<ξ<1.96),应用所给的Φ(﹣1.96)=0.025,条件得到结果,本题也可以这样解根据曲线的对称轴是直线x=0,得到一系列对称关系,代入条件得到结果.【解答】解:解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(﹣1.96<ξ<1.96)=Φ(1.96)﹣Φ(﹣1.96)=1﹣2Φ(﹣1.96)=0.950解法二:因为曲线的对称轴是直线x=0,所以由图知P(ξ>1.96)=P(ξ≤﹣1.96)=Φ(﹣1.96)=0.025∴P(|ξ|<1.96)=1﹣0.25﹣0.25=0.950故选C6.(5分)(2007•湖南)函数的图象和函数g(x)=log2x的图象的交点个数是()A.4 B.3 C.2 D.1【分析】根据分段函数图象分段画的原则,结合一次函数、二次函数、对数函数图象的画出,我们在同一坐标系中画出函数的图象和函数g(x)=log2x的图象,数形结合即可得到答案.【解答】解:在同一坐标系中画出函数的图象和函数g(x)=log2x的图象如下图所示:由函数图象得,两个函数图象共有3个交点故选B7.(5分)(2007•湖南)下列四个命题中,不正确的是()A.若函数f(x)在x=x0处连续,则B.函数的不连续点是x=2和x=﹣2C.若函数f(x)、g(x)满足,则D.【分析】若函数f(x)、g(x)满足,则不一定成立,因为成立的前提是必须都存在.故C不正确.【解答】解:A、若函数f(x)在x=x0处连续,则f(x)在x=x0处有极限,所以,故A正确.B、函数的定义域是{x|x≠±2},所以它的不连续点是x=2和x=﹣2,故B正确.C、若函数f(x)、g(x)满足,则不一定成立,因为成立的前提是必须都存在.故C不正确.D、,故D正确.故选C.8.(5分)(2007•湖南)棱长为1的正方体ABCD﹣A1B1C1D1的8个顶点都在球O 的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()A.B.1 C.D.【分析】先求直径(正方体的体对角线),再求球心到EF的距离,然后解出直线EF被球O截得的线段长.【解答】解:正方体对角线为球直径,所以,在过点E、F、O的球的大圆中,由已知得d=,,所以EF=2r=.故选D.9.(5分)(2007•湖南)设F1,F2分别是椭圆(a>b>0)的左、右焦点,若在其右准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()A.B.C.D.【分析】根据题意,设P的坐标为,进而可得F1P的中点Q的坐标,结合题意,线段PF1的中垂线过点F2,可得y与b、c的关系,又由y2的范围,计算可得答案.【解答】解:由已知P,所以F1P的中点Q的坐标为,由.∴.当时,不存在,此时F2为中点,.综上得.故选D.10.(5分)(2007•湖南)设集合M={1,2,3,4,5,6},S1、S2、…、S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i、j∈{1,2,3,…,k}),都有min≠min(min{x,y}表示两个数x、y中的较小者).则k的最大值是()A.10 B.11 C.12 D.13【分析】根据题意,首先分析出M的所有含2个元素的子集数目,进而对其特殊的子集分析排除,注意对min≠min(min{x,y}表示两个数x、y中的较小者)的把握,即可得答案.【解答】解:根据题意,对于M,含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,故满足条件的两个元素的集合有11个;故选B.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2007•湖南)圆心为(1,1)且与直线x+y=4相切的圆的方程是(x ﹣1)2+(y﹣1)2=2.【分析】先求圆的半径,再求圆的标准方程.【解答】解:圆心到直线的距离就是圆的半径:r==.所以圆的标准方程:(x﹣1)2+(y﹣1)2=2故答案为:(x﹣1)2+(y﹣1)2=212.(5分)(2007•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=,,则B=.【分析】根据余弦定理可得b2=a2+c2﹣2accosB,求出cosB的值,利用特殊角的三角函数值求出B即可.【解答】解:由余弦定理得b2=a2+c2﹣2accosB,且a=1,b=,c=,所以cosB===﹣,得到B为钝角即B∈(,π),所以B=故答案为13.(5分)(2007•湖南)函数f(x)=12x﹣x3在区间[﹣3,3]上的最小值是﹣16.【分析】先对函数f(x)进行求导,然后令导函数等于0求出x的值,然后判断端点值和极值的大小进而得到最小值.【解答】解:∵f'(x)=12﹣3x2,∴f'(x)=0,得x=±2,∵f(﹣2)=﹣16,f(3)=9,f(﹣3)=﹣9,f(2)=6,∴f(x)min=f(﹣2)=﹣16.故答案为:﹣16.14.(5分)(2007•湖南)设集合,B={(x,y)|y≤﹣|x|+b},A∩B≠∅.(1)b的取值范围是[1,+∞);(2)若(x,y)∈A∩B,且x+2y的最大值为9,则b的值是.【分析】(1)分别作出集合A,B表示的平面区域,由图求出b的范围(2)由线性规划,在可行域内,给x+2y几何意义为直线的纵截距,使直线动起来,求出最值.【解答】解:(1)由图象可知b的取值范围是[1,+∞).(2)若(x,y)∈A∩B,令z=2y+x作直线z=2y+x,由图知当直线过(0,b)时,z最大所以0+2b=9,所以b=15.(5分)(2007•湖南)将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0﹣1三角数表、从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第2n﹣1行;第61行中1的个数是32.第1行1 1第2行1 0 1第3行1 1 1 1第4行1 0 0 0 1第5行1 1 0 0 1 1…【分析】本题考查的知识点是归纳推理,我们可以根据图中三角形是将杨辉三角中的奇数换成1,偶数换成0,结合杨辉三角我们易得到第1行,第3行,第7行,…全都是1,则归纳推断可得:第n次全行的数都为1的是第2n﹣1行;由此结论我们可得第63行共有64个1,逆推即可得到第61行中1的个数.【解答】解:由已知中的数据第1行 1 1第2行 1 0 1第3行 1 1 1 1第4行 1 0 0 0 1第5行 1 1 0 0 1 1…全行都为1的是第2n﹣1行;∵n=6⇒26﹣1=63,故第63行共有64个1,逆推知第62行共有32个1,第61行共有32个1.故答案为:2n﹣1,32三、解答题(共6小题,满分75分)16.(12分)(2007•湖南)已知函数f(x)=cos2(x+),g(x)=1+sin2x.