DSP主控板硬件设计

合集下载

DSP 课件 第十章 硬件设计基础

DSP 课件 第十章 硬件设计基础
DSP 课件 第十章 硬件设 计基础
DSP课件第十章:硬件设计基础
一、引言
硬件设计在数字信号处理中的重要性不可忽视。本节介绍硬件设计流程与方 法。
二、设计规范
PCB设计规范
了解常用的PCB设计规范,确保电路布线的稳定性和可靠性。
元器件选型规范
选择合适的元器件,满足性能和可靠性要求。
焊接工艺规范
掌握良好的焊接工艺,确保焊接质量。
三、高速信号传输
信号完整性原则
了解保持信号完整性的原则, 减少信号损耗和干扰。
高速信号线设计
掌握高速信号线的布局和终端 匹配等技术。
双层和多层布局设计
学习双层和多层布局设计技巧, 提高信号传输性能。
四、模拟电路设计
1 模拟电路设计基础
了解模拟电路设计的基本 原理和方法。
2 运放和比较器设计
学习运放和比较器的设计 及应用。
3
接口电路设计
掌握接口电路设计技巧,实现稳定的数据传输。
七、设计案例分析
声卡设计案例
通过声卡设计案例,展示硬件设 计的实际应用。
DSP处理器板设计案例
通过DSP处理器板设计案例,展 示硬件设计的复杂性。
音频放大器设计案例
通过音频放大器设计案例,展示 硬件设计的创新性。
八、总结
硬件设计在数字信号处理中的重要性再次强调。通过本章的学习,我们获得 了宝贵的知识,并展望了未来的发展。 以上是本滤波器的设计原理和 实现方法。
五、数模转换
AD转换原理
深入了解AD转换器的原理和应 用。
DA转换原理
学习DA转换器的工作原理和使 用场景。
数模电路设计
掌握数模电路的设计方法,提 高转换精度。
六、板级其他设计

dsp硬件系统设计

dsp硬件系统设计
总线驱动电路:

LF240x/240xA DSP数据总线驱动能力为4mA,地址总线 驱动能力为2mA。在总线负载较重的情况下,应使用 总线缓冲器增强驱动能力。
总线驱动电路
74LVTH245驱 动能力可达32mA
八、总线驱动及I/O接口电路扩充设计
I/O接口电路扩充设计: 方法: 1、采用TTL电路或CMOS电路的三态缓冲器、触发器和 锁存器等构成简单I/O口 2、采用通用I/O集成芯片或可编程逻辑器件构成外部I/O 口 在进行简单设计时,应遵循“输入三态、输出锁存”与 总线相连的设计原则,即输入口可使用三态缓冲器或 带有三态输出的锁存器,而输出口只能使用锁存器, 否则将无法保留所送信号。
1频率2信号电平3时钟的沿特性4驱动能力5采用有源晶振还是无源晶振用户布线时应确保由时钟走线芯片以及旁路电容组成的回路区域尽可能地小时钟走线尽可能地短且直以减少电磁干扰同时避免高频噪声的干扰复位电路设计tms320lf240x240xa系列dsp为低电平复位tms320lf2407a内部带有复位电路因此可以直接在rs复位引脚外面接一个10k的上拉电阻
十、DSP与A/D、D/A的接口
3、电平问题 4、原理图设计 5、设计印制电路板图(PCB)
二、3.3V和5V混合逻辑系统设计
1、各种电平转换标准
二、3.3V和5V混合逻辑系统设计
2、3.3V和5V器件接口的四种情况
三、电源转换电路设计
TMS320LF240x/240xA系列DSP为低功耗系列,所有引脚 中除VCCP引脚在对Flash编程时接5V电压外,其他供 电电源引脚供电电压均为3.3V。这些供电电源分成三部 分: 1、PLL供电电压PLLVccA 2、ADC模块模拟供电电压VccA 3、数字逻辑和I/O缓冲器电源电压VDD/VDD0 模拟电压与数字电压要分开供电,模拟地与数字地也要分 开,

(DSP处理器原理与应用)第9章DSP系统硬件设计

(DSP处理器原理与应用)第9章DSP系统硬件设计
(DSP处理器原理与应用) 第9章DSP系统硬件设计
本章将介绍DSP处理器硬件设计的基本概念,包括DSP芯片的特点和功能, DSP硬件系统的架构设计,和DSP芯片的初始设置和配置。
模块化设计与DSP硬件系统
设计原则
模块化设计提高可维护性和可重用性,减少错误和开发时间。
案例研究
通过实际案例分析模块化设计在DSP系统中的应用和优势。
最佳实践
探讨如何合理划分模块并实现模块之间的通信和数据传输。
DSP系统时钟与定时器设计
1 时钟源选择
讨论选择合适的时钟源以满足DSP系统的时序和性能要求。
2 时钟稳定性
详解外部时钟源的频率和稳定性的要求以及如何保证。
3 定时器设计
介绍DSP系统中定时器的功能和设计方法。
强大的DSP输入/输出接口
功率分配
讨论如何合理分配和管理DSP系 统中的功率。
2
存储器容量和速度
讨论如何根据DSP系统的需求,选择合适的存储器容量和速度。
3
存储器优化
提供存储器布局和访问优化的技巧和方法。
外设接口设计与优化
串行接口
• I2C • SPI • UART
并行接口
• GPIO • PCI • ISA
高速接口
• USB • Ethernet • HDMI
中断系统的设计与实现
输入接口设计
深入探Байду номын сангаасDSP系统输入接口的设 计原则和常见的输入接口类型。
输出接口设计
讨论DSP系统输出接口的设计方 案和常用的输出接口类型。
显示接口设计
介绍DSP系统显示接口的设计要 求和实现方法。
高效的DSP存储器设计
1

