九年级(上)数学第一次月考试题(11月份)
内蒙古包头市第三十六中学2024-2025学年九年级上学期第一次月考数学试题
内蒙古包头市第三十六中学2024-2025学年九年级上学期第一次月考数学试题一、单选题1.下列方程是关于x 的一元二次方程的是( )A .33x x +=B .2230x x --=C .()270x x x -+=D .20ax bx c ++=2.用配方法解一元二次方程2870x x ++=,则方程可变形为( )A .()2816x -=B .()2857x +=C .()249x -=D .()249x += 3.如图,正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠F AB 等于( ).A .22.5°B .45°C .30°D .135°4.用如图所示的A 、B 两个转盘进行“配紫色”游戏(红色和蓝色在一起配成紫色),A 转盘是二等分,B 转盘是三等分,分别转动两个转盘各一次(指针指向分界线则重新转动转盘),则配成紫色的概率为( )A .16B .14 C .13 D .125.观察下面的表格,一元二次方程2 1.4x x -=的一个近似解是( )A . 0.11B .1.6C .1.7D .1.86.若m 是一元二次方程2520x x --=的一个实数根,则220255m m -+的值是( ) A .2020 B .2027 C .2021 D .20237.如图是某公园在一长35m ,宽23m 的矩形湖面上修建的等宽的人行观景曲桥,它的面积恰好为原矩形湖面面积的15,求人行观景曲桥的宽.若设人行观景曲桥的宽为m x ,则x 满足的方程为( )A .()()135********x x --=⨯⨯ B .()()2352322335x x x --+=⨯C .()()4352323355x x --=⨯⨯ D .()()35232335x x --=⨯8.下列命题中,真命题是( )A .两对角线相等的四边形是矩形B .两对角线互相垂直的四边形是菱形C .两对角线互相垂直平分且相等的四边形是正方形D .一组对边相等另一组对边平行的四边形是平行四边形9.把一张长方形纸片ABCD 按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若4AB =,8BC =,则DF 的长为( )A .3B .4C .4.8D .510.把边长为1的正方形ABCD 绕点A 逆时针旋转45︒得到正方形AB C D ''',边B C ''与DC 交于点O ,则四边形AB OD '的面积为( )A .2B .C 1D .2二、填空题11.一元二次方程2230x x -+=的两根分别为1x 和2x ,则12122x x x x +-为.12.在一个不透明的袋子中有除颜色外均相同的 5 个红球和若干白球,通过多次摸球试 验后,发现摸到红球的频率约为 0.25,估计袋中白球有个.13.关于x 的一元二次方程22(3)95m x m x x -+=+化为一般形式后不含一次项,则m 的值为 . 14.如图,在矩形ABCD 中,,P Q 分别是,BC DC 上的点,,E F 分别是AP PQ ,的中点.12,5BC DQ ==,在点P 从B 移动到C (点Q 不动)的过程中,则线段EF =.15.如图,在ABC V 中,8AB =,12BC =,点D 、E 分别是边AB AC 、的中点,点F 是线段DE 上的一点,连接AF BF 、,若90AFB ∠=︒,则线段EF 的长为.16.如图,45BOD ∠=︒,BO DO =,点A 在OB 上,四边形ABCD 是矩形,连接AC ,BD 交于点E ,连接OE 交AD 于点F .下列4个判断:①OE BD ⊥;②30ADB ∠=︒;③DF =;④若点G 是线段OF 的中点,则AEG △为等腰直角三角形,其中,判断正确的是.(填序号)三、解答题17.(1)210x x --=;(2)()()2323x x x -=-;(3)()()1312x x -+=.18.广东多地推进林长制,筑牢粤北生态屏障,通过三“长”联动,实现点“绿”成金.现将质地大小完全相同,上面依次标有“点”“绿”“成”“金”字样的四个彩球放入同一个不透明的袋子.(1)叶子在袋子中随机摸出一个彩球,摸中标有“绿”字彩球的概率为;(2)若叶子在袋子中随机摸出一个彩球不放回,再摸出一个彩球,请用画树状图或列表法求出两次摸球能拼出“成金”的概率.19.已知关于x 的方程22210x kx k -+-=.(1)若方程有一根为5,求k 的值;(2)求证:不论k 取何值,方程总有两个不相等的实数根.20.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,CF AE =,连接AF(1)求证:四边形BFDE 是矩形;(2)若AF 平分DAB ∠,3CF =,5DF =,求四边形BFDE 的面积.21.如图,某小区建一长方形电动车充电棚,一边靠墙(墙长15米),另三边用总长25米的栏杆围成,留1米宽的门,若想要建成面积为80平方米的电动车充电棚,则车棚垂直于墙的一边的长为多少米?22.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月销售量的月平均增长率不变.(1)求二、三这两个月销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?23.ABC V 中,90B ??,5cm AB =,6cm BC =,点P 从点A 开始沿边AB 向终点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm/s 的速度移动.如果点P 、Q 分别从点A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =__________,PB =__________(用含t 的代数式表示);(2)是否存在t 的值,使得PBQ V 的面积等于24cm ?若存在,请求比此时t 的值;若不存在,请说明理由.(3)是否存在t 的值,使得5cm PQ =?若存在,请求出此时t 的值;若不存在,请说明理由.。
九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
黑龙江省哈尔滨虹桥中学2023-2024学年九年级上学期月考数学试题(含简略答案)
虹桥中学初四学年11月份作业反馈(数学)一、选择题(每题3分,共30分)1.下列实数中是无理数是()A. B .3.14 CD .22.下列运算正确的是( )A .B .C .D .3.下列图形既是轴对称图形又是中心对称图形的是()A . B .C .D .4.用直角三角板检查半圆形的工件,下列工件哪个是合格的()A . B . C .D .5.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .B .C .D .6.对于双曲线,当时,随的增大而减小,则的取值范围是( )A . B . C . D .7.如图,某游乐场一山顶滑梯的高为,滑梯的坡角为,那么滑梯长为()2531025a a a ÷=236a a a ⋅=222()a b a b +=+()()22a b a b a b +-=-2y x =-2(1)3y x =---2(1)3y x =-+-2(1)3y x =--+2(1)3y x =-++3k y x -=0x >y x k 3k <3k ≤3k >3k ≥h a mA. B . C . D .8.如图点在的边上,若,则下列比例式中错误的是( )。
A .B .C .D .9.如图,正方形绕着点O 逆时针旋转得到正方形,连接,则的度数是()A . B . C . D .10.如图,抛物线的对称轴为直线,且过点,下列结论:①;②;③;④;正确的有( )个.A .1B .2C .3D .4二、填空题(每小题3分,共计30分)11.将0.0000348用科学记数法可表示为______.12.函数中,自变量的取值范围为______.sin hαtan hαcos hαsin h α⋅D E F 、、ABC △,DE BC EF AB ∥∥ADAEAB AC =CECACF CB =DE AD BC BD =EF CFAB CB=OABC 40︒ODEF AF OFA ∠15︒20︒25︒30︒2y ax bx c =++1x =()3,00abc <0a b c -+>20a b +=240b ac -<121y x =--x13______.14.因式分解结果为______.15.不等式组的解集是______.16.一个扇形的圆心角为,这个扇形的直径是6,则这个扇形的面积是______.17.如图,在中,,则的内切圆半径______.18.小明的卷子夹里放了大小相同的试卷共15页,其中语文7页、数学6页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为______.19.在矩形中,点在直线上,,若,则点到直线的距离为______.20.如图,在中,若,若,则的长为______.三、解答题(共60分)21.(本题7分)先化简,再求代数式的值,其中.22.(本题7分)如图,的顶点坐标分别为,+=33x y xy -20260x x ->⎧⎨-≤⎩60︒Rt ABC △90,3,4C AC BC ∠=︒==ABC △r =ABCD E BC 2BE CE =2,3AB AD ==A DE ABC △,902,ABC ACB AD BC ββ∠=∠=︒-⊥3,2BD CD ==AB 21123x x x x x ⎛⎫++÷- ⎪⎝⎭2sin 60tan 45x =︒+︒ABC △()()()3,6,1,3,4,2A B C(1)画出关于轴对称的;(2)将绕点顺时针旋转得到,在图中画出;(3)直接写出点所经过的路径弧的长。
11月初三上学期月考数学试卷(有答案)
11月初三上学期月考数学试卷(有答案)本学期的11月份的月考已经临近,各年级、各学科都已经进入到紧张的复习阶段。
复习是巩固和强化所学知识必不可少的手段。
查字典数学网小学生频道为大家准备了2019年11月初三上学期月考数学试卷,希望大家认真作答。
2019年11月初三上学期月考数学试卷(有答案)一、选择题(每题2分,共12分)1.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.AB是⊙O的直径,点C在⊙O上,若A=40 ,则B的度数为( )A.80B.60C.50D.403.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=94.下列说法:①直径不是弦;②相等的弦所对的弧相等;③三角形的外心是三角形中三边垂直平分线的交点;④三角形的外心到三角形各边的距离相等.其中正确的个数有( )A.1个B.2个C.3个D.4个5.某县为发展教育事业,加强了对教育经费的投入,2019年投入2019万元,预计到2019年共投入8000万元.设教育经费的年平均增长率为x,下面所列方程正确的是( )A.2019(1+x)2=8000B.2019(1+x)+2019(1+x)2 =8000C.2019x2=8000D.2019+2019(1+x)+2019(1+x)2=8000二.填空题(每题2分,共20分)7.一元二次方程x2=3x的解是:__________.8.若实数a是方程x2﹣2x+1=0的一个根,则2a2﹣4a+5=__________.9.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1x2=__________.10.小芳的衣服被一根铁钉划了一个呈直角三角形的洞,只知道该三角形有两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于__________.11.写出一个以﹣3和7为根且二次项系数为1的一元二次方程__________.12.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是__________.三、解答题(共11题,共88分)17.解方程:(1)2x2﹣5x+2=0.(2)2(x+3)2=x+3.18.(1)化简:( )2+|1﹣|﹣( )﹣1(2)解不等式组:.19.计算或化简:(1) ﹣+ ;(2)先化简( ﹣) ,然后从,0,1,﹣1中选取一个你认为合适的数作为x的值代入求值.20.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(1)请写出该圆弧所在圆的圆心O的坐标__________;(2)⊙O的半径为__________(结果保留根号);(3)求的长(结果保留).21.已知方程5x2+mx﹣10=0的一根是﹣5,求方程的另一根及m的值.22.如图所示,AB是⊙O的一条弦,ODAB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若AOD=52,求DEB的度数;(2)若OC=3,OA=5,求AB的长.23.如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.24.如图,在△ABC中,AC=BC,ACB=120.(1)求作⊙O,使:圆心O在AB上,且⊙O经过点A和点C(尺规作图,保留作图痕迹,不写作法)(2)判断BC与⊙O的位置关系,并说明理由.25.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?26.已知,如图,AB、AC是⊙O得切线,B、C是切点,过上的任意一点P作⊙O的切线与AB、AC分别交于点D、E(1)连接OD和OE,若A=50,求DOE的度数.(2)若AB=7,求△ADE的周长.27.配方法不仅可以用来解一元二次方程,还可以用来解决很多问题. 例如:因为3a20,所以3a2﹣1﹣1,即:3a2﹣1就有最小值﹣1.只有当a=0时,才能得到这个式子的最小值﹣1.同样,因为﹣3a20.所以﹣3a2+11,即:﹣3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=__________时,代数式﹣2(x+1)2﹣1有最__________值(填大或小值为__________.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
九年级上学期月考数学试卷(11月份)附答案
九年级上学期月考数学试卷(11月份)一、精心选一选(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有()A.1个B.2个C.3个D.4个2.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=03.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21 B.x(x﹣1)=21 C.x(x+1)=21 D.x(x﹣1)=214.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.8B.7C.6D.55.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形6.把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为()A.y=﹣2x2+4x﹣3 B.y=﹣2x2﹣4x+3 C.y=﹣2x2﹣4x﹣3 D.y=﹣2x2+4x+37.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.8.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠B的度数是()A.70°B.65°C.60°D.55°9.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B 点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.二、细心填一填(本大题共5小题,每小题4分,满分20分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=4cm,∠BCD=22°30′,则⊙O的半径为cm.13.如图在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=2,∠ACD=60°,四边形ABCD的面积等于.14.如图,BC为⊙O的直径,BC=2,弧AB=弧AC,P为BC(包括B、C)上一动点,M为AB的中点,设△PAM的周长为m,则m的取值范围是.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;②a﹣b+c>0;③当m≠1时,a+b >am2+bm;④3a+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有.三、专心解一解(本大题共8小题,满分90分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.用适当的方法解下列方程:x2﹣4x+1=0.17.如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.18.如图,已知二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?19.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.20.已知⊙O的直径为5,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=3,则AC=,BD=;(Ⅱ)如图②,若∠CAB=60°,求BD的长.21.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为4元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过6元,每天可销售180份;若每份售价超过6元,每提高1元,每天的销售量就减少10份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)当x=6时,y=;当x>6时,y与x的函数关系式为;(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?22.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)23.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm 把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.一、精心选一选(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:第三个图形,第四个图形为中心对称图形,共2个.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=0考点:一元二次方程的定义.分析:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.解答:解:A、x+2y=1是二元一次方程,故错误;B、方程去括号得:2x2﹣2x=2x2+3,整理得:﹣2x=3,为一元一次方程,故错误;C、3x+=4是分式方程,故错误;D、x2﹣2=0,符合一元二次方程的形式,正确.故选D.点评:要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21 B.x(x﹣1)=21 C.x(x+1)=21 D.x(x﹣1)=21考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=3×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=21.故选:B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.4.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.8B.7C.6D.5考点:垂径定理;勾股定理.分析:过点O作OD⊥AB于点D,根据垂径定理求出AD的长,再根据勾股定理求出OD的长即可.解答:解:过点O作OD⊥AB于点D,∵AB=16,∴AD=AB=8,∴OD===6.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.解答:解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为()A.y=﹣2x2+4x﹣3 B.y=﹣2x2﹣4x+3 C.y=﹣2x2﹣4x﹣3 D.y=﹣2x2+4x+3考点:二次函数图象与几何变换.分析:求出原抛物线的顶点坐标以及绕原点旋转180°后的抛物线的顶点坐标,再根据旋转后抛物线开口方向向下,利用顶点式解析式写出即可.解答:解:∵抛物线y=2x2﹣4x+3=2(x﹣1)2+1的顶点坐标为(1,1),∴绕原点旋转180°后的抛物线的顶点坐标为(﹣1,﹣1),∴所得到的图象的解析式为y=﹣2(x+1)2﹣1,即y=﹣2x2﹣4x﹣3.故选C.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.考点:垂径定理;勾股定理.专题:探究型.分析:先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD 的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.解答:解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=25°+45°=70°,由旋转的性质得∠B=∠A′B′C=70°.故选:A.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.点评:本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B 点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:动点型.分析:本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出S与t的关系式即可得出函数图象.解答:解:①点P在AB上运动,点Q在BC上运动,此时AP=t,QB=2t,故可得S=AP•QB=t2,函数图象为抛物线;②点P在AB上运动,点Q在CD上运动,此时AP=t,△APQ底边AP上的高保持不变,为正方形的边长4,故可得S=AP×4=2t,函数图象为一次函数.综上可得总过程的函数图象,先是抛物线,然后是一次增函数.故选:D.点评:此题考查了动点问题的函数图象,解答本题关键是分段求解,注意在第二段时,△APQ底边AP上的高保持不变,难度一般.二、细心填一填(本大题共5小题,每小题4分,满分20分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(4,﹣3).