(1)设x0是函数y=f(x)的一个零点,求g(x0)的值;(2)求函数h(x)=f(x)+g(x)的单调递增区间.【分析】(1)利用倍角公式可得函数f(x)=,由于x0是函数y=f (x)的一个零点,可得f(x0)=0,化为,即可得出2x0.进而得出g(x0).(2)利用倍角公式、两角和差的正弦公式及正弦函数的单调性即可得出.【解答】解:(1)函数f(x)=cos2(x+)=,∵x0是函数y=f(x)的一个零点,∴f(x0)==0,化为,∴,解得(k∈Z).∴===.(2)函数h(x)=f(x)+g(x)=cos2(x+)+1+sin2x=+1+sin2x=+sin2x==.由,解得(k∈Z).∴函数h(x)的单调递增区间为(k∈Z).17.(12分)(2007•湖南)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.【分析】(Ⅰ)由题意知该人参加过财会培训与该人参加过计算机培训相互独立,且P(A)=0.6,P(B)=0.75.解出任选1名下岗人员,该人没有参加过培训的概率,根据对立事件的概率做出该人参加过培训的概率.(Ⅱ)由题意知每个人的选择是相互独立的,3人中参加过培训的人数ξ服从二项分布B~(3,0.9),根据二项分布写出变量的分布列和期望.【解答】解:任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题设知,事件A与B相互独立,且P(A)=0.6,P(B)=0.75.(Ⅰ)任选1名下岗人员,该人没有参加过培训的概率是根据事件的对立事件得到该人参加过培训的概率是P2=1﹣P1=1﹣0.1=0.9.(Ⅱ)∵每个人的选择是相互独立的,∴3人中参加过培训的人数ξ服从二项分布B~(3,0.9),P(ξ=k)=C3k×0.9k ×0.13﹣k,k=0,1,2,3,即ξ的分布列是ξ0123P0.0010.0270.2430.729ξ的期望是Eξ=3×0.9=2.718.(12分)(2007•湖南)如图1,E,F分别是矩形ABCD的边AB,CD的中点,G是EF上的一点,将△GAB,△GCD分别沿AB,CD翻折成△G1AB,△G2CD,并连接G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD、连接BG2,如图2.(Ⅰ)证明:平面G1AB⊥平面G1ADG2;(Ⅱ)当AB=12,BC=25,EG=8时,求直线BG2和平面G1ADG2所成的角.【分析】(Ⅰ)由平面G1AB⊥平面ABCD,得G1E⊥平面ABCD,从而G1E⊥AD、又由AB⊥AD,得出AD⊥平面G1AB、从而证明平面G1AB⊥平面G1ADG2;(Ⅱ)由(Ⅰ)可知,G1E⊥平面ABCD、故可以建立以E为原点,分别以直线EB,EF,EG1为x轴、y轴、z轴空间直角坐标系,先求得各点的坐标,再求得向量的坐标,再由线面角的向量公式求解.【解答】(Ⅰ)证明:因为平面G1AB⊥平面ABCD,平面G1AB∩平面ABCD=AB,G1E⊥AB,G1E⊂平面G1AB,所以G1E⊥平面ABCD,从而G1E⊥AD、又AB⊥AD,所以AD⊥平面G1AB、因为AD⊂平面G1ADG2,所以平面G1AB⊥平面G1ADG2、(Ⅱ)解:由(Ⅰ)可知,G1E⊥平面ABCD、故可以E为原点,分别以直线EB,EF,EG1为x轴、y轴、z轴建立空间直角坐标系(如图),由题设AB=12,BC=25,EG=8,则EB=6,EF=25,EG1=8,相关各点的坐标分别是A(﹣6,0,0),D(﹣6,25,0),G1(0,0,8),B(6,0,0).所以,.设是平面G1ADG2的一个法向量,由得故可取.过点G2作G2O⊥平面ABCD于点O,因为G2C=G2D,所以OC=OD,于是点O在y轴上.因为G1G2∥AD,所以G1G2∥EF,G2O=G1E=8.设G2(0,m,8)(0<m<25),由172=82+(25﹣m)2,解得m=10,所以.设BG2和平面G1ADG2所成的角是θ,则.故直线BG2与平面G1ADG2所成的角是.19.(12分)(2007•湖南)如图,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用、从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km、当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元、已知OA⊥AB,PB⊥AB,AB=1.5(km),.(Ⅰ)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;(Ⅱ)对于(I)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小.(Ⅲ)在AB上是否存在两个不同的点D′,E′,使沿折线PD′E′O修建公路的总造价小于(Ⅱ)中得到的最小总造价,证明你的结论、【分析】对于(Ⅰ)在AB上求一点D,使沿折线PDAO修建公路的总造价最小.这是一个实际应用题,需要先把复杂的图形转化为清晰的几何图形,然后设BD=x (km).根据几何关系列出总造价为f1(x)的函数表达式,再根据配方法求出最小值即为所求.对于(Ⅱ)对于(Ⅰ)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小.设AE=y(km),,总造价为f2(y)万元,求出总造价的f2(y)的函数表达式,求出其导函数的方法,通过判断在区间上正负问题,讨论区间单调性.然后根据单调性求极值即可得到答案.【解答】解:(Ⅰ)如图,PH⊥α,HB⊂α,PB⊥AB,由三垂线定理逆定理知,AB⊥HB,所以∠PBH是山坡与α所成二面角的平面角,则∠PBH=θ,.设BD=x(km),0≤x≤1.5,则∈[1,2].记总造价为f1(x)万元,据题设有=当,即时,总造价f1(x)最小.(Ⅱ)设AE=y(km),,总造价为f2(y)万元,根据题设有=、则,由f2′(y)=0,得y=1.当y∈(0,1)时,f2′(y)<0,f2(y)在(0,1)内是减函数;当时,f2′(y)>0,f2(y)在内是增函数.故当y=1,即AE=1(km)时总造价f2(y)最小,且最小总造价为万元.20.(12分)(2007•湖南)已知双曲线x2﹣y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点.(Ⅰ)若动点M满足(其中O为坐标原点),求点M的轨迹方程;(Ⅱ)在x轴上是否存在定点C,使•为常数?若存在,求出点C的坐标;若不存在,请说明理由.【分析】(Ⅰ)先根据条件求出左、右焦点的坐标,并设A(x1,y1),B(x2,y2),M(x,y),然后表示出向量,,,,根据可得到x1,x2,x以及y1,y2,y的关系,即可表示出AB的中点坐标,然后分AB 不与x轴垂直和AB与x轴垂直两种情况进行讨论.