中考数学与平行四边形有关的压轴题含答案解析
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点睛】
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴ AB•CF= AC•PE﹣ AB•PD.
∵AB=AC,
∴CF=PD﹣PE;
结论运用:过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是长方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∴PG+PH的值为8;
迁移拓展:如图,
由题意得:A(0,8),B(6,0),C(﹣4,0)
∴AB= =10,BC=10.
∴AB=BC,
(1)由结论得:P1D1+P1E1=OA=8
∵P1D1=1=2,
∴P1E1=6即点P1的纵坐标为6
又点P1在直线l2上,
∴y=2x+8=6,
∴x=﹣1,
即点P1的坐标为(﹣1,6);
连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;
【结论运用】
过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;
【迁移拓展】
分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.
【详解】
变式探究:连接AP,如图3:
∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,
拓展延伸
(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.
【答案】(1)MB=ME,MB⊥ME;(2)ME= MB.证明见解析;(3)ME=MB·tan .
【解析】
【分析】
(1)如图1中,连接CM.只要证明△MBE是等腰直角三角形即可;
(2)结论:EM= MB.只要证明△EBM是直角三角形,且∠MEB=30°即可;
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(2)∵AB=a,BC=b,CE=ka,CG=kb,
∴ ,
又∵∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(3)连接BE、DG.
根据题意,得AB=3,BC=2,CE=1.5,CG=1,
试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;
(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:
考点:1.作图﹣应用与设计作图;2.勾股定理.
4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3) ;
【解析】
分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
【详解】
证明:(1)∵四边形ABCD是平行四边形
∴AD=BC,CD∥AB,∠B=∠D
∵平行四边形ABCD沿其对角线AC折叠
∴BC=B'C,∠B=∠B'
∴∠D=∠B',AD=B'C且∠DEA=∠B'EC
∴△ADE≌△B'EC
(2
∴AE=CE
∵AE=CE,EF⊥AC
∴MC=MA=MD.
∵BA=BC,
∴BM垂直平分AC.
∵∠ABC=120°,BA=BC,
∴∠MBE= ∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.
∵AB∥DE,
∴∠ABE+∠DEC=180°,
∴∠DEC=60°,
∴∠DCE=∠DEC=60°,
∴△CDE是等边三角形,
∴EC=ED.
(3)结论:EM=BM•tan .证明方法类似;
【详解】
(1)如图1中,连接CM.
∵∠ACD=90°,AM=MD,
∴MC=MA=MD,
∵BA=BC,
∴BM垂直平分AC,
∵∠ABC=90°,BA=BC,
∴∠MBE= ∠ABC=45°,∠ACB=∠DCE=45°,
∵AB∥DE,
∴∠ABE+∠DEC=180°,
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).
【答案】(1)作图参见解析;(2)作图参见解析.
【解析】
试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.
∵∠C=90°,
∴DC= =8.
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四边形EQCD是长方形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
∴BE=BF,
由问题情境中的结论可得:PG+PH=EQ.
∴PG+PH=8.
∵BG⊥DE,∠BCD=∠ECG=90°
∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG 2=9+4+2.25+1=16.25.
点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.
2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k= ,求BE2+DG2的值.
【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.
(2)由结论得:P2E2﹣P2D2=OA=8
∵P2D2=2,
∴P2E2=10即点P1的纵坐标为10
又点P1在直线l2上,
∴y=2x+8=10,
∴x=1,
即点P1的坐标为(1,10)
【点睛】
本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.
5.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.
(1)求证:四边形BCFD是菱形;
(2)若AD=1,BC=2,求BF的长.
【答案】(1)证明见解析(2)2
【解析】
(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,
∵点E为CD的中点,∴DE=EC,
在△BCE与△FDE中, ,
∴△BCE≌△FDE,∴DF=BC,
又∵DF∥BC,∴四边形BCDF为平行四边形,
∵BD=BC,∴四边形BCFD是菱形;
(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,
在Rt△BAD中,AB= ,
∵AF=AD+DF=1+2=3,在Rt△BAF中,BF= =2 .
3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(迁移拓展)(3)在直角坐标系中,直线l1:y=- x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.
【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)
【解析】
【变式探究】
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;
请运用上述解答中所积累的经验和方法完成下列两题:
(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值.
∵MC=MD,
∴EM垂直平分CD,EM平分∠DEC,
∴∠MEC= ∠DEC=30°,
∴∠MBE+∠MEB=90°,即∠BME=90°.
在Rt△BME中,∵∠MEB=30°,
∴ME= MB.
(3)如图3中,结论:EM=BM•tan .
理由:同法可证:BM⊥EM,BM平分∠ABC,
所以EM=BM•tan .
【解析】
分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;
②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;
(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;
∴EF垂直平分AC,∠AEF=∠CEF
∴AF=CF
∵CD∥AB
∴∠CEF=∠EFA且∠AEF=∠CEF
∴∠AEF=∠EFA
∴AF=AE
∴AF=AE=CE=CF
∴四边形AECF是菱形
【点睛】
本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.
(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.
详解:(1)①BG⊥DE,BG=DE;
②∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
(1)求证:△AED≌△CEB′;
(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.