考点:坐标与图形变化-旋转.专题:数形结合.分析:先构建Rt△OAB,再把△OAB绕坐标原点O逆时针旋转90°得到△O A′B′,根据旋转的性质得到A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,然后写出A′点的坐标.解答:解:如图,把△OAB绕坐标原点O逆时针旋转90°得到△OA′B′,则A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,所以点A′的坐标为(4,﹣3).故答案为(4,﹣3).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.通过把线段旋转的问题转化为直角三角形的性质解决问题.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=4cm,∠BCD=22°30′,则⊙O的半径为4cm.考点:垂径定理;等腰直角三角形;圆周角定理.分析:连接OB,则可知∠BOD=2∠BCD=45°,由垂径定理可得BE=2,在Rt△OEB中BE=OE,利用勾股定理可求得OB.解答:解:连接OB,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵CD是直径,弦AB⊥CD,∴BE=AE=AB=2cm,在Rt△BOE中,由勾股定理可求得OB=4cm,即⊙O的半径为4cm,故答案为:4.点评:本题主要考查垂径定理和圆周角定理,由条件得到∠BOD=45°且求得BE的长是解题的关键.13.如图在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=2,∠ACD=60°,四边形ABCD的面积等于.考点:旋转的性质.分析:由于∠BAD=60°,AB=AD,则可把△ADC绕点A逆时针旋转60°得到△ABD′,根据旋转的性质得到∠ABC′=∠D,AC′=AC,∠C′AC=60°,而∠ABC+∠D=180°,则∠ABC+∠ABC′=180°,得到C′点在CB的延长线上,所以△ACC′为等边三角形,然后利用S四边形ABCD=S△AC′C=AC2进行计算即可.解答:如图,∵∠BAD=60°,AB=AD,∴把△ADC绕点A逆时针旋转60°得到△ABC′,∴∠ABC′=∠D,AC′=AC,∠C′AC=60°∵∠ABC+∠D=180°,∴∠ABC+∠ABC′=180°,∴C′点在CB的延长线上,而AC′=AC,∠C′AC=60°,∴△ACC′为等边三角形,∴S四边形ABCD=S△AC′C=AC2=×4=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定和性质.14.如图,BC为⊙O的直径,BC=2,弧AB=弧AC,P为BC(包括B、C)上一动点,M为AB的中点,设△PAM的周长为m,则m的取值范围是1+≤m≤3+.考点:轴对称-最短路线问题;圆心角、弧、弦的关系.分析:连接CM则m的最大值为P移动到B、C点时△ACM的周长,根据勾股定理即可求得CM的长,进而求得△ACM的周长;作AA′⊥BC,交⊙O于A′,连接A′B、A′C,则四边形ABA′C是正方形,作MM′⊥BC交A′B于M′,则M′与M关于BC对称,连接AM′交BC于P′,P′A+P′M=AM′,此时△PAM 的周长为m最小;根据勾股定理求得AM′的长,进而求得△AP′M的周长,即可求得m的取值范围.解答:解:∵⊙O的直径BC=2,∴∠CAB=90°,∵=,∴∠B=∠C=45°,∴AC=AB=2,∴AM=AB=1,连接CM,则CM==,∴m的最大值为2+1+=3+,作AA′⊥BC,交⊙O于A′,连接A′B、A′C,则四边形ABA′C是正方形,作MM′⊥BC交A′B于M′,则M′与M关于BC对称,连接AM′交BC于P′,P′A+P′M=AM′,此时△PAM 的周长为m最小;∵A′B=AB=2,M为AB的中点,∴BM′=BM=1,∵AM′=,∴m的最小值为1+,∴m的取值范围是1+≤m≤3+.故答案为1+≤m≤3+.点评:本题考查了轴对称﹣最短路线问题以及轴对称的性质,勾股定理的应用,正方形的判定及性质,解决本题的关键是确定AP+PM的最大值和最小值.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;②a﹣b+c>0;③当m≠1时,a+b >am2+bm;④3a+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有③⑤.考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的对称轴为直线x=﹣=1得到2a+b=0,则可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(0,0)和(﹣1,0)之间,则x=﹣1时,y<0,即a﹣b+c<0,可对②进行判断;根据二次函数的最大值对③进行判断;利用a﹣b+c<0,b=﹣2a得到3a+c<0,可对④进行判断;把ax12+bx1=ax22+bx2移项后分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,则a(x1+x2)+b=0,可计算出x1+x2=2,于是可对⑤进行判断.解答:解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①错误;∵抛物线与x轴的一个交点在点(2,0)和(3,0)之间,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(0,0)和(﹣1,0)之间,∴x=﹣1时,y<0,即a﹣b+c<0,所以②错误;∵x=1时,y有最大值,∴a+b+c>am2+bm+c(m≠1),即a+b>am2+bm(m≠1),所以③正确;∵a﹣b+c<0,b=﹣2a,∴a+2a+c<0,即3a+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12﹣ax22+bx1﹣bx2=0,(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=﹣=﹣=2,所以⑤正确.故答案为③⑤.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、专心解一解(本大题共8小题,满分90分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.用适当的方法解下列方程:x2﹣4x+1=0.考点:解一元二次方程-配方法.分析:把常数项1移项后,再在左右两边同时加上一次项系数﹣4的一半的平方,再进行计算即可.解答:解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,x﹣2=,x1=2+,x2=2﹣;点评:此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.考点:圆心角、弧、弦的关系;全等三角形的判定与性质.分析:连接OC,构建全等三角形△COD和△COE;然后利用全等三角形的对应边相等证得CD=CE.解答:证明:连接OC.在⊙O中,∵=∴∠AOC=∠BOC,∵OA=OB,D、E分别是半径OA和OB的中点,∴OD=OE,∵OC=OC(公共边),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的对应边相等).点评:本题考查了圆心角、弧、弦的关系,以及全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,已知二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:待定系数法求二次函数解析式;二次函数的性质;坐标与图形变化-旋转.分析:(1)由二次函数的对称性可知对称轴方程过线段OA的中点,可得出其对称轴方程;(2)由(1)可得出二次函数的顶点坐标为(2,2),再利用旋转的性质求得A′点的坐标与顶点坐标相同即可得出结论.解答:解:(1)设线段OA的中点为C,则C点坐标为(2,0),∵二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0),∴二次函数的对称轴过线段OA的中点,∴二次函数的对称轴为直线x=2;(2)由(1)可知h=2,可知二次函数的顶点坐标为(2,2),当线段OA绕点O逆时针旋转60°到OA′,则可知OA=OA′=4,所以△OAA′为等边三角形,如图,过A′作A′E′⊥OA,交OA于点E′,则可求得OE′=2,A′E′=2,所以A′为二次函数的顶点.点评:本题主要考查二次函数的对称轴和顶点坐标,掌握二次函数的顶点式方程,即y=a(x﹣h)2+k 是解题的关键,其中顶点坐标为(h,k).19.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.考点:作图-旋转变换.专题:作图题.分析:(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.已知⊙O的直径为5,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=3,则AC=4,BD=;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;勾股定理.分析:(1)BC为直径可知△ABC为直角三角形,利用勾股定理可求得AC,再结合AD为角平分线,可得CD=BD,在Rt△CBD中可求得BD;(2)连接OB、OD,则可知∠BOD=2∠DAB=∠CAB=60°,可知△BOD为等边三角形,可知BD=OB,可求得BD的长.解答:解:(1)∵BC为直径,∴∠CAB=∠CDB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∴CD=BD,在Rt△ABC中,BC=5,AB=3,由勾股定理可求得AC=4,在Rt△CBD中,BC=5,CD=BD,由勾股定理可求得BD=,故答案为:4;;(2)如图,连接OB、OD,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠BOD=2∠BAD=60°,且OB=OD,∴△BOD为等边三角形,∴BD=OB,又直径为5,∴BD=2.5.点评:本题主要考查圆周角定理及等边三角形的判定和性质,掌握在同圆或等圆中相等的圆周角所对的弦相等是解题的关键.21.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为4元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过6元,每天可销售180份;若每份售价超过6元,每提高1元,每天的销售量就减少10份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)当x=6时,y=160;当x>6时,y与x的函数关系式为y=﹣10x2+280x﹣1160(x>6);(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?考点:一元二次方程的应用.专题:销售问题.分析:(1)本题考查的是分段函数的知识点.当x=6时,y=180(6﹣4)﹣200;当x >6时,y=(x﹣4)[180﹣10(x﹣6)]﹣200;(2)由题意可得y与x的函数关系式,用配方法求出最大值.解答:解:(1)由题意得:当x=6时,y=180×(6﹣4)﹣200=160;当x>6时,y=(x﹣4)[180﹣10(x﹣6)]﹣200=﹣10x2+280x﹣1160.即y=﹣10x2+280x﹣1160(x>6).故答案是:160;y=﹣10x2+280x﹣1160(x>6).(2)由题意得:y=﹣10x2+280x﹣1160=﹣10(x﹣14)2+800,故每份套餐的售价应定为14元,此时日净收入为800元.点评:本题考查的是二次函数的实际应用和一元二次方程的应用以及分段函数的有关知识,解题的关键是根据题目中的等量关系列出函数关系.22.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为15.8万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为﹣0.1m+16.1万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)考点:一元二次方程的应用.专题:销售问题.分析:(1)根据若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:16﹣0.1×2,该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为:16﹣0.1(m﹣1)=﹣0.1m+16.1,即可得出答案;(2)利用设需要卖出x部汽车,由题意可知每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.解答:解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:16﹣0.1×(3﹣1)=15.8,若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为:16﹣0.1(m﹣1)=﹣0.1m+16.1;故答案为:15.8,﹣0.1m+16.1;(2)设需要卖出x部汽车,由题意可知,每部汽车的销售利润为:17﹣[16﹣0.1(m﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要卖出6部汽车.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.23.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm 把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.考点:旋转的性质;勾股定理;等腰直角三角形.专题:压轴题.分析:(1)根据OFE1=∠B+∠1,易得∠OFE1的度数;(2)在Rt△AD1O中根据勾股定理就可以求得AD1的长;(3)设BC(或延长线)交D2E2于点P,Rt△PCE2是等腰直角三角形,就可以求出CB的长,判断B 在△D2CE2内.解答:解:(1)如图所示,∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,。
苏科版九年级上数学月考试卷含解析
—第一学期初三数学11月份检测试卷范围:九上第一章《一元二次方程》、九下第五章《二次函数》、第七章《锐角三角函数》;时间:120分钟;成绩:130分。
一、选择题:(共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内) 1.函数yx 的取值范围是( )A .x ≤;B .x ≠;C .x ≥;D .x < 2.一元二次方程x 2-x +14=0的根( )A .x 1=,x 2=-;B .x 1=2,x 2=-2;C .x 1=x 2=- ;D .x 1=x 2=3.(湖北荆州第4题3分)将抛物线y =x 2﹣2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A . y =(x ﹣1)2+4;B . y =(x ﹣4)2+4;C . y =(x +2)2+6;D . y =(x ﹣4)2+6 4.如图所示,在数轴上点A 所表示的数x 的范围是( )A .32sin30°<x <sin60°;B .cos30°<x < cos45°; C .32t a n30°<x <t a n45°;D .3cos60°<xa n60°。
(第4题)(第5题)5.(江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .kmB .km C .km D .km6.上海世博会的某纪念品原价150元,连续两次涨价a %后售价为216元.下列所列方程中正确的是( )A .150(1+2a %)=216 ;B .150(1+a %)2=216;C .150(1+a %)×2=216;D .150(1+a %)+150(1+a %)2=216。
人教版九年级上册数学第一次月考试卷带答案
人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a 的值是()A .2B .﹣2C .±2D .±42.用配方法解方程241x x =+,配方后得到的方程是()A .2(2)5x -=B .2(2)4x -=C .2(2)3x -=D .2(2)14x -=3.关于x 的一元二次方程(a ﹣1)x 2+2x ﹣1=0有两个实数根,则a 的取值范围为()A .a≥0B .a <2C .a≥0且a≠1D .a≤2且a≠14.下列抛物线中,顶点坐标为()2,1的是()A .()221y x =++B .()221y x =-+C .()221y x =+-D .()221y x =--5.抛物线231y x =--是由抛物线23(1)1y x =-++怎样平移得到的()A .左移1个单位上移2个单位B .右移1个单位上移2个单位C .左移1个单位下移2个单位D .右移1个单位下移2个单位6.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )间的关系为21(4)312y x =--+,由此可知铅球推出的距离是()A .2mB .8mC .10mD .127.已知抛物线2231y ax ax a =-++()0a ≠图象上有两点()11,A x y 、()22,B x y ,当121x x <<-时,有12y y <;当112x -≤≤时,1y 最小值是6.则a 的值为()A .1-B .5-C .1或5-D .1-或5-8.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误..的是()A .涨价后每件玩具的售价是(30)x +元;B .涨价后每天少售出玩具的数量是10x 件C .涨价后每天销售玩具的数量是(30010)x -件D .可列方程为:(30)(30010)3750x x +-=9.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A .10%B .15%C .20%D .25%10.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A .1B .2C .3D .4二、填空题11.当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,则m =_____.12.将二次函数()21132y x =++的图像沿x 轴对折后得到的图像解析式______.13.一元二次方程2280x x +-=的两根为12,x x ,则2112122x xx x x x ++=____________14.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是________.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.16.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图①),于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a=118-.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH=12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是________cm .三、解答题17.解方程:(1)2230x x --=(2)23210x x +-=18.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.19.如图,利用一面墙(墙EF 最长可利用28米),围成一个矩形花园ABCD .与墙平行的一边BC 上要预留2米宽的入口(如图中MN 所示,不用砌墙)用60米长的墙的材料,当矩形的长BC 为多少米时,矩形花园的面积为300平方米;能否围成430平方米的矩形花园?20.已知关于x 的一元二次方程2(1)0x a x a +++=.(1)求证:此方程总有两个实数根;a的值,并求此时方程的根.(2)如果此方程有两个不相等...的实数根,写出一个满足条件的21.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.22.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E 为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A ,点B 的坐标为(3,5)(1)求抛物线过点B 时顶点A 的坐标(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线22221y x mx m m =-++-与线段BC 只有一个交点25.已知点()1,0A 是抛物线2y ax bx m =++(,,a b m 为常数,0,0a m ≠<)与x 轴的一个交点.(1)当1,3a m ==-时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2?参考答案1.C 【分析】把x =4代入原方程得关于a 的一元一次方程,从而得解.【详解】把x =4代入方程223x x a -=可得16-12=2a ,解得a=±2,故选C .考点:一元二次方程的根.2.A 【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x 2−4x=1,配方得:x 2−4x+4=5,即(x−2)2=5.故选A .【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.3.C 【分析】根据一元二次方程的定义及根与判别式的关系解答即可.【详解】∵一元二次方程()21210a x x -+-=有两个实数根,∴Δ=4+4(a-1)≥0且a-1≠0,解得:a≥0且a≠0,故选C.【点睛】本题考查一元二次方程的定义及根与判别式的关系:一元二次方程的二次项系数不能为0;方程有两个实数根,Δ≥0,没有实数根,Δ<0,熟练掌握相关知识是解题关键.4.B 【分析】根据各个选项中的函数解析式可以直接写出它们的顶点坐标,从而可以解答本题.【详解】解:()2y x 21=++的顶点坐标是()2,1-,故选项A 不符合题意,()2y x 21=-+的顶点坐标是()2,1,故选项B 符合题意,()2y x 21=+-的顶点坐标是()2,1--,故选项C 不符合题意,()2y x 21=--的顶点坐标是()2,1-,故选项D 不符合题意,故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.