(Ⅱ)假设在x轴上存在定点C(m,0),使为常数,当AB不与x轴垂直时,设出直线AB的方程,然后与双曲线方程联立消去y得到关于x的一元二次方程,进而可得到两根之和与两根之积,表示出向量•并将所求的两根之和与两根之积代入整理即可求出C的坐标;当AB与x轴垂直时可直接得到A,B 的坐标,再由=﹣1,可确定答案.【解答】解:由条件知F1(﹣2,0),F2(2,0),设A(x1,y1),B(x2,y2)(Ⅰ)设M(x,y),则,,,由,得,即,于是AB的中点坐标为,当AB不与x轴垂直时,,即,又因为A,B两点在双曲线上,所以x12﹣y12=2,x22﹣y22=2,两式相减得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),即(x1﹣x2)(x﹣4)=(y1﹣y2)y,将代入上式,化简得(x﹣6)2﹣y2=4,当AB与x轴垂直时,x1=x2=2,求得M(8,0),也满足上述方程,所以点M的轨迹方程是(x﹣6)2﹣y2=4.(Ⅱ)假设在x轴上存在定点C(m,0),使为常数,当AB不与x轴垂直时,设直线AB的方程是y=k(x﹣2)(k≠±1),代入x2﹣y2=2有(1﹣k2)x2+4k2x﹣(4k2+2)=0则x1,x2是上述方程的两个实根,所以,,于是=(k2+1)x1x2﹣(2k2+m)(x1+x2)+4k2+m2===.因为是与k无关的常数,所以4﹣4m=0,即m=1,此时=﹣1,当AB与x轴垂直时,点A,B的坐标可分别设为,,此时,故在x轴上存在定点C(1,0),使为常数.21.(15分)(2007•湖南)已知A n(a n,b n)(n∈N*)是曲线y=e x上的点,a1=a,S n是数列{a n}的前n项和,且满足S n2=3n2a n+S n﹣12,a n≠0,n=2,3,4,….(1)证明:数列{}(n≥2)是常数数列;(2)确定a的取值集合M,使a∈M时,数列{a n}是单调递增数列;(3)证明:当a∈M时,弦A n A n+1(n∈N*)的斜率随n单调递增.2=3n2a n,由此可得【分析】(Ⅰ)当n≥2时,由已知得S n2﹣S n﹣1,所以数列是常数数列.(Ⅱ)由题设条件可知a2=12﹣2a、a3+a2=15,a4+a3=21,所以a3=3+2a,a4=18﹣2a,数列{a2k}和{a2k+1}分别是以a2,a3为首项,6为公差的等差数列,所以a2k=a2+6 =a3+6(k﹣1),a2k+2=a4+6(k﹣1)(k∈N*),再由数列{a n}是单调(k﹣1),a2k+1递增数列能够推陈出a的取值集合.(Ⅲ)弦A n A n+1的斜率为,因为a n<a n+1<a n+2,所以.因为.所以k n<k n+1,即弦A n A n+1(n∈N*)的斜率随n单调递增.2=3n2a n,【解答】解:(Ⅰ)当n≥2时,由已知得S n2﹣S n﹣1因为a n=S n﹣S n﹣1≠0,所以S n+S n﹣1=3n2①,+S n=3(n+1)2②,于是S n+1+a n=6n+3③,由②﹣①得a n+1+a n+1=6n+9④,于是a n+2﹣a n=6⑤,由④﹣③得a n+2所以,即数列是常数数列.(Ⅱ)由①有S2+S1=12,所以a2=12﹣2a、由③有a3+a2=15,a4+a3=21,所以a3=3+2a,a4=18﹣2a.而⑤表明:数列{a2k}和{a2k+1}分别是以a2,a3为首项,6为公差的等差数列,所以a2k=a2+6(k﹣1),a2k+1=a3+6(k﹣1),a2k+2=a4+6(k﹣1)(k∈N*),数列{a n}是单调递增数列⇔a1<a2且a2k<a2k+1<a2k+2对任意的k∈N*成立.⇔a1<a2且a2+6(k﹣1)<a3+6(k﹣1)<a4+6(k﹣1)⇔a1<a2<a3<a4.即所求a的取值集合是.(Ⅲ)解:弦A n A n+1的斜率为,任取x0,设函数,则,记,则g'(x)=e x(x﹣x0)+e x﹣e x=e x(x﹣x0),当x>x0时,g'(x)>0,g(x)在(x0,+∞)上为增函数,当x<x0时,g'(x)<0,g(x)在(﹣∞,x0)上为减函数,所以x≠x0时,g(x)>g(x0)=0,从而f'(x)>0,所以f(x)在(﹣∞,x0)和(x0,+∞)上都是增函数.由(II)知,a∈M时,数列{a n}单调递增,取x0=a n,因为a n<a n+1<a n+2,所以.取x0=a n+2,因为a n<a n+1<a n+2,所以.所以k n<k n+1,即弦A n A n+1(n∈N*)的斜率随n单调递增.。
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数22i 1+i ⎛⎫⎪⎝⎭等于( )A .4iB .4i -C .2iD .2i -2.不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,,B .[12]-,C .(1)[2)-∞-+∞,, D .(12]-,3.设M N ,是两个集合,则“M N ≠∅”是“M N ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b5.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( ) A .0.025B .0.050C .0.950D .0.9756.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .1 7.下列四个命题中,不正确...的是( ) A .若函数()f x 在0x x =处连续,则0lim ()lim ()x x x x f x f x +-=→→B .函数22()4x f x x +=-的不连续点是2x =和2x =- C .若函数()f x ,()g x 满足lim[()()]0x f x g x ∞-=→,则lim ()lim ()x x f x g x ∞∞=→→D .111lim12x x x -=-→ 8.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .29.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .202⎛⎤ ⎥ ⎝⎦,B .303⎛⎤ ⎥⎝⎦,C .212⎡⎫⎪⎢⎪⎣⎭, D .313⎡⎫⎪⎢⎪⎣⎭, 10.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )A .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,则B = .13.