DSP硬件系统的设计

DSP硬件系统的设计

DSP硬件系统的设计DSP(数字信号处理器)硬件系统是一种专门用于处理数字信号的处理器。

它可以用于各种应用领域,如音频和视频处理、通信系统、雷达和成像系统等。

在设计DSP硬件系统时,需要考虑多个因素,包括性能要求、功耗、实时性和扩展性等。

本文将详细介绍DSP硬件系统的设计过程。

首先,在DSP硬件系统的设计中,需要明确系统的性能要求。

这包括数据处理速度、存储器大小、输入输出接口等方面。

性能要求将直接影响到硬件设计的复杂度和成本。

因此,需要仔细分析系统的应用场景和所需功能,确保所设计的硬件系统能够满足性能要求。

其次,需要选择适合的DSP芯片。

市面上有许多不同的DSP芯片,每个芯片都有其独特的特性和性能。

在选择DSP芯片时,需要考虑芯片的性能指标(如时钟速度、处理能力),软件开发工具的可用性,以及芯片的功耗等因素。

此外,还需要考虑芯片的成本和可扩展性,以确保所选芯片能够满足系统的需求。

在DSP硬件系统的设计中,关键部分是处理器核心和存储器子系统。

处理器核心是执行DSP算法的主要组成部分,它负责进行定点或浮点数的运算和处理。

存储器子系统包括程序存储器、数据存储器和缓存等,用于存储数据和程序指令。

在设计处理器核心和存储器子系统时,需要考虑其性能和可靠性。

此外,还需要设计适当的输入输出接口。

输入输出接口是连接DSP硬件系统与其他外围设备的通道,它包括模数转换器(ADC)和数模转换器(DAC)等。

在设计输入输出接口时,需要考虑系统的数据传输速率、精度和稳定性等因素。

为了提高DSP硬件系统的性能,还可以采用并行处理的方法。

并行处理可以通过增加处理器核心的数量来提高系统的并行计算能力。

此外,还可以通过使用硬件加速器和协处理器等技术来提高系统的处理能力。

最后,在设计DSP硬件系统时,还需要考虑功耗和实时性。

功耗是指系统所消耗的电能,它直接影响到系统的使用成本和散热问题。

实时性是指系统对输入信号的响应时间,在一些应用领域(如通信系统)中非常重要。

继电保护装置DSP模块软硬件设计与实现

继电保护装置DSP模块软硬件设计与实现

继电保护装置DSP模块软硬件设计与实现在平台化的继电保护装置设计中,一般区分为主控模块和监控模块两部分。

主控模件完成模数转换、数字信号处理、保护算法运算、定值存储、故障录波以及事件报告等功能;基于MPC8255微控制器、TMS320VC33 DSP和高速16bitA/D 转换器,以及利用通信总线扩展输入输出的系统构架。

其中DSP模块以TMS320VC33 DSP为中心,完成数字信号采集以及大部分的数学计算工作,。

DSP模块设计与实现包括4个部分:硬件实现、软件实现、DSP与CPU之间的通讯以及主机箱与扩展机箱之间的同步。

1、硬件设计与实现DSP模块总体硬件框架如图1所示。

图1 DSP模块总体硬件框架DSP模块以DSP芯片为中心,通过多路转换开关以及ADC芯片完成模数转换;外部扩展RAM;同时通过DPRAM与CPU交换信息。

因ADC只能对多路模拟信号逐一进行转换,因此ADC前端放置多路开关,多路开关由DSP控制,以大约2us的时间间隔在模拟通道之间进行切换;同时为了满足小于40路的多路模拟通道输入信号,使用了多块A/D芯片,由DSP对A/D 芯片进行片选;为了满足多于40路的多路模拟通道输入信号,采取采用扩展机箱的方式输入信号,在扩展机箱中对多于40路的模拟信号进行处理;因此本DSP 模块涉及主机箱和扩展机箱之间采样同步的问题。

DSP芯片内部RAM大小为34K字,空间有限,外部扩展32K字的RAM存储器,使得总的RAM存储空间达到66K字,264K字节。

DSP与CPU之间使用双口RAM交换数据。

双口RAM大小为4K字,16K字节,最高的两个字地址用于传送消息中断的邮箱,在DSP芯片的地址空间里,0xFFF 作为右端口的邮箱,0xFFE作为左端口的邮箱。

当一个端口向另一个端口的邮箱写入数据,则在邮箱的响应端口产生一个外部中断,相应端口通过读取邮箱里的内容复位中断。

送进来的模拟信号为经过二阶RC抗混迭滤波电路滤波的信号,以滤除高于截止频率的高频信号,在本DSP模块中,截止频率取约为300Hz。

dsp硬件设计课程设计

dsp硬件设计课程设计

dsp硬件设计课程设计一、教学目标本课程的教学目标是使学生掌握DSP硬件设计的基本原理和方法,培养学生进行DSP硬件系统设计和实现的能力。

具体目标如下:1.掌握DSP芯片的基本结构和原理。

2.了解DSP硬件设计的基本流程和步骤。

3.熟悉DSP系统的硬件架构和关键模块。

4.能够使用DSP芯片进行硬件系统设计。

5.能够进行DSP系统的硬件调试和验证。

6.能够分析和解决DSP硬件设计中遇到的问题。

情感态度价值观目标:1.培养学生的创新意识和团队合作精神。

2.培养学生对DSP硬件设计的兴趣和热情。

3.培养学生对科技发展的关注和对工程实践的重视。

二、教学内容本课程的教学内容主要包括以下几个部分:1.DSP芯片的基本结构和原理:介绍DSP芯片的内部结构、工作原理和特性。

2.DSP硬件设计的基本流程和步骤:讲解DSP硬件设计的过程,包括需求分析、硬件架构设计、硬件电路设计、硬件调试和验证等。

3.DSP系统的硬件架构和关键模块:介绍DSP系统的硬件架构,包括中央处理单元、存储器、输入输出接口等关键模块。

4.DSP硬件设计的实践案例:通过实际案例分析,使学生掌握DSP硬件设计的方法和技巧。

三、教学方法本课程的教学方法将采用多种教学手段相结合的方式,以激发学生的学习兴趣和主动性。

1.讲授法:通过教师的讲解,使学生掌握DSP硬件设计的基本原理和方法。

2.讨论法:通过分组讨论和实践案例的分析,培养学生的思考能力和团队合作精神。

3.实验法:通过实验操作,使学生熟悉DSP硬件设计的实践过程和技巧。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。