顶点式:y=a(x-h)²+k 抛物线的顶点P (h ,k ).5.D 【分析】根据二次函数()2y a x h k =-+的性质即可判断.【详解】抛物线()2311y x =-++经过右移1个单位下移2个单位,即()231112y x =-+-+-=231x --,故选D.【点睛】此题主要考查抛物线顶点式()2y a x h k =-+的特点,熟知顶点式的性质特点是解题的关键.6.C 【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】由题意可得y=0时,()214312x --+=0,解得:()24x -=36,即x 1=10,x 2=-2(舍去),所以铅球推出的距离是10m .故选C .7.B 【分析】先确定该抛物线的对称轴,再根据12121,<<-<x x y y 得到a <0,然后再根据112x -≤≤时,1y 最小值是6列出关于a 的一元二次方程并求解即可.【详解】解:∵2231y ax ax a =-++∴2239124y a x a a ⎛⎫=--++ ⎪⎝⎭,即该抛物线的对称轴为x=32∵121x x <<-时,12y y <∴a <0∵x=32在112x -≤≤范围内,∴当x=32时有最大值,x=-1时有最小值∴()()221311=6---++ a a a 整理得2450a a +-=,解得a=1(舍去)或a=-5故答案为B .【点睛】本题考查了二次函数图像的性质,掌握根据二次函数图像的性质求最值是解答本题的关键.8.D 【解析】A.涨价后每件玩具的售价是()30x +元,正确;B.涨价后每天少售出玩具的数量是10x 件,正确;C.涨价后每天销售玩具的数量是()30010x -件,正确;D.可列方程为:()()30300103750x x +-=,错误,应为(30+x-20)(300-10x)=3750,故选D.9.C 【分析】设平均每月的增长率为x ,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【详解】设平均每月的增长率为x ,根据题意得:200(1+x )2=288,(1+x )2=1.44,x 1=0.2=20%,x 2=-2.2(舍去),所以,平均每月的增长率为20%.故选C .【点睛】本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a ,每次增长的百分率为x ,则第一次增长后为a (1+x );第二次增长后为a (1+x )2,即原数×(1+增长百分率)2=后来数.10.C 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .11.10【分析】根据题目中的函数解析式和二次函数的性质,可以求得m 的值,本题得以解决.【详解】∵二次函数y =x 2﹣4x+5=(x ﹣2)2+1,∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,∴当x =﹣1时,该函数取得最大值,此时m =(﹣1﹣2)2+1=10,故答案为:10.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.12.()21y x 312=-+-【分析】根据关于x 轴对称的点的坐标特点进行解答即可.【详解】解:∵关于x 轴对称的点横坐标不变,纵坐标互为相反数,∴函数()21132y x =++的图象沿x 轴对折,得到的图象的解析式为-()21132y x =++,即()21312y x =-+-;故答案为:()21312y x =-+-.【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴对称的点的坐标特点,即关于x 轴对称的点横坐标不变,纵坐标互为相反数.13.372-【分析】根据根与系数的关系表示出12x x +和12x x 即可;【详解】∵2280x x +-=,∴1a =,2b =,8c =-,∴12=-2b x x a +=-,12==-8c x x a,∴2221211212121222+++=+x x x x x x x x x x x x ,=()21212121222+-+x x x x x x x x ,=()()()2228372882--⨯-+⨯-=--.故答案为372-.【点睛】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键.14.12和13【分析】设这个输入的数为x ,根据题意可得6x 2-4x+1=x ,整理成一般式后利用因式分解法求解可得.【详解】解:设这个输入的数为x ,根据题意可得6x 2﹣4x+1=x ,即6x 2﹣5x+1=0,∴(2x ﹣1)(3x ﹣1)=0,则2x ﹣1=0或3x ﹣1=0,解得:x=12或x=13,故答案为:12和13.【点睛】本题考查了因式分解法解一元二次方程,根据题意列出关于x 的方程和熟练掌握解一元二次方程的基本方法是解题的关键.15.11【分析】设每轮传染中平均一人传染x 人,那么经过第一轮传染后有x 人被感染,那么经过两轮传染后有x (x+1)+x+1人感染,又知经过两轮传染共有288人被感染由此列出方程求解即可.【详解】设每轮传染中平均一个人传染不超过x 人,由题意得,2+2x+(2+2x )x=288,解得:x 1=11,x 2=-13,答:每轮传染中平均一个人传染了11个人.故答案为11.【点睛】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.16.【分析】根据题意得出各点坐标,进而利用待定系数法求抛物线解析式进而分析求解.【详解】解:如图,以GH 所在的直线为x 轴,GH 的垂直平分线所在的直线为y 轴建立平面直角坐标系,喷口B 为抛物线的顶点,B ,D ,H 所在的直线是抛物线的对称轴,∵GH=12,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,∴点G (-6,0),点H (6,0),BH=16,∴点B (6,16),点Q (9,15.5)∵a=118-设函数解析式为()22112y x 616x x 1418183=--+=-++当y=0时,()21x 616018--+=解之:12x 6x 6=+=-(舍去)∴洗手液落在台面的位置距DH 的水平距离为66+-=.故答案为:.【点睛】本题考查二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.17.(1)1213x x =-=,;(2)11x =-,213x =【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)2230x x --=()()130x x +-=∴x+1=0或x-3=0∴121,3x x =-=(2)23210x x +-=()()1310x x +-=∴x+1=0或3x-1=0∴11x =-,213x =.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)抛物线解析式为y=x 2+4x+3,一次函数解析式为y=﹣x ﹣1;(2)由图象可知,满足(x+2)2+m≥kx+b 的x 的取值范围为x ≤﹣4或x≥﹣1.【分析】(1)先利用待定系数法求出m ,再根据对称性求出点B 坐标,然后利用待定系数法求出一次函数解析式;(2)根据二次函数的图象在一次函数图象的上面即可写出自变量x的取值范围.【详解】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标为(0,3),∵抛物线的对称轴是直线x=﹣2,且B、C关于对称轴对称,∴点B坐标为(﹣4,3),∵y=kx+b经过点A、B,∴43k bk b-+=⎧⎨-+=⎩,解得11kb=-⎧⎨=-⎩,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.【点睛】本题考查二次函数与不等式、待定系数法求函数的解析式等知识,解答的关键是灵活运用待定系数法确定函数的解析式,能充分利用函数的图象根据条件确定自变量的取值范围. 19.12米,能围成430平方米的矩形花园【分析】根据可以砌60m长的墙的材料,即总长度是60m,BC=xm,则AB=12(60-x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【详解】解:设矩形花园BC的长为x米,则其宽为12(60-x+2)米,依题意列方程得:12(60-x+2)x=300,x 2-62x+600=0,解这个方程得:x 1=12,x 2=50,∵28<50,∴x 2=50(不合题意,舍去),∴x=12.12(60-x+2)x=430,x 2-62x+860=0,解这个方程得:x 1x 2,当>28,不符合题意,舍去;当<28,符合题意,∴能围成430平方米的矩形花园。
人教版九年级(上)第一次月考数学试题(含答案)
九年级第一次月考数学试题满分:150分 时间:120分钟 评卷人 得分一、选择题(每题4分,共40分)1.下列方程中是一元二次方程的是( )A .012=+xB .12=+x yC .012=+xD .0122=++x x2.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)3.方程23x ﹣8x ﹣10=0的二次项系数和一次项系数分别为( )A .3和8B .3和﹣8C .3和﹣10D .3和104.方程x (x -1)=0的根是( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 5.若将抛物线y =x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )A.y =(x +2)2+3B.y =(x -2)2+3C.y =(x +2)2-3D.y =(x -2)2-36.一元二次方程2x ﹣5x +9=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根7.方程2460x x +-=配方后变形为( )A .2(2)10x +=B .2(2)10x -=C .2(2)2x +=D .2(2)2x -=8.已知抛物线2)1(+-=x y 上的两点)()(2211y x B y x A ,和,,如果121-<<x x ,那么下列结论一定成立的是( )A.021<<y yB.210y y <<C.120y y <<D.012<<y y .9.关于x 的一元二次方程(m -2)x 2+x +m 2-4=0的一个根是0,则m 的值为( ) A .2或-2 B .12 C .-2 D .2. 10.若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( ) A. m >1 B. m >0 C. m >﹣1 D.﹣1<m <0 11.一次函数与二次函数在同一坐标系中的图象可能是( ) 12.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为直线x =21,且经过点(2,0).下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(25,y 2)是抛物线上的两点,则y 1<y 2,其中说法正确的是( ) ①②④ B.③④ C.①③④ D.①② 评卷人 得分 二、填空题(每题4分,共24分) 13.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 . 14.如果抛物线2(2)y a x =-的开口方向向上,那么a 的取值范围是 . 15.方程()229x -=的解是____________. 16.若一元二次方程(m -1)x ²-4x -5=0没有实数根,则m 的取值范围是___________. 17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .第17题图18.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x ≥0)与322x y =(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,交2y 于点E ,则AB DE = _______.评卷人得分 三、解答题(每题8分,共16分) 19.解方程:(1)23410x x --= (2)()33x x x -=-+ 20.如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.求a 的值及点B 的坐标.评卷人得分 四、解答题(21-25题,每题10分,26题12分,共52分)20.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款? 22.已知二次函数342+-=x x y (1)求函数的顶点C 的坐标,并描述该函数的函数值随自变量的增减而增减的情况; (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积. 23.已知关于x 的方程22220x mx m m -++-=有两个不相等的实数根. (1)求m 的取值范围;(2)当m 为正整数时,求方程的根. 24.如图,已知抛物线y =x 2+bx +c 经过矩形ABCD 的两个顶点A 、B ,AB 平行于x 轴,对角线BD 与抛物线交于点P ,点A的坐标为(0,2),AB =4.(1)求抛物线的解析式;(2)若S △APO =,求矩形ABCD 的面积.25. 俗话说“一铺养三代”。
江苏省宿迁市钟吾初级中学2024-2025学年九年级上学期数学第一次月考试题(含详解)
江苏省宿迁市钟吾初级中学2024-2025学年初中九上数学第一次月考试题一.选择题(共6小题)1.抛物线y=﹣x2+2x﹣c过A(﹣1,y1),B(2,y2),C(5,y3)三点.则将y1,y2,y3,从小到大顺序排列是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y12.一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是( )A.4B.﹣4C.3D.﹣33.某厂一月份生产某机器200台,计划第一季度共生产1800台.设二、三月份每月的平均增长率为x,根据题意列出得方程是( )A.200(1+x)2=1800B.200(1+x)+200(1+x)2=1800C.200(1﹣x)2=1800D.200+200(1+x)+200(1+x)2=18004.若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是( )A.x1=﹣6,x2=﹣1B.x1=0,x2=5C.x1=﹣3,x2=5D.x1=﹣6,x2=25.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3566.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是( )A.①③B.②⑤C.③④D.④⑤二.填空题(共11小题)7.如果抛物线y=2x2+4x+m的顶点在x轴上,则m= .8.若a:b=3:4,且a+b=14,则2a﹣b的值是 .9.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<﹣<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④ax2+bx+c=0,必有两个不相等的实数根.其中结论正确的有 .(填序号)10.对于实数a、b,定义运算“*”;,关于x的方程(2x)*(x﹣1)=t+3恰好有三个不相等的实数根,则t的取值范围是 .11.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= .12.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为 .13.已知点A(﹣5,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则y1和y2的大小关系是 .(用“>”连接).14.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于 .15.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是 .16.已知二次函数y=x2+2x﹣n,当自变量x的取值在﹣2≤x≤1的范围时,函数的图象与x 轴有且只有两个公共点,则n的取值范围是 .17.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是 .三.解答题(共7小题)18.已知二次函数y=﹣x2+2mx+1.(1)求证:无论m取任何值,二次函数的图象与x轴总有两个不同的交点;(2)若此函数图象的顶点为D点,与y轴的交点于点C,直线CD与x轴相交于点A,抛物线的对称轴与x轴相交于点B,求证:BC⊥AD.19.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点D在y轴正半轴上,直线AD:y=x+b与抛物线交于点E.(1)求线段BC的长度;(2)如图2,点P是线段AE上的动点,过点P作y轴的平行线交抛物线于点Q,求的最大值;(3)如图3,将抛物线y=向左平移4个单位长度,将△DCA沿直线BC 平移,平移后的△DCA记为ΔD'C'A',在新抛物线的对称轴上找一点M,当△A'C'M是以点A'为直角顶点的等腰直角三角形时,请直接写出所有符合条件的点M的坐标.20.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长;(1)若a=b=c,试求这个一元二次方程的根;(2)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.如图1,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45平方米的花圃,AB的长是多少米?(2)如图2,如果在平行于墙面的篱笆上开两道1米宽的门,如果要围成面积为56平方米的花圃,AB的长是多少米?(3)在(1)的条件下,能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.22.如图,二次函数y=﹣x2+2x+3的图象过点A(﹣1,0)、点B(0,3).(1)该二次函数的顶点是 ;(2)点C为点B关于抛物线对称轴的对称点,直线y=mx+n经过A、C两点,满足ax2+bx+c>mx+n的x的取值范围是 .(3)在对称轴上找一点M,使|MA﹣MC|取得最大值,求出此时M的坐标.23.2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)直接写出每月的销售量y(件)与销售单价x(元)之间的函数关系式 .(2)设每月获得的利润为W(元),当销售单价为多少元时,销售这款文化衫每月所获得的利润最大,最大利润为多少元?(3)该网店的营销部结合上述情况,提出了A,B两种营销方案:方案A:销售单价高于进价且不超过进价20元.方案B:每月销售量不少于220件,且每件文化衫的利润至少为35元.请比较哪种方案的最大利润更高,并说明理由24.已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C ,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,﹣3).(1)求抛物线l2的函数表达式;(2)如图,N为抛物线l1上一动点,过点N作直线MN∥y轴,交抛物线l2于点M,点N自点A运动至点B的过程中,求线段MN长度的最大值.(3)P为抛物线l1的对称轴上一动点,Q为抛物线l2上一动点,是否存在P、Q两点,使得B、D、P、Q为顶点的四边形是平行四边形?若存在,求出P、Q的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(共6小题)1.【解答】解:∵y=﹣x2+2x﹣c=﹣(x﹣1)2+1﹣c,∴图象的开口向下,对称轴是直线x=1,∴当x>1时,y随x的增大而减小,∵A(﹣1,y1)关于直线x=1的对称点是(3,y1),且1<2<3<5,∴y2>y1>y3,即y3<y1<y2.故选:C.2.【解答】解:x1•x2=﹣3.故选:D.3.【解答】解:二月份的生产量为200×(1+x),三月份的生产量为200×(1+x)(1+x),那么200+200(1+x)+200(1+x)2=1800.故选:D.4.【解答】解:解方程m(x+h)2+k=0(m、h、k均为常数,m≠0)得,x=﹣h±,∵此方程解是x1=﹣3,x2=2,∴﹣h﹣=﹣3,﹣h+=2,∵方程m(x+h﹣3)2+k=0的解是x=3﹣h±,∴x1=3﹣3=0,x2=3+2=5,故选:B.5.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.6.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;故④⑤正确.故选:D.二.填空题(共11小题)7.【解答】解:∵抛物线y=2x2+4x+m的顶点在x轴上,∴b2﹣4ac=0,即16﹣8m=0,解得m=2,故答案为2.8.【解答】解:设a=3k,b=4k,(k≠0),∵a+b=14,∴3k+4k=14,解得:k=2,∴a=6,b=8,∴2a﹣b=2×6﹣8=4.故答案为:4.9.【解答】解:∵抛物线的开口方向向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0.∴①的结论不正确;∵函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),∴抛物线的对称轴为直线x=,∵1<m<2,∴0<<.∵抛物线的对称轴为直线x=﹣,∴0<﹣<.∴②的结论正确;∵点A(﹣2,y1),B(2,y2)在抛物线上,A(﹣2,y1)到抛物线的对称轴的距离大于B(2,y2)到抛物线的对称轴的距离,∴y1>y2,∴③的结论不正确;∵抛物线y=ax2+bx+c与x轴有两个交点,∴方程ax2+bx+c=0,必有两个不相等的实数根,∴④的结论正确,结论正确的有:②④,故答案为:②④.10.【解答】解:由新定义的运算可得关于x的方程为:当2x≤x﹣1时,即x≤﹣1时,有(2x)2﹣2x(x﹣1)=t+3,即:2x2+2x﹣t﹣3=0(x≤﹣1),其根为:是负数,当2x>x﹣1时,即x>﹣1,时,有(x﹣1)2﹣2x(x﹣1)=t+3,即:x2=﹣t﹣2(x>﹣1),要使关于x的方程(2x)*(x﹣1)=t+3恰好有三个不相等的实数根,则x2=﹣t﹣2(x>﹣1)和2x2+2x﹣t﹣3=0(x≤﹣1)都必须有解,∴,∴,(1)当﹣t﹣2=0时,即t=﹣2时,方程x2=﹣t﹣2(x>﹣1)只有一个根x=0,∵当t=﹣2时,,∴,,∴此时方程2x2+2x﹣t﹣3=0(x≤﹣1)只有一个根符合题意,∴t=﹣2不符合题意;(2)当﹣3<t<﹣2时,方程x2=﹣t﹣2(x>﹣1)的两个根﹣1<x<1都符合题意,∵当﹣3<t<﹣2时,,∴,,∴方程2x2+2x﹣t﹣3=0(x≤﹣1)只有一个根符合题意,∴当﹣3<t<﹣2时,(2x)*(x﹣1)=t+3恰好有三个不相等的实数根;(3)∵当时,方程x2=﹣t﹣2(x>﹣1)的一个根≥1,另外一个根≤﹣1,∴此时方程x2=﹣t﹣2(x>﹣1)只有一个根符合题意,∵,,∴当时,方程2x2+2x﹣t﹣3=0(x≤﹣1)最多有一个根符合题意,∴当时(2x)*(x﹣1)=t+3不可能有三个不相等的实根;综上分析可知,t的取值范围是﹣3<t<﹣2.