2013届高考数学知识点总结复习3.doc

合集下载

2013届高考数学主干知识整合课件13

2013届高考数学主干知识整合课件13
填空题中可以用不完全归纳法进行研究.
例 2 (1)已知数列{an}满足 a1=2,an+1=53aann--173(n ∈N*),则数列{an}的前 100 项的和为________.
(2)已知数列{an},{bn}满足 a1=1,a2=2,b1=2,且 对任意的正整数 i,j,k,l,当 i+j=k+l 时,都有 ai+bj
2 3
【解析】 方法一:因为 S10=70,所以10a12+a10=70,
即 a1+a10=14.又 a10=10,所以 a1=4,故 9d=10-4=6,所以 d
=23.
方法二:由题意得a110+a1+9d=45d1=0,70,
a1=4, 解得d=23.
专题十三 │ 要点热点探究
► 探究点二 根据递推关系式求通项公式 如果所给数列递推关系式,不可以用叠加法或叠乘法,在
=ak+bl,则201102i=0110 (ai+bi)的值是________.
专题十三│ 要点热点探究
(1)200 (2)2012 【解析】 (1)由 a1=2,an+1=53aann--173(n∈N*)得 a2=53××22--173=3,a3=53××33--173=1,a4=53××11--173=2,则{an}是周期 为 3 的数列,所以 S100=(2+3+1)×33+2=200.
谢谢
例 4 在各项均为正数的等比数列{an}中,已知 a2=2a1+3, 且 3a2,a4,5a3 成等差数列.
(1)求数列{an}的通项公式; (2)设 bn=log3an,求数列{anbn}的前 n 项和 Sn.
专题十三│ 要点热点探究
【解答】 (1)设{an}公比为 q,由题意得 q>0,
且a32a=2+2a51a+3=3,2a4,

(完整版)高考函数知识点总结(全面)

(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。

二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。

求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。

3。

复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。

三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。

高等数学知识点

高等数学知识点

高等数学知识点高等数学知识点在日复一日的学习中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。

哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的高等数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