1.教材:选择适合本课程的教材,为学生提供系统的学习资料。

2.参考书:提供相关的参考书籍,为学生提供更多的学习资源。

3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示教学内容。

4.实验设备:提供DSP实验板和相关的实验设备,为学生提供实践操作的机会。

五、教学评估本课程的教学评估将采用多元化评估方式,全面客观地评价学生的学习成果。

dsp第5章 DSP系统的硬件设计

dsp第5章 DSP系统的硬件设计

2013年8月15日4时2分
5.1.3复位电路
有3种复位方式:上电复位、手动复位和软 件复位。软件复位可通过软件指令来实现,上电 复位和手动复位可使用复位电路实现。 在实际的DSP应用系统中,系统的可靠性是 一个非常重要的问题。由于DSP系统的时钟频率 很高,使得系统很容易对外产生干扰或被干扰, 导致程序运行跑飞。除了在系统软件上采取一定 的保护措施之外,在硬件上常用的方法是使用具 有看门狗( Watchdog)监视功能的微处理器监控 电路。
2013年8月15日4时2分
其工作原理是:看门狗芯片和CPU的一个I/O 引脚相连,该I/O引脚通过程序控制它定时地往看 门狗的这个引脚上送入高电平(或低电平),这一程 序语句是分散地放在整个程序的其他控制语句中 间的,一旦CPU由于干扰造成程序跑飞后而陷 入某一程序段 进入死循环状态时,写看门狗引脚 的程序便不能被执行,这个时候,看门狗电路就会 由于得不到CPU送来的信号,就给CPU一个复位 信号,让程序从程序存储器的起始位置开始执行, 这样便实现了微机系统的自动复位。 分硬件看门狗和软件看门狗两种。
2013年8月15日4时2分
当DSP系统中需要多个时钟信号时, 推荐使用可编程的时钟电路芯片。 可编程时钟芯片有1个或多个PLL 锁相环,能够提供多个可配置的时钟 输出CLKA、CLKB和CLKC。配置系 数存储在EEPROM中,输出时钟可从 PLL或从选择的分频器产生。时钟信号 电平一般为5V或3.3V。 例如CY2071A和CY22381
2013年8月15日4时2分
常见的外部RAM分为静态存储器SRAM和 动态存储器DRAM。常规的静态RAM存储器, 例如62256、62512等,由于其工作电源一般为 5V,接口为CMOS电平,数据总线的接口为8位, 访问速度也不能适应DSP的运行速度,所以不推 荐使用。54xx系列DSP扩展外部RAM存储器时 同样要考虑几个方面的问题:存储器的电源、存 储器的I/O接口电平、DSP与存储器之间的数据 总线的接口、地址总线的接口及控制总线的接口。

2020年dsp硬件电路的设计精品版

2020年dsp硬件电路的设计精品版

5 DSP控制及硬件电路的设计5.1 DSP控制目前市面上流行的主控制器包括:51单片机系列、DSP系列和FPGA。

在这中间:虽然51单片机有着成本低廉,体积小的优势;但因其计算能力弱,和外设较少的缺陷,无法满足本系统的需要。

FPGA又称现场可编程门阵列,其时序脉冲准确,运算速度快,在需要进行大量重复运算的工程项目中得到了广泛应用。

但FPGA以并行运算为主,并需要使用硬件描述语言(verilog 或VHDL)来实现电路设计,相比较单片机有很大不同,这造成开发难度较大,门槛较高。

DSP是近几年得到快速发展的控制器,其外设丰富,运算速度快,能满足实时性要求较高的工业现场;尤其适用于控制算法复杂,计算量大的工程项目。

综合以上分析,本文矿用光伏供电系统选择DSP芯片TMS320LF2407作为最终的控制芯片。

TMS320LF2407芯片集成度高,运算速度快,外设丰富,价格适中,作为本设计的控制器,拥有其他芯片所不具备的优势。

5.1.1 TMS320LF2407的技术参数(1)TMS320LF2407供电电压为3.3V,供电电压低,通态损耗小。

最高工作频率40MHZ,指令周期短,指令周期为25ns,能够满足较大载波频率时的计算需求,具备实时控制能力。

(2)TMS320LF2407拥有丰富的存储器资源:包括32K字程序闪存空间, 1.5K字的数据/程序随机存储器,544字的双口随机存储器和2k字的单口RAM。

除此之外,TMS320LF2407片内还集成有64K数据存储器空间以及64K程序存储器空间; 其I/O 寻址空间达64K,能有效满足使用需要; TMS320LF2407可用于扩展的外部存储器达到192K字。

(3)TMS320LF2407拥有两个事件管理器模块EV A和EVB。

每个事件管理器模块上均集成有以下资源:两个16位通用定时器(通过倍频器可以达到很高的工作频率)和8个16位PWM 波生成通道; 为检测上升下降脉冲,片上集成有3个捕获单元。

DSP系统硬件设计

DSP系统硬件设计

A0~A16
MSTRB
16245电平转换实际连接图
DSP存储器及I/O扩展
数据运算量大,存储容量要求高的系统 DSP芯片本身存储及I/O资源有限 需要进行存储器和I/O扩展

了解DSP片上存储资源和I/O空间资源 根据实际应用需求进行扩展
ROM和RAM ROM:EPROM、EEPROM(E2PROM)、FLASH RAM:SRAM、DRAM和SDRAM、DDR RAM…

依据选定的扩展存储器读写时序,确定DSP 访问时的逻辑控制时序
读写
片选
程序存储器工作方式

读操作
程序存储器的内容在通常情况下不能改写; 片选和输出使能信号同时有效时,地址线所选中
的地址单元内容出现在数据总线

维持操作
片选无效时,处于维持状态:地址和数据线为高
阻状态,存储器相当于悬空
其中
IOH: 输出高电平电流;
IOL: 输出低电平电流; IIH: 输入高电平电流; IIL: 输入低电平电流; VOH: 输出高电平下限电压; VOL: 输出低电平上限电压; VIH: 输入高电平下限电压; VIL: 输入低电平上限电压;
3.3v与5v接口的四种形式

⑴ 5v TLL器件驱动3.3v TTL器件
H/TOUT
HOLDA MSTRB
IOSTRB READY
N C
CIN/X2 TOUT0
BFSX0 BFSR0
HOLD EMU0 8 0
BDX0 BDR0 TRST
N C
MSC TDO
TMS TCK R/W IAQ
TDI
D X P
I
S S
S 1
VC5402