函数3()12f x x x =-在区间[33]-,上的最小值是 .14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,(1)b 的取值范围是 ; (2)若()x y AB ∈,,且2x y +的最大值为9,则b 的值是 .15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ……………………………………… 图1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望. 18.(本小题满分12分)如图2,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图3.图2图3(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角. 19.(本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<<),且2sin 5θ=,点P 到平面α的距离0.4PH =(km ).沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为2a万元/km .当山坡上公路长度为l km(12l ≤≤)时,其造价为2(1)l a +万元.已知OA AB ⊥,PB AB ⊥, 1.5(km)AB =,3(km)OA =.1G2GD F CB AEA E BCF D G(I )在AB 上求一点D ,使沿折线PDAO 修建公路的总造价最小;(II ) 对于(I )中得到的点D ,在DA 上求一点E ,使沿折线PDEO 修建公路的总造价最小.(III )在AB 上是否存在两个不同的点D ',E ',使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价,证明你的结论.20.(本小题满分12分)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.(I )若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知()n n n A a b ,(n ∈N*)是曲线xy e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…. (I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列; (II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N*)的斜率随n 单调递增.2007年普通高等学校招生全国统一考试(湖南卷)OAEDBHP数学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-=12.5π6 13.16-14.(1)[1)+∞,(2)9215.21n -,32三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin 12644g x =+=+=. (II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦ 1π31313cos 2sin 2cos2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). 17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是21110.10.9P P =-=-=. 解法二:任选1名下岗人员,该人只参加过一项培训的概率是3()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是4()0.60.750.45P P A B ==⨯=. 所以该人参加过培训的概率是5340.450.450.9P P P =+=+=.(II )因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,,33()0.90.1k k k P k C ξ-==⨯⨯,0123k =,,,,即ξ的分布列是ξ 0 1 2 3 P0.0010.0270. 2430.729ξ的期望是10.02720.24330.729 2.7E ξ=⨯+⨯+⨯=.(或ξ的期望是30.9 2.7E ξ=⨯=)18.解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )过点B 作1BH AG ⊥于点H ,连结2G H . 由(I )的结论可知,BH ⊥平面12G ADG , 所以2BG H ∠是2BG 和平面12G ADG 所成的角. 因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥.1G2GDF CB AEOH因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形.由题设12AB =,25BC =,8EG =,则17GF =.所以218G O G E ==,217G F =,2217815OF =-=,1210G G EO ==.因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥.故222222221126810200BG BE EG G G =++=++=,2102BG =.又2216810AG =+=,由11BH AG G E AB =得81248105BH ⨯==. 故22481122sin 525102BH BG H BG ∠==⨯=. 即直线2BG 与平面12G ADG 所成的角是122arcsin25. 解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,, (6250)D -,,,1(008)G ,,,(600)B ,,. 所以(0250)AD =,,,1(608)AG =,,.设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,,. 过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上.1G 2GD FCB A EOxyz因为12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,,. 设2BG 和平面12G ADG 所成的角是θ,则2222222|2424|122sin 25610843BG n BG nθ--===+++. 故直线2BG 与平面12G ADG 所成的角是122arcsin25. 19.解:(I )如图,PH α⊥,HB α⊂,PB AB ⊥, 由三垂线定理逆定理知,AB HB ⊥,所以PBH ∠是 山坡与α所成二面角的平面角,则PBH θ∠=,1sin PH PB θ==.设(km)BD x =,0 1.5x ≤≤.