故答案为:﹣3<t<﹣2.11.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.12.【解答】解:设y=a2+b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∵a2+b2>0,∴a2+b2=4.故答案为:4.13.【解答】解:∵抛物线y=﹣(x+1)2+2,∴抛物线开口向下,对称轴为直线x=﹣1,∴B(2,y2)关于对称轴的对称点为(﹣4,y2),∵﹣5<﹣4<﹣1,∴y1<y2.故答案为:<.14.【解答】解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.15.【解答】解:当k=0,方程变形为3x﹣1=0,此一元一次方程的解为x=;当k≠0,Δ=9﹣4k×(﹣1)≥0,解得k≥﹣,即k≥﹣且k≠0时,方程有两个实数根,综上所述实数k的取值范围为k≥﹣.故答案为:k≥﹣.16.【解答】解:依照题意画出图象,如图所示.观察函数图象可知:,解得:﹣1<n≤0.故答案为:﹣1<n≤0.17.【解答】解:解方程x2﹣8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(0,﹣4),AQ==5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=AP,∴CM的最大值为.故答案为:.三.解答题(共7小题)18.【解答】(1)证明:∵Δ=(2m)2﹣4×(﹣1)×1=4m2+4>0,∴方程﹣x2+2mx+1=0有两个不同的实数解,即无论m取任何值,二次函数的图象与x轴总有两个不同的交点.(2)证明:∵二次函数y=﹣x2+2mx+1,∴对称轴的直线为,顶点D点的坐标为(m,m2+1),点C(0,1),∵对称轴的直线x=m与x轴相交于点B,∴B(m,0),∴BC2=m2+12=m2+1,BD2=(m2+1)2=m4+2m2+1,CD2=m2+(m2+1﹣1)2=m4+m2,∵BC2+CD2=m2+1+m4+m2=m4+2m2+1,∴BC2+CD2=BD2,∴△BCD是直角三角形,∠BCD=90°,∴BC⊥AD.19.【解答】解:(1)令y=0,则=0,解得x=6或x=﹣4,∴A(﹣4,0),B(6,0),令x=0,则x=﹣3,∴C(0,﹣3),∴BC=3;(2)将点A(﹣4,0)代入y=x+b,∴﹣4+b=0,解得b=4,∴y=x+4,∴D(0,4),联立方程组,解得或,∴E(14,18),设P(t,t+4)(﹣4<t<14),∵PQ∥y轴,∴Q(t,t2﹣t﹣3),∴PQ=t+4﹣(t2﹣t﹣3)=﹣t2+t+7,∵CD=7,∴=﹣t2+t+1=﹣(t﹣5)2+,∴当t=5时,有最大值;(3)∵y==﹣(x﹣1)2﹣,∴平移后的抛物线解析式为y=﹣(x+3)2﹣,∴抛物线的对称轴为x=﹣3,设M(﹣3,m),∵A(﹣4,0),C(0,﹣3),∴AC=5,∴A'C'=5,∵△A'C'M是以点A'为直角顶点的等腰直角三角形,∴A'M=5,设△ACD沿x轴向左平移2a个单位长度,则沿y轴向下平移a个单位长度,∴A'(﹣4﹣2a,﹣a),C'(﹣2a,﹣3﹣a),∴=5①,C'M=,∵C'M=A'C',∴=5②,联立①②可得或,∴M(﹣3,3)或(﹣3,﹣2).20.【解答】解:(1)∵a=b=c,∴原方程为x2+x=0,即x(x+1)=0,解得:x1=0,x2=﹣1.(2)∵方程(a+c)x2+2bx+(a﹣c)=0有两个相等的实数根,∴Δ=(2b)2﹣4(a+c)(a﹣c)=4b2﹣4a2+4c2=0,∴a2=b2+c2.∵a、b、c分别为△ABC三边的长,∴△ABC为直角三角形.21.【解答】解:(1)设AB的长为x米,则BC的长为(24﹣3x)米,根据题意得:x(24﹣3x)=45,解得x1=3,x2=5,当x=3时,BC=24﹣3x=15,符合题意,当x=5时,BC=24﹣3x=9,符合题意,∴AB的长是3米或5米;(2)设AB的长为m米,则BC的长为(24﹣3m+1+1)米,根据题意得:m(24﹣3m+1+1)=56,解得m1=,m2=4,当m=时,BC=24﹣3m+1+1=12,符合题意,当m=4时,BC=24﹣3m+1+1=14,符合题意;∴AB的长是米或4米;(3)能围成面积比45平方米更大的花圃,理由如下:设AB的长为x米,围成面积为w平方米,∵墙的最大可用长度为a为15米,∴24﹣3x≤15,解得x≥3,根据题意得w=x(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,x≥3,∴x=4时,w取最大值,最大值为48平方米,此时24﹣3x=24﹣3×4=12,答:当AB=4,BC=12时,能围成面积比45平方米更大的花圃,最大面积是48平方米.22.【解答】解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴二次函数的顶点坐标为(1,4),故答案为:(1,4),(2)由(1)得,二次函数的对称轴为直线x=1,B(0,3),点C与点B关于该二次函数图象的对称轴对称,∴点C(2,3),由图象可知,不等式ax2+bx+c>mx的x的取值范围:﹣1<x<2.故答案为:﹣1<x<2.(3)函数的对称轴为直线x=1,点C与点B关于该二次函数图象的对称轴对称,如图所示,|AM1﹣M1C|=|AM1﹣BM1|≤AB,连接AB与对称轴交于点M,此时|MA﹣MC|=|MA﹣MB|=AB,∴|MA﹣MC|的最大值为AB;设AB直线解析式为y=kx+b的图象经过A,B两点,∴,解得,∴直线AB解析式为y=3x+3,把x=1代入得,y=3×1+3=6,∴M的坐标为(1,6).23.【解答】解:(1)由题意:设y与x之间的函数关系式为:y=kx+b(k≠0),将(40,600),(80,200)代入得:,解得:,故答案为:y=﹣10x+1000;(2)由题意得:W=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵a=﹣10<0,∴当x=70时,W有最大值,W最大值=9000(元).∴销售单价为70元时,销售这款文化衫每天所获得的利润最大,最大利润为9000元;(3)选择方案B,理由:方案A:由题意,40<x≤60,方案B:由y≥220,可得x≤78,∴75≤x≤78,∵a=﹣10<0,且对称轴为直线x=70,∵75﹣70<70﹣60,∴当x=75时,最大利润最高,∴选择方案B.24.【解答】解:(1)设抛物线l2的函数表达式为y=ax2+bx+c,当y=0时,由﹣x2+2x+3=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),把A(﹣1,0)、D(0,﹣3)、E(6,0)代入y=ax2+bx+c,得,解得,∴抛物线l2的函数表达式为y=x2﹣x﹣3.(2)如图1,设点N的横坐标为x(﹣1<x≤3),∴N(x,﹣x2+2x+3),M(x,x2﹣x﹣3),∴MN=(﹣x2+2x+3)﹣(x2﹣x﹣3)=﹣x2+x+6=﹣(x﹣)2+,∵<0,且﹣1<<3,∴当x=时,MN的最大值为.(3)存在,如图2,设抛物线l1的顶点为点R,作RQ⊥y轴交抛物线l2于点Q,∵y=﹣x2+2x+3=y=﹣(x﹣1)2+4,∴抛物线l1的对称轴为直线x=1,顶点为R(1,4),过点Q作PQ∥DB交直线x=1于点P,作四边形PQDB,BD交直线x=1于点H,抛物线y=x2﹣x﹣3,当y=4时,则x2﹣x﹣3=4,解得x1=﹣2,x2=7,∴Q(﹣2,4),∵∠QPR=∠BHP=∠BDO,∠PRQ=∠DOB=90°,RQ=OB=3,∴△PRQ≌△DOB(AAS),∴PQ=DB,∴四边形PQDB是平行四边形,∵PR=DO=3,∴P(1,7);如图3,设直线x=1交抛物线l2于点G,抛物线l2:y=x2﹣x﹣3,当x=1时,y=﹣﹣3=﹣5,∴G(1,﹣5),设抛物线l2与抛物线l1的另一个交点为点Q,由得,,∴Q(4,﹣5),作QP∥BD交直线x=1于点P,作四边形PQBD,BD交直线x=1于点H,连接GQ,则GQ∥x轴,且GQ=3,∴∠GPQ=∠RHB=∠ODB,∠PGQ=∠DOB=90°,GQ=OB=3,∴△PGQ≌△DOB(AAS),∴QP=BD,∴四边形PQBD是平行四边形,∵GP=OD=3,∴P(1,﹣8);如图4,平行四边形PBQD以BD为对角线,设点F是BD的中点,则F(,﹣),∴点Q与点P关于BD的中点F成中心对称,在(2)的条件下,直线MN为x=,∵B(3,0),∴直线x=平分OB,∴直线x=也平分BD,∴直线x=经过点F(,﹣),∴点Q与点P到直线MN的距离相等,∴点Q的横坐标为+(﹣1)=2,抛物线y=x2﹣x﹣3,当x=2时,y=×4﹣×2﹣3=﹣6,∴Q(2,﹣6),作DK∥x轴,作QK⊥DK交DK于点K,设DQ交直线x=1于点J,直线x=1交x轴于点I,则K(2,﹣3),∵∠DQK=∠DJI=∠BPI,∠K=∠PIB=90°,KD=IB=2,∴△PDK≌△PBI(AAS),∴QK=PI=3,∴P(1,3),综上所述,P(1,7),Q(﹣2,4)或P(1,﹣8),Q(4,﹣5)或P(1,3),Q(2,﹣6).。
2023-2024学年九年级(上)第一次月考数学试卷-(含答案)
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
九年级(上)第一次月考数学试卷(含答案)
九年级(上)第一次月考数学试卷一、选择题(每小题3分,共24分在下列各个小题中,均给出了四个答案,其中有且只有一个正确答案,将正确答案代号填入括号内)1.下列方程是一元二次方程的是()A. B.C. D.2.如果,则的值为()A. B. C. D.3.如右图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A. B. C. D.4.一元二次方程的解是()A. B.C.,D.,5.若代数式与代数式的值相等,则的值是()A.或B.或C.或D.或6.方程的左边配成完全平方后所得方程为()A. B.C. D.以上答案都不对7.关于的一元二次方程的一根为,则的值是()A. B. C. D.8.三角形两边的长分别是和,第边的长是一元二次方程的一个实数根,则该三角形的周长是()A. B.或 C. D.或二、填空题(每小题3分,共24分)9.根据下列表格的对应值,判断(,,,为常数)的一个解的取值范围是________10.如图,中,∠,把绕点逆时针旋转,得,则∠的度数为________.11.已知是关于的方程的一个根,则________.12.方程的根是________.13.已知是方程的根,求的值为________.14.关于的方程有两个相等的实根,则________.15.已知是方程的一个根,则代数式的值是________.16.某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为,则由题意可列方程为________.三、解答题(第17-20题28分,21题8分24题8分,25题10分共54分)17.解方程:(配方法).18.解方程:.19.解方程:(分解因式法).20.解方程.21.如图,在中,∠,点从点开始沿边向点以的速度匀速移动,同时另一点由点开始以的速度沿着匀速移动,几秒时,的面积等于?22.如图,是一张边长为的正方形纸片,,分别为,的中点,沿过点的折痕将角翻折,使得点落在上的点′处,折痕交于点,则________.23.在方格中的位置如图所示.请在方格纸上建立平面直角坐标系,使得、两点的坐标分别为、.并求出点的坐标;作出关于横轴对称的,再作出以坐标原点为旋转中心、旋转后的,并写出,两点的坐标.四、解答题24.李大妈加盟了“红红”全国烧烤连锁店,该公司的宗旨是“薄利多销”,经市场调查发现,当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?25.如图甲,在中,∠为锐角.点为射线上一动点,连接,以为一边且在的右侧作正方形.解答下列问题:如果,∠.①当点在线段上时(与点不重合),如图乙,线段、之间的位置关系为________,数量关系为________.②当点在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?如果,∠,点在线段上运动.试探究:当满足一个什么条件时,(点、重合除外)?画出相应图形,并说明理由.(画图不写作法)26.阅读下面的例题,范例:解方程,解:当时,原方程化为,解得:,(不合题意,舍去).当时,原方程化为,解得:,(不合题意,舍去).∴原方程的根是,请参照例题解方程.答案1. 【答案】B【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是;二次项系数不为.以上三个条件必须同时成立,据此即可作出判断.【解答】解:、不是方程,错误;、符合一元二次方程的定义,正确;、原式可化为,是一元四次方程,错误;、是分式方程,错误.故选.2. 【答案】C【解析】先把原式的右边利用完全平方公式展开,再利用等式的对应项的系数相等可求.【解答】解:∵,∴,∴.故选.3. 【答案】A【解析】由为折痕,可得,由矩形,可得,∠,设出的长,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设,则,∵矩形,∴,∠,∵为折痕,∴,中,,∴,解得.故选.4. 【答案】C【解析】观察发现方程的两边同时加后,左边是一个完全平方式,即,即原题转化为求的平方根.【解答】解:移项得:,∴,即,.故选:.5. 【答案】B【解析】由两个代数式的值相等,可以列出一个一元二次方程,分析方程的特点,用分组分解法进行因式分解,求出方程的两个根.【解答】解:因为这两个代数式的值相等,所以有:,,,或,∴或.故选.6. 【答案】A【解析】把方程变形得到,方程两边同时加上一次项的系数一半的平方,两边同时加上即可.【解答】解:∵∴∴∴.故选.7. 【答案】A【解析】根据一元二次方程解的定义把代入方程求,然后根据一元二次方程的定义确定满足条件的的值.【解答】解:把代入方程得,解得,而,所以.故选.8. 【答案】C【解析】由于第边的长是一元二次方程的一个实数根,那么求出方程的根就可以求出三角形的周长.【解答】解:∵,∴,∴或,当时,三角形的三边分别为、和,∴该三角形的周长是;当时,三角形的三边分别为、和,而,∴三角形不成立.故三角形的周长为.故选.9. 【答案】【解析】根据上面的表格,可得二次函数的图象与轴的交点坐标即为方程的解,当时,;当时,;则二次函数的图象与轴的交点的横坐标应在和之间.【解答】解:∵当时,;当时,;∴方程的一个解的范围是:.故答案为:.10. 【答案】【解析】直接利用旋转的性质求解.【解答】解:∵绕点逆时针旋转,得,∴∠.故答案为.11. 【答案】【解析】根据一元二次方程解的定义把代入得到关于的方程,然后解关于的方程即可.【解答】解:把代入得,解得.故答案为.12. 【答案】或【解析】原方程的左边是两个一次因式乘积的形式,而方程的右边为,可令每个一次因式的值为,得到两个一元一次方程,解这两个一元一次方程即可求出原方程的解.【解答】解:,或,解得或.13. 【答案】【解析】把方程的解代入方程,两边同时除以,可以求出代数式的值.【解答】解:把代入方程有:两边同时除以有:.故答案是:.14. 【答案】【解析】由方程有两个相等的实数根结合根的判别式即可得出关于的一元二次方程,解方程即可得出结论.【解答】解:∵方程有两个相等的实根,∴,解得:.故答案为:.15. 【答案】【解析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.【解答】解:把代入方程,得到,所以.故本题答案为.16. 【答案】【解析】本题可设平均每次降价的百分率是,则第一次降价后药价为元,第二次在元的基础之又降低,变为即元,进而可列出方程,求出答案.【解答】解:设平均每次降价的百分率是,则第二次降价后的价格为元,根据题意得:,故答案为:.17. 【答案】解:∵,,即,∴,∴,.【解析】先移项得到,再把方程两边加上得到,即,然后利用直接开平方法求解.【解答】解:∵,,即,∴,∴,.18. 【答案】解:由原方程,得,∴,∴,或解得,,或.【解析】将原方程转化为一般形式,然后利用因式分解法解方程即可.【解答】解:由原方程,得,∴,∴,或解得,,或.19. 【答案】解:∵,∴,∴,∴,∴或,∴,.【解析】先移项,然后利用平方差公式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.【解答】解:∵,∴,∴,∴,∴或,∴,.20. 【答案】解:,则有,∴;解得,或;①当时,;②当时,.【解析】设,则原方程变为,然后解关于的方程,最后再来求的值.【解答】解:,则有,∴;解得,或;①当时,;②当时,.21. 【答案】解:设秒后,的面积等于平方米,或.∵,∴应舍去,所以当秒时面积平方米.【解析】根据勾股定理先求出的长,然后根据运动速度,设秒后,的面积等于平方米,从而可列方程求解.【解答】解:设秒后,的面积等于平方米,或.∵,∴应舍去,所以当秒时面积平方米.22. 【答案】【解析】由是一张边长为的正方形纸片,,分别为,的中点,可得,,由翻折可得′,′,在′与′中,利用勾股定理可求得答案.【解答】解:∵是一张边长为的正方形纸片,、分别为,的中点,∴,,为折痕,∴′,′,′中,′′,∴′,′中,设,则′,∴′,解得.故答案为:.23. 【答案】解:坐标系如图所示,;; ,如图所示,,.【解析】根据已知点的坐标,画出坐标系,由坐标系确定点坐标;; 由轴对称性画,由关于原点中心对称性画,可确定写出,两点的坐标.【解答】解:坐标系如图所示,;; ,如图所示,,.24. 【答案】解:设这种羊肉串定价为角,,化简得:,解得:(舍去),,故这种羊肉串应定价为角.【解析】设这种羊肉串定价为角,根据当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,可列方程求解.【解答】解:设这种羊肉串定价为角,,化简得:,解得:(舍去),,故这种羊肉串应定价为角.25. 【答案】垂直,相等; 当∠时,(如图).理由:过点作交的延长线于点,则∠,∵∠,∠∠,∴∠,∴∠∠,∴,在与中,∠∠,∴,∴∠∠,∠∠∠,即.【解析】①根据正方形的性质得到∠∠,推出,根据全等三角形的性质即可得到结论;②由正方形的性质可推出,根据全等三角形的性质得到,∠∠,根据余角的性质即可得到结论;; 过点作交或的延长线于点,于是得到∠,可推出∠∠,证得,根据的结论于是得到结果.【解答】解:①正方形中,,∵∠∠,∴∠∠,在与中,∠∠,∴,∴,∠∠,∴∠∠,即;; 当∠时,(如图).理由:过点作交的延长线于点,则∠,∵∠,∠∠,∴∠,∴∠∠,∴,在与中,∠∠,∴,∴∠∠,∠∠∠,即.26. 【答案】解:,当时,原方程化为,解得:,(不合题意,舍去).; 当时,原方程化为,解得:,(不合题意,舍去).故原方程的根是,.【解析】分为两种情况:当时,原方程化为,; 当时,原方程化为,求出方程的解即可.【解答】解:,当时,原方程化为,解得:,(不合题意,舍去).; 当时,原方程化为,解得:,(不合题意,舍去).故原方程的根是,.。
2024-2025学年江苏省苏州中学九年级上学期第一次月考数学试题及答案
2024-2025学年第一学期九年级数学第一次月考卷(范围:九上第1、2章、九下第6章 考试时间:120分钟试卷满分:150分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程一定是关于 x 一元二次方程的是( ) A. 22350x x −−= B. 2220x xy y ++=C. ()()()213x x x x +=−+D. 250x =2. 下列各条件中,能判断ABC A B C ′′′∽△△的是( )A. 3AB A B ′′=,A A ′∠=∠B. AB BCA B A C =′′′′ ,B B ∠=∠′ C. ABA B BC B C ′′=′′,∠+∠=∠+∠′′A C A CD. 40A ∠=°,80B ∠=°,80∠′=°A ,70B ′∠=°3. 如图,四边形ABCD 内接于O ,它的一个外角70CBE ∠=°,则ADC ∠的度数为( )A. 55°B. 70°C. 110°D. 140° 4. 定义运算21m n mn mn =−−☆,例如242424217=×−×−=☆,则方程20x =☆的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根 5. 如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=°,则ACO ∠的度数为( )A. 42°B. 44°C. 46°D. 48°6. 如图,ABC 与DEF 是位似三角形,位似比为2:3,已知3AB =,则DDDD 的长等于( )的A. 49B. 2C. 92D. 2747. “读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A. 250(1)80x +=B. 250(1%)80x +=C. 250(12)80x +=D. 25050(1)50(1)80x x ++++= 8. 如图,a b c ∥∥,若32AD DF =,则下面结论错误的是( ).A 35AD AF =B. 32C. 23AB EF =D. 35BC BE = 9. 如图,ABC 的内切圆O 与AB BC AC 、、相切于点D 、E 、F ,已知435AB AC BC ===,,,,则DE 的长是( )A.B.C.D. 10. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将ADE 按顺时针方向旋转,若AE 的长为2,则MBC △面积的最小值是( ).A. 4B. 8C. 2+D. 二、填空题:本题共8小题,每小题3分,共24分.11. 方程 250x =的解是____.12. 若32a b=,则22a b a b +−的值为____. 13. 已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为________.14. 如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为__________.15. 已知四边形ABCD 是矩形,2AB =,BC =B 为圆心BC 为半径的圆交AD 于点E ,则图中阴影部分的面积为__________.16. 如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是___.17. 已知A 是方程2201010x x −+=的一个根,试求22201020091A A A −++的值______. 18. 如图,AB 为O 的直径,C 为O 上一点,其中6120AB AOC =∠=°,,P 为O 上的动点,连接AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为______.三、解答题:本题共10小题,共96分.