DSP原理与应用——硬件设计

DSP原理与应用——硬件设计
TI公司的TPS7101、TPS7201和TPS7301等芯片提供了可 调节的输出电压,其调节范围为1.2V~9.75V,可通过改变两 个外接电阻阻值来实现。
TPS7301
VI
> 2.7V < 0.5V 0.1F
IN
RESET
250k
至系统复位
EN
OUT
R1
V0
10F CSR=1
FB GND
R2
第3章 TMS320C54x的硬件设计
3.1 硬件设计概述
系统硬件设计过程:
第一步:确定硬件实现方案; 第二步:器件的选择;
原理图设计
确定硬件方案
器件选型
第三步:原理图设计;
第四步:PCB设计;
PCB图的设计要求设计人员既要熟 悉系统的工作原理,还要清楚布线工艺 和系统结构设计。
PCB图设计
第五步:硬件调试;
27 DSP原理与应用
第3章 TMS320C54x的硬件设计
20 DSP原理与应用
第3章 TMS320C54x的硬件设计
3.电源解决方案
DSP系统电源方案有以下几种:
采用3.3V单电源供电 可选用TI公司的TPS7133、TPS7233和TPS7333; Maxim公司的MAX604、MAX748。 采用可调电压的单电源供电
可选用TI公司的TPS7101、TPS7201和TPS7301。
输频率和同步方式等来选择。
DSP原理与应用
8
第3章 TMS320C54x的硬件设计
3.1 硬件设计概述
第二步:器件的选择;
⑦ 人机接口 常用的人机接口主要有键盘和显示器。
通过与其他单片机的通信构成;
与DSP芯片直接构成。 ⑧ 电源的选择 主要考虑电压的高低和电流的大小。 既要满足电压的匹配,又要满足电流容量的要求。

DSP系统硬件设计_二_DSP系统硬件原理图_PCB设计和系统调试技巧

DSP系统硬件设计_二_DSP系统硬件原理图_PCB设计和系统调试技巧

DSP 系统硬件设计(二)——DSP系统硬件原理图、PCB设计和系统调试技巧北京飓风中天科技发展有限公司 朱铭锆DSP硬件设计包括:硬件方案设计、DSP及周边器件选型、原理图设计、PCB设计及仿真、硬件调试等。

前一讲我们详细讲述了硬件方案设计、DSP及周边器件选型两部分内容,本讲详细讲述原理图设计、PCB设计、硬件调试等内容。

以期共享设计的经验,并能够提高大家的设计效率。

一、系统资源规划硬件设计的前提需要做的一件事是对整个系统的资源进行规划,最终得到系统的资源分配表,即Memory Map。

表1提供了一个用TMS320DM642设计的图像处理系统的地址映射表。

通过表1我们可以清晰地看到程序空间、数据空间、图像输入口等资源的地址。

经过对系统资源的规划,我们的硬件设计才能够有整体的规划,不然设计出来的原理图就是非常盲目的“无源之水”。

二、硬件原理图设计DSP的芯片厂家在设计出每一种DSP芯片时一般都提供了相应的EVM(评估板)参考原理图设计,大家可以通过网络免费下载,或通过购买原装的EVM板得到。

详细的针对某一个板的原理我们就不细讲解,根据作者多年从事DSP设计的经验把设计中的技巧总结出来与大家分享。

硬件设计时,应重点注意以下几点。

(1)时钟电路。

DSP时钟可由外部提供,也可由板上的晶振提供。

但一般DSP系统中经常使用外部时钟输入,因为使用外部时钟时,时钟的精度高、稳定性好、使用方便。

由于DSP工作是以时钟为基准,如果时钟质量不高,那么系统的可靠性、稳定性就很难保证。

因此,若采用外部时钟,选择晶振时应对其稳定性、毛刺做全面的检验,以便DSP系统可靠地工作。

(2)复位电路。

应同时设计上电复位电路和人工复位电路,在系统运行中出现故障时可方便地人工复位。

对于复位电路,一方面应确保复位低电平时间足够长(一般需要20ms以上),保证DSP可靠复位;另一方面应保证稳定性良好,防止DSP误复位。

(3)在DSP电路中,对所有的输入信号必须有明确的处理,不能悬浮或置之不理。

DSP硬件系统的设计

DSP硬件系统的设计

题目:DSP应用系统的硬件设计学院:电气工程学院学号:年级专业:11级通信工程姓名:指导老师:目录1、系统功能简介 (2)2、硬件组成 (3)3、软件组成 (4)4、信号采集与数据分析的电路设计 (5)4.1、TMS320C5409简介 (5)5、前置放大电路的设计 (7)5.1概述 (7)5.2、MAX4094简介 (7)6、电源电路的设计 (8)6.1、MAX680 (9)6.2、MAX6030 (9)7、ADC的选用 (11)8、数据处理电路的设计 (12)8.1、概述 (12)8.2、FLASH和电源芯片的选取 (13)8.2.1、TPS767D318 (13)8.2.2、SST39VF400A (14)9、基于DSP的数据处理电路设计 (14)9.1、时钟电路和复位电路 (14)9.2、电源控制电路 (16)10、C5409与AD芯片数据通讯的电路设计 (17)11、DSP定点运算的基本原理和FLASH程序的烧写 (20)总结 (21)1、系统功能简介课题的研究对象为地面车辆的地震动信号,由前面介绍的三轴地震动检波器进行采集。

采集到的目标信号很微弱,通常只有几个至几十个微伏。

如此小的信号必须先经过前置放大和预处理后才能进行后续处理。

另外由于原始信号的这种微弱性,很容易被噪声淹没,所以一种低噪声、高增益放大电路也是本系统的重要组成部分之一。

为了能有效抑制干扰,对此测量电路应满足以下基本要求:(1)高输入阻抗,以减轻信号源的负载效应和抑制传输网络电阻不对称引入的误差;(2)高共模抑制比,以抑制各种共模干扰引入的误差;(3)零点的时间稳定性和温度稳定性要高,零位可调,或者能自动较零;(4)具有优良的动态特性。

基于以上要求,并满足三路信号的同时采集,本系统中采用的电路为三个单片的MAX4094组成多运放仪用放大电路,增益约为104,可单电源+2.7V~+6.0V 工作,功能可靠,性能稳定,达到了系统期望的要求。

DSP硬件设计方案的一些注意事项

DSP硬件设计方案的一些注意事项

DSP硬件设计的一些注意事项数字信号处理芯片(DSP 具有高性能的CPU(时钟性能超过100MHZ 和高速先进外围设备,通过CMOSh理技术,DSP芯片的功耗越来越低。