高等数学知识点1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。

2.会建立简单应用问题中的函数关系式。

3.了解函数的奇偶性、单调性、周期性、和有界性。

4.掌握基本初等函数的性质及图形。

5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。

6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。

7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。

8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

9.掌握极限性质及四则运算法则。

10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。

3.会求隐函数和参数方程所确定的函数以及反函数的导数。

4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。

2.熟练运用罗比达法则和泰勒公式求极限和证明命题。

3.了解函数图形的作图步骤。

了解方程求近似解的两种方法:二分法、切线法。

4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。

第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。

2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。

下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。

高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

高考数学一轮复习 第3章 三角函数、解三角形 3.6 正弦定理和余弦定理学案 文

高考数学一轮复习 第3章 三角函数、解三角形 3.6 正弦定理和余弦定理学案 文

3.6 正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. [诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×46×34=1. (2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C = 120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 答案2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =bsin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A,则cos B =( )A .-12 B.12 C .-32 D.32边角互化法.答案 B解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12.故选B.典例2 (2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3 D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°, 解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°, △ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=8 3.故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )·(sin B +sin C ),则角C 等于( )A.π3 B.π6 C.π4 D.2π3答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3.故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理a sin A =csin C ,得a =6c =6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A =63,则cos A =1-sin 2A =33. 由余弦定理a 2=b 2+c 2-2bc cos A , 化简,得b 2-2b -15=0, 解得b =5(b =-3舍去).所以S △ABC =12bc sin A =12×5×3×63=522.题型2 利用正、余弦定理判断三角形的形状典例 (2017·陕西模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定用边角互化法.答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.故选B.[条件探究1] 将本典例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形答案 B解析 解法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .故选B. 解法二:由正弦定理得2a cos B =c ,由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .故选B.[条件探究2] 将本典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.故选C.[条件探究3] 将本典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状. 解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc,∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b-c)sin B+(2c-b)sin C.(1)求角A的大小;(2)若sin B+sin C=3,试判断△ABC的形状.解(1)由2a sin A=(2b-c)sin B+(2c-b)sin C及正弦定理,得2a2=(2b-c)b+(2c -b)c,即bc=b2+c2-a2,∴cos A=b2+c2-a22bc=12,A∈(0,π),∴A=60°.(2)∵A+B+C=180°,∴B+C=180°-60°=120°.由sin B+sin C=3,得sin B+sin(120°-B)=3,∴sin B+sin120°cos B-cos120°sin B= 3.∴32sin B+32cos B=3,即sin(B+30°)=1.∵0°<B<120°,∴30°<B+30°<150°.∴B+30°=90°,即B=60°.∴A=B=C=60°,∴△ABC为等边三角形.题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例(2017·杏花岭区模拟)已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且a=b cos C+33c sin B.(1)求B;(2)若b=2,求ac的最大值.本题采用转化法.解(1)在△ABC中,∵a=b cos C+33c sin B,∴sin A=sin B cos C+33sin C sin B,∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3.(2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C=163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2.故π6<2A -π6<5π6,∴sin ⎝⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4.角度2 与三角形内角有关的最值典例 (2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.本题采用放缩法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c ,又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C , 整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6.(2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0, 即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝⎛⎭⎪⎫0,π2上递减,C 是锐角, ∴0<C ≤π3.