则2221PD x PB x =+=+[12]∈,. 记总造价为1()f x 万元, 据题设有2211111()(1)(3)224f x PD AD AO a x x a =+++=-++ 21433416x a a ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭当14x =,即1(km)4BD =时,总造价1()f x 最小. (II )设(km)AE y =,504y ≤≤,总造价为2()f y 万元,根据题设有222131()13224f y PD y y a ⎡⎤⎛⎫=++++-- ⎪⎢⎥⎝⎭⎣⎦2433216y y a a ⎛⎫=+-+ ⎪⎝⎭.则()22123y f y a y ⎛⎫' ⎪=- ⎪+⎝⎭,由2()0f y '=,得1y =.当(01)y ∈,时,2()0f y '<,2()f y 在(01),内是减函数; 当514y ⎛⎫∈ ⎪⎝⎭,时,2()0f y '>,2()f y 在514⎛⎫ ⎪⎝⎭,内是增函数.αAOE DBHP故当1y =,即1AE =(km )时总造价2()f y 最小,且最小总造价为6716a 万元. (III )解法一:不存在这样的点D ',E '.事实上,在AB 上任取不同的两点D ',E '.为使总造价最小,E 显然不能位于D ' 与B 之间.故可设E '位于D '与A 之间,且BD '=1(km)x ,1(km)AE y '=,12302x y +≤≤,总造价为S 万元,则221111113224x y S x y a ⎛⎫=-++-+ ⎪⎝⎭.类似于(I )、(II )讨论知,2111216x x --≥,2113322y y +-≥,当且仅当114x =,11y =同时成立时,上述两个不等式等号同时成立,此时1(km)4BD '=,1(km)AE =,S 取得最小值6716a ,点D E '',分别与点D E ,重合,所以不存在这样的点 D E '',,使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价. 解法二:同解法一得221111113224x y S x y a ⎛⎫=-++-+ ⎪⎝⎭()()2221111111433334416x a y y y y a a ⎛⎫⎡⎤=-++-++++ ⎪⎢⎥⎣⎦⎝⎭22111114323(3)(3)416y y y y a a ⨯+-++⨯+≥ 6716a =. 当且仅当114x =且2211113(3)(3)y y y y +-++,即11114x y ==,同时成立时,S 取得最小值6716a ,以上同解法一.20.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)FM x y =+,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+=,,,,由1111FM F A F B FO =++得 121226x x x y y y +=++⎧⎨=+⎩,即12124x x x y y y +=-⎧⎨+=⎩, 于是AB 的中点坐标为422x y -⎛⎫⎪⎝⎭,.当AB 不与x 轴垂直时,121224822yy y y x x x x -==----,即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8yy y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点(0)C m ,,使CA CB 为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--.因为CA CB 是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,, 此时(12)(12)1CA CB =-=-,,. 故在x 轴上存在定点(10)C ,,使CA CB 为常数.解法二:(I )同解法一的(I )有12124x x x y y y+=-⎧⎨+=⎩,当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-. 21212244(4)411k k y y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭. 由①②③得22441k x k -=-.…………………………………………………④ 241k y k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,4x k y -=,将其代入⑤有 2222444(4)(4)(4)1x y x y y x x y y -⨯-==----.整理得22(6)4x y --=. 当0k =时,点M 的坐标为(40),,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.故点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点点(0)C m ,,使CA CB 为常数, 当AB 不与x 轴垂直时,由(I )有212241k x x k +=-,2122421k x x k +=-. 以上同解法一的(II ).21.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …… ①于是213(1)n n S S n ++=+. ……②由②-①得163n n a a n ++=+. …… ③ 于是2169n n a a n +++=+. …… ④由④-③得26n n a a +-=, …… ⑤ 所以2262n n n n a a a n a n b e e e b e ++-+===,即数列2(2)n n b n b +⎧⎫⎨⎬⎩⎭≥是常数数列. (II )由①有2112S S +=,所以2122a a =-.由③有3215a a +=,4321a a +=,所以332a a =+,4182a a =-.而 ⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列, 所以226(1)k a a k =+-,2136(1)k a a k +=+-,2246(1)()k a a k k +=+-∈N*, 数列{}n a 是单调递增数列12a a ⇔<且22122k k k a a a ++<<对任意的k ∈N*成立. 12a a ⇔<且2346(1)6(1)6(1)a k a k a k +-<+-<+-1234a a a a ⇔<<<9151223218244a a a a a ⇔<-<+<-⇔<<. 