这些巨大的进步增加了DSP电路板设计的复杂性,并且同简单的数字电路设计相比较,面临更多相似的问题。

以下是DSP硬件设计的一些注意事项,谨供参考。

时钟电路选择原则1,系统中要求多个不同频率的时钟信号时,首选可编程时钟芯片。

2,单一时钟信号时,选择晶体时钟电路。

3,多个同频时钟信号时,选择晶振。

4,尽量使用DSP片内的PLL,降低片外时钟频率,提高系统的稳定性。

5,C6OO0 C5510 C5409A C5416 C5420 C5421 和C5441 等DSP片内无振荡电路,不能用晶体时钟电路。

6,VC5401 VC5402 VC5409和F281x 等DSP时钟信号的电平为1.8V,建议采用晶体时钟电路未用的输入/输出引脚的处理1,未用的输入引脚不能悬空不接,而应将它们上拉活下拉为固定的电平1)关键的控制输入引脚,女口Ready、Hold等,应固定接为适当的状态,Ready引脚应固定接为有效状态,Hold引脚应固定接为无效状态2)无连接(NQ和保留(RSV引脚,NC引脚:除非特殊说明,这些引脚悬空不接,RSV引脚:应根据数据手册具体决定接还是不接3)非关键的输入引脚,将它们上拉或下拉为固定的电平,以降低功耗2,未用的输出引脚可以悬空不接3,未用的I/O引脚:如果确省状态为输入引脚,则作为非关键的输入引脚处理,上拉或下拉为固定的电平。

如果确省状态为输出引脚,则可以悬空不接为什么要片内RAM大的DSP效率高?目前DSP发展的片内存储器RAM越来越大,要设计高效的DSP系统,就应该选择片内RAM较大的DSP片内RAM同片外存储器相比,有以下优点:1)片内RAM的速度较快,可以保证DSP无等待运行。

2)对于C2000/C3X/C5000系列,部分片内存储器可以在一个指令周期内访问两次,使得指令可以更加高效。

4)DSP硬件系统设计

4)DSP硬件系统设计

4)DSP硬件系统设计内容回顾1、片内存储器1)SRAM:共18k×16bit(M0、M1、L0、L1、H0)2)FLASH:128k×16bit,分为10个扇区,5@150MHz2、外设寄存器空间1)外设帧0:支持16位或32位访问2)外设帧1:仅支持32位访问3)外设帧2:支持16位访问3、外部扩展接口(XINTF)1)分为5个独立的存储空间,提供3个片选信号;2)每个空间可独立配置建立、有效、跟踪周期。

(75-2.78MHz)1DSP原理及其应用技术DSP硬件系统设计4.1 DSP系统设计概述4.2 DSP最小系统设计4.3 人机接口设计4.4 存储器接口设计 4.5 实验系统简介24.1 DSP系统设计概述1、总体方案设计2、硬件电路设计3、软件编程4、系统调试5、程序固化3DSP系统设计流程根据需求写出任务说明书根据任务书确定技术指标DSP芯片及外围芯片总体设计确定软硬件分工软件设计说明书软件编程与调试系统集成硬件设计说明书硬件设计(.sch/ .pcb )硬件调试系统测试、样机完成、中试、产品测试与生产4硬件设计步骤确定硬件方案器件选型(查手册)原理图设计PCB图设计硬件调试(结合软件)5系统分析系统综合DSP开发系统组成__281X MEMORY Peri-XDS510 System1)硬件开发工具;2)软件开发工具;3)DSP目标板。

JTAGSCAN PORTCPUpheralsDebugger CCS IDEJTAGXDS510 Software XDS510 DSPPC目标板6DSP开发系统组成PC机CCS IDEJTAG目标板仿真器7TI DSP 开发工具软件开发工具:C CompilerAssembler / Linker C-Source Debugger: Code Composer Studio IDECode composer studioSimulator硬件开发系统XDS510/560 EVM F28x MCK28x DSK28xFlash programming tools8DSP硬件开发工具TMS320的硬件开发工具,包括1)DSK(Develop Starter Kit)、2)EVM(Evaluate Module);3)硬件仿真系统XDS-510/560。

dsp硬件电路的设计(精)

dsp硬件电路的设计(精)

5 DSP 控制及硬件电路的设计5.1 DSP 控制目前市面上流行的主控制器包括:51单片机系列、DSP 系列和FPGA 。

在这中间:虽然51单片机有着成本低廉,体积小的优势;但因其计算能力弱,和外设较少的缺陷,无法满足本系统的需要。

FPGA 又称现场可编程门阵列,其时序脉冲准确,运算速度快,在需要进行大量重复运算的工程项目中得到了广泛应用。

但FPGA 以并行运算为主,并需要使用硬件描述语言(verilog 或VHDL )来实现电路设计,相比较单片机有很大不同,这造成开发难度较大,门槛较高。

DSP 是近几年得到快速发展的控制器,其外设丰富,运算速度快,能满足实时性要求较高的工业现场;尤其适用于控制算法复杂,计算量大的工程项目。

综合以上分析,本文矿用光伏供电系统选择DSP 芯片TMS320LF2407作为最终的控制芯片。

TMS320LF2407芯片集成度高,运算速度快,外设丰富,价格适中,作为本设计的控制器,拥有其他芯片所不具备的优势。

5.1.1 TMS320LF2407的技术参数(1)TMS320LF2407供电电压为3.3V ,供电电压低,通态损耗小。

最高工作频率40MHZ ,指令周期短,指令周期为25ns ,能够满足较大载波频率时的计算需求,具备实时控制能力。

(2)TMS320LF2407拥有丰富的存储器资源:包括32K 字程序闪存空间, 1.5K字的数据/程序随机存储器,544字的双口随机存储器和2k 字的单口RAM 。

除此之外,TMS320LF2407片内还集成有64K 数据存储器空间以及 64K 程序存储器空间; 其I/O寻址空间达64K ,能有效满足使用需要;TMS320LF2407可用于扩展的外部存储器达到192K 字。

(3)TMS320LF2407拥有两个事件管理器模块EV A 和EVB 。

每个事件管理器模块上均集成有以下资源:两个16位通用定时器(通过倍频器可以达到很高的工作频率)和8个16位PWM 波生成通道; 为检测上升下降脉冲,片上集成有3个捕获单元。