方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12.(2)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1, 又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6 C.π4 D.π3答案 B解析 因为a =2,c =2, 所以由正弦定理可知,2sin A =2sin C ,故sin A =2sin C . 又B =π-(A +C ), 故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角, 故sin C ≠0,则sin A +cos A =0,即tan A =-1. 又A ∈(0,π),所以A =3π4.从而sin C =12sin A =22×22=12. 由A =3π4知C 为锐角,故C =π6.故选B.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·si n C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理可得,(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sinπ3=2, ∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2015·全国卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sinC . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC的面积为1.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c=-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则ab等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴a b=2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b2c cos C =2-68×⎝ ⎛⎭⎪⎫-14=2.故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34.即sin B ⎝ ⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34.32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34, 32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1.又∵-π6<2B -π6<7π6,∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.故选C.7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B=45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A ,B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形.故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C 1-tan B tan C ,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C=-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B2,代入①式中,2sin B =2sin ⎝⎛⎭⎪⎫90°-B 2.∴2sin B =2cos B 2.∴4sin B 2cos B 2=2cos B2.∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34. 13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎪⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154.所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152. 因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC=8-CD28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. B 级三、解答题15.(2018·郑州质检)已知△ABC 的外接圆直径为433,角A ,B ,C 所对的边分别为a ,b ,c ,C =60°.(1)求a +b +csin A +sin B +sin C的值;(2)若a +b =ab ,求△ABC 的面积.解 (1)因为a sin A =b sin B =c sin C =2R =433,所以a =433sin A ,b =433sin B ,c =433sin C .所以a +b +c sin A +sin B +sin C =433(sin A +sin B +sin C )sin A +sin B +sin C =433.(2)由c =433sin C ,得c =433×32=2,c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ,又a +b =ab ,所以(ab )2-3ab -4=0,解得ab =4或ab =-1(舍去), 所以S △ABC =12ab sin C =12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin A sinB -6sin 2B =0.(1)求a b的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sinB -6sin 2B =0,sin B ≠0, 所以⎝⎛⎭⎪⎫sin A sin B 2+sin A sin B-6=0,得sin A sin B =2或sin A sin B =-3(舍去).由正弦定理得a b =sin Asin B=2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.①将ab=2,即a =2b 代入①, 得5b 2-c 2=3b 2,得c =2b .由余弦定理cos B =a 2+c 2-b 22ac,得cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148. 17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值. 解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π,∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B , ∴sin A cos C =0,又∵0<A <π,0<C <π,∴sin A >0. ∴cos C =0,∴C =π2.(2)由(1)得C =π2,∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时,sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD . (1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC . 解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC22AB ·BC=a 2+⎝⎛⎭⎪⎫23a 32-a 22a ·233a=33, ∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD ,得b 2=a 2+b 2-233ab ,解得a =233b .由正弦定理AD sin ∠ABD =ABsin ∠ADB , 得b63=a sin ∠ADB,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得3⎝ ⎛⎭⎪⎫b +33=2a ,① 由(1)可知a =233b ,②联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2.∴AH =263,∴S △ABC =12×433×263=423.。