【答案】(1)见解析(2)见解析
【解析】
【分析】
(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;
(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
6.问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,ME.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED,∵MC=MD,
∴EM垂直平分线段CD,EM平分∠DEC,
∴∠MEC=45°,
∴△BME是等腰直角三角形,
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴ AB•CF= AC•PE﹣ AB•PD.
∵AB=AC,
∴CF=PD﹣PE;
结论运用:过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是长方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∴PG+PH的值为8;
迁移拓展:如图,
由题意得:A(0,8),B(6,0),C(﹣4,0)
∴AB= =10,BC=10.
∴AB=BC,
(1)由结论得:P1D1+P1E1=OA=8
∵P1D1=1=2,
∴P1E1=6即点P1的纵坐标为6
又点P1在直线l2上,
∴y=2x+8=6,
∴x=﹣1,
即点P1的坐标为(﹣1,6);
连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;
【结论运用】
过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;
【迁移拓展】
分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.
【详解】
变式探究:连接AP,如图3:
∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,
拓展延伸
(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.
【答案】(1)MB=ME,MB⊥ME;(2)ME= MB.证明见解析;(3)ME=MB·tan .
【解析】
【分析】
(1)如图1中,连接CM.只要证明△MBE是等腰直角三角形即可;
(2)结论:EM= MB.只要证明△EBM是直角三角形,且∠MEB=30°即可;
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(2)∵AB=a,BC=b,CE=ka,CG=kb,
∴ ,
又∵∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(3)连接BE、DG.
根据题意,得AB=3,BC=2,CE=1.5,CG=1,
试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;
(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:
考点:1.作图﹣应用与设计作图;2.勾股定理.
4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3) ;
【解析】
分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
【详解】
证明:(1)∵四边形ABCD是平行四边形
∴AD=BC,CD∥AB,∠B=∠D
∵平行四边形ABCD沿其对角线AC折叠
∴BC=B'C,∠B=∠B'
∴∠D=∠B',AD=B'C且∠DEA=∠B'EC
∴△ADE≌△B'EC
(2
∴AE=CE
∵AE=CE,EF⊥AC
∴MC=MA=MD.
∵BA=BC,
∴BM垂直平分AC.
∵∠ABC=120°,BA=BC,
∴∠MBE= ∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.
∵AB∥DE,
∴∠ABE+∠DEC=180°,
∴∠DEC=60°,
∴∠DCE=∠DEC=60°,
∴△CDE是等边三角形,
∴EC=ED.
(3)结论:EM=BM•tan .证明方法类似;
【详解】
(1)如图1中,连接CM.
∵∠ACD=90°,AM=MD,
∴MC=MA=MD,
∵BA=BC,
∴BM垂直平分AC,
∵∠ABC=90°,BA=BC,
∴∠MBE= ∠ABC=45°,∠ACB=∠DCE=45°,
∵AB∥DE,
∴∠ABE+∠DEC=180°,
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).
【答案】(1)作图参见解析;(2)作图参见解析.
【解析】
试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.
∵∠C=90°,
∴DC= =8.
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四边形EQCD是长方形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
∴BE=BF,
由问题情境中的结论可得:PG+PH=EQ.
∴PG+PH=8.
∵BG⊥DE,∠BCD=∠ECG=90°
∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG 2=9+4+2.25+1=16.25.
点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.
2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k= ,求BE2+DG2的值.
【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.
(2)由结论得:P2E2﹣P2D2=OA=8
∵P2D2=2,
∴P2E2=10即点P1的纵坐标为10
又点P1在直线l2上,
∴y=2x+8=10,
∴x=1,
即点P1的坐标为(1,10)
【点睛】
本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.
5.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.
(1)求证:四边形BCFD是菱形;
(2)若AD=1,BC=2,求BF的长.
【答案】(1)证明见解析(2)2
【解析】
(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,
∵点E为CD的中点,∴DE=EC,
在△BCE与△FDE中, ,
∴△BCE≌△FDE,∴DF=BC,
又∵DF∥BC,∴四边形BCDF为平行四边形,
∵BD=BC,∴四边形BCFD是菱形;
(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,
在Rt△BAD中,AB= ,
∵AF=AD+DF=1+2=3,在Rt△BAF中,BF= =2 .
3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(迁移拓展)(3)在直角坐标系中,直线l1:y=- x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.
【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)
【解析】
【变式探究】
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;
请运用上述解答中所积累的经验和方法完成下列两题:
(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=16,CF=6,求PG+PH的值.
∵MC=MD,
∴EM垂直平分CD,EM平分∠DEC,
∴∠MEC= ∠DEC=30°,
∴∠MBE+∠MEB=90°,即∠BME=90°.
在Rt△BME中,∵∠MEB=30°,
∴ME= MB.
(3)如图3中,结论:EM=BM•tan .
理由:同法可证:BM⊥EM,BM平分∠ABC,
所以EM=BM•tan .
【解析】
分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;
②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;
(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;
∴EF垂直平分AC,∠AEF=∠CEF
∴AF=CF
∵CD∥AB
∴∠CEF=∠EFA且∠AEF=∠CEF
∴∠AEF=∠EFA
∴AF=AE
∴AF=AE=CE=CF
∴四边形AECF是菱形
【点睛】
本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.
(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.
详解:(1)①BG⊥DE,BG=DE;
②∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
(1)求证:△AED≌△CEB′;
(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.
【答案】(1)见解析(2)见解析
【解析】
【分析】
(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;
(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.