即所求a 的取值集合是91544M a a ⎧⎫=<<⎨⎬⎩⎭. (III )解法一:弦1n n A A +的斜率为1111n na a n n n n n n nb b e e k a a a a ++++--==-- 任取0x ,设函数0()x x e e f x x x -=-,则0020()()()()x x x e x x e e f x x x ---=- 记00()()()xx x g x e x x e e =---,则00()()()x x x x g x e x x e e e x x '=-+-=-, 当0x x >时,()0g x '>,()g x 在0()x +∞,上为增函数, 当0x x <时,()0g x '<,()g x 在0()x -∞,上为减函数,所以0x x ≠时,0()()0g x g x >=,从而`()0f x '>,所以()f x 在0()x -∞,和0()x +∞,上都是增函数.由(II )知,a M ∈时,数列{}n a 单调递增,取0n x a =,因为12n n n a a a ++<<,所以11n n a a n n ne e k a a ++-=-22n na a n n e e a a ++-<-. 取02n x a +=,因为12n n n a a a ++<<,所以12112n n a a n n n e e k a a +++++-=-22n n a a n n e e a a ++->-.所以1n n k k +<,即弦1()n n A A n +∈N*的斜率随n 单调递增. 解法二:设函数11()n a x n e e f x x a ++-=-,同解法一得,()f x 在1()n a +-∞,和1()n a ++∞,上都是增函数, 所以111111lim n n n n n a a a x a n n a n n n e e e e k e a a x a +++-+++--=<=--→,211111211lim n n n n n a a a x a n n a n n n e e e e k e a a x a ++++++++++--=>=--→. 故1n n k k +<,即弦1()n n A A n +∈N*的斜率随n 单调递增.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数22i 1+i ⎛⎫⎪⎝⎭等于( )A .4iB .4i -C .2iD .2i -2.不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-,3.设M N ,是两个集合,则“M N =∅”是“M N ≠∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件4.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b5.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.9756.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .17.下列四个命题中,不正确...的是( ) A .若函数()f x 在0x x =处连续,则0lim ()lim ()x x x x f x f x +-=→→B .函数22()4x f x x +=-的不连续点是2x =和2x =- C .若函数()f x ,()g x 满足lim[()()]0x f x g x ∞-=→,则lim ()lim ()x x f x g x ∞∞=→→D.112x =→8.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( ) AB .1C.1 D9.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A .02⎛ ⎝⎦,B .03⎛ ⎝⎦,C.12⎫⎪⎪⎣⎭ D.13⎫⎪⎪⎣⎭10.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )A .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b,c =则B = .13.函数3()12f x x x =-在区间[33]-,上的最小值是 .14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,(1)b 的取值范围是 ;(2)若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ……………………………………… 图1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.18.(本小题满分12分)如图2,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图3.图2 图3(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角. 19.(本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<<),且2sin 5θ=,点P 到平面α的距离0.4PH =(km ).沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为2a万元/km .当山坡上公路长度为l km (12l ≤≤)时,其造价为2(1)l a +万元.已知OA AB ⊥,PB AB ⊥, 1.5(km)AB =,OA =. (I )在AB 上求一点D ,使沿折线PDAO 修建公路的总造价最小;(II ) 对于(I )中得到的点D ,在DA 上求一点E ,使沿折线PDEO 修建公路的总造价最小. (III )在AB 上是否存在两个不同的点D ',E ',使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价,证明你的结论.20.(本小题满分12分)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.(I )若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由.21.(本小题满分13分)已知()n n n A a b ,(n ∈N*)是曲线xy e =上的点,1a a =,n S 是数列{}n aOAEDBHP1G 2GDF CBAE的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…. (I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列; (II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N*)的斜率随n 单调递增.2007年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-=12.5π6 13.16-14.