2013届高考数学知识点扫描复习10.doc

2013届高考数学知识点扫描复习10.doc

九、排列、组合、二项式、概率:一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。

分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。

区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。

二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。

(2)排列数、组合数: 排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①1-=m m nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m m m A mA A 1-+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。

第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。

第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。

高中数学函数知识点总结大全

高中数学函数知识点总结大全

函数知识点大全一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

最全的高中幂-指数-对数-三角函数知识点总结

最全的高中幂-指数-对数-三角函数知识点总结

1.幂函数知识点总结一、幂函数(power function ):函数y x α= (x 是自变量,α是常数)二、幂函数的性质对于幂函数,我们只研究 11,2,3,,12α=- 时的图象与性质.1232,,,y x y x y x y x ==== 和 1y x -=共同性质:图像都过点(1,1)不同性质:α为奇数时幂函数为奇函数;α为偶数时幂函数为偶函数。

2.指数函数知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换知识点一 指数函数的概念一般地,函数x a y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R .1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,x a 无意义;若0<a ,则对于x 的某些值,x a 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义.2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R .3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下:(1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)x a 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.知识点二 指数函数的图象和性质一般地,指数函数x a y =(0>a 且1≠a )的图象和性质如下表所示:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数x a y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x 时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数x a y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大.(2)由于指数函数x a y =(0>a 且1≠a )的图象经过点⎪⎭⎫ ⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小.2. 函数x a y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称.如下图所示,指数函数xy 2=与xy ⎪⎭⎫ ⎝⎛=21的图象关于y 轴对称.(1)指数函数x a y =(0>a 且1≠a )与函数x a y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数x y 2=与函数x y 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数x a y --=(0>a 且1≠a )(即xa y ⎪⎭⎫⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数x y --=2(即xy ⎪⎭⎫⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数x a y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.4.指数函数x a y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快; (2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图y = 1高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b )的图象特点 (1)若1>>b a ,则当0<x 时,总有10<<<x x b a ;当0=x 时,总有1==x x b a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>x x a b ;当0=x 时,总有1==x x b a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a <.6. 指数函数x a y =(0>a 且1≠a )的图象和性质再说明 指数函数x a y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0. 图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交;(2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数x a y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间.(2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.知识点三 指数函数的定义域和值域1 定义域(1)指数函数x a y =(0>a 且1≠a )的定义域为R .(2)函数()x f a y =(0>a 且1≠a )的定义域与函数()x f 的定义域相同. (3)函数()x a f y =的定义域与函数()x f 的定义域不一定相同. 例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R. 注意:求指数型复合函数的定义域时,先观察函数是()x a f y =型还是()x f a y =型. 2 值域(1)指数函数x a y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f a y =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()x a f y =的函数的值域时,转化为求()+∞∈=,0x a t 时,函数()t f y =的值域.知识点四 指数函数的单调性及其应用1 单调性当1>a 时,函数x a y =在R 上为增函数;当10<<a 时,函数x a y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减. 2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较; 类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高; 类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小. (2)应用于解简单不等式不等式可化为()()x g x f a a <的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.3.