DSP主控板硬件设计

DSP主控板硬件设计

DSP主控板硬件设计DSP主控板是一种集成了数字信号处理(Digital Signal Processor,DSP)功能的主控板。

它是一种专门设计用于数字信号处理任务的硬件设备,广泛应用于音频和视频处理、图像处理、通信系统、雷达系统等领域。

DSP主控板的硬件设计是保证其正常运行和性能优化的关键步骤。

在硬件设计方面,主要包括核心芯片选型、外设接口设计、电源设计和时钟设计等方面。

首先,核心芯片选型是DSP主控板硬件设计的关键之一。

根据应用需求和性能要求,选择适合的DSP芯片。

常见的DSP芯片有TI的TMS320系列和Analog Devices的Blackfin系列等。

不同芯片具有不同的处理能力、计算速度、内存容量和功耗等指标,因此需根据具体需求进行选型。

其次,外设接口设计是DSP主控板硬件设计的另一个重要方面。

根据应用需要,设计适合的输入输出接口,如模拟输入输出接口、数字输入输出接口和通信接口等。

这些接口可以连接外部设备,实现与外部系统的数据交互,满足不同的应用需求。

再次,电源设计是DSP主控板硬件设计的必要环节。

稳定可靠的电源是保证DSP主控板正常工作的前提条件。

设计电源模块时,需考虑电压稳定性、电源纹波、电源噪声等因素,充分满足DSP主控板的电源需求。

最后,时钟设计是DSP主控板硬件设计的关键一环。

时钟信号是DSP主控板正常运行所必须的,它主要用于控制和同步DSP芯片的工作。

时钟设计要考虑时钟频率、时钟稳定性、时钟分频等因素,确保DSP主控板稳定工作。

除了以上几个方面,DSP主控板的硬件设计还需要考虑其他一些因素,如EMI(Electromagnetic Interference,电磁干扰)抑制、抗干扰能力、PCB(Printed Circuit Board,印制电路板)布局等。

EMI抑制可以减少DSP主控板对周围设备的电磁干扰,保证其正常工作。

抗干扰能力可以提高DSP主控板的稳定性和可靠性。

DSP主控板硬件设计

DSP主控板硬件设计

DSP主控板硬件设计1 课题来源及研究的目的和意义产品研制、生产、使用过程中,先进的检测技术和检验设备是检测产品性能参数及缩短研制时间的有利保障。

因此测试设备是整个产品生命周期内不可或缺的关键局部。

根据被测对象需要测量的参数和功能,测试设备在主控制器的控制下完成对产品的测试,可以提高产品的测试效率和测试结果的准确性。

纵观测试设备的开展历程可以发现,测试设备均由一个控制器加上外围电路并辅以一定的通讯方式组成,控制器是整个测试设备“神经中枢〞,控制外围模块的运行。

目前能作为主控制器使用的有单片机、嵌入式微处理器以及DSP〔Digital Signal Processor,数字信号处理器〕等。

前两者虽然在某些领域也得到很大的开展,但由于设计的出发点不同,决定了其自身的局限性,即不能用于高速数字信号运算,而这恰恰是DSP的优势所在[1]。

在测试设备领域,难免要进行大量数字信号的处理,因此在选择主控制器时应有选择性的选用DSP而不是单片机或嵌入式处理器[2]。

在测控台中扮演另一重要角色的当数FPGA。

FPGA〔Field Programmable Gate Array〕是现场可编程门阵列的简称,是可编程逻辑器件〔PLD〕问世以来的第四代产品。

自八十年代中期诞生以来,由于其速度快、集成度高及用户定义逻辑功能而备受广阔电子工程师的青睐。

用户可以利用分布在CLB周围的可编程互连资源以串联、并联或混合方式把相应的CLB连接起来,实现更复杂的逻辑功能。

由于FPGA的现场可编程性及高密度性,所以电路设计的大局部工作都是在计算机上完成,使得产品的开发周期缩短,风险投资减小。

而且FPGA的功能完全由用户设计的配置程序所决定,在不改变其外部接口的情况下可以很方便地改变其电路的逻辑功能。

基于以上分析,并且考虑到测试设备的通用性及可扩展性,选用DSP和FPGA组合设计出最小系统板〔并预留I/O接口及功能接口用于系统扩展〕,以此作为测试设备的控制器必将大大缩短测试设备的研制周期,所以该课题具有较高的应用价值和实际意义。

交流电机DSP控制系统硬件设计

交流电机DSP控制系统硬件设计

交流电机DSP控制系统硬件设计交流电机DSP控制系统的硬件设计包括以下步骤:1. 系统需求分析首先需要对系统的功能、性能、输入输出接口等方面进行需求分析。

确定 DSP 控制器的型号、工作频率、存储器容量等硬件参数,向选择适合的模拟和数字信号处理芯片和外围元件。

2. 电机功率和电气参数计算电机功率和电气参数计算是硬件设计的关键,需要根据负载情况和预期性能对电机调速系统进行功率匹配和电气参数确定。

最终确定电机的额定电流、额定电压、额定转速等参数。

3. 电源设计电源设计包括 AC-DC 或 DC-DC 变换器的设计,需要满足 DSP控制器和电机等部分的电源要求,并能给各个外围元件提供足够的电源,保证全系统的稳定运行。