(1)[1)+∞,(2)9215.21n-,32三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭,当k 为奇数时,01π15()1sin 12644g x =+=+=.(II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2cos2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭ 1π3sin 2232x ⎛⎫=++ ⎪⎝⎭.当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). 17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =.(I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯= 所以该人参加过培训的概率是21110.10.9P P =-=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是3()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是4()0.60.750.45P P A B ==⨯=. 所以该人参加过培训的概率是5340.450.450.9P P P =+=+=.(II )因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,,3()0.90.1k k k P k C ξ-==⨯⨯,0123k =,,,,即ξ的分布列是(或ξ的期望是30.9 2.7E ξ=⨯=) 18.解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB 平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )过点B 作1BH AG ⊥于点H ,连结2G H .由(I )的结论可知,BH ⊥平面12G ADG , 所以2BG H ∠是2BG 和平面12G ADG 所成的角.因为平面1G AB ⊥平面ABCD ,平面1G AB 平面ABCDAB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥. 因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形.由题设12AB =,25BC =,8EG =,则17GF =.所以218G O G E ==,217G F =, 15OF ==,1210G G EO ==.因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥.故222222221126810200BG BE EG G G =++=++=,2BG =.又110AG ==,由11BH AG G E AB =得81248105BH ⨯==. 故2248sin 5BH BG H BG ∠===1G 2G DF C BA E OH即直线2BG 与平面12G ADG所成的角是arcsin25. 解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB 平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,(6250)D -,,,1(008)G ,,,(600)B ,,. 所以(0250)AD =,,,1(608)AG =,,.设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,,. 过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上.因为12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,,. 设2BG 和平面12G ADG 所成的角是θ,则2222222sin 610843BG n BG nθ===+++ 故直线2BG 与平面12G ADG 所成的角是arcsin 25. 19.解:(I )如图,PH α⊥,HB α⊂,PB AB ⊥, 由三垂线定理逆定理知,AB HB ⊥,所以PBH ∠是山坡与α所成二面角的平面角,则PBH θ∠=,1sin PH PB θ==.设(km)BD x =,0 1.5x ≤≤.则PD =[12]∈,. 记总造价为1()f x 万元,据题设有2211111()(1)(224f x PD AD AO a x x a =+++=-+2143416x a a ⎛⎫⎛=-+ ⎪ ⎝⎭⎝当14x =,即1(km)4BD =时,总造价1()f x 最小.(II )设(km)AE y =,504y ≤≤,总造价为2()f y 万元,根据题设有yα AOE DBHP22131()1224f y PD y a ⎡⎤⎛⎫=+-- ⎪⎢⎥⎝⎭⎣⎦43216y a a ⎫=+⎪⎭.则()212f y a ⎛⎫'⎪=⎪⎭,由2()0f y '=,得1y =. 当(01)y ∈,时,2()0f y '<,2()f y 在(01),内是减函数;当514y ⎛⎫∈ ⎪⎝⎭,时,2()0f y '>,2()f y 在514⎛⎫ ⎪⎝⎭,内是增函数. 故当1y =,即1AE =(km )时总造价2()f y 最小,且最小总造价为6716a 万元. (III )解法一:不存在这样的点D ',E '.事实上,在AB 上任取不同的两点D ',E '.为使总造价最小,E 显然不能位于D ' 与B 之间.故可设E '位于D '与A 之间,且BD '=1(km)x ,1(km)AE y '=,12302x y +≤≤,总造价为S 万元,则211111224x y S x a ⎛⎫=-++ ⎪⎝⎭.类似于(I )、(II )讨论知,2111216x x --≥1322y ≥,当且仅当114x =,11y =同时成立时,上述两个不等式等号同时成立,此时1(km)4BD '=,1(km)AE =,S 取得最小值6716a ,点D E '',分别与点D E ,重合,所以不存在这样的点 D E '',,使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价.解法二:同解法一得211111224x y S x a ⎛⎫=-++ ⎪⎝⎭))2111114334416x a y y a a ⎛⎫⎡⎤=-+++ ⎪⎢⎥⎣⎦⎝⎭143416a a ⨯+≥ 6716a =. 