对数函数及其性质知识点总结本节知识点(1)对数函数的概念; (2)对数函数的图象及其性质; (3)与对数函数有关的函数的定义域; (4)与对数函数有关的函数的值域;(5)与对数函数有关的函数的单调性及其应用; (6)与对数函数有关的函数的奇偶性; (7)反函数.知识点一 对数函数的概念一般地,函数x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量,函数的定义域是()+∞,0. 对数函数概念的理解 (1)形如x y a log =;(2)底数a 满足0>a 且1≠a ; (3)真数是x ,而不是含x 的表达式; (4)函数的定义域为()+∞,0. 两种特殊的对数函数特别地,以10为底的对数函数x y lg =叫做常用对数函数;以无理数e 为底的对数函数x y ln =叫做自然对数函数.知识点二 对数函数的图象及其性质一般地,对数函数x y a log =(0>a 且1≠a )的图象和性质如下表所示:(+∞,0对数函数x y a log =(0>a 且1≠a )的图象经过三个关键点:()0,1,()1,a 和⎪⎭⎫⎝⎛-1,1a .利用对数函数图象的三个关键点,可以快速地作出对数函数图象的简图. 特别提醒指数函数x a y =(0>a 且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.根据这三个关键点,可以快速地作出指数函数图象的简图.不难得出:在同一平面直角坐标系中,对数函数x y a log =(0>a 且1≠a )图象的三个关键点与指数函数x a y =(0>a 且1≠a )图象的三个关键点关于直线x y =对称.底数对对数函数图象的影响 (1)对数函数的对称性结论 函数x y a log =(0>a 且1≠a )的图象与函数x y a1log =(0>a 且1≠a )的图象关于x 轴对称.事实上,x x x y a a alog log log 111-===-,因为函数()x f y =与函数()x f y -=的图象关于x 轴对称,所以函数x y a log =与函数x y a1log =的图象关于x 轴对称.观察在同一平面直角坐标系在,分别画出函数x y 2log =,x y 3log =,x y 21log =和x y 31log =的图象,如图所示,体会对数函数图象的对称性.(2)底数a 决定对数函数的单调性 当1>a 时,对数函数的图象从左到右是上升的,函数在()∞+0上为增函数;当10<<a 时,对数函数的图象从左到右是下降的,函数在()∞+0上为减函数.(3)底数a 的大小决定对数函数图象相对位置的高低不论是1>a ,还是10<<a ,在第一象限内,取相同的函数值时,图象所对应的对数函数的底数从左到右逐渐变大.(1)上下比较 在直线1=x 的右侧,a 越大,图象越靠近x 轴;当10<<a 时,a 越小,图象越靠近x 轴.(2)左右比较 比较图象与直线1=y 的交点,交点的横坐标越大,对应的函数的底数越大.注意 若比较图象与直线1-=y 的交点,交点的横坐标越大,对应的函数的底数越小.说明 在平面直角坐标系中,对数函数x y a log =的图象与直线1=y 的交点为()1,a ,即交点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就越大;对数函数x y a log =与直线1-=y 的交点为⎪⎭⎫⎝⎛-1,1a ,故在= log 13x12x3x2x第四象限内,交点的横坐标越大(即a1越大),对数函数的底数反而越小. 关于对数函数函数值正负的判断根据对数函数的图象,当1>a ,1>x ,或10<<a ,10<<x 时,函数值0>y ,简记为同区间为正;当1>a ,10<<x ,或10<<a ,1>x 时,函数值0<y ,简记为异区间为负.即同区间为正,异区间为负.特别地,当1=x 时,0=y ,即对数函数的图象恒过点()0,1. 指数函数与对数函数的关系指数函数与对数函数的性质的比较如下表所示:知识点三 与对数函数有关的函数的定义域(1)对数函数x y a log =的定义域为()+∞,0. (2)形如()()x f y x g log =的函数,其定义域由()()()⎪⎩⎪⎨⎧≠>>100x g x g x f 确定.(3)形如()x f y a log =的函数的定义域,必须保证每一部分都有意义. 知识点四 对数型函数的值域(1)对数函数x y a log =(0>a 且1≠a )的值域利用函数的单调性求解; (2)求形如()x f y a log =的复合函数的值域,先求出()x f 的值域,然后结合对数函数的单调性求出函数()x f y a log =的值域;(3)求形如()x f y a log =的复合函数的值域,其中复合函数()x f y a log =一般是关于x a log 的二次函数,故可以采用换元法求解,注意新元的取值范围. 知识点五 与对数函数有关的函数的单调性及其应用 1.对数值大小的比较(1)同底数的利用函数的单调性; (2)同真数的利用函数的图象;(3)底数与真数都不同的,利用中间数0和1(介值法). 2.解简单的对数不等式(1)底数确定时,利用对数函数的单调性求解; (2)当底数不确定时,注意对底数进行分类讨论.注意 求解时注意“定义域优先”的原则,要保证每个真数都大于0.点评 简单的对数不等式经过适当的变形一般都可化为()()x g x f a a log log <的形式,当1>a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧<>>x g x f x g x f 00;当10<<a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧>>>x g x f x g x f 0. 3.对数型复合函数的单调性对数型复合函数一般分为两类:()x f y a log =型和()x f y a log =型.(1)研究()x f y a log =型复合函数的单调性,令x t a log =,则只需研究x t a log =及()t f y =的单调性即可;(2)研究()x f y a log =型复合函数的单调性,首先由()0>x f 确定函数的定义域,然后判断()x f t =在定义域上的单调性,再结合对数函数的单调性,判断函数()x f y a log =的单调性,其核心是:同增异减.4.三角函数知识点总结一、基础概念 1、正角、负角和零角正角:按逆时针方向旋转形成的角 负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角正角 负角 零角2、象限角、轴线角象限角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在第几象限就说这个角是第几象限角.轴线角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在坐标轴上就说这个角是轴线角,这个角不属于任何项限3、角的集合:与任意角α终边相同的角构成一个集合 {}Z k k ∈⋅+=,360 αββ常见结论:(1)第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}Z k k k ∈+<<+⋅,36018090360αα第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z(2)终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z 终边在x y =上的角的集合为{}Z k k ∈⋅+=,18045 αα 终边在x y -=上的角的集合为{}Z k k ∈⋅+=,180135 αα(3)任何一个象限角有可能是正角,也有可能是负角;任何轴线角有可能是正角、负角、零角; 小于 90的角不一定是锐角; 大于 90的角不一定是钝角; 终边相同的角不一定相等4、已知α是第几象限角,确定nα)(Z n ∈所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。