4. DSP 控制器选型DSP 控制器是交流电机 DSP 控制系统的核心,需要根据设计要求、存储器、接口类型、性能以及价格等方面考虑选型。

常用的DSP 控制器厂商有 TI、Analog Devices、Freescale 等。

5. 接口设计DSP 控制器需要与电机、传感器、通讯模块、键盘等部分进行接口设计,通过 A/D、D/A 转换器来实现模拟信号与数字信号的相互转换。

需要根据实际连接要求设计连接接口。

6. 电路设计根据前面的需求、参数和接口设计,设计具体的电路原理图,并与 PCB 设计人员一起进行 PCB 布线、组装和测试。

7. 编程开发编写控制程序,实现数字信号处理、运动控制算法、数据通讯等功能,同时进行调试和优化。

8. 整机测试完成硬件的组装和程序的开发之后,进行整机测试,测试电机运行参数、控制精度、通讯可靠性、系统可靠性等方面的表现,并进行问题的定位和修复。

dsp 硬件电路的设计

dsp 硬件电路的设计

5 DSP控制及硬件电路的设计5.1 DSP控制目前市面上流行的主控制器包括:51单片机系列、DSP系列和FPGA。

在这中间:虽然51单片机有着成本低廉,体积小的优势;但因其计算能力弱,和外设较少的缺陷,无法满足本系统的需要。

FPGA又称现场可编程门阵列,其时序脉冲准确,运算速度快,在需要进行大量重复运算的工程项目中得到了广泛应用。

但FPGA以并行运算为主,并需要使用硬件描述语言(verilog 或VHDL)来实现电路设计,相比较单片机有很大不同,这造成开发难度较大,门槛较高。

DSP是近几年得到快速发展的控制器,其外设丰富,运算速度快,能满足实时性要求较高的工业现场;尤其适用于控制算法复杂,计算量大的工程项目。

综合以上分析,本文矿用光伏供电系统选择DSP芯片TMS320LF2407作为最终的控制芯片。

TMS320LF2407芯片集成度高,运算速度快,外设丰富,价格适中,作为本设计的控制器,拥有其他芯片所不具备的优势。

5.1.1 TMS320LF2407的技术参数(1)TMS320LF2407供电电压为3.3V,供电电压低,通态损耗小。

最高工作频率40MHZ,指令周期短,指令周期为25ns,能够满足较大载波频率时的计算需求,具备实时控制能力。

(2)TMS320LF2407拥有丰富的存储器资源:包括32K字程序闪存空间, 1.5K字的数据/程序随机存储器,544字的双口随机存储器和2k字的单口RAM。

除此之外,TMS320LF2407片内还集成有64K数据存储器空间以及64K程序存储器空间; 其I/O 寻址空间达64K,能有效满足使用需要; TMS320LF2407可用于扩展的外部存储器达到192K字。

(3)TMS320LF2407拥有两个事件管理器模块EV A和EVB。

每个事件管理器模块上均集成有以下资源:两个16位通用定时器(通过倍频器可以达到很高的工作频率)和8个16位PWM 波生成通道; 为检测上升下降脉冲,片上集成有3个捕获单元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DSP主控板硬件设计1 课题及研究的目的和意义产品研制、生产、使用过程中,先进的检测技术和检验设备是检测产品性能参数及缩短研制时间的有利保障。

因此测试设备是整个产品生命周期内不可或缺的关键部分。

根据被测对象需要测量的参数和功能,测试设备在主控制器的控制下完成对产品的测试,可以提高产品的测试效率和测试结果的准确性。

纵观测试设备的发展历程可以发现,测试设备均由一个控制器加上外围电路并辅以一定的通讯方式组成,控制器是整个测试设备“神经中枢”,控制外围模块的运行。

目前能作为主控制器使用的有单片机、嵌入式微处理器以及DSP(Digital Signal Processor,数字信号处理器)等。

前两者虽然在某些领域也得到很大的发展,但由于设计的出发点不同,决定了其自身的局限性,即不能用于高速数字信号运算,而这恰恰是DSP的优势所在[1]。

在测试设备领域,难免要进行大量数字信号的处理,因此在选择主控制器时应有选择性的选用DSP而不是单片机或嵌入式处理器[2]。

在测控台中扮演另一重要角色的当数FPGA。

FPGA(Field Programmable Gate Array)是现场可编程门阵列的简称,是可编程逻辑器件(PLD)问世以来的 * 产品。

自八十年代中期诞生以来,由于其速度快、集成度高及用户定义逻辑功能而备受广大电子工程师的青睐。

用户可以利用分布在CLB周围的可编程互连资源以串联、并联或混合方式把相应的CLB连接起来,实现更复杂的逻辑功能。

由于FPGA的现场可编程性及高密度性,所以电路设计的大部分工作都是在计算机上完成,使得产品的开发周期缩短,风险投资减小。

而且FPGA的功能完全由用户设计的配置程序所决定,在不改变其外部接口的情况下可以很方便地改变其电路的逻辑功能。

基于以上分析,并且考虑到测试设备的通用性及可扩展性,选用DSP和FPGA 组合设计出最小系统板(并预留I/O接口及功能接口用于系统扩展),以此作为测试设备的控制器必将大大缩短测试设备的研制周期,所以该课题具有较高的应用价值和实际意义。

2 国内外在该方向的研究现状及分析 2.1 DSP+FPGA系统特点综述随着数字信号处理器(DSP)和现场可编程门列阵器件(FPGA)的发展,采用DSP+FPGA的硬件系统显示出其优越性,整愈来愈得到人们的重视。

通用的DSP优点是通过编程可以应用到广泛的产品中,并且主流的DSP产品已经可以满足许多要求。

但是传统的DSP采用冯—诺依曼(Von Neumann)结构或某种类型扩展。

此结构本质上是串行的,因此遇到需处理的数据量大,但是对运算结构相对比较简单的底层信号处理算法来说显不出优点,适合采用FPGA硬件实现[3,4]。

这样,采用DSP+FPGA的数字硬件系统就可以把二者优点结合一起,兼顾速度和灵活性既满足底层信号处理要求,又满足高层信号处理要求。

DSP+FPGA系统最大优点是结构灵活,有较强的通用性,适合于模块化设计,从而能够提高算法效率;同时其开发周期较短,系统易于维护和扩展,适合实时信号处理。

2.2 国外在该领域的发展状况简略国外DSP+FPGA技术发展的现状,国外的信息处理设备一直保持着快速的发展势头。

欧美等科技大国保持着国际领先的地位,并且他们很多已经发展到相当大的规模,竞争也愈发激烈,我们从国际知名DSP技术公司发布的产品中就可以了解到当今世界先进的数字信号处理系统的情况[5]。

以Pentek公司一款处理板4293为例,使用8片TI公司300MHZ的TMS320C6203芯片,具有19200MIPS的处理能力,同时集成了8片32MB的SDRAM,数据吞吐600MB/S。

该公司的另一款处理板4294集成了4片Motorola的MPC7410PowerPC处理器,工作频率400/500MHZ,两级缓存25K*64bit,最高具有16MB的SDRAM。

DSP+FPGA应用产品获得成功的一个标志就是进入商业化,在以往的20年中,这一进程不断的重复进行,而且周期在不断的缩短,在数字信息时代,更多的新技术和新产品需要快速的推上市场,因此,DSP+FPGA的产业化进程还在加速进行。