当且仅当114x =且11)y y ,即11114x y ==,同时成立时,S 取得最小值6716a ,以上同解法一. 20.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)FM x y =+,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+=,,,,由1111FM F A F B FO =++得 121226x x x y y y +=++⎧⎨=+⎩,即12124x x x y y y+=-⎧⎨+=⎩, 于是AB 的中点坐标为422x y -⎛⎫⎪⎝⎭,.当AB 不与x 轴垂直时,121224822yy y y x x x x -==----,即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得 12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8yy y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.所以点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点(0)C m ,,使CA CB 为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+-- 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA CB 是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,, 此时(12)(12)1CA CB =-=-,,. 故在x 轴上存在定点(10)C ,,使CA CB 为常数.解法二:(I )同解法一的(I )有12124x x x y y y+=-⎧⎨+=⎩,当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-.21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.由①②③得22441k x k -=-.…………………………………………………④241ky k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,4x k y-=,将其代入⑤有2222444(4)(4)(4)1x y x y y x x yy -⨯-==----.整理得22(6)4x y --=. 当0k =时,点M 的坐标为(40),,满足上述方程. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.故点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点点(0)C m ,,使CA CB 为常数,当AB 不与x 轴垂直时,由(I )有212241k x x k +=-,2122421k x x k +=-.以上同解法一的(II ).21.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …… ① 于是213(1)n n S S n ++=+. ……②由②-①得163n n a a n ++=+. …… ③ 于是2169n n a a n +++=+. …… ④ 由④-③得26n n a a +-=, …… ⑤所以2262n n n n a a a n a n b e e e b e ++-+===,即数列2(2)n n b n b +⎧⎫⎨⎬⎩⎭≥是常数数列.(II )由①有2112S S +=,所以2122a a =-.由③有3215a a +=,4321a a +=,所以332a a =+,4182a a =-.而 ⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列, 所以226(1)k a a k =+-,2136(1)k a a k +=+-,2246(1)()k a a k k +=+-∈N*, 数列{}n a 是单调递增数列12a a ⇔<且22122k k k a a a ++<<对任意的k ∈N*成立. 12a a ⇔<且2346(1)6(1)6(1)a k a k a k +-<+-<+-1234a a a a ⇔<<<9151223218244a a a a a ⇔<-<+<-⇔<<.即所求a 的取值集合是91544M a a ⎧⎫=<<⎨⎬⎩⎭.(III )解法一:弦1n n A A +的斜率为1111n na a n n n n n n nb b e e k a a a a ++++--==-- 任取0x ,设函数00()x x e e f x x x -=-,则0020()()()()x x x e x x e e f x x x ---=-记00()()()x x x g x e x x e e =---,则00()()()x x x xg x e x x e e e x x '=-+-=-,当0x x >时,()0g x '>,()g x 在0()x +∞,上为增函数, 当0x x <时,()0g x '<,()g x 在0()x -∞,上为减函数,所以0x x ≠时,0()()0g x g x >=,从而`()0f x '>,所以()f x 在0()x -∞,和0()x +∞,上都是增函数.由(II )知,a M ∈时,数列{}n a 单调递增,取0n x a =,因为12n n n a a a ++<<,所以11n n a a n n n e e k a a ++-=-22n na a n n e e a a ++-<-. 取02n x a +=,因为12n n n a a a ++<<,所以12112n n a a n n n e e k a a +++++-=-22n n a a n n e e a a ++->-. 所以1n n k k +<,即弦1()n n A A n +∈N*的斜率随n 单调递增.解法二:设函数11()n a x n e e f x x a ++-=-,同解法一得,()f x 在1()n a +-∞,和1()n a ++∞,上都是增函数, 所以111111lim n n n n n a a a x a n n a n n n e e e e k e a a x a +++-+++--=<=--→,211111211lim n n n n n a a a x a n n a n n n e e e e k e a a x a ++++++++++--=>=--→. 故1n n k k +<,即弦1()n n A A n +∈N*的斜率随n 单调递增.。