高中数学重难点知识点

高中数学重难点知识点

高中数学重难点知识点高中数学重难点知识点高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。

2013高考数学必考知识点

2013高考数学必考知识点

2013高考数学必考知识点2013高考数学必考知识点在众多的重点题型里,有50分以上的分值都分布在以下几个内容里,且这些内容应该是不论高、中、低端考生都不能也不容易做错的。

其主要内容有:平面向量、三角函数、立体几何。

(1)关于“平面向量”向量的内容多而杂,但可归为6个方面12个知识点。

即:向量的计算——加、减、乘(数乘、点乘);向量的应用——向量的特征(模、辐角)、平行、三垂直。

每个方面都有向量行式和坐标行式两种,因此共有12个知识点。

平面向量本是高等数学的一个基础内容,就历年出题的难度来看,难度并不大,因此提醒毕业生们:做此类题时,一定要把向量语言翻译成普通语言去解决。

之前讲的6个方面、12个知识点,即是一种最根本的翻译方法。

(2)关于“立体几何”在考试时遇到立体几何,考生们一定要马上想到“三垂线定理”。

三垂线正逆定理实际上是共面异面垂直的互相转化,“三垂线定理的应用,最能体现立体几何的学科特点。

”对此类题的归纳是:“大半证明,小半算,证明要用三垂线。

”以往很多考生遇到立体几何题就开始埋头苦算,即使算对,得分也并不高。

“数学打分是按步骤来的。

很多考生忽视证明,违背了出题者的意图。

此类题得分的关键是证明和推导,跳跃了证明的步骤,当然会被扣分。

”(3)关于“三角函数”谈到三角函数,下面是一道必考题。

例题:已知函数①当a=1时,求f(x)的单调递减区间。

②当a 三角函数出现2次方,难度系数加大了。

想化难为简,考生们则要选择“降幂升角”公式:把该方程式化为一次式方程。

然后再用划为同角同幂去研究,最后再画图示意,问题迎刃而解。

最后冲刺不要多做题最后几个月的复习,是研究细致、夯实基础的精细型复习。

建议大家,在最后一两个月的时间里,除了完成老师布置的试卷外,别再做更多更难更怪的题了。

“每周做3套回归型训练加2套综合模拟高考训练完全够了,一定要给自己减压!”现在做回归型即基础为主的训练题,主要是让大家找到自信,因为这些题以测试基础的解题思路、技巧为主,做完下来考生心理容易放松。

高三数学复习知识点总结

高三数学复习知识点总结

高三数学复习知识点总结推荐文章高三文科数学命题知识点热度:高三数学知识点总结范本热度:高三数学命题知识点热度:高三数学复数知识点热度:高三数学文科数学知识点热度:有人说:好好学习,天天向上,的确,我们是应该这么做,作为一个中小学生的感受来理解学习,我们大概都认为学习不好玩,读书的都是书呆子,但是等到知道学习能干什么时,大家也就都会恍然大悟了,因为学习能使我们学习到更多的知识,用知识来充实自己。

下面是小编给大家带来的高三数学复习知识点总结,希望能帮助到你!高三数学复习知识点总结1第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法;第二类我们所讲的动点问题;第三类是弦长问题;第四类是对称问题,这也是2008年高考已经考过的一点;第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

分数除法知识点总结3篇

分数除法知识点总结3篇

分数除法知识点总结3篇分数除法计算(1)分数除法的意义和分数除以整数知识点一:分数乘法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

未知两个因数的积与其中一个因数,谋另一个因数,用(乘法)排序。

的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。

分数乘法的意义与整数乘法的意义相同,都就是未知两个因数的积与其中一个因数,谋另一个因数的运算。

知识点二:分数除以整数的计算方法把一个数平均值分为整数份,谋其中的几份就是谋这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。

(2)一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等同于这个数乘坐分数的倒数。

知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等同于甲数乘乙数的倒数。

知识点三:商与被除数的大小关系一个数(0除外)除以大于1的数,商大于被除数。

除以1,商等同于被除数。

除以大于1的数,商大于被除数。

0除以任何数商都为0.(3)分数乘法的混合运算知识点一:分数除加、除减的运算顺序基准:8÷-4=8×-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。

知识点二:连除的计算方法例:÷÷分数连除,可以分步转变为乘法排序,也可以一次都转变为乘法再排序,能约分的要约收购分后。

分数除法知识点一:分数除法的意义和分数除以整数知识点一:分数乘法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:(1)用分子和整数相乘的商搞分子,分母维持不变。

(2)分数除以整数,等同于分数乘坐这个整数的倒数。

分数除法知识点二:一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(0,1,0)a a N>≠>.1≠,0m>,且1m≠,0N>).).).89、正弦、余弦的诱导公式(奇变偶不变,符号看象限)α看成锐角时该函数的符号;α看成锐角时该函数的符号。