解答应写出文字说明、证明过程或演算步棸. 19. 用指定方法解下列一元二次方程(1)23(21)120x −−=(直接开平方法) (2)22470x x −−=(配方法)(3)210x x +−=(公式法)(4)22(21)0x x −−=(因式分解法) 20. 如图,AAAA 是⊙O 的弦,C 是⊙O 上的一点,且60ACB ∠=°,OD AB ⊥于点E ,交⊙O 于点D .若⊙O 的半径为6,求弦AAAA 的长.21. 如图,在正方形ABCD 中,E 为边AD 中点,点F 在边CD 上,且3CF FD =,求证:ABE DEF △△∽.的22. 已知ABC 三边a b c ,,满足()()()271a c a b c b −+−=−∶∶∶∶,且24a b c ++=.(1)求a b c ,,的值;(2)判断ABC 的形状.23. 已知关于x 一元二次方程22230x mx m m ++−=.(1)若方程有两个实数根,求m 取值范围;(2)设22230x mx m m ++−=的两个实数根为1x ,2x ,若221212364x x x x =++,求m 的值. 24. 图Ⅰ是大拇指广场示意图及测量其高度的方案,图Ⅱ是求大拇指高度AB 的示意图.如图Ⅱ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿3m 平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.25. 如图,已知O 是ABC 的外接圆,AB 是O 的直径,P 是AB 的延长线上的点,弦CE 交AB 于点D .2POE CAB ∠=∠,P E ∠=∠.(1)求证:CE AB ⊥;(2)求证:PC 是O 的切线;(3)若BD OD =,9PB =,求O 的半径.26. 某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了尽量减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.的的(1)若11月份每箱饮料降价2元,则该超市11月份可获得的利润是多少?(2)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(3)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由.27. 按要求利用无刻度直尺作图(保留作图痕迹).(1)如图1,由小正方形构成的66×网格,每个小正方形的顶点叫做格点,且每个小正方形的边长为1,O 经过A ,B ,C 三个格点,用无刻度的直尺作出圆心O ;(2)如图2,在平行四边形ABCD 中,45A ∠=°,以AB 为直径的圆与CD 相切于点D .请仅用无刻度直尺在图中作出ABD △的重心M .28. 新定义:如果一个四边形的对角线相等,我们称这个四边形为美好四边形.【问题提出】(1)如图1,若四边形ABCD AD BD =,90ABC ∠=°,4AB =,3BC =,求四边形ABCD 的面积;【问题解决】(2)如图2,某公园内需要将4个信号塔分别建在A ,B ,C ,D 四处,现要求信号塔C 建在公园内一个湖泊的边上,该湖泊可近似看成一个半径为200m 的圆,记为E .已知点A 到该湖泊的最近距离为500m ,是否存在这样的点D ,满足AC BD =,使得四边形ABCD 的面积最大?若存在,求出最大值;若不存在,请说明理由.2024-2025学年第一学期九年级数学第一次月考卷(范围:九上第1、2章、九下第6章 考试时间:120分钟试卷满分:150分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程一定是关于 x 的一元二次方程的是( ) A. 22350x x −−= B. 2220x xy y ++=C. ()()()213x x x x +=−+D. 250x = 【答案】D【解析】【分析】本题考查了一元二次方程的一般式:一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式()200ax bx c a ++=≠,这种形式叫一元二次方程的一般形式.根据一元二次方程的定义对各选项进行判断.【详解】解:A 、22350x x−−=含有分式,故不是一元二次方程,不符合题意; B 、2220x xy y ++=含有两个未知数,故不是一元二次方程,不符合题意.C 、()()()213x x x x +=−+化简得03=−,不是一元二次方程,不符合题意;D 、250x =符合一元二次方程定义,符合题意;故选:D .2. 下列各条件中,能判断ABC A B C ′′′∽△△的是( )A. 3AB A B ′′=,A A ′∠=∠B.AB BC A B A C =′′′′,B B ∠=∠′ C. AB A B BC B C ′′=′′,∠+∠=∠+∠′′A C A C D. 40A ∠=°,80B ∠=°,80∠′=°A ,70B ′∠=° 【答案】C【解析】【分析】本题主要考查相似三角形的判定,解答的关键是熟记相似三角形的判定条件.两角对应相等的两个三角形相似;两组对应边成比例且其夹角相等的两个三角形相似.根据相似三角形的判定条件对各选项进行分析即可.【详解】A 、∵3AB A B ′′=,A A ′∠=∠,只有一角一边,∴不能判断两个三角形相似,故A 不符合题意;B 、∵AB BC A B A C =′′′′,B B ′∠=∠,B ′∠不是A B ′′与A C ′′的夹角, ∴不能判断两个三角形相似,故B 不符合题意;C 、由∠+∠=∠+∠′′A C A C ,可得B B ′∠=∠, 再由AB A B BC B C′′=′′,得AB BC A B B C =′′′′, ∵两组对应边成比例且其夹角相等的两个三角形相似,∴可判断ABC A B C ′′′∽△△,故C 符合题意;D 、由40A ∠=°,80B ∠=°,得60C ∠=°,由80∠′=°A ,70B ′∠=°, 得30C ′∠=°,∵只有80B A ∠′=∠=°,∴不能得ABC A B C ′′′∽△△,故D 不符合题意.故选:C .3. 如图,四边形ABCD 内接于O ,它的一个外角70CBE ∠=°,则ADC ∠的度数为( )A. 55°B. 70°C. 110°D. 140°【答案】B【解析】 【分析】利用圆内接四边形的性质即可.证明ADC CBE ∠=∠即可得到答案.本题主要考查圆的内接四边形,熟练掌握圆内接四边形的性质即可.详解】解:依题意,180ADC ABC ∠+∠=°,∵180ABC CBE ∠+∠=°,70ADC CBE ∴∠=∠=°.故选:B .4. 定义运算21m n mn mn =−−☆,例如242424217=×−×−=☆,则方程20x =☆的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【解析】【分析】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.【详解】解:根据定义得:222210x x x =−−=☆, 2a = ,2b =−,1c =−,()()22Δ42421120b ac ∴=−=−−××−=>, ∴ 原方程有两个不相等的实数根,故选:A .5. 如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=°,则ACO ∠的度数为( )A. 42°B. 44°C. 46°D. 48°【答案】D【解析】 【详解】此题考查了圆心角、弧的关系,熟练掌握圆心角、弧的关系是解题的关键.根据圆心角、弧、弦的关系求出84AOC BOD ∠=∠=°,再根据等腰三角形的性质求解即可. 【解答】解:如图,连接OA ,【AB CD = ,CAB D ∴=, AB AD AD CD ∴−=−,AC BD∴=, 84AOC BOD ∴∠=∠=°,OA OC = ,()()11180180844822ACO CAO AOC ∠=∠=°−∠=×°−°=°. 故选:D .6. 如图,ABC 与DEF 是位似三角形,位似比为2:3,已知3AB =,则DDDD 的长等于( )A. 49B. 2C. 92D. 274【答案】C【解析】【分析】本题考查了位似图形的性质,根据位似比等于相似比,进而即可求解.掌握位似图形的性质是解题的关键.【详解】解:∵ABC 与DEF 是位似图形,位似比为2:3,∴23AB DE =, ∵3AB =,∴92DE =, 故选:C .7. “读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A. 250(1)80x +=B. 250(1%)80x +=C. 250(12)80x +=D. 25050(1)50(1)80x x ++++= 【答案】A【解析】【分析】本题考查了一元二次方程的应用,增长率问题的一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量,由此列方程即可.【详解】解:设该校七至九年级人均阅读量年均增长率为x ,则250(1)80x +=,故选A .8. 如图,a b c ∥∥,若32AD DF =,则下面结论错误的是( ).A. 35AD AF =B. 32BC CE =C. 23AB EF =D. 35BC BE = 【答案】C【解析】【详解】本题主要考查了比例的基本性质、平行线等分线段定理等知识点,掌握平行线等分线段定理成为解题的关键.根据比例的性质、平行线分线段成比例列出比例式逐项判断即可.【分析】解: AD DF =32, 35AD AF ∴=, 故A 选项正确,不符合题意;a b c ∥∥,且AD DF =32, 32AD BC DF CE ∴==, 故B 选项正确,不符合题意;32BC CE = 35BC BE ∴= 故D 选项正确,不符合题意; 根据已知条件不能求出AB EF的值,故C 选项不正确. 故选C .9. 如图,ABC 的内切圆O 与AB BC AC 、、相切于点D 、E 、F ,已知435AB AC BC ===,,,,则DE 的长是( )A. B. C. D. 【答案】C【解析】【分析】连接AO ,BO ,CO ,DO ,EO ,FO .根据题意可知OE OD OF ==,且OE BC ⊥,OF AC ⊥,OD AB ⊥,再根据6ABC ABO BCO ACO S S S S =++= 求出OE ,接下来设BE x =,根据切线长定理得出CE CF =,AD AF =,BD BE =,求出BE ,再根据勾股定理求出BO ,结合DO EO =,BD BE =可知BO 是DE 的垂直平分线,然后根据1122BEO S BE EO BO EG =⋅=⋅ 求出EG ,进而得出答案.本题主要考查了圆内切三角形的性质,切线的性质,勾股定理,线段垂直平分线的判定,切线长定理等,根据面积相等求出半径是解题的关键.【详解】解:连接AO ,BO ,CO ,DO ,EO ,FO .根据题意可知OE OD OF ==,且OE BC ⊥,OF AC ⊥,OD AB ⊥,∵435AB AC BC ===,,,∴222AB AC BC +=∴ABC 是直角三角形 ∴13462ABC S =××= , ∴1116222ABC ABO BCO ACO S S S S OE BC OF AC OD AB =++=⋅+⋅+⋅= , 即1()62OE BC AC AB ++=, 解得()123451OE =÷++=.设BE x =,则BD BE x ==,5CE CF x ==−,4AD AF x ==−,得543x x −+−=, 解得3x =,3BE ∴=.在Rt BOE 中,BO,DO EO = ,BD BE =, BO ∴是DE 的垂直平分线,DG EG ∴=. 1122BEO S BE EO BO EG =⋅=⋅ ,即113122EG ××=,解得EG =,∴2DE EG==. 故选:C .10. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将ADE 按顺时针方向旋转,若AE 的长为2,则MBC △面积的最小值是( )A. 4B. 8C. 2+D. 【答案】A【解析】 【分析】本题考查了旋转的性质、全等三角形的判定与性质、切线的性质、勾股定理、等腰三角形的性质等知识点,灵活运用相关性质成为解题的关键.先证明()SAS BAD CAE ≌,则ACE ABD ∠=∠,推出90BMC ∠=°,由题意知,E 在以A 为圆心,2为半径的圆上运动,如图,当CE 在A 下方且与A 相切时,线段MB 最短,MBC △面积的最小;再证明四边形ADME 是正方形,则2MD ME AE ===,由勾股定理得,CE BD ==2,2BM CM −,最后根据三角形的面积公式计算即可.【详解】解:∵ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,2AE = ∴290,4,AB AC AD AE BAC DAE ===∠=∠=°=, ∴45ABC ACB ∠=∠=°,∴BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠, ∵,,AB AC BAD CAE AD AE =∠=∠=, ∴()SAS BAD CAE ≌,∴ACE ABD ∠=∠,BD CE =∴180BMC DBC ACB ACE ∠=°−∠−∠−∠()18090DBC ABD ACB=°−∠+∠−∠=°, 如图:由题意知,E 在以A 为圆心,2为半径的圆上运动,∵90BMC ∠=°,∴当CE 在A 下方且与A 相切时,点M 到BC 距离最小,MBC △面积的最小∵90AEM CMD DAE ∠=°=∠=∠,∴四边形ADME 是矩形,∵AD AE =∴四边形ADME 是正方形,∴2MD ME AE ===,由勾股定理得,CE BD ==,∴2,2BM BD DM CM CE ME =−=−=+=,∴()()1122422MBC S BM CM =⋅=⋅⋅= . 故选:A . 二、填空题:本题共83分,共24分.11. 方程 250x =的解是____.【答案】120x x == 【解析】【分析】本题考查的是一元二次方程的解法,直接利用开平方法解方程即可.【详解】解:∵250x =,∴20x =,∴120x x ==, 故答案为:120x x == 12. 若32a b=,则22a b a b +−的值为____.【答案】2【解析】【分析】本题考查比例性质,根据条件设3,2a k b k ==,代值化简即可得到答案,熟练掌握比例性质及相应题型的解法是解决问题的关键.【详解】解: 32a b=, ∴设3,2a k b k ==,则22328222324a b k k k a b k k k +×+===−×−, 故答案为:2.13. 已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为________.【解析】【分析】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.根据黄金分割的定义即可得出答案.【详解】解: 点P 是线段AB 的黄金分割点,且AP BP >,AP AB ∴,∴AP AB =14. 如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为__________.【答案】1【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.剩余部分可合成长为()30m x −,宽为()20m x −的矩形,利用矩形的面积公式结合草地面积为2551m ,即可得出关于x 的一元二次方程,求解并注意检验.【详解】解:根据题意得:()()3020551x x −−=, 化简得:250490x x −+=,解得:11x =,249x =,∵当249x =时,20290x −=−<,∴249x =舍去,故答案为:1.15. 已知四边形ABCD 是矩形,2AB =,BC =B 为圆心BC 为半径的圆交AD 于点E ,则图中阴影部分的面积为__________.【答案】2π−−【解析】 【分析】本题主要考查了求扇形的面积,勾股定理,矩形的性质.证明AE AB =,可得45ABE AEB ∠=∠=°,45CBE ∠=°,再由阴影部分的面积为ABE ABCD CBE S S S −− 矩形扇形,即可求解. 【详解】解:∵四边形ABCD 是矩形,∴90ABC A ∠=∠=°,由题意得:BE BC ==∵2AB =,∴2AE ,∴AE AB =,∴45ABE AEB ∠=∠=°,∴45CBE ∠=°,∴阴影部分的面积为ABE ABCD CBE S S S −− 矩形扇形21452360BC AB BC AB AE π×=×−×−12222=×××2π=−−故答案为:2π−−16. 如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是___.【答案】6【解析】【分析】本题考查了折叠的性质、垂直平分线的性质、等边三角形的判定与性质、垂径定理、中位线的定义与性质、含30°角的直角三角形的性质,熟练掌握知识点、作辅助线推理是解题的关键.过点O 作OH AB ⊥于点H ,交 AB 于点M ,连接AM ,根据折叠的性质,得出AB 垂直平分OM ,根据垂直平分线的性质得出AO AM =,则AM OM AO ,证明AOM 为等边三角形,得出60AOM ∠=°,由OH AB ⊥、垂径定理得出AH BH =,推出30OAH=°∠,根据含30°角的直角三角形的性质得出2OA OH =,由AH BH =,OA OD =,推出OH 是ABD △的中位线,根据中位线的性质得出132OH BD ==,由2OA OH =得出答案即可. 【详解】解:如图,过点O 作OH AB ⊥于点H ,交 AB 于点M ,连接AM,∵弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O ,∴AB 垂直平分OM ,∴AO AM =,∴AM OM AO ,∴AOM 为等边三角形,∴60AOM ∠=°,∵OH AB ⊥,∴AH BH =,90AHO ∠=°,∴180906030OAH ,∴2OA OH =,∵AH BH =,OA OD =,∴OH 是ABD △的中位线, ∴132OH BD ==, ∴26OA OH ,即O 的半径长是6.故答案为:6.17. 已知A 是方程2201010x x −+=的一个根,试求22201020091A A A −++的值______. 【答案】2009【解析】【分析】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值;由A 是方程2201010x x −+=的一个根,将其代入方程,得到关于A 的等式,变形后代入所求式子中计算,即可求出值.【详解】∵A 是方程2201010x x −+=的一个根,∴2201010A A −+=,即220101A A +=,220101A A =−则22201020091A A A −++201012009A A −−20102010A + 21111A A A A+=−+=−201012009A A −= 故答案为:2009.18. 如图,AB 为O 的直径,C 为O 上一点,其中6120AB AOC =∠=°,,P 为O 上的动点,连接AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为______.【解析】【分析】本题主要考查了垂径定理的推论、半圆所对的圆周角是直角、勾股定理、含30°角的直角三角形等知识点,正确寻找点Q OQ ,作CH AB ⊥于H ,先证明点Q 的运动轨迹为以AO 为直径的K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解答.【详解】解:如图:连接OQ ,作CH AB ⊥于H ,∵Q 是AP 中点,∴AQ QP =,根据垂径定理的推论可得OQ AP ⊥,∴90∠=°AQO , ∴点Q 的运动轨迹为以AO 为直径的K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵在直角OCH △中,120AOC ∠=°,∴60COH ∠=°,132OC AB ==,∴1322OH OC ==,CH , 又∵在直角CKH 中,11324KH OK OH OA OH AB OH =+=+=+=,∴CK =∴32CQ CK KQ =+=+=CQ .. 三、解答题:本题共10小题,共96分.解答应写出文字说明、证明过程或演算步棸. 19. 用指定方法解下列一元二次方程(1)23(21)120x −−=(直接开平方法) (2)22470x x −−=(配方法)(3)210x x +−=(公式法)(4)22(21)0x x −−=(因式分解法) 【答案】(1)132x =,212x =−(2)11x =+,21x =(3)1x =,2x = (4)113x =,21x = 【解析】【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【小问1详解】解:23(21)120x −−=,移项,得23(21)12x −=,两边都除以3,得2(21)4x −=,两边开平方,得212x −=±,移项,得212x =±, 解得:132x =,212x =−;【小问2详解】解:22470x x −−=,两边都除以2,得27202x x −−=, 移项,得2722x x −=, 配方,得29212x x −+=,即29(1)2x −=,解得:1x −=,即11x =,21x =−;【小问3详解】解:210x x +−=,这里1a =,1b =,1c =−,224141(1)5b ac −=−××−= ,x ∴,解得:1x =,2x =;【小问4详解】解:22(21)0x x −−=, 方程左边因式分解,得(21)(21)0x x x x −+−−=,即(31)(1)0x x −−=, 解得:113x =,21x =. 【点睛】此题考查了解一元二次方程−因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.20. 如图,AAAA 是⊙O 的弦,C 是⊙O 上的一点,且60ACB ∠=°,OD AB ⊥于点E ,交⊙O 于点D .若⊙O 的半径为6,求弦AAAA 的长.【答案】【解析】【分析】本题考查了垂径定理,等腰三角形的性质和直角三角形的性质等知识点,能根据垂直于弦的直径平分这条弦是解此题的关键.连接OB ,可得2120AOB ACB ∠=∠=°,进而可得OAB OBA ∠=∠12=()18030AOB °−∠=°,OE 12=3OA =,求出AE 即可;【详解】解:连接OB ,∵60ACB ∠=°,∴2120AOB ACB ∠=∠=°,∵OA OB =, ∴OAB OBA ∠=∠12=()18030AOB °−∠=°,∵OE AB ⊥,OE 过圆心O ,∴90AE BE AEO =∠=°,, ∵6OA =, ∴OE 12=3OA =,由勾股定理得:AE == ∴3BE =,即3AB AE BE =+=+=21. 如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且3CF FD =,求证:ABE DEF △△∽.