2.3 国内在该领域的发展现状目前,国外众多厂商涉足我国DSP+FPGA产品市场,我国的DSP+FPGA应用已经有了相当的基础,从应用范围来说,该组合的市场前景很好。

DSP+FPGA不仅仅成为手机、个人数字助理的快速增长产品中的关键元件,而且它正在向数码相机等其他领域挺近。

随着DSP和FPGA芯片的品种和技术档次不断提高以及向多功能化、高性能化、低功耗化方向发展,DSP+FPGA这一硬件系统正日益进入我们的生活,在未来相当长的一段时间,我国该硬件系统的市场将蓬勃发展,今后几年市场的销售额仍将保持40%以上的增长率,具有良好的市场前景[6]。

虽然我国的DSP+FPGA技术取得了一定的成绩,但是与发达国家相比仍有差距。

所以说我国的DSP+FPGA技术的发展道路还很漫长,在发展过程中需要做到重视通用性、加强综合性、采用新技术、坚持自主创新。

1 课题及研究的目的和意义产品研制、生产、使用过程中,先进的检测技术和检验设备是检测产品性能参数及缩短研制时间的有利保障。

因此测试设备是整个产品生命周期内不可或缺的关键部分。

根据被测对象需要测量的参数和功能,测试设备在主控制器的控制下完成对产品的测试,可以提高产品的测试效率和测试结果的准确性。

纵观测试设备的发展历程可以发现,测试设备均由一个控制器加上外围电路并辅以一定的通讯方式组成,控制器是整个测试设备“神经中枢”,控制外围模块的运行。

目前能作为主控制器使用的有单片机、嵌入式微处理器以及DSP(Digital Signal Processor,数字信号处理器)等。

前两者虽然在某些领域也得到很大的发展,但由于设计的出发点不同,决定了其自身的局限性,即不能用于高速数字信号运算,而这恰恰是DSP的优势所在[1]。

在测试设备领域,难免要进行大量数字信号的处理,因此在选择主控制器时应有选择性的选用DSP而不是单片机或嵌入式处理器[2]。

在测控台中扮演另一重要角色的当数FPGA。

FPGA(Field Programmable Gate Array)是现场可编程门阵列的简称,是可编程逻辑器件(PLD)问世以来的 * 产品。

自八十年代中期诞生以来,由于其速度快、集成度高及用户定义逻辑功能而备受广大电子工程师的青睐。

用户可以利用分布在CLB周围的可编程互连资源以串联、并联或混合方式把相应的CLB连接起来,实现更复杂的逻辑功能。

由于FPGA的现场可编程性及高密度性,所以电路设计的大部分工作都是在计算机上完成,使得产品的开发周期缩短,风险投资减小。

而且FPGA的功能完全由用户设计的配置程序所决定,在不改变其外部接口的情况下可以很方便地改变其电路的逻辑功能。

基于以上分析,并且考虑到测试设备的通用性及可扩展性,选用DSP和FPGA 组合设计出最小系统板(并预留I/O接口及功能接口用于系统扩展),以此作为测试设备的控制器必将大大缩短测试设备的研制周期,所以该课题具有较高的应用价值和实际意义。

2 国内外在该方向的研究现状及分析 2.1 DSP+FPGA系统特点综述随着数字信号处理器(DSP)和现场可编程门列阵器件(FPGA)的发展,采用DSP+FPGA的硬件系统显示出其优越性,整愈来愈得到人们的重视。

通用的DSP优点是通过编程可以应用到广泛的产品中,并且主流的DSP产品已经可以满足许多要求。

但是传统的DSP采用冯—诺依曼(Von Neumann)结构或某种类型扩展。

此结构本质上是串行的,因此遇到需处理的数据量大,但是对运算结构相对比较简单的底层信号处理算法来说显不出优点,适合采用FPGA硬件实现[3,4]。

这样,采用DSP+FPGA的数字硬件系统就可以把二者优点结合一起,兼顾速度和灵活性既满足底层信号处理要求,又满足高层信号处理要求。

DSP+FPGA系统最大优点是结构灵活,有较强的通用性,适合于模块化设计,从而能够提高算法效率;同时其开发周期较短,系统易于维护和扩展,适合实时信号处理。

2.2 国外在该领域的发展状况简略国外DSP+FPGA技术发展的现状,国外的信息处理设备一直保持着快速的发展势头。

欧美等科技大国保持着国际领先的地位,并且他们很多已经发展到相当大的规模,竞争也愈发激烈,我们从国际知名DSP技术公司发布的产品中就可以了解到当今世界先进的数字信号处理系统的情况[5]。

以Pentek公司一款处理板4293为例,使用8片TI公司300MHZ的TMS320C6203芯片,具有19200MIPS的处理能力,同时集成了8片32MB的SDRAM,数据吞吐600MB/S。

该公司的另一款处理板4294集成了4片Motorola的MPC7410PowerPC处理器,工作频率400/500MHZ,两级缓存25K*64bit,最高具有16MB的SDRAM。

DSP+FPGA应用产品获得成功的一个标志就是进入商业化,在以往的20年中,这一进程不断的重复进行,而且周期在不断的缩短,在数字信息时代,更多的新技术和新产品需要快速的推上市场,因此,DSP+FPGA的产业化进程还在加速进行。

2.3 国内在该领域的发展现状目前,国外众多厂商涉足我国DSP+FPGA产品市场,我国的DSP+FPGA应用已经有了相当的基础,从应用范围来说,该组合的市场前景很好。

DSP+FPGA不仅仅成为手机、个人数字助理的快速增长产品中的关键元件,而且它正在向数码相机等其他领域挺近。

随着DSP和FPGA芯片的品种和技术档次不断提高以及向多功能化、高性能化、低功耗化方向发展,DSP+FPGA这一硬件系统正日益进入我们的生活,在未来相当长的一段时间,我国该硬件系统的市场将蓬勃发展,今后几年市场的销售额仍将保持40%以上的增长率,具有良好的市场前景[6]。

虽然我国的DSP+FPGA技术取得了一定的成绩,但是与发达国家相比仍有差距。

所以说我国的DSP+FPGA技术的发展道路还很漫长,在发展过程中需要做到重视通用性、加强综合性、采用新技术、坚持自主创新。

内容仅供参考。

相关文档
最新文档