高考数学2013

高考数学2013

高考数学2013
高考数学2013是指2013年的中国高考数学科目。

根据历年高考数学试题来看,2013年的数学试题内容包括数学的基本概念和方法、代数与函数、几何与测量、数据与统计等内容。

具体试题涉及到的知识点和考查要点可能包括但不限于以下内容:
1.数与式:
- 实数的性质、运算和应用
- 复数的定义、运算和性质
- 分母有理化
- 立方和立方根
- 幂的运算与表示
2.函数:
- 函数概念及其表示与性质
- 幂函数、指数函数、对数函数和三角函数的图象与性质- 函数与方程的关系
- 函数的运算与复合
3.数列与数列的应用:
- 等差数列与等差中项
- 等比数列与等比中项
- 通项公式与求和公式
- 序列极限与数列的应用
4.平面几何:
- 二次曲线的图象与性质
- 几何恒等式的运用
- 三角形与直角三角形的性质和计算- 向量的定义、运算和应用
- 圆的性质和计算
5.空间几何:
- 空间图形的投影、视图
- 空间坐标与坐标表示
- 空间几何体的名称、性质和计算- 空间向量及其运算
6.数学模型及其解法:
- 利用奇偶性、因式分解解题
- 利用数学化归、递推关系解题
- 利用图像、函数关系解题
- 利用等式、方程组解题
- 利用数据、统计等解题
以上仅列举了一部分可能涉及到的知识点和考查要点,具体考题可能根据不同的地区和学校而有所差异。

如果需要具体的试题和答案,可以查阅相关的考试资料或者咨询相关的教师或专业人士。

2013高考数学重要知识点扫描

2013高考数学重要知识点扫描

2013届高三数学考前提醒1.看清楚集合的代表元素:集合}{2,M y y x x R =|=∈,}{21,N y y x x R =|=+∈,则M N = ;[1,)+∞ 集合}{2,M y y x x R =|=∈,}{21,N x y x x R =|=+∈,则M N = ;[0,)+∞ 集合}{2(,),M x y y x x R =|=∈,}{2(,)1,N x y y x x R =|=+∈,则M N = ;∅2. 正确理解集合的元素:设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____ (答:)}2,2{(--)3. 集合中的等价转换:A B B B A =⇔⊆ A B B A B=⇔⊆ 4. 不能忽视空集:⑴}0158|{2=+-=x x x A ,,}01|{=-=ax x B 若A B ⊆,求实数a 的值.(不要遗忘a =0即B =∅的情况)⑵}012|{2=--=x ax x A ,如果A R +=∅ ,求a 的取值。

(答:a ≤0)5.命题中的“正难则反”:①已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。

(答:3(3,)2-)②要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是_____.(答:81[7,)8)6. 注意等价命题,认清哪个是条件哪个是结论:如:“βαsin sin ≠”是“βα≠”的 条件。

(答:充分非必要条件)7.二次项系数是字母的要注意讨论:()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]); 8. 函数定义域是研究函数的首要对象:(1)函数y=2)3lg()4(--x x x 的定义域是 ;(2)函数(2)xf 的定义域是(0,1],求2(log )f x 的定义域.(3)判断函数()3f x x =|+|-3的奇偶性(4)若2211()f x x xx+=+,则()f x =(5)函数()x f y =是R 上的奇函数,且0x >时,()12xf x =+,则()f x 的表达式为 (6)若函数212log (3)y x ax a =-+在区间[)2,+∞上是减函数,则实数a 的取值范围是9. 证明函数单调性的规范写法取值, 作差(分解因式), 判正负.10.三角换元的作用:函数4y x =++____(答:[1,4]); 11、反函数的一个有用结论:()1().fa b f b a -=⇔=12.函数奇偶性定义的应用:设)(x f 是定义域为R 的任一函数, ()()()2f x f x F x +-=,()()()2f x f x G x --=。