【答案】见解析【解析】【分析】本题考查了正方形的性质、相似三角形的判定与性质:熟练掌握正方形的性质,熟记两边成比例且夹角相等的两个三角形相似是解题的关键;由正方形的性质得出90,A D AB AD CD ∠∠==°==,设4AB AD CD a ===,得出2,AEDE a DF a ===,证出AB AE DE DF=,即可得出结论. 【详解】证明:∵四边形ABCD 是正方形 90,A D AB AD CD ∠∠∴==°==设4AB AD CD a ===∵E 为边AD 的中点,3CF FD =2,AE DE a DF a ∴===422,22AB a AE a a DF DE a ∴==== AB AE DE DF=∴ A D ∠=∠ ∴ABE DEF △△∽22. 已知ABC 三边a b c ,,满足()()()271a c a b c b −+−=−∶∶∶∶,且24a b c ++=.(1)求a b c ,,值;(2)判断ABC 的形状.【答案】(1)6810a b c ===,,;(2)直角三角形.【解析】【分析】(1)设2a c k −=−,7a b k +=,c b k −=,可得()()27a c a b c b k k k −+++−=−++,即得3a k =,进而得到4b k =,5c k =,再由24a b c ++=,可得2k =,据此即可求解;(2)利用勾股定理逆定理即可判断求解;本题考查了比例的有关计算,勾股定理的逆定理,掌握比例的有关计算是解题的关键.【小问1详解】解:设2a c k −=−,7a b k +=,c b k −=,∴()()27a c a b c b k k k −+++−=−++, 即26a k =,∴3a k =,∴4b k =,5c k =,∵24a b c ++=,∴34524k k k ++=,∴2k =,∴6a =,8b =,10c =;【小问2详解】解:∵222268100a b +=+=,2210100c ==,∴222a b c +=,∴ABC 为直角三角形.23. 已知关于x 一元二次方程22230x mx m m ++−=.(1)若方程有两个实数根,求m 取值范围;(2)设22230x mx m m ++−=的两个实数根为1x ,2x ,若221212364x x x x =++,求m 的值. 【答案】(1)0m ≥的的的(2)3m =【解析】【分析】本题考查根据一元二次方程根的个数求参数、一元二次方程根与系数的关系、完全平方公式变形、解一元二次方程等知识点.(1)由方程有实数根即可得出()()22Δ2430m m m =−−≥,解之即可得出m 的取值范围; (2)根据根与系数的关系可得出122x x m +=−,2123x x m m =−,结合221212364x x x x =++,即可得出关于m 的一元二次方程,解之即可得出m 的值,再由(1)中m 的取值范围即可确定m 的值.【小问1详解】解: 该方程有两个实数根,()()22Δ2430m m m ∴=−−≥, 120m ∴≥,0m ∴≥;【小问2详解】解:122x x m +=− ,2123x x m m =−, 221212364x x x x ∴=++,()21212236x x x x ∴++=,即()2242336m m m +−=, 260m m ∴−−=, 12m ∴=−,23m =,0m ≥ ,3m ∴=.24. 图Ⅰ是大拇指广场示意图及测量其高度的方案,图Ⅱ是求大拇指高度AB 的示意图.如图Ⅱ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿3m 平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.【答案】大拇指的高度为7m【解析】【分析】本题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题关键.分别证明CDI BDA ∽ 、GEF ABF ∽ 可得IC CD CD AB BD BC CD ==+、EF GE EF AB EF CE BCBF ==++,进而得到35310BC BC =++可得7.5BC =;最后将7.5BC =代入IC CD AB BC CD=+求得AB 值即可解答.【详解】解:由题意可得:AB CI ∥,∴CDI BDA ∽ . ∴ICCD CD AB BD BC CD==+. 由题意可得:AB EG ∥,∴GEF ABF ∽ . ∴GEEF EF AB EF CE BCBF ==++. ∵IC GE =, ∴CD EF BC CD EF CE BC =+++,即35310BC BC=++,解得:7.5BC =. 将7.5BC =代入IC CD AB BC CD =+,得2310.5AB =.解得7AB =. ∴大拇指的高度为7m .25. 如图,已知O 是ABC 的外接圆,AB 是O 的直径,P 是AB 的延长线上的点,弦CE 交AB 于点D .2POE CAB ∠=∠,P E ∠=∠.(1)求证:CE AB ⊥;(2)求证:PC 是O 的切线;的(3)若BD OD =,9PB =,求O 的半径.【答案】(1)证明见解析(2)证明见解析 (3)9【解析】【分析】(1)连接OC ,如图所示,由圆周角定理得到COD EOD ∠=∠,在COD △和EOD △中,由三角形全等即可得到SAS COD EOD (≌),利用三角形全等的性质即可得到答案; (2)由(1)中全等三角形性质得到E OCE ∠=∠,结合三角形内角和定理得到OC CP ⊥即可得证; (3)由垂直平分线的判定与性质得到OC BC =,再由等边三角形的判定与性质得到BCP P ∠=∠,再由等腰三角形的判定与性质即可得到答案.【小问1详解】证明:连接OC ,如图所示:则2COB CAB ∠=∠,∵2POE CAB ∠=∠,COD EOD ∴∠=∠,在COD △和EOD △中,CO EO COD EOD OD OD = ∠=∠ =∴SAS COD EOD (≌), ∴1180902CDO EDO ∠=∠=×°=°, CE AB ∴⊥;【小问2详解】证明:由(1)得COD EOD ≌,E OCE ∴∠=∠,又P E ∠=∠ ,P OCE ∴∠=∠∵90CDO ∠=°,∴1801809090OCE COP CDO ∠+∠=°−∠=°−°=°,90P COP ∴∠+∠=°,∵()1801809090OCP P COP ∠=°−∠+∠=°−°=° ,即OC CP ⊥, PC ∴是O 的切线;【小问3详解】解:BD OD = ,CE AB ⊥,CE ∴垂直平分OB ,∴OC BC =.又OC OB = ,OB OC BC ∴==,OBC ∴ 为等边三角形,60OCB COB ∴∠=∠=°,90OCP ∠=° ,906030,90906030BCP OCP OCB P COP °°°°°°°∴∠=∠−∠=−=∠=−∠=−=BCP P ∴∠=∠,BC BP ∴=,9PB = ,9BC ∴=,9OC ∴=,即O 的半径为9.【点睛】本题考查圆综合,涉及圆周角定理、全等三角形的判定与性质、切线的判定、三角形内角和定理、垂直平分线的判定与性质、等边三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握圆的基本性质及综合题型解法是解决问题的关键.26. 某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了尽量减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.(1)若11月份每箱饮料降价2元,则该超市11月份可获得的利润是多少?(2)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(3)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由.【答案】(1)800元(2)55元 (3)该超市不能每月获得880元的利润,理由见解析【解析】【分析】本题主要考查了一元二次方程的应用;(1)根据总利润=销售量×单个的销售利润列式求解即可;(2)设每箱饮料降价x 元,根据总利润=销售量×单个的销售利润,列出方程求解即可;(3)设每箱饮料降价y 元,根据总利润=销售量×单个的销售利润,列出方程,判断判别式的符号即可.【小问1详解】解:()()6024860210800−−×+×=元, 答:若11月份每箱饮料降价2元,则该超市11月份可获得的利润是800元;【小问2详解】解:设每箱饮料降价x 元,由题意得:()()60486010770x x −−×+=, 整理得:2650x x −+=,解得:15x =,21x =(不符合题意,舍去), ∴6060555x −−,答:每箱饮料售价应定为55元;【小问3详解】解:该超市不能每月获得880元的利润,理由如下:设每箱饮料降价y 元,由题意得:()()60486010880y y −−×+=, 整理得:26160y y −+=, ∵()2Δ6411636640=−−××=−<,∴此方程无解,∴该超市不能每月获得880元的利润.27. 按要求利用无刻度直尺作图(保留作图痕迹).(1)如图1,由小正方形构成的66×网格,每个小正方形的顶点叫做格点,且每个小正方形的边长为1,O 经过A ,B ,C 三个格点,用无刻度的直尺作出圆心O ;(2)如图2,在平行四边形ABCD 中,45A ∠=°,以AB 为直径的圆与CD 相切于点D .请仅用无刻度直尺在图中作出ABD △的重心M .【答案】(1)见解析 (2)见解析【解析】【分析】本题主要考查了网格作图和尺规作图.熟练掌握全等三角形性质,线段垂直平分线性质,是解题的关键.(1)根据AD BC ==,5CD AB ==,AC 共用,可知,ABC CDB △≌△,得到CD 是直径,点O 即为圆心;(2)根据AD BD =,AP BP =,得到DP 垂直平分AB ,点N 为AB 中点,根据AC BD ,是平行四边形ABCD 的对角线,得到点Q 是BD 的中点,即得M 是ABD △的重心.【小问1详解】解:取点D ,使AD =CD ,交AB 于点O ,点O 即为所求作;【小问2详解】分别以点A ,B 为圆心,以大于12AB 长为半径在点D 的异侧画弧,两弧交于点P ,作射线DP ,连接AC 交DP 于点M ,点M 即为所求作.28. 新定义:如果一个四边形的对角线相等,我们称这个四边形为美好四边形.【问题提出】(1)如图1,若四边形ABCD 是美好四边形,且AD BD =,90ABC ∠=°,4AB =,3BC =,求四边形ABCD 的面积;【问题解决】(2)如图2,某公园内需要将4个信号塔分别建在A ,B ,C ,D 四处,现要求信号塔C 建在公园内一个湖泊的边上,该湖泊可近似看成一个半径为200m 的圆,记为E .已知点A 到该湖泊的最近距离为500m ,是否存在这样的点D ,满足AC BD =,使得四边形ABCD 的面积最大?若存在,求出最大值;若不存在,请说明理由.【答案】(1)3+; (2)存在,最大为2405000m【解析】【分析】本题主要考查了新定义美好四边形,勾股定理,圆的性质,三角形的面积等知识,证明对角线相等的四边形对角线垂直时,面积最大是解题的关键.(1)过D 作DK AB ⊥于K ,先利用勾股定理求出AC ,再分别求ABD S 和BCD S △;(2)先证明对角线相等的四边形对角线垂直时,面积最大,最大值为对角线乘积的一半,再确定AC 的最大值,即可得到答案.【详解】解:(1)过D 作DK AB ⊥于K ,如图1,90ABC ∠=° ,4AB =,3BC =,5AC ∴=,四边形ABCD 是美好四边形,AD BD =,5AD BD AC ∴===,DK AB ⊥ ,122AK BK AB ∴===,在Rt ADK △中,DK1122ABD S AB DK ∴=⋅=×=△,1132322BCD S BC BK =⋅=××=△,3ABD BCD ABCD S S S ∴=+=△△四边形;(2)存在这样的点D ,满足AC BD =,且使得四边形ABCD 的面积最大,理由如下: 当对角线相等的四边形对角线不垂直时,如图2,过点D 作DM AC ⊥于M ,过点B 作BN AC ⊥于N ,则()12ACD ACB ABCD S S S AC DM BN =+=⋅+ 四边形, DM DO < ,BN BO <,DM BN BD ∴+<, 12ABCD S AC BD ∴<⋅四边形. 当对角线相等的四边形对角线垂直时,如图3,则()1122ACD ACB ABCD S S S AC OD OB AC BD =+=⋅+=⋅ 四边形, ∴当对角线相等的四边形对角线垂直时,面积最大. 点A 到湖泊的最近距离为500m ,E 的半径为200m , ()500200700m AE ∴=+=,又200m CE = ,∴当A 、E 、C 依次共线时AC 最长,如图4,又AC BD ⊥时,21122ABCD S AC BD AC =⋅=四边形, ∴此时四边形ABCD 面积最大,此时()900m AC AE CE =+=,()22211900405000m 22ABCD S AC ∴==×=四边形, 故四边形ABCD 的面积最大为2405000m .。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
初三11月份月考参考答案
参考答案 一、选择题AACBD CBACA 二、填空题 11.48y x=-12. 8, 45°13. 144 14. 0;15. 不唯一。
如∠ACP=∠B16. 40),160) 17. 6 18.(300m + 三、解答题19.解:(1)31=x ,72-=x ;(2)1231x x ==-,;(3)1232x x =-=,. (4)113x =-,213x =.20.(1)画图略 (2)(62)(42)B C ''---,,, (3)(22)M x y '--, 21. 1)60,4,2003 2)10%22. 甲符合 23.解:过A 作C N 的平行线交B D 于E ,交M N 于F .由已知可得0.8m FN ED AC ===,1.25mA E C D ==,30m EF D N ==,90AEB AFM == ∠∠.又BAE M AF =∠∠,ABE AM F ∴△∽△.B EA EM F A F ∴=.即1.60.8 1.251.2530M F -=+.解得()20m M F =.()200.820.8m M N M F FN ∴=+=+=.所以住宅楼高为20.8m .24. 解:(1)∵点(21)A -,在反比例函数m y x=的图象上,(2)12m =-⨯=-∴. ∴反比例函数的表达式为2y x=-.∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,.把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--.(2)从图象上可知,当-2<X<0 或X>1 时,反比例函数的值大于一次函数的值.(乙)F (甲)(3)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,.∵线段O C将AO B △分成A O C △和BO C △,1113111212222A OB A OC B O C S S S =+=⨯⨯+⨯⨯=+=△△△∴25.(1)60y x=.40 (2)6 (3)3026.(1)设经过x 秒后,A M N △的面积等于矩形A B C D 面积的19, 则有:11(62)3629x x -=⨯⨯,即2320x x -+=,解方程,得1212x x ==,.经检验,可知1212x x ==,符合题意,所以经过1秒或2秒后,A M N △的面积等于矩形A B C D 面积的19.(2)假设经过t 秒时,以A M N ,,为顶点的三角形与AC D △相似, 由矩形A B C D ,可得90CDA MAN == ∠∠,因此有A M D C A ND A=或A M D A A ND C=即3626t t=- ①,或6623tt=- ②.解①,得32t =;解②,得125t =经检验,32t =或125t =都符合题意,所以动点M N ,同时出发后,经过32秒或125秒时,以A M N ,,为顶点的三角形与AC D △相似命题意图说明本试卷侧重于对学生基础知识及基本技能的考查,试题范围涵盖了冀教版《数学》九年级上册五章的内容,各章分值分配如下:第二十七章 《圆(一)》占10分,第3,6,12,13题。
陕西省西安市第三中学2024-2025学年九年级上学期第一次月考数学试卷
陕西省西安市第三中学2024-2025学年九年级上学期第一次月考数学试卷一、单选题1.方程x (x ﹣3)=0的根是( )A .x =3B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 2.在比例尺为1:500000的地图上距离为1cm 的两地的实际距离为( ) A .0.5km B .5km C .50km D .500km 3.某签字笔七月份销售90万支,八月份、九月份销售量连续增长,九月份销售量达到160万支,求月平均增长率.设月平均增长率为x ,根据题意列方程为( )A .()2901160x +=B .()9012160x +=C .()2901160x -=D .()2901160x += 4.小康利用复印机将一张长为5cm ,周长为16cm 的矩形图片放大,其中放大后的矩形长为10cm ,则放大后的矩形周长为( )A .16cmB .21cmC .32cmD .42cm5.如图,已知菱形OABC 的边长为3,若顶点B 的坐标为()04,,则第一象限内的顶点C 的坐标为( )A .)2B .)4C .)D .5,22⎛⎫ ⎪⎝⎭6.已知一元二次方程240x kx +-=有一个根为1,则k 的值为( )A .2B .2-C .3-D .37.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( ) A .14 B .12 C .35 D .348.如图,在正方形ABCD 中,=6AB ,点F 是对角线 AC 上的一个动点,连接DF ,以 DF 为斜边作等腰直角三角形DEF ,使点E 和点A 位于DF 两侧,点F 从点A 到点C 的运动过程中,线段DE 扫过图形的面积是( )A .6B .9C .18D .36二、填空题9.若24=16x ,则x =.10.如图,直线123l l l ∥∥,若698AB BC EF ===,,,则DE 的长为.11.已知a 、b 是关于x 的方程220x x m --=两个实数根,则a b +=.12.射影中有一种拍摄手法叫黄金分割构图法,其原理是:如图,将正方形ABCD 的边BC 取中点O ,以O 为圆心,线段OD 为半径作圆,其与边BC 的延长线交于点E ,这样就把正方形ABCD 延伸为黄金矩形ABEF ,若4CE =,则AB =.13.已知345x y z ==,则x y z x-+=. 14.如图,在矩形ABCD 中,5AB =,6BC =,E 、F 分别为BC 、CD 上的动点,且2BE DF =,则2DE AF +的最小值为.三、解答题15.用合适的方法解下列方程.(1)29(2)16x -=;(2)()()33x x x -=-;(3)2230x x +-=;(公式法)(4)210110x x +-=.(配方法)16.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,在边AB 上求作一点D ,使CD 将ABC V 分割成两个三角形,并且两个三角形都和原Rt ABC △相似.(尺规作图,不写作法,保留作图痕迹)17.□ABCD 中,E 是CD 的中点,∠BAE =∠ABE ,求证:四边形ABCD 是矩形.18.随着中考临近,某校九年级学生小刚和小明决定从试题库中提供的四套数学试题(依次记为A B C D 、、、)中,随机抽取一套试题进行模拟测试.(1)小刚从这四套试题中随机抽取一套,恰好抽到C 试题的概率为_____________;(2)小刚和小明各自从这四套试题中随机抽取一套,且所抽取的试题互不影响,请用画树状图或列表的方法求他们抽取到同一套试题的概率.19.无论点光源还是视线,其本质是相同的,日常生活中我们可以直接利用视线解决问题.如图,小佳同学用自制的直角三角形纸板DEF 测量树的高度AB ,她调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,小佳眼睛到地面的距离DG 为1.5m ,并测得0.6m DF =,0.4m EF =,10m AG =,求树高AB 的长度.( 2.24≈)20.设1x ,2x 是关于x 的方程()2212104x k x k -+++=的两个实数根. (1)求实数k 的取值范围;(2)若2212132x x +=,求k 的值. 21.又是一年脐橙丰收季!小石通过网络平台进行直播销售.已知每箱(小箱)脐橙的成本是30元,如果销售单价定为每箱40元,那么日销售量将达到100箱.据市场调查,销售单价每提高1元,日销售量将减少2箱.(1)若销售单价定为每箱x 元(40x >),请用含x 的式子表示日销售量;(2)要使每天销售这种脐橙盈利1600元,同时又要让利给顾客,那么脐橙的售价单价应定为每箱多少元?22.如图,在AEC △中,B 为EC 上一点,且满足ABD C E ∠=∠=∠.(1)求证:AEB BCD V :V ;(2)当AE BD ∥时,30C ∠=︒,10CD =,求AD 的长.23.如图所示,点B 坐标为()6,0,点A 坐标为()6,12,动点P 从点O 开始沿OB 以每秒1个单位长度的速度向点B 移动,动点Q 从点B 开始沿BA 以每秒2个单位长度的速度向点A 移动.如果P 、Q 分别从O 、B 同时出发,用t (秒)表示移动的时间(06t <≤),那么:(1)当t 为何值时,四边形OPQA 是梯形,此时梯形OPQA 的面积是多少?(2)当t 为何值时,以点P 、B 、Q 为顶点的三角形与AOB V 相似?24.三角形的布洛卡点(Brocardpoint )是法国数学家和数学教育家克洛尔(A .LCrelle 1780-1855)于1816年首次发现,但他的发现并未被当时的人们所注意.1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845-1922)重新发现,并用他的名字命名.如图1,若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=∠,则点P 是ABC V 的布洛卡点,α∠是布洛卡角.(1)如图2,点P 为等边三角形ABC 的布洛卡点,则布洛卡角的度数是______;PA 、PB 、PC 的数量关系是______;(2)如图3,点P 为等腰直角三角形ABC (其中90BAC ∠=︒)的布洛卡点,且123∠=∠=∠. ①请找出图中的一对相似三角形,并给出证明;②若ABC V 的面积为52,求PBC △的面积.。
重庆 九年级(上)月考数学试卷(11月份)
九年级(上)月考数学试卷(11月份)一、选择题(本大题共12小题,共48.0分)1.-12等于()A. 1B. −1C. 2D. −22.tan60°的值是()A. 12B. 32C. −33D. 33.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A. 3×107B. 30×106C. 0.3×107D. 0.3×1084.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A. 60∘B. 90∘C. 120∘D. 150∘5.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁6.若反比例函数y=kx(k≠0)的图象经过点P(2,-3),则该函数的图象不经过的点是()A. (3,−2)B. (1,−6)C. (−1,6)D. (−1,−6)7.已知x-2y=3,那么代数式3-2x+4y的值是()A. −3B. 0C. 6D. 98.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n (n为正整数),则它们的化学式都可用下列哪个式子来表示()A. CnH2n+2B. CnH2nC. CnH2n−2D. CnHn+39.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A. 1:3B. 1:4C. 1:5D. 1:910.如图,△ABC的顶点是正方形网格的格点,则sin A的值为()A. 12B. 55C. 1010D. 25511.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①abc>0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()个.A. 1B. 2C. 3D. 412.若二次函数y=(a-2)x2-2ax+a-12与x轴有两个交点,且关于x的不等式组x−a≤0x−13>43无解,则符合条件的整数a的值有()个.A. 2B. 3C. 4D. 5二、填空题(本大题共6小题,共24.0分)13.若二次根式2x−1有意义,则x的取值范围是______.14.215.如图是一块四边形空地,该空地面积为______m2.16.如图,有一块草地三面靠墙,其中BC=3米,∠BCD=120°.一根5米长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),羊的活动区域面积为________平方米.17.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过______小时恰好装满第1箱.18.如图,E为正方形ABCD边AB上的一点,且AB=3,BE=1.将△CBE翻折得到△CB'E,连接并延长DB'与CE延长线相交于点F,连接AF,则AF的长为______.三、计算题(本大题共1小题,共10.0分)19.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?四、解答题(本大题共7小题,共68.0分)20.如图,几何体由3个大小完全相同的正方体组成,依次画出它的主视图,左视图和俯视图.21.计算:(1)(x-2y)2-(x-y)(x+y)(2)(m-3-m2m+3)÷m3−3m2m2−922.为积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:请根据所给信息解答以下问题:(1)这次参与调查的居民人数为:______;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?23.已知:如图,在平面直角坐标系中,正比例函数y=x的图象与反比例函数y=kx(k≠0)的图象交于点A(-2,-2),其中将直线OA向上平移3个单位后与y轴交于点C,与反比例函数在第三象限内交点为B(-4,m)(1)求该反比例函数的解析式与平移后的直线解析式;(2)求△ABC的面积.24.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC.点D是线段AC上一点,连接BD.过点C作CE⊥BD于点E.点F是AB垂直平分线上一点,连接BF、EF.(1)若AD=42,tan∠BCE=27,求AB的长;(2)当点F在AC边上时,求证:∠FEC=45°.25.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=6x的图象上,它的“带线”l的解析式为y=2x-4,求此“路线”L的解析式;(3)当常数k满足12≤k≤2时,求抛物线L:y=ax2+(3k2-2k+1)x+k的“带线”l与x 轴,y轴所围成的三角形面积的取值范围.26.已知抛物线y=-16x2-23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图2,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP面积最大时,求|PM-OM|的最大值.(3)如图3,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-12=-1,故选:B.根据乘方的意义,相反数的意义,可得答案.本题考查了有理数的乘方,1的平方的相反数.2.【答案】D【解析】解:由于tan60°=,故选:D.根据tan60°=进行解答即可.本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.3.【答案】A【解析】解:30000000=3×107.故选:A.先确定出a和n的值,然后再用科学记数法的性质表示即可.本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.【答案】D【解析】解:旋转角是∠CAC′=180°-30°=150°.故选:D.根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.5.【答案】A【解析】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.首先比较平均数,平均数相同时选择方差较小的运动员参加.此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.6.【答案】D【解析】解:∵反比例函数y=(k≠0)的图象经过点P(2,-3),∴k=2×(-3)=-6∴解析式y=当x=3时,y=-2当x=1时,y=-6当x=-1时,y=6∴图象不经过点(-1,-6)故选:D.由题意可求反比例函数解析式y=,将x=3,1,-1代入解析式可求函数值y 的值,即可求函数的图象不经过的点.本题考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.7.【答案】A【解析】解:∵x-2y=3,∴3-2x+4y=3-2(x-2y)=3-2×3=-3;故选:A.将3-2x+4y变形为3-2(x-2y),然后代入数值进行计算即可.本题主要考查的是求代数式的值,将x-2y=3整体代入是解题的关键.8.【答案】A【解析】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选:A.设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,列出部分a n的值,根据数值的变化找出变化规律“a n=2n+2”,依次规律即可解决问题.本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n=2n+2”.本题属于基础题,难度不大,解决该题型题目时,根据碳原子的变化找出氢原子的变化规律是关键.9.【答案】D【解析】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选:D.先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解本题的关键是掌握位似的性质.10.【答案】B【解析】解:如图所示:连接DC,由网格可得出∠CDA=90°,则DC=,AC=,故sinA===.故选:B.直接根据题意构造直角三角形,进而利用勾股定理得出DC,AC的长,再利用锐角三角函数关系求出答案.此题主要考查了勾股定理以及锐角三角函数关系,正确构造直角三角形是解题关键.11.【答案】A【解析】解:①∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∵抛物线的对称轴为直线x=-=2,∴b=-4a>0,∴abc<0,故本结论错误;②∵当x=-3时,y<0,∴9a-3b+c<0,即9a+c<3b,故本结论错误;③∵抛物线与x轴的一个交点为(-1,0),∴a-b+c=0,而b=-4a,∴a+4a+c=0,即c=-5a,∴8a+7b+2c=8a-28a-10a=-30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,故本结论正确;④∵对称轴为直线x=2,∴当-1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,故本结论错误;故选:A.①根据抛物线开口方向和与y轴的交点,则a<0,c>0,由对称轴为直线x=-=2,则有b=-4a>0,于是abc<0;②观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;③由于x=-1时,y=0,则a-b+c=0,易得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;④由于对称轴为直线x=2,根据二次函数的性质得到当-1<x<2时,y的值随x值的增大而增大.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.【答案】C【解析】解:,解不等式①得:x≤a,解不等式②得:x>5,∵关于x的不等式组无解,∴a≤5,∵二次函数y=(a-2)x2-2ax+a-与x轴有两个交点,∴方程(a-2)x2-2ax+a-=0的△=(-2a)2-4(a-2)(a-)>0,解得:a>,∴<a≤5,又∵a≠2,整数有1,3,4,5,共4个,故选:C.先求出不等式组的解集,根据已知得出a≤5,根据二次函数与x轴有两个交点得出△>0,求出a,求出整数解即可.本题考查了解一元一次不等式组和二次函数与x轴的交点问题,能求出符合的两个解集是解此题的关键.13.【答案】x≥12【解析】解:∵二次根式有意义,∴2x-1≥0,解得:x≥.故答案为:x≥.根据二次根式中的被开方数是非负数,可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握:二次根式有意义,被开方数为非负数.14.【答案】x1=-3,x2=2【解析】解:根据表得:二次函数y=ax2+bx+c(a≠0)的对称轴是;x=-,抛物线与x轴的一个交点坐标为:(2,0),则抛物线与x轴的另一个交点坐标为:(-3,0),则方程ax2+bx+c=0的解是x1=-3,x2=2.先求出二次函数的对称轴,再根据抛物线与x轴的一个交点坐标求出抛物线与x轴的另一个交点坐标即可求出方程ax2+bx+c=0的解.此题考查了抛物线与x轴的交点,关键是能根据表中的数据求出二次函数的对称轴,要能根据抛物线与x轴的交点坐标求出方程的解.15.【答案】6253【解析】解:如图,连接AC,作AE⊥BC于点E,作CF⊥AD于点F,在Rt△ABE中,∵AB=30,∠ABC=60°,∴AE=ABsinB=30×=15(m),在Rt△CDF中,∵CD=20,∠D=60°,∴CF=CDsinD=20×=10(m),则该空地的面积=S△ABC+S△ACD=×BC×AE+×AD×CF=×50×15+×50×10=375+250=625(m2),故答案为:625.连接AC,作AE⊥BC,CF⊥AD,利用正弦函数求得AE=ABsinB=15,CF=CDsinD=10,再根据空地的面积=S△ABC+S△ACD计算可得.本题主要考查解直角三角形的应用,解题的关键是添加辅助线构建直角三角形及三角函数的应用.16.【答案】8312【解析】【分析】此题主要考查的是扇形的面积计算方法,正确的判断出羊的活动区域是解答此题的关键.羊的活动区域应该分为两部分:①以∠ABC为圆心角,BE长为半径的扇形;②以∠BCD 的补角为圆心角,以(BE-BC )长为半径的扇形,可根据两个扇形各自的圆心角和半径,计算出羊活动区域的面积.【解答】解:如图所示:∵大扇形的圆心角是90度,半径是5,所以面积==π(m 2),∵小扇形的圆心角是180°-120°=60°,半径是2m , 则面积==(m 2),∴羊E 在草地上的最大活动区域面积=π+π=π(m 2).故答案为π.17.【答案】3【解析】解:甲组每小时加工零件数为:360÷6=60(件), 乙组停产前每小时加工零件数为:100÷2=50(件), 乙组停产后每小时加工零件数为:50×2=100(件). ∴甲组加工零件的数量y 件与时间x 之间的函数关系式为y 甲=60x ,乙组在x≥2.8时间段加工零件的数量y 件与时间x 之间的函数关系式为y 乙=100x+b , 将(2.8,100)代入y 乙=100x+b 中,100=2.8×100+b ,解得:b=-180,∴乙组在x≥2.8时间段加工零件的数量y 件与时间x 之间的函数关系式为y 乙=100x-180(x≥2.8).令y 甲+y 乙=300,即60x+100x-180=300,解得:x=3.故答案为:3.根据工作效率=工作总量÷工作时间分别算出甲、乙组每小时加工零件数,结合函数图象找出y甲、y乙关于x(乙组在x≥2.8时间段)的函数关系式,令y甲+y乙=300求出x值,此题得解.本题考查了函数图象以及待定系数法求一次函数解析式,观察函数图象找出点的坐标利用待定系数法求出函数解析式是解题的关键.18.【答案】3105【解析】证明:作CH⊥B′D于H,连接AC,由翻折变换的性质得:∠BCE=∠B′CE,CB′=CD,CH⊥B′D,∴∠B′CH=∠DCH,∠ECH=45°,∠ACF=∠DCH,∴=,∵=,∴=,又∠ACF=∠DCH,∴△AFC∽△HCD,∴∠AFC=∠DHC=90°,∴∠AFC=∠CBE,又∠AEF=∠CEB,∴△AFE∽△CBE,∴=,即=,解得,AF=,故答案为:.作CH⊥B′D于H,连接AC,根据翻转变换的性质、等腰直角三角形的性质和相似三角形的性质得到△AFC∽△HCD,证明△AFE∽△CBE,根据相似三角形的性质列出比例式,计算即可.本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】解:(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,根据题意,得:3m+5n=1452m+3n=90,解得:n=20m=15,答:文具店购进A种钢笔每支15元,购进B种钢笔每支20元;(2)设B种钢笔每支售价为x元,每月获取的总利润为W,则W=(x-20)(64-12×x−303)=-4x2+264x-3680=-4(x-33)2+676,∵a=-4<0,∴当x=33时,W取得最大值,最大值为676,答:该文具店B种钢笔销售单价定为33元时,每月获利最大,最大利润是676元.【解析】(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,根据“购进A 种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元”列二元一次方程组求解可得;(2)设B种钢笔每支售价为x元,根据“总利润=每支钢笔的利润×销售量”列出函数解析式,将其配方成顶点式,再利用二次函数的性质求解可得.本题主要考查二次函数的应用与二元一次方程组的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并据此列出方程和函数解析式及二次函数的性质.20.【答案】解:三视图如图所示.【解析】根据三视图的定义即可解决问题;本题考查三视图,解题的关键是连接三视图的定义,属于中考常考题型.21.【答案】解:(1)原式=x2-4xy+4y2-x2+y2=-4xy+5y2;(2)原式=(m+3)(m−3)−m2m+3•(m+3)(m−3)m2(m−3)=-9m2.【解析】(1)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,完全平方公式,以及平方差公式,熟练掌握公式及法则是解本题的关键.22.【答案】1000【解析】解:(1)这次参与调查的居民人数有=1000(人);(2)选择“樟树”的有1000-250-375-125-100=150(人),补全条形图如图:(3)360°×=36°,答:扇形统计图中“枫树”所在扇形的圆心角度数为36°;(4)8×=2(万人),答:估计这8万人中最喜欢玉兰树的约有2万人.故答案为:(1)1000.(1)根据“银杏树”的人数及其百分比可得总人数;(2)将总人数减去选择其它4种树的人数可得“樟树”的人数,补全条形图即可;(3)用样本中“枫树”占总人数的比例乘以360°可得;(4)用样本中最喜欢“玉兰树”的比例乘以总人数可得.本题主要考查了条形统计图,扇形统计图和用样本估计总体,解题的关键是把条形统计图和扇形统计图的数据相结合求解.23.【答案】解:(1)将点A坐标(-2,-2)代入y=kx得,k=4,∴反比例函数的解析式为:y=4x,∵将直线y=x向上平移3个单位,∴平移后的直线解析式为:y=x+3;(2)∵BC∥OA,∴△ABC的面积=△OBC的面积=12×3×4=6.【解析】(1)将点A坐标(-2,-2)代入y=求得k的值,根据平移的性即可得到结论;(2)由题意得平移后直线解析式,即可知点C坐标,可将△ABC的面积转化为△OBC的面积.此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.24.【答案】解:(1)如图,过点D作DM⊥AB于点M,∵∠ABC=90°,AB=BC,∴∠A=45°,∴AM=DM,∵AD=42,∴DM=AM=22AD=4,∵CE⊥BD,∴∠BEC=90°=∠ABC,∴∠BCE+∠EBC=90,∠EBC+∠ABD=90°,∴∠ABD=∠BCE,∴tan∠BCE=tan∠ABD=DMBM=27,即4BM=27,∴BM=14,∴AB=AM+BM=4+14=18;(2)∵F是AB的垂直平分线上的点,∴AF=BF,∴∠A=∠ABF=45°,∵∠ABC=90°,∴∠FBC=45°,∴∠FBC=∠FCB,且∠ABD=∠BCE,∴BF=CF,∠EBF=∠ECF,如图1,在CE上截取CN=BE,连接FN,∵BF═CF,∠EBF=∠ECF,∴△BEF≌△CFN,(SAS),∴FN=EF,∠BFE=∠CFN,∵∠FCB=∠FBC=45°,∴∠BFC=90°,∴∠CFN+∠BFN=90°,∴∠BFE+∠BFN=90°,∴∠EFN=90°,且EF=FN,∴△EFN是等腰直角三角形,∴∠FEC=45°.【解析】(1)先过点D作DM⊥AB于点M,构造等腰直角三角形,求得DM=AM=4,再根据∠ABD=∠BCE,得出tan∠BCE=tan∠ABD,求得BM=14,进而根据AB=AM+BM进行计算;(2)在CE上截取CN=BE,连接FN,先判定△BEF≌△CFN,得出△EFN是等腰直角三角形,根据等腰三角形的性质即可得到结论.本题主要考查了等腰直角三角形的性质,全等三角形的判定和性质,解决问题的关键是作辅助线构造全等三角形.25.【答案】解:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);将(0,1)代入抛物线y=x2-2x+n中,得n=1.∵抛物线的解析式为y=x2-2x+1=(x-1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=-1.答:m的值为-1,n的值为1.(2)将y=2x-4代入到y=6x中有,2x-4=6x,即2x2-4x-6=0,解得:x1=-1,x2=3.∴该“路线”L的顶点坐标为(-1,-6)或(3,2).令“带线”l:y=2x-4中x=0,则y=-4,∴“路线”L的图象过点(0,-4).设该“路线”L的解析式为y=m(x+1)2-6或y=n(x-3)2+2,由题意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得:m=2,n=-23.∴此“路线”L的解析式为y=2(x+1)2-6或y=-23(x-3)2+2.(3)令抛物线L:y=ax2+(3k2-2k+1)x+k中x=0,则y=k,即该抛物线与y轴的交点为(0,k).抛物线L:y=ax2+(3k2-2k+1)x+k的顶点坐标为(-3k2−2k+12a,4ak−(3k2−2k+1)24a),设“带线”l的解析式为y=px+k,∵点(-3k2−2k+12a,4ak−(3k2−2k+1)24a)在y=px+k上,∴4ak−(3k2−2k+1)24a=-p3k2−2k+12a+k,解得:p=3k2−2k+12.∴“带线”l的解析式为y=3k2−2k+12x+k.令“带线”l:y=3k2−2k+12x+k中y=0,则0=3k2−2k+12x+k,解得:x=-2k3k2−2k+1.即“带线”l与x轴的交点为(-2k3k2−2k+1,0),与y轴的交点为(0,k).∴“带线”l与x轴,y轴所围成的三角形面积S=12|-2k3k2−2k+1|×|k|,∵12≤k≤2,∴12≤1k≤2,∴S=k23k2−2k+1=13−2k+(1k)2=1(1k−1)2+2,当1k=1时,S有最大值,最大值为12;当1k=2时,S有最小值,最小值为13.故抛物线L:y=ax2+(3k2-2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为13≤S≤12.【解析】(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)根据“一带一路”关系找出两函数的交点坐标;(2)根据直线与反比例函数的交点设出抛物线的解析式;(3)找出“带线”l与x轴、y轴的交点坐标.本题属于中档题,(1)(2)难度不大;(3)数据稍显繁琐,解决该问时,借用三角形的面积公式找出面积S与k之间的关系式,再利用二次函数的性质找出S的取值范围.26.【答案】解:(1)令x=0,则y=2,令y=0,则x=2或-6,则:点A、B、C坐标分别为(-6,0)、(2,0)、(0,2),函数对称轴为:x=-2,顶点坐标为(-2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k=13,则:直线AC的表达式为:y=13x+2;(2)如图,过点P作x轴的垂线交AC于点H,四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设:点P坐标为(m,-16m2-23m+2),则点G坐标为(m,13m+2),S△ACP=12PG•OA=12•(-16m2-23m+2-13m-2)•6=-12m2-3m,当m=-3时,上式取得最大值,则点P坐标为(-3,52),连接OP交对称轴于点M,此时,|PM-OM|有最大值,直线OP的表达式为:y=-56x,当x=-2时,y=53,即:点M坐标为(-2,53);(3)存在;∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6-a,在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6-a)2=22+a2,解得:a=83,则:MC=103,过点D作x轴的垂线交x轴于点N,交EC于点H,在Rt△DMC中,12DH•MC=12MD•DC,即:DH×103=83×2,则:DH=85,HC=DC2−DH2=65,即:点D的坐标为(-65,185);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(-6+3m10,m10),点D′坐标为(-65+3m10,185+m10),而点E坐标为(-6,2),则:直线A′D′表达式的k值为:34,则:直线A′E表达式的k值为:2−m103m10,则:直线E′D表达式的k值为:85+m10−2−65+3m10+6,根据两条直线垂直,其表达式中k值的乘值为-1,可知:当A′D′⊥A′E时,2−m103m10=-43,解得:m=2510,当A′D′⊥ED′时,85+m10−2−65+3m10+6=-43,解得:m=-8105,当ED′⊥A′E,这种情况不可能,把m值代入点D′坐标(-65+3m10,185+m10),则:D坐标为:(0,4)或(-6,2).