2013届高考数学全套核心知识点总结

2013届高考数学全套核心知识点总结

高考数学全套知识点总结(通用版)——至臻高考 姜老师1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第十五章 复数
考试内容:
复数的概念.
复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求:
(1)了解复数的有关概念及复数的代数表示和几何意义.
(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、
除法运算.
(3)了解从自然数系到复数系的关系及扩充的基本思想.
§15. 复 数 知识要点
1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=.
⑵复数及其相关概念:
① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ;
④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i.
⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数)
⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义:
00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小.
注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数]
2若21z z ,则021 z z -.(√)
②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当
22)(i b a =-,
0)(,1)(22=-=-a c c b 时,上式成立)
2. ⑴复平面内的两点间距离公式:21z z d -=.
其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00 r r z z =-. ⑵曲线方程的复数形式:
①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②21z z z z -=-表示线段21z z 的垂直平分线的方程.
③212121202Z Z z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为a 的椭圆的方程(若212z z a =,此方程表示线段21Z Z ,).
④),(2121202z z a a z z z z =---表示以21Z Z ,为焦点,实半轴长为a 的双曲线方程(若212z z a =,此方程表示两条射线). ⑶绝对值不等式:
设21z z ,是不等于零的复数,则 ①212121z z z z z z +≤+≤-.
左边取等号的条件是),且(012 λλλR z z ∈=,右边取等号的条件是
),(012 λλλR z z ∈=.
②212121z z z z z z +≤-≤-.
左边取等号的条件是),(012 λλλR z z ∈=,右边取等号的条件是
),(012 λλλR z z ∈=.
注:n n n A A A A A A A A A A 11433221=++++- . 3. 共轭复数的性质:
z z = 2121z z z z +=+
a z z 2=+,i 2
b z z =-(=z a + b i )
22||||z z z z ==⋅
2121z z z z -=- 2121z z z z ⋅=⋅
2121z
z z z =⎪⎪⎭
⎫ ⎝⎛(02≠z ) n n z z )(= 注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]
4 ⑴①复数的乘方:)(...+∈⋅⋅=N n z z z z z n
n
②对任何z ,21,z z C ∈及+∈N n m ,有 ③n
n n n m n m n
m n
m
z z z z z z z
z z 2121)(,)(,⋅=⋅==⋅⋅+
注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如
1,14
2
=-=i i 若由11)(2
1
2
142
===
i i 就会得到11=-的错误结论.
②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法. ⑵常用的结论:
1,,1,,143424142=-=-==-=+++n n n n i i i i i i i
)(,0321Z n i i i i n n n n ∈=++++++
i i
i
i i i i i -=+-=-+±=±11,11,2)1(2 若
ω
是1
的立方虚数根,即
i 2
321
±
-=ω,

.
5. ⑴复数z 是实数及纯虚数的充要条件: ①z z R z =⇔∈.
②若0≠z ,z 是纯虚数0=+⇔z z .
⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零. 注:||||z z =.
6. ⑴复数的三角形式:)sin (cos θθi r z +=. 辐角主值:θ适合于0≤θ<π2的值,记作z arg . 注:①z 为零时,z arg 可取)2,0[π内任意值. ②辐角是多值的,都相差2π的整数倍.
③设,+∈R a 则ππ
π2
3)arg(,2
arg ,)arg(,0arg =-==-=ai ai a a .
⑵复数的代数形式与三角形式的互化:
)sin (cos θθi r bi a +=+,2
2b a r +=,r
b r a ==θθsin ,cos .
⑶几类三角式的标准形式:
)]sin()[cos()sin (cos θθθϑ-+-=-i r i r
)
(0,01,1
,,12122
3Z n n n n ∈=++=++===++ωωωωωωωωω
)]sin()[cos()sin (cos θπθπθθ+++=+-i r i r
)]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r )]2
sin()2[cos()cos (sin θπ
θπθθ-+-=+i r i r
7. 复数集中解一元二次方程:
在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题: ①当R c b a ∈,,时,若∆>0,则有二不等实数根a
b x 22,1∆
±-=;若∆=0,则有二相
等实数根a
b
x 22,1-=;若∆<0,则有二相等复数根a i b x 2||2,1∆±-=(2,1x 为共轭复
数).
②当c b a ,,不全为实数时,不能用∆方程根的情况.
③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立. 8. 复数的三角形式运算:
)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r
)]sin()[cos()sin (cos )sin (cos 21212
1
222211θθθθθθθθ-+-=++i r r i r i r
棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r n
n +=+。

相关文档
最新文档