【解析】(1)令x=0,则y=2,令y=0,则x=2或-6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM-OM|有最大值,即可求解;(3)存在;分A′D′⊥A′E、A′D′⊥ED′、ED′⊥A′E,三种情况求解即可.本题考查的是二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A′、D′的坐标,本题难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省东莞市东方明珠学校2020-2021学年度九年级(上)数学第一次月考试题(11月份)学校:___________姓名:___________班级:___________考号:___________一、单选题1.有同一三角形地块的甲,乙两地图,比例尺分别为1:100和1:500,那么甲地图与乙地图表示这一块的三角形面积比是( )A .25:1B .5:1C .125D .152.如图,△ABC 中,D 、E 是BC 边上的点,BD :DE :EC=3:2:1,M 在AC 边上,CM :MA=1:2,BM 交AD ,AE 于H ,G ,则BH :HG :GM 等于( )A .4:2:1B .5:3:1C .25:12:5D .51:24:10 3.如图,E 、F 分别在矩形ABCD 的边CD 、AB 上,EF ⊥AB ,G 、H 分别是BC 、EF 的中点,EH >HG ,除矩形EFBC 外,图中4个矩形都彼此相似,若BC =1,则AB 等于( )A .2 B. CD. 4.如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD=AM ,FB=BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论正确的有( )①N 是GM 的黄金分割点 ②S 1=S 4③23S S =.A.①②B.①③C.③D.①②③5.将x=23代入反比例函数y=﹣1x中,所得函数记为y1,又将x=y1+1代入函数中,所得函数记为y2,再持x=y2+1代入函数中,所得函数记为y3,如此继续下去,则y2009值为()A.2B.-13C.32D.236.如图所示是两根标志杆在地面上的影子,根据这些地面上的投影,你能判断出在灯光下的影子的是()A.(1)和(2)B.(2)和(3)C.(2)和(4)D.(3)和(4)7.从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A.先变长,后变短B.先变短,后变长C.方向改变,长短不变D.以上都不正确8.如果△ABC∽△A′B′C′,BC=3,B′C′=1.8,则△A′B′C′与△ABC的相似比为( ) A.5∶3 B.3∶2 C.2∶3 D.3∶59.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A.B.C.D.二、填空题10.如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC⊥AC于点C.已知AC=8,BC=3.(1)线段AC的中点到原点的距离是_____;(2)点B到原点的最大距离是_____.11.如图,要拼出和图中的菱形相似的较长对角线为88cm的大菱形(如图)需要图1中的菱形的个数为________.12.当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是_____.13.如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=2x图象上,则图中过点A的双曲线解析式是_____.14.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m,小刚比小明矮5cm,此刻小明的影长是________m.15.如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n=______AC.(用含n的代数式表示)16.已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB中点,点E是直线AC上一点,若以C、D、E为顶点的三角形与△ABC相似,则AE的长度为_____.17.如图,点P是Rt△ABC斜边AB上的任意一点(A、B两点除外),过点P作一条直线,使截得的三角形与Rt△ABC相似,这样的直线可以作_____条.18.如图,△ABC的内接正方形EFGH中,EH∥BC,其中BC=4,高AD=6,则正方形的边长为_____.19.如图△ABC中,边BC=12cm,高AD=6cm,边长为x的正方形PQMN的一边在BC上,其余两个顶点分别在AB、AC上,则正方形的边长x=_____cm.三、解答题20.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21.已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明111AB CD EF+=成立(不要求考生证明).若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD 于点F,则:(1)111AB CD EF+=还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.22.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.23.如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,求AP的长.24.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.()1如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有D C的长度和为6cm.那么一灯泡,在灯泡的照射下,正方形框架的横向影子'A B,'灯泡离地面的高度为________.()2不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此D C的长度和为多少?时横向影子'A B,'()3有n个边长为a的正方形按图3摆放,测得横向影子'A B,'D C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)25.如图,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分别是AB、BC边上的点,且AP=BQ=a (其中0<a<8).(1)若PQ⊥BC,求a的值;(2)若PQ=BQ,把线段CQ绕着点Q旋转180°,试判别点C的对应点C’是否落在线段QB上?请说明理由.26.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是.27.已知反比例函数y=kx的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.参考答案1.A【解析】根据面积比是比例尺的平方比,得它们的面积比即是比例尺的平方比,那么甲地图与乙地图表示这一块的三角形面积比是21100⎛⎫⎪⎝⎭:21500⎛⎫⎪⎝⎭=25:1,故选A.2.D【解析】连接EM,∵CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣35)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5 设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=512K,∴BH:HG:GM=512k:12k:5k=51:24:10,故选D.点睛:本题主要考查相似三角形的判定和性质.在判定两个三角形相似时,应注意利用图中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形.3.C【解析】GC =12,BC =0.5,设AB =CD =x ,CE =y ,则DE =x -y , ∵矩形ABCD ∽矩形EHGC , ∴AB BC GC HG=,即10.5x y =(1), ∵矩形ABCD ∽矩形ADEF , ∴AD DE AB AD =,即11x y X -=(2), 由(1)(2)解得:x =故选C.4.A【解析】因为四边形ABCD 是矩形,AM =AD ,BM=BF , 所以四边形AMGD ,四边形BMNF 都是正方形, 所以AM=AD=MG=BC ,MB-BF=MN=FN , 因为点M 是线段AB 的黄金分割点,AM>BM, 所以2BM AB AM =,所以1334S S S S +=+,所以14S S =,故②正确,所以2GN GD NG GM MN ==, 所以N 是GM 的黄金分割点,故①正确, 因为21S GN FN GN S AM MN GM==, 因为12MN GM =,所以GN GM ==故③错误, 故选A.5.A【解析】根据题意可得, 当23x =时,132y =-,31122x =-+=-, 当12x =-时,22y =,213x =+=, 当3x =时,313y =-,12133x =-+=, 当22x =时,432y =-,按照规律,5 2y =,我们发现,y 的值三个一循环2009÷3=669……2, 200922y y ==,故选A.6.D【解析】根据物体的顶端和影子顶端的连线必经过光源可得图中连接物的顶端与影子的顶端的两条直线应有交点,故只有(3)(4)符合题意,故选D.7.B【解析】解:旭日广场的旗杆在地面上的影子的变化规律是先变短,后变长.故选B . 点睛:根据太阳的运动规律和平行投影的特点和规律解题.8.D【分析】根据相似三角形的对应边的比等于相似比即可得到结果.【详解】∵△ABC∽△A′B′C′,BC=3,B′C′=1.8∴△A′B′C′与△ABC的相似比= B′C′∶BC=1.8∶3=3∶5故选D.【点睛】本题是相似三角形的性质的基础应用题,难度一般,学生在解题时只需注意对应字母写在对应位置上,即可轻松解答.9.B【分析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.10.49【解析】(1)因为∠AOC=90°,AC=8,所以线段AC的中点到原点的距离是:12,AC=4,(2)取AC的中点E,连接BE,OE,OB,因为∠AOC=90°,AC=8,所以OE=CE=12,AC=4,因为BC⊥AC,BC=3,所以BE=5,若点O,E,B不在一条直线上,则OB<OE+BE=9,若点O,E,B在一条直线上,则OB=OE+BE=9,故答案为:4,9.11.121【解析】小菱形的对角线长为8,大菱形的对角线长为88,相似比为8:88=1:11,设小菱形的面积为单位1,则大菱形的面积为112=121个单位,菱形的个数为121,故答案为:121.12.矩形,五边形或六边形【解析】当太阳斜照或直射时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是矩形,无边形或六边形.13.y=﹣8x【分析】要求函数的解析式只要求出点A 的坐标就可以,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点B 的坐标是(m,n ),然后用待定系数法即可.【详解】过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点B 的坐标是(m,n ),因为点B 在函数y =2x的图象上,则mn =2, 则BD =n ,OD =m ,则AC =2m ,OC =2n ,设过点A 的双曲线解析式是y =k x , A 点的坐标是(-2n ,2m ), 把它代入得到:2m =2k n -, 则k =-4mn =-8,则图中过点A 的双曲线解析式是y=8x -. 故答案为:y=8x-. 14. 【解析】分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.从而求出小明的身高从而可以求出小明的影长. 详解:∵小刚身高1.75米,小刚比小明矮5cm ,∴小明的身高为=1.8m ,∵△ADE ∽△ABC∴=,即=,设小明的影长是x ,则x==m .∴小明的影长是m .点睛:本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题15.11n +. 【解析】【分析】先根据平行相似证明△BO 1E 1∽△BAC ,列比例式得:111O E BO AC AB=,再根据中点的定义得:112BO AB =,所以1112O E AC =,同理可得:2233111,,,341n n O E AC O E AC O E AC n ==⋯=+. 【详解】∵O 1E 1∥AC ,∴△BO 1E 1∽△BAC ,111O E BO AC AB∴=, ∵O 1是AB 的中点,112BO AB ∴=, 1112O E AC ∴=, 1112O E AC ∴=,11//O E AC ,1122O E O CAO ∴, 1112112O E E O AC E A ∴==, 12113E O E A ∴=, 22//O E AC ,1221E O E E AC ∴, 2212113O E E O AC E A ∴==, 2213O E AC ∴=, 同理得:3323214O E E O AC E A == …11n n O E AC n ∴=+. 故答案是:11n +. 【点睛】考查了三角形相似的性质和判定,熟练掌握平行相似的判定是本题的关键,也可以利用中位线定理得出第一个结论.16.3或73【解析】∵∠ACB =90°,AC =6,BC =8,∴AB =62+82=10,∵点D 是AB 中点,∴CD =5,∵CD=AD,∴∠A =∠ACD,∴C,D,E为顶点的三角形与△ABC相似,应分△ABC∽△CDE和△ABC∽△CED两种情况进行讨论:当△ABC∽△CDE时:AB AC CD CE=,则1065CE=,即CE=3,得到:AE=3,当△ABC∽△CED时:AB AC CE CD=,则1065CE=,即CE=253,得到AE=257633-=,∴AE的长为3或7 3 ,故答案为: 3或7 3 .17.3【解析】过点P分别作三边的垂线,所得△ADP, △AEP, △BPF与RtΔABC相似. 所以这样的直线能做三条.18.12 5【解析】∵EH∥BC,∴△AEH∽△ABC,设正方形的边长为x,则:646x x-=,解得x=2.4, 故答案为2.4. 19.4【解析】试题解析:如图所示:由题意可得:APN ABC ∽,则,AE PN AD BC= 即:6.612x x -= 解得: 4.x =故答案为4.20.见解析【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【详解】如图所示.21.(1)成立(2)111ABD BDC BED S S S +=【解析】 试题分析: (1)∵ AB ∥EF ,所以EF DF AB DB =,∵CD ∥EF,∴EF BF CD DB=,∴EF EF BF DF AB CD DB DB +=+=1,∴111AB CD EF+=, (2)分别过A 作AM ⊥BD 于M ,过E 作EN ⊥BD 于N ,过C 作CK ⊥BD 交BD 的延长线于K,由题设可得:111AM CK EN +=,∴222AM BD CK CK EN DB +=,又∵12•BD•AM =S △ABD ,1 2BD CK =S △BCD ∴12BD•EN=S △BED,∴111ABD BDC BED S S S ==. 试题解析:(1)成立.证明:∵ AB ∥EF ,所以EF DF AB DB=, ∵CD ∥EF, ∴EF BF CD DB=, ∴EF EF BF DF AB CDDB DB +=+=1, ∴111AB CD EF +=, (2)关系式为:111ABD BDC BED S S S +=,证明如下:分别过A 作AM ⊥BD 于M ,过E 作EN ⊥BD 于N ,过C 作CK ⊥BD 交BD 的延长线于K,由题设可得:111AM CK EN+=, ∴222AM BD CK CK EN DB+=, 又∵12•BD•AM =S △ABD ,1 2BD CK =S △BCD ∴12BD•EN=S △BED, ∴111ABD BDC BED S S S ==.22.(1)见解析;(2)见解析;(3)见解析. 【解析】试题分析: (1)由平均数,得x=1500y,即y=1500x是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=100v,即t=100v是反比例函数.试题解析:(1)由平均数,得x=1500y,即y=1500x是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=100v,即t=100v是反比例函数.23.AP=247或AP=2或AP=6【分析】由AD//BC,∠B=90°,可证∠P AD=∠PBC=90°, 又由AB=8,AD=3,BC=4,设AP的长为x,则BP 长为8-x,然后分别从APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【详解】解:∵AB⊥BC,∴∠B=90°,∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°,AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=24 7,若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x), 解得x=2或x=6,所以AP =247或AP =2或AP =6. 24.(1)180cm ;(2)12cm ;(3)2na ab b+. 【分析】(1)设灯泡的位置为点P ,易得△PAD ∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B ,D′C 的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【详解】()1设灯泡离地面的高度为xcm ,∵AD //A'D',∴PAD PA'D'∠∠=,PDA PD'A'∠∠=.∴PAD PA'D'∽. 根据相似三角形对应高的比等于相似比的性质,可得AD PN A'D'PM =, ∴30x 3036x-=, 解得x 180=,故答案为180cm ;()2设横向影子A'B ,D'C 的长度和为ycm , 同理可得∴6015060y 180=+, 解得y 12cm =;()3记灯泡为点P ,如图:∵AD //A'D',∴PAD PA'D'∠∠=,PDA PD'A'∠∠=,∴PAD PA'D'∽, 根据相似三角形对应高的比等于相似比的性质,可得AD PN A'D'PM=, 设灯泡离地面距离为x ,由题意,得PM x =,PN x a =-,AD na =,A'D'na b =+, ∴na x a a 1na b x x-==-+, a na 1x na b=-+, 2na ab x b+=. 【点睛】本题考查了相似三角形的应用,涉及相似三角形的判定与性质,熟知相似三角形对应高的比等于相似比这个性质是解题的关键.25.(1)409(2)点C′不落在线段QB 上 【解析】试题分析: (1)∵∠B =∠B ,∠PQB =∠C =90°∴△BQP ∽△BCA, ∴BP BQ AB BC =,10108a a -=,解得:a =409, (2) 作QH ⊥AB 于H ,∵PQ=BQ ,∴BH=HP ,∵∠B =∠B ,∠BHQ =∠C,∴△BQH ∽△BAC, ∴BH:BC =BQ:AB 可得:12(10﹣a ):a =8:10,解得a =5013,CQ =(8﹣a )=5413, ∴BQ <QC,∴点C ′不落在线段QB 上.试题解析:(1)∵∠B =∠B ,∠PQB =∠C =90°∴△BQP ∽△BCA, ∴BP BQ AB BC =,10108a a -=, 解得:a =409, (2)点C ′不落在线段QB 上,作QH ⊥AB 于H ,∵PQ=BQ ,∴BH=HP ,∵∠B=∠B,∠BHQ=∠C, ∴△BQH∽△BAC,∴BH:BC=BQ:AB可得:12(10﹣a):a=8:10,解得a=50 13,CQ=(8﹣a)=54 13,∴BQ<QC,∴点C′不落在线段QB上.26.64【分析】试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.【详解】如图,,过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,根据题意得,△1∽△2∽△3,∵S△1:S△2=1:4,S△1:S△3=1:25,∴DM:EM:GH=1:2:5,又∵四边形BDMG与四边形CEMH为平行四边形,∴DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x, ∴BC:DM=8:1,∴S△ABC:S△FDM=64:1,∴S△ABC=1×64=64,故答案为:64.27.(1)y=2x,y=2x﹣3;(2)x>0;(3)x<﹣0.5或0<x<2;(4)点P′在直线上.【详解】试题分析:(1)根据题意,反比例函数y=kx的图象过点A(2,1),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A(2,1),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y>0时,解得对应x的取值即可;(3)由题意可知,反比例函数值大于一次函数的值,即可得2x>2x﹣3,解得x的取值范围即可;(4)先根据题意求出P′的坐标,再代入一次函数的解析式即可判断P′是否在一次函数y=kx+m的图象上..试题解析:解:(1)根据题意,反比例函数y=kx的图象与一次函数y=kx+m的图象相交于点A(2,1),则反比例函数y=kx中有k=2×1=2,y=kx+m中,k=2,又∵过(2,1),解可得m=﹣3;故其解析式为y=2x,y=2x﹣3;(2)由(1)可得反比例函数的解析式为y=2x,令y>0,即2x>0,解可得x>0.(3)根据题意,要反比例函数值大于一次函数的值,即2x>2x﹣3,解可得x<﹣0.5或0<x<2.(4)根据题意,易得点P(﹣1,5)关于x轴的对称点P′的坐标为(﹣1,﹣5)在y=2x﹣3中,x=﹣1时,y=﹣5;故点P′在直线上.考点:反